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Abstract

We explore in this paper a novel topological or-
ganization algorithm for categorical data cluster-
ing and visualization named RTC. In general, it is
more difficult to perform clustering on categorical
data than on numerical data due to the absence
of the ordered property in the data. The pro-
posed approach is based on the self-organization
principle of the Kohonen’s model and uses the Re-
lational Analysis formalism by optimizing a cost
function defined as a modified Condorcet crite-
rion. We propose an iterative algorithm, which
deals linearly with large datasets, provides a nat-
ural clusters identification and allows a visualiza-
tion of the clustering result on a two dimensional
grid. RTC was validated on variant real datasets
and the experimental results show the effective-
ness of the proposed procedure.

1 Introduction

In the exploratory data analysis of high dimensional
data, one of the main tasks is the formation of a sim-
plified, usually visual, overview of data sets. This can
be achieved through simplified description or summaries,
which should provide the possibility to discover most rel-
evant features or patterns. Clustering and projection are
among the examples of useful methods to achieve this
task. On one hand classical clustering algorithms pro-
duce a grouping of the data according to a chosen cri-
terion. Projection methods, on the other hand, repre-
sent the data points in a lower dimensional space in such
a way that the clusters and the metric relations of the
data items are preserved as faithfully as possible. In this
field, most algorithms use similarity measures based on
Euclidean distance. However there are several types of
data where the use of this measure is not adequate. This
is the case when using categorical data since, generally,
there is no known ordering between the feature values.
In this work, we present a new formalism that can be
applied to this type of data and simultaneously achieves

the both tasks, clustering and visualization.
Topological learning is a recent direction in Machine
Learning which aims to develop methods grounded on
statistics to recover the topological invariants from the
observed data points. Most of the existed topological
learning approaches are based on graph theory or graph-
based clustering methods.
The topological learning is one of the most known tech-
nique which allow clustering and visualization simultane-
ously. At the end of the topographic learning, the ”simi-
lar” data will be collect in clusters, which correspond to
the sets of similar observations. These clusters can be
represented by more concise information than the bru-
tal listing of their patterns, such as their gravity center
or different statistical moments. As expected, this in-
formation is easier to manipulate than the original data
points. The neural networks based techniques are the
most adapted to topological learning as these approaches
represent already a network (graph). This is why, we use
the principle of the self-organizing maps which represent
a two layer neural network: an entry layer and a topo-
logical layer (the map).
In order to visualize the partition obtained by the Re-
lational Analysis approach (Marcotorchino, 2006),(Mar-
cotorchino and Michaud, 1978) Marcotorchino proposed
a methodology called ”Relational Factorial Analysis”(
Marcotorchino, 1991, 2000) which combines the rela-
tional analysis for clustering and the factorial analysis for
the visualization of the partition on the factorial designs.
It is a juxtaposition of the both methods, the methodol-
ogy presented here combines the relational analysis ap-
proach and the SOM principle determined by a specific
formalism to this methodology. The proposed model al-
lows simultaneously, to achieve data clustering and vi-
sualization, indeed, it automatically provided a natural
partition (i.e without fixing a priori the number of clus-
ters and the size of each cluster) and a self-organization
of the clusters on a two-dimensional map while preserv-
ing the a priori topological data structure (i.e two close
clusters on the map consist of close observations in the
input space). Various methods based on the principle
of SOM model were proposed in the literature for bi-
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nary data processing: probabilistic methods and others
quantization techniques. Most of these methods oper-
ate on the data after a preliminary transformation step
in order to find a continuous representation of the data,
and then apply SOM model, like KACM (Cottrell and
Letrmy, 2003)and the approach suggested by Leich and al
(Leich, Weingessel and Dimitriadou, 1998). These meth-
ods destroy the binary nature of the data, in other words,
they violate the structure of the data to meet the require-
ments of the method. In (Lebbah, Badran and Thiria,
2000)the authors propose BTM method (binary topolog-
ical map) which operates directly on binary data based
on the Hamming distance. In ( Lebbah, Rogovschi and
Bennani, 2007)a probabilistic version of the SOM model
is proposed, based on the Bernoulli distribution adapted
to the binary data (BeSOM). This paper is organized in
the following way: in section 2 we present the Relational
Analysis approach, and the section 3 presents the clas-
sical self-organizing maps model. We show in section 4
the formalism of the topological clustering problem in a
relational framework and the proposed ”Batch RTC” al-
gorithm. The section 5 shows the experimental results
and some perspectives related to the proposed approach.

2 Relational analysis approach

Relational Analysis was developed in 1977 by F. Marco-
torchino and P. Michaud, inspired by the work of Marquis
de Condorcet, which was interested in the 18th century
with the result of collective vote starting from individ-
ual votes. This methodology is based on the relational
representation (pairwise comparison) of data objects and
the optimization under constraints of the Condorcet cri-
terion.

2.1 Definitions and notations

Let D be a dataset with a set I of N objects
(O1, O2, ..., ON ) described by the set V of M categor-
ical attributes (or variables) V 1, V 2., V m, .., V M , each
one having p1, .., pm, .., pM categories respectively and let
P =

∑M
m=1 pm to denote the full number of categories of

all variables. Each categorical variable can be decom-
posed into a collection of indicator variables. For each
variable V m, let the pm values to naturally correspond
to the numbers from 1 to pm and let V m

1 , V m
2 , ..., V m

pm
be

the binary variables such that for each j, 1 ≤ j ≤ pm,
V m

k = 1 if and only if the V m takes the j-th value. Then
the data set can be expressed as a collection of M matri-
ces Km (N × pm) (for m = 1, .., M) of general term km

ij

such as:

km
ij =

{
1 if the object i takes the categorie j of V m

0 otherwise
(1)

which gives the N by P binary disjunctive matrix K =
(K1|K2|...|Km|...|KM ).

2.2 Relational data representation

If the data is made up of N objects (O1, O2, ..., ON ) on
which M attributes (or variables) (V 1, V 2, ..., V M ) have
been measured then the ”pairwise comparison principle”
consists in transforming the data, which is usually, rep-
resented by a N×Mrectangular matrix into two squared
N ×N matrices S and S̄. The matrix S, which is called
the global relational Condorcet’s matrix, of general term
sii′ representing the global similarity measure between
the two objects Oi and Oi′ over all the M attributes and
matrix S̄ of general term s̄ii′ which represent the global
dissimilarity measure of these two objects. To get matrix
S, each V m attribute is transformed into a squared N×N
matrix Sm of general term sm

ii′ which represent the simi-
larity measure between the two objects Oi and Oi′ with
regards to attribute V m . Then, sm

ii′ = 1 if Oi and Oi′

take the same categorie of V m and 0 otherwise. To get
matrix S̄ , a dissimilarity measure s̄m

ii′ s of objects Oi and
Oi′ with regards to attribute V m is then computed as the
complement to the maximum possible similarity measure
between these two objects. As the similarity between two
different objects is less or equal to their self-similarities:
sm

ii′ ≤ min(sm
ii , sm

i′i′) then s̄m
ii′ = 1

2 (sm
ii + sm

i′i′)− sm
ii′ . This

leads to a dissimilarity measure matrix S̄m. The matri-
ces S and S̄ are then obtained by summing, respectively,
all the matrices Sm and S̄m, that is S =

∑M
m=1 Sm and

S̄ =
∑M

m=1 S̄m. The global similarity between each two
objects Oi and Oi′ is thus sii′ =

∑M
m=1 sm

ii′ and their
global dissimilarity is s̄ii′ =

∑M
m=1 s̄m

ii′ .
The table 1 shows different coding forms for a qualitative
dataset containing 5 objects measured on a qualitative
variable with 3 modalities.

V1
o1 1
o2 2
o3 1
o4 2
o5 3

V 1
1 V 2

1 V 3
1

o1 1 0 0
o2 0 1 0
o3 1 0 0
o4 0 1 0
o5 0 0 1

o1 o2 o3 o4 o5
o1 1 0 1 0 0
o2 0 1 0 1 0
o3 1 0 1 0 0
o4 0 1 0 1 0
o5 0 0 0 0 1

Table 1: Linear coding - disjunctive coding - Relational
coding

2.3 Condorcet’s criterion maximization

To cluster a population of N objects described by M vari-
ables, the relational analysis theory maximises the Con-
dorcet’s criterion :

max
X

RRA(S,X)

with X = {xii′}i,i′:1,...,N an equivalence relation
defined on I × I.

Where

RRA(S, X) =
N∑

i,i′=1

sii′xii′ +
N∑

i,i′=1

s̄ii′ x̄ii′ (2)



=
N∑

i,i′=1

(sii′ − s̄ii′)xii′ +
N∑

i,i′=1

s̄ii′ (3)

= 2
N∑

i,i′=1

(sii′ − 1
2

sii + si′i′

2
)xii′ + β (4)

Where β =
∑N

i,i′=1 s̄ii′ is a constant term, and X is the
reached solution wich models a partition in a relational
space (an equivalence relation), and must check the fol-
lowing properties:




xii = 1, ∀i reflexivity
xii′ − xi′i = 0, ∀(i, i′) symmetry
xii′ + xi′i′′ − xii′′ ≤ 1, ∀(i, i′, i′′) transitivity
xii′ ∈ {0, 1},∀(i, i′) binarity

Let us consider C = {C1, ..Cl, ...CL} a partition of the set
I into L clusters, the Condorcet criterion breaks up into
terms of contributions where the contribution cont(i, l)
of an object i in a cluster Cl of the partition is written:

cont(i, l) =
∑

i′∈Cl

[sii′ − α(
sii + si′i′

2
)] (5)

Where α ∈ [0, 1] is the similarity threshold, we have

RRA(S, X) =
N∑

i=1

L∑

l=1

cont(i, l) (6)

That we can express in terms of the object profile Ki

representing the ith row of the complete disjunctive table
K and Pl the prototype of cluster Cl, is defined in the
following way:

sii′ =< Ki,Ki′ > and Pl =
∑

i′∈Cl

Ki′ (7)

Then, we have

cont(Ki, Pl) =< Ki, Pl > −αSil (8)

Where Sil =
|Cl|<Ki,Ki>+

∑
i′∈Cl

<Ki′ ,Ki′>

2 . This new
formula of the contribution avoids the computation of
square matrices S and S (Condorcet’s matrix and its
complementary) which reduces considerably the com-
putational cost related to the contributions computation.

2.4 Relational analysis heuristic

The heuristic process consists in starting from an initial
cluster (a singleton cluster) and build in an incremental
way, a partition of the set I by accentuating the value
of Condorcet criterion RRA(S, X) at each assignment.
We give below the description of the Relational Analysis
algorithm which was used by the Relational Analysis
methodology (see Marcotorchino and Michaud for
further details). The presented algorithm aims at
maximizing the criterion given in (4) based on the

contribution computation.

Algorithm1: RA heuristic
Inputs:
Lmax= maximal number of clusters, Niter= number
of iterations, N= number of examples (objects), α=
similarity threshold
- take the first object as the first element of the first
cluster.
- l = 1 where l is the current number of clusters
for t=1 to Niter do

for i = 1 to N do
for j = 1 to l do

Compute the contribution of object i :
cont(i, j)

end for
l∗ = arg maxj cont(i, j),

where l∗ is the cluster id which has the highest con-
tribution with the object i

cont(i, l∗) ← the computed contribution
if cont(i, l∗) < 0 and l < Lmax then

create a new cluster where the object i is
the first element

l ← l + 1
else
assign object i to cluster Cl∗

endif
endfor

endfor
Output:
at most Lmax clusters

We have to fix a number of iterations and the similarity
threshold in order to have an approximate solution in a
reasonable processing time. Besides, it is also required
a maximum number of clusters, but since we don’t need
to fix this parameter, we put by default Lmax = N . Ba-
sically, this algorithm has O(Niter × Lmax × N) com-
putation cost. In general term, we can assume that
Niter << N , but not Lmax << N . Thus, in the worst
case, the algorithm has O(Lmax ×N) computation cost.

3 Self organizing map

The model called Kohonen’s self organizing map (SOM)
is an artificial neural network, which learns to model a
data space (Z, zi ∈ Rd) also called set of observations
(objects) by a set of prototypes (W,wl ∈ Rd) (the neu-
rons)where observations and neurons are vectors of the
input space.
If the network consists of L neurons, the SOM technique
provides a partition into L clusters of the input space
where the number of observations N >> L. Each neuron
l is associated with a vector of weight wl which belongs
to the input space. Thus, for a set of observations the
network learns the position in this space of L centers.



For example in the trivial case where L = N , the best
possible partition is obviously a discrete partition where
each observation is isolated in a cluster (the center of each
cluster corresponds to the observation forming the clus-
ter), which minimizes the distance to all data objects.
The modelling quality depends on the used metric dis-
tance in a vector space. We use the Euclidean distance
to measure the distance between an observation and a
prototype (two vectors). In addition, to model inputs
through prototypes, a self-organizing map C allows to
build a graph G for structuring this space and provides
a visualization in one or two dimensions of the topologi-
cal links between clusters. It should be remembered that
the Kohonen’s network is not a simple clustering algo-
rithm, it is a model that seeks to project multidimen-
sional observations on a discrete space (the map C) of
small dimensions (usually 1, 2 or 3). This projection has
to respect the property of ”conservation” of topology of
data, ie two neurons l, r which are neighbors over the dis-
crete topological map must be associated with two close
prototypes wl, wr compared to the Euclidean distance in
the observation space.
The map C is in the form of an undirected graph G =
(C,A), where C refers to the L vertices (neurons) and A
the set of edges that gives the organization of neurons on
the map C. Thus, two neurons l, r are directly connected
neighbors in the map if a(c, r) ∈ A. This graph induces
a discrete distance δ on the map: for any pair of neurons
(l, r) of the map the distance δ(l, r) is defined as being
the length of the shortest path between l and r. For ev-
ery neuron l, this distance determines the Neighborhood
of order d of c as following: Vc(d) = {l ∈ C, δ(c, l) ≤ d}
This notion of neighborhood can be formalized using a
kernel function K defined from R+ in R+, and decreasing
such that K(0) = 1 and limx→∞K(x) = 0 (in practice
we use K(x) = e−x2

). This function generates a family
of functions KT , defined by KT (x) = K( x

T ). The param-
eter T is analogous to a temperature, when T is hight,
then KT (x) remains close to 1 even for large values of
x; contrarily a low value produces a KT function which
decreases quickly to 0. The role of KT is to transform
the discrete distance δ induced by the structure of the
graph into a regular neighborhood parameterized by T .
We will use KT

(δ(l,r)) as a measure of effective closeness
between neurons l and r. During the SOM algorithm,
the value of T decreases to stabilize the solution.
The quality of the partition and topology conservation
is measured using the objective function RT

SOM (ϕ,W ),
which must be as low as possible.

RT
SOM (ϕ,W ) =

N∑

i=1

L∑

l=1

KT
(δ(ϕ(i),l))||zi − wl||2 (9)

Where ϕ represent the assignment function such that:
ϕ(i) = l if i ∈ Cl.

4 Relational topological cluster-
ing (RTC)

Similarly to the classical model of self-organizing map
(SOM), we use for the proposed RTC model an artificial
neural network with an entry layer for the observations
(data) and a map C having a topological order for the
exit. The topology of the map is defined via an undi-
rected graph. Like the SOM algorithm, the RTC model
includes the vector quantization procedure. During
this procedure, each neuron of the map which is the
index of a prototype for required quantization will be
represented by a vector of the same dimension than the
observations. Contrarily to SOM approach, quantization
is done by means of assignment function ϕ adapted to
binary data, the choice of prototypes and the assignment
function is done by maximizing the objective function
denoted RT

RTC(ϕ,P ). Maximization must allow on one
hand, to define prototypes making possible to carry
out a conservation of the data topology (defined by a
measurement of contribution) and to carry out, on the
other hand, a partition of set I into homogeneous sub
sets.
The basic idea of the RTC approach is to maximize a
new objective function defined from the classical RA
criterion RRA by adding a regularization term RTopo,
which introduces a topological constraint. The RTC
objective function is the follows:

RT
RTC(ϕ,X ) = RRA(S, X) +RTopo(ϕ,X ) (10)

Where

RRA(S, X) =
N∑

i,i′=1

Ψii′xii′ (11)

And

RTopo(ϕ,X ) =
N∑

i,i′=1

Ψii′

L∑

l=1

KT
(δ(ϕ(i),l))Xi′lX̄il (12)

Where ∀i, i′ Ψii′ = sii′ − α( sii+si′i′
2 ), Xil is the general

term of the partition matrix X of set I into L clusters
such that Xil ∈ {0, 1}, ∑L

l=1 Xil = 1, X̄il = 1 − Xil. and
∀i, i′; xii′ =

∑
l XilXi′l, which is the general term of the

equivalence relation X.
This function breaks up into two terms, the first one cor-
responds to the Condorcet criterion RRA(S, X) whose
maximization makes possible to obtain a partition of I
more compact possible within the meaning of the Con-
dorcet criterion. The second term makes possible to take
into account the influence of neighborhood between a
neuron and its neighbors on the map C. It makes pos-
sible to bring closer the partitions corresponding to two
different neurons on the map in order to preserve the
topological order between the various partitions. Indeed,



the second term imposes to the prototype of the neuron
l to represent objects belonging to nearby neurons: if
the neuron l is close to the neuron ϕ(i) on the map C, a
small value [

∑N
i′=1 Ψii′KT

(δ(ϕ(i),l))Xi′l] will more penalizes
the maximization of the objective function.
The temperature T adjusts the relative importance
granted to both terms. Indeed, for the large values of
temperature, the second term is dominating and in this
case the priority is given to the topology. More T is
small, more the first term is taken into account and the
priority is given to the determination of prototypes repre-
senting the compact partition. The RTC approach acts
in this case exactly like the Condorcean method. It is
thus possible to say that the relational topological map
model makes possible to obtain a regularized solution
of that obtained by the Condorcean method where the
regularization is obtained by the respect of the a priori
topological data structure.
The development of the both terms (11) and (12) leads
to the following expression of the objective function:

RT
RTC(ϕ,X ) =

N∑

i,i′=1

Ψii′

L∑

l=1

KT
(δ(l,l))Xi′lXil

+
N∑

i,i′=1

Ψii′

L∑

l=1

KT
(δ(ϕ(i),l))Xi′lX̄il

=
N∑

i,i′=1

Ψii′

L∑

l=1

KT
(δ(ϕ(i),l))Xi′l(Xil + X̄il)

=
N∑

i,i′=1

Ψii′

L∑

l=1

KT
(δ(ϕ(i),l))Xi′l (13)

4.1 A new writing of the objective func-
tion

The objective function above can be expressed using the
profiles Ki of each object and the prototype Pl of each
cell of the map C as following:

RT
RTC(ϕ,X ) =

N∑

i=1

L∑

l=1

KT
(δ(ϕ(i),l))

N∑

i′=1

Ψii′Xi′l

︸ ︷︷ ︸
cont(i,l)

(14)

Replacing the contribution cont(i, l) by cont(Ki, Pl) gives
the following writing:

RT
RTC(ϕ,P ) =

N∑

i=1

L∑

l=1

KT
(δ(ϕ(i),l))(< Ki, Pl > −αSil)

(15)

=
N∑

i=1

contT (Ki, Pϕ(i)) (16)

Where

contT (Ki, Pϕ(i)) =
L∑

l=1

KT
(δ(ϕ(i),l))(< Ki, Pl > −αSil)

(17)
is the regularized contribution of the object i to his win-
ner neuron ϕ(i). We observe that the regularized contri-
bution of the object i to ϕ(i) is a weighted sum of the
contributions of i to all prototypes Pl(l = 1, ...L) in the
influence neighborhood of ϕ(i).
We can rewrite this contribution in the following simpli-
fied form:

contT (Ki, Pϕ(i)) =< Ki, P
T
l > −α

L∑

l=1

KT
(δ(ϕ(i),l))Sil

(18)

Where

PT
ϕ(i) =

L∑

l=1

KT
(δ(ϕ(i),l))Pl =

L∑

l=1

KT
(δ(ϕ(i),l))

∑

i′∈Cl

Ki′ (19)

is the regularized prototype of the winner neuron ϕ(i),
that could be seens as a weighted sum of the prototypes
Pl(l = 1, ...L) in the influence neighborhood of ϕ(i).

4.2 RTC heuristic

In this section, we will give an algorithm suitable to the
RTC’s formalism. We consider here the batch SOM :
the assignment step maximizes the objective function by
considering all prototypes P fixed; representation step
maximizes the same function considering the clusters set
fixed (the assignment function ϕ fixed). For a fixed tem-
perature T , the maximization occurs in two alternating
phases during successive iterations. We summarize this
algorithm in the following points:
Step 1. Initialization: Initialize the map C using the
relational analysis approach
Step 2. Assignment: The RT

RTC(ϕ,P ) is expressed as
a sum of independent terms (regularized contributions)
and we can replace the both optimization problems by a
set of simple equivalent problems. Indeed, RT

RTC(ϕ,P )
can be decomposed in terms of individual contributions of
each i ∈ I in each cell of the map C. It is assumed at this
stage that all prototypes are fixed and remains constant
by maximizing the function RT

RTC(ϕ,P ) compared to ϕ.
It is easy to see that this maximum is reached for an
assignment function defined by:

∀i; ϕ(i) = arg max
l

contT (Ki, Pl) (20)

Step 3. Maximization: The maximization step consist
in maximizing the objective function over P by setting



the assignment ϕ in it’s constant definition. In others
words, maximization step consists in updating each reg-
ularized prototype PT

l (t) of neuron Cl at each iteration t
according to the following rule:

∀l; PT
l (t) =

L∑
r=1

KT (δ(r,l))(t)
∑

i′∈Cr(t)

Ki′ (21)

The proposed Batch RTC algorithm is presented in
Algorithm2:
Algorithm2: Batch RTC algorithm with a fixed
T:
Inputs
C0= initial map with Lmax neurons. Niter= number of
iterations. N= number of observations. α= similarity
threshold. KT = neighborhood matrix
Initialization: Initialize the map C using RA heuristic
- Run the RA heuristic on the K matrix
- Randomly place the resulting clusters on the map C0

- Compute the initial prototypes:

∀l; PT
l (0) ← ∑Lmax

r=1 KT
(δ(r,l))(0)

∑
i′∈Cr(0) Ki′

for t=1 to Niter do
for i = 1 to N do{Assignment}

assign the observation i to its closest neuron
within the sens of contribution:

ϕ(i)(t) = arg max{l=1,.....,Lmax} cont(Ki, Pl(t−1))
end for
for l = 1 to Lmax do{Maximization }

update prototypes according to
PT

l (t) =
∑Lmax

r=1 KT
(δ(r,l))(t)

∑
i′∈Cr(t) Ki′

endfor
endfor
Outputs
a map of Lmax cells.

5 Experimentations and valida-
tion

There are many ways to measure the accuracy of
clustering algorithm. One of the ways of measuring
the quality of a clustering solution is the cluster purity.
Let there be L clusters of the dataset I and size of
cluster Cl be |Cl|. The purity of this cluster is given by
purity(Cl)= 1

|Cl| maxk(|Cl|cluster=k) where |Cl|cluster=k

denote the number of items for the cluster k assigned
to cluster l. The overall purity of a clustering solution
could be expressed as a weighted sum of individual
cluster purities

purity =
L∑

l=1

|Cl|
|I| purity(Cl) (22)

In general, if the values of purity are larger, the clustering

solution is better.

5.1 The datasets for validation

In this section, we evaluate the performance of the RTC
heuristic on several databases available at the UC Irvine
Machine Learning Repository (Asuncion and Newman,
2007)

5.2 Results on zoo dataset:

We use the zoo dataset to show the good performance
of the RTC algorithm. Using disjunctive coding for the
qualitative variable with 6 possible values, the data set
consists of a 101 × 21 binary data matrix. All 101 an-
imals are used for learning with a map size 5 × 5 cells.
The learning algorithm provides a profile prototype for
each cell. At the end of the learning phase, each observa-
tion, corresponding to an animal, is assigned to the cell
with the highest contribution by taking into account the
neighborhood relation.
The RTC algorithm starts with the initialization of the
grid by distributing the observations using Relational
Analysis approach. The figure 1 shows the class of ani-
mals distributed after the initialization step of the RTC
algorithm. We use the animals names used in original
dataset. To visualize the coherence of the map with the
labelling of animals, this figure shows the class number
corresponding to each cell after the application of the
majority rule in each cell. We remind that during this
learning step, the neighborhood information is not con-
sidered (the neighborhood function K is not computed).
On the initialization grid (figure 1) the observations are
not well distributed, there are two set of observations la-
belled with 7 which are separated by 2 empty cells; we
can find also four sets of animals labelled as 1 which are
dispersed on the map: two sets on the left top corner, one
set is situated on the left bottom corner, and the last one,
on the right bottom part of the map. This map demon-
strates that the classical RA doesn’t use a topological
information during the clustering process which could al-
low a better distribution of the observations. After the
initialization step, the RTC algorithm will continue the
learning process by taking into account the neighborhood
relation between all the cells. Figure 2 shows animals
names collected by each cell. The map shows that the
same class of animals is assigned to cells close to each
other.
We can observe that the animals corresponding to the
class 1 are clustered in the cells situated on the left bot-
tom of the map (figure 2); the birds which correspond
to the class 2 are in the right bottom part of the map.
Also, we can analyze that fruitbat from the class 1 sit-
uated nearest to the cell containing the birds (class 2),
this is explained that the fruitbat has nearest characteri-
zation with the birds even it comes from another family.
On the middle of the map there is a cell containing 2



Figure 1: Initialization map using Relational Analysis
algorithm

observations from two different classes: the frog (class
5) and penguin (class 2). The RTC algorithm put these
two observations in the same cell because the frog and
the penguin has very closest specifications even the pen-
guin belongs to birds family and frog, from the amfibia
family. Moreover, on the left of this cell there is a cell
containing the animals from class 5, and on the right, a
cell labelled as class 2. We have the same situation for
the cell labelled as 3.5 where the toad and the tortoise
has highly correlated features, and the both cells labelled
as 5 and 1 are bordered on the right from this cell. The
same type of analysis can be applied to the remaining
clusters. To give a global view of the homogeneous clus-
tering, we compute the clustering purity for the zoo map
and we obtain a purity value of 97.84%.
We compare our map with the map obtained using the
BeSOM (Bernoulli on Self-Organizing Map)( Lebbah,
Rogovschi and Bennani, 2007) which use a probabilistic
reformulation of the classical SOM. The map obtained
using the BeSOM method is presented in the figure 3.
Analyzing both maps obtained with BeSOM (figure 3)
and with the proposed RTC approach (figure 2) we can
detect some correlations between them: class 5 and 2 are
situated in the middle of the map; the majority of the
cells containing animals forming the first class are situ-
ated on the left bottom corner of the map. Comparing
with the BeSOM zoo map, we can observe that RTC zoo
map provides more finer cells: in the case of the BeSOM
map there are three cells which contains only one obser-
vation which respectively will attribute to these ones a
100% of purity, and 8 cells containing only two observa-
tions. The RTC map has no cell which contains only one
observation an has only 3 cells with two observations that
means that our map has cells with a better distribution
of observations. In order to show the good performance
of the Relational Topological Clustering (RTC) approach
we use several binary datasets of different sizes. For each
dataset we learned a map of different size (from 4x4 to
10x10) and we indicate in the table 2 the purity of cluster-
ing after the first iteration using the classical RA and the

Figure 2: Relational Topological Clustering : zoo
database

Figure 3: BeSOM map



map purity at the end of the map learning with the RTC
technique. The results illustrate that the proposed tech-
nique increase the purity index compared to the classical
RA and allows to obtain a topological map by computing
the neighborhood function between the cells.

Table 2: Experimentation results on different datasets
using RTC approach.

DB size Map size RA purity RTC purity
Zoo 101x17 5x5 69.08 % 97.84 %
Car 1728x6 10x10 70.31 % 80.17 %

Nursery 12960x8 6x6 50.47 % 78.69 %
SPECTF 267x22 4x4 57.14 % 81.82 %

Pos-Operative 90x8 5x5 71.59 % 78.21%

6 Conclusion

We have proposed in this paper a new Relational Topo-
logical model for multidimensional categorical data clus-
tering and visualization, inspired from the SOM principle
and the Relational Analysis formalism. It combines the
advantages of both methods, indeed it allows a natural
clusters identification without a priori fixing the num-
ber of clusters, and simultaneously provides a clusters
visualization on a low dimensional lattice while preserv-
ing as faithfully as possible the topological data struc-
ture. However, this model addresses in the same way
the variables describing the data, it ignores their inter-
nal structures, the number of modalities per variable and
frequency of each modality. For this problem, we expect
to propose a weighted model to take into account these
information of variables.
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