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Abstract 

Compared with parametric classifiers, several 
advantages set Neural Networks as privileged 
approaches to be used as discriminating classifiers 
in performing diagnosis tasks. In this paper, we 
present a hybrid Multi-Experts neural based 
architecture for mechanical defects’ detection and 
diagnosis. This solution is evaluated within 
vibratory analysis frame using a wavelet transform 
faults’ detection scheme. 

1   INTRODUCTION 

Monitoring of mechanical systems requires 
development of adapted procedures compatible with 
the operation ranges (shapes) of the monitored devices. 
Generally, the faulty or correct behaviours’ analysis is 
associated to a set of signals (called also signatures of 
the monitored effects”). An example of such signatures 
could be obtained from chemical or physical 
characteristics of materials composing the monitored 
mechanical devices or involved in their operational 
phases, as: current, lubricant viscosity, acoustical 
signatures, etc. For bearing defects, these signatures 
are characterized by transitory phenomena (repetitive 

or random) due to the shocks’ effect on the structures. 
Such signatures compile the frame of the vibratory 
analysis. A number of previous works show that 
vibratory analysis issued signatures include pertinent 
information about mechanical devices’ worsening 
(Tandon, 1999) (Harsha, 2004). Note that conventional 
approaches of signal processing don’t permit to exploit 
this information amply especially if the related 
signatures are not periodical signals (Juez, 2001).  

The general frame of the present work deals with early 
faults’ detection in industrial plants, especially with 
mechanical faults’ detection in turning machines. For 
the turning machines, the main faults which could be 
diagnosed through vibration analysis are: imbalance, 
misalignment, looseness, shaft, bearing and gear 
damages, cavitations in pumps, turbulent flows in 
ducts, foundation problems and electrical faults (Chen, 
2003). An additional difficulty related to the above-
mentioned defects is due to the fact a large part of 
mechanical devices in a turning machine are 
inaccessible, because they are generally located inside 
the machine. Concerning inaccessible mechanical 
devices, the vibratory analysis issued techniques show 
attractive features because they may detect vibratory 
effects of internal devices from a global vibratory 
signature. 
 

 

     
Figure 1: Examples of “Unbalanced Force Defect’s” effect on turning plant’s rotation axis (left) and “Flaking 

Path Defect” in a bearing device (middle and right). 
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We propose different slant, associating wavelet 
transform, vibratory analysis (because of the 
aforementioned advantages) and Artificial Intelligence 
issued approaches. In fact, beside the vibratory 
analysis issued techniques’ advantages, wavelet 
transform could act as some kind of “zoom” effect 
(multi-resolution capability) in order to separate 
appropriated frequencies’ components (those related to 
potential faulty behavior) from monitoring signal’s of 
others components. On the other hand, artificial 
intelligence is used for classification tasks (fault’s 
nature authentication). Taking advantage from neural 
networks’ based classifiers and their learning and 
generalization (Lippman, 1987) (Boulenger, 2004), 
these techniques are applied for characterizing 
bearings deterioration. The two bearing device defects’ 
categories we are interested in this paper are: 
“Unbalanced Force Defect” (UFD) and “Flaking Path 
Defect” (FPD). Fig. 1 shows examples of the impact of 
such defects on turning plants’ mechanical devices. A 
comparative study between our hybrid technique and 
two neural network based architectures, Radial Basis 
Function (RBF) network and Learning Vector 
Quantization (LVQ) network, has been presented. 

The paper will respect the following structure: the next 
section will briefly present wavelet base defect 
detection within the vibratory analysis frame. The 
section 3 will present the “expert-fusion” based 
classification approach: a key part of the proposed 
solution. Section 4 and its subsections will give 
validation results and discussion. Finally, the last 
section will conclude the paper and give a number o 
perspective points. 

2   VIBRATORY ANALYSIS AND 
WAVELET BASED DEFECTS’ 
DETECTION 

The detection procedure is based on the analysis of the 
minor (details) components of the vibratory signature’s 
wavelet transform: the occurrence of a shock in the 
vibratory behaviour is highlighted by the amplitude of 
the wavelet coefficients. The procedure includes four 
steps: 

1. Determining the needed resolution corresponding 
to the wavelet coefficients ensuring the shocks’ 
detection, 

2. Computing of detail (minor) wavelet transform 
coefficients, 

3. Computing of indicators’ values relative to the 
vibratory signal, 

4. Defect’s severity characterization by comparing 
the indicators’ values to a set of knowledge based 
thresholds values. 

The vibratory signature’s wavelet transform based 
processing opens the possibility of a “multi-bands” 

vibratory analysis (e.g. multi-resolution detection), 
involving several frequency bands. Thus, the proposed 
detection procedure could be run for each of the 
obtained spectrum ranges (detail) Zwinggelstien, 
1996) (Barret, 2003) (Anoni, 2004) (Don, 2003) 
(Kiral, 2003). Fig. 2 shows an example of obtained 
bands from an electromechanical turning machine 
issued vibratory signature. The presence of one or 
several defects results in the apparition of new 
frequencies. Detection of these new frequencies allows 
distinguishing potential glitches, to classify them 
according to their typological features (unbalanced 
force defect, flaking path defect, etc.) and to warn their 
consequences. 

 
Figure 2: Wavelet decomposition of a vibratory signal 

corresponding to flaking path defect (depth 157µm) at speed 
of 1500 rpm with wavelet sym7. 

 
Figure 3: Representation of the set of descriptions. 

Concerning indicators, various scalar indicators as 
energy (E), peak, crest factor (CF), power (P), root 
mean square (rms), shape factor (SF) and kurtosis 
(kur) (Kiral, 2003) (Don, 2003) could be valuable 
markers to define a “Multi-Features Vector” (MFV) 
which will be used as input for the classification unit. 
Concerning bearing devices such MFV are constructed 
for two directions of involved forces: horizontal and 
vertical. 

T
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The analysis of data relative to the monitored plants’ 
faulty or healthy operational modes in such feature 
spaces (defined on the basis of the constructed MFV) 
is a crucial point in defining classes’ reparability 
boundaries and rules in order to make the classifier’s 
action more accurate. Fig. 3 shows the data 
representation corresponding to different 
aforementioned indicators in a bi-variables feature 
subspace constructed from horizontal and vertical 
components of those indicators. It shows the 
possibility to identify appropriated shapes of 
corresponding to healthy and deficient behaviours of 
the concerned mechanical device (here a bearing 
device). So, if the classification task is of major 
importance in the proposed technique, the choice of 
pertinent indicators (via the above-mentioned data 
analysis in indicator’s issued feature space) and a 
reliable detection (performed here by using a wavelet 
based multi-resolution approach) are two other strong 
points in our technique. 

3   PROPOSED MULTI-EXPERTS 
SYSTEM 

The classification strategy we propose is based on 
Multi-Experts principle also known as “Mixture of 
Experts” based approach. In such class of processing 
strategy the final output (the treatment’s result) is 
constructed (obtained) from a set of local models 
(experts) which are specialized (devoted) either to a 
specific processing task or to a specific region of the 

processed problem’s feature space. The final result is 
obtained from a fusion of local models’ outputs or 
from a decision policy involving either the whole 
experts or a reduced number (a subset) of specialized 
processing units. 

It should be noted that the outputs’ fusion operation is 
not exclusive (specific) to Multi-Experts schemes and 
may be used as a resource to perform the decision task 
in a multiple-outputs single-expert architecture. An 
example is depicted in Fig.4 where a 3-categories 
classifier, using a single artificial neural network, takes 
advantage from a decision to carryout the final 
classification. The decision policy could involve either 
matching rules or combination policy to construct the 
final decision. We will compare the performances of 
this architecture with the proposed Multi-Expert one. 

In our approach, the proposed scheme is a Multi-
Expert neural based classifier including three neural 
networks (operating as local features’ classification 
modules) where the final output (classification result) 
matches three possible turning plant’s operational 
categories. Two among those three categories 
correspond to a faulty bearing device and one to a 
healthy bearing device meaning a “Normal” state (N) 
of the concerned mechanical device. The two bearing 
device defects’ categories are “Unbalanced Force 
Defect” (UFD) and “Flaking Path Defect” (FPD), 
respectively.  The decision unit operates on the basis 
of combinatory matching rules in order to carryout a 
unique class (category) among the three above-
mentioned possible categories. 

 

 
Figure 4: Single-Expert ANN based classifier. 

 

 
Figure 5: Multi-Expert ANN based classifier’s bloc-diagram. 
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Figure 6: Training scheme of Multi-Expert ANN based classifier. 

 
Figure 7: Global bloc-diagram of the proposed solution. 

 

Concerning the experts, each of them is specialized in 
matching between two classes: one of them is 
concerned with FPD and N classes’ discrimination, the 
other deals with the classification of UFD and N 
functioning categories and the last one distinguishes 
between FPD and UFD classes of bearing defects. Fig. 
5 gives the classifier’s bloc diagram. The neural based 
classifier’s knowledge construction is done over a 
training process involving each of the three neural 
networks separately. Fig. 6 gives the learning mode’s 
bloc diagram. Two kind of local neural network based 
experts have been implemented and compared: 
Learning Vector Quantization (LVQ) neural structure 
and Radial Basis Function (RBF) neural model. The 
global bloc-diagram of the proposed solution is shown 
in Fig. 7. 

4   VALIDATION, RESULTS AND 
DISCUSSION 

4.1   Experimental set-up and protocol 

The experimental protocol for validation of the above-
described automated diagnosis chain has been based 
on detection and diagnosis (authentication) of the two 
aforementioned defects in SKF-6002 bearing device. 
Table 1 gives topological and dynamical 
characteristics of the SKF-6002. So, three operational 
categories (classes) have to be detected and recognized: 
the normal class, the unbalanced defect class and the 

flaking path defect class (correspondent to a diagnosis 
of the defect detected which is being a failing of the 
flaking path of the outer race).  

Table 1: Technical and geometrical features of deep 
grove ball bearing SKF-6002. 

Parameter Value 
Ball diameter 4.762 mm 
Inner race diameter (d ) 18.738 mm 
Outer race diameter (D) 28.262 mm 
Radial clearance (γ) 20 µm 
Maximum waviness amplitude 3.0 µm 
Initial waviness amplitude (Πo) 2.0 µm 
Radial load (W) 6.0 N 
Mass of rotor (m) 0.6, 1.0, 2.4 kg 
Damping factor (c) 200 Ns/m 
Number of balls (Nb) 9 
Number of wave lobes (N) 8 
Angular location (S) π/4 
Hertzian elasticity (k)  7.055 N/m3/2 
  

 

Table 2: Table 2: Number of Multi-Feature Vectors 
(MFV) used in training and testing phases as well as 
the ratio of signatures: healthy, unbalanced defect and 
flaking path defect (%). 

Number of MFV Normal  Unb-D Flak-D 
1594 (for training) 34.6 29.9 35.5 
798 (for testing) 49.9 30.1 20.0 
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According to the previously identified indicators, a 
training database containing 1594 MFV has been 
constructed, including a number of MFV 
corresponding to each possible class. The ratio of each 
class in the learning database is reported in table 2. 
The same table gives the ratio of each class within the 
testing database which includes 798 MFV. The two 
kinds of above-described defects are present with 

different degrees of impairment as well in learning 
database as in testing one. Concerning the unbalance 
forces’ related defects, the considered rotation axis 
dislocations correspond to misbalancing forces 
covering 10 to 100 g.cm. While, the flaking paths 
defects correspond to fissures of 280 µm average deep 
and a varying width covering the range of 30 to 910 
µm. 

 

Table 3: Performances of the single neural network based classifier – plant’s rotation speed is 400 rpm. 
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Table 4: Performances of the Multi-Experts based classifier – plant’s rotation speed is 400 rpm. 
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For validation experiments we have considered two 
following cases: a detection/authentication chain based 
with a single neural network classifier and our hybrid 
multi-experts scheme. As well for the single neural 
network based classifier as for the hybrid solution, two 
kind of neural models (LVQ-like neural net and RBF-
like model) have been implemented. 

4.2   Experimental set-up and protocol 

Table 3 summarizes results relative to obtained 
performances using single neural network based 
scheme. For each kind of classifiers different MFV 
have been considered. The considered MFV are 
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composed by previously introduced (in section 2) 
scalar indicators measures in horizontal and vertical 
directions. They differ in number of components 
(number of indicators composing the MFV). The 
number of components varies from 4 (corresponding 
to horizontal and vertical measures of 2 indicators) to 
14 (corresponding to same measures of 7 indicators) 
and defines the number of neurones of the input’s 
layer. The output layer of each neural classifier 
contains 3 neurons corresponding to the 3 possible 
operation categories. In the same way and considering 
the same MFV, Table 4 gives the obtained results for 
hybrid Multi-Experts chain. The local neural experts 
are RBF-like neural networks. 

It is interesting to note from Table 3 that in the case of 
RBF-like single neural network based classifier the 
generalization (e.g. testing) using MFV including 2 
indicators (e.g. 4 components) performs better results 
than those obtained with a 7 indicators MFV (e.g. 14 
components). This could be explained by the fact that 
considering more indicators leads to increase the input 
feature space dimensionality for a same number of 
learned (representative) patterns and thus, the RBF-
like classifier (which operates on the basis of a patters’ 
distance issued matching policy) has to map a larger 
feature space with the same number of learned 
patterns. While the same table shows that LVQ-like 
neural classifier leads to quite similar (rates of defects’ 
correct detection and classification between 75 and 80 
%) either using MFV including 7 indicators or 
exploiting 2 indicators MFV (even if the obtained 
results are slightly better when 7 indicators are used). 
This is due to the conjunction of two facts. The first 
one is related to the fact that in LVQ-like neural model 
the matching is obtained in “competitive layer” of such 
network performing a “Winner Takes All” (WTA) 
policy. In fact, the two defects’ categories as well as 
the healthy operational state are matched essentially on 
the basis of two (among seven) indicators, but as the 
matching is obtained from a WTA based decision 
policy (excusive decision), the increase of the input 
feature space’s dimensionality remains of a limited 
effect on classification performance. Beside this first 
factor, another reason avoiding the classification rate 
decreasing here is related to the fact that the major data 
is discernible enough regarding the above-described 
matching policy in 2-D feature space obtained from 
the first two indicators. The similar performances 
obtained with RBF-like classifier (82% correct 
classification) when 2 indicators are used confirms this 
purpose. 

However, the slightly better results obtained with RBF 
architecture with MFV including 2 indicators (4 
components) seems to privilege the use of this neural 
classifier against in spite of the LVQ based classifier. 
That is why the Multi-Experts architecture has been 
implemented including three RBF networks. Results 
are reported in Table 4. It is pertinent to note the 

significant enhancement of classification rate. Fig. 8 
completes the results of the two last tables by giving 
learning and generalization performances versus the 
number of involved (exploited) indicators. If Fig. 8-a 
confirms the results consequences of the first table 
(Table 3), the second (e.g. Fig. 8-b) reveals an 
additional interesting point. In fact it is interesting to 
note the enhancement of classification rate as well 
when a 4 component MFV is exploited as when the 
input MFV includes 14 components (a 15% 
classification rate increasing). That shows the experts’ 
mixture strategy’s pertinence (efficiency). 
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Figure 8: Performances of training and generalization 
versus number of involved features for single neural 

network based classifier (a) and Multi-Experts 
classifier based solution (b)  

5   CONCLUSION AND FURTHER 
DEVELOPMENTS  

We have presented a hybrid Multi-Experts neural 
network based architecture for mechanical defects 
detection and authentication in turning plants, which 
are massively present in industrial production chains. 
The pertinence of the experts’ mixture strategy has 
been shown and validated. On the other hand, the 
advantage of a wavelet transform based multi-
resolution detection leads to capability of simultaneous 
detection of different kind of mechanical defects. 
Finally, the use of vibratory analysis technique make 
possible the inaccessible mechanical devices’ 
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monitoring from a global vibratory signature obtained 
from relatively low cost standard sensors. 
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