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Abstract

Compared with parametric classifiers, several
advantages set Neural Networks as privileged
approaches to be used as discriminating classifiers
in performing diagnosis tasks. In this paper, we
present a hybrid Multi-Experts neural based
architecture for mechanical defects’ detection and
diagnosis. This solution is evaluated within
vibratory analysis frame using a wavelet transform
faults’ detection scheme.

1 INTRODUCTION

Monitoring of mechanical systems requires
development of adapted procedures compatible with
the operation ranges (shapes) of the monitored devices.
Generally, the faulty or correct behaviours’ analysis is
associated to a set of signals (called also signatures of
the monitored effects”). An example of such signatures
could be obtained from chemical or physical
characteristics of materials composing the monitored
mechanical devices or involved in their operational
phases, as: current, lubricant viscosity, acoustical
signatures, etc. For bearing defects, these signatures
are characterized by transitory phenomena (repetitive

or random) due to the shocks’ effect on the structures.
Such signatures compile the frame of the vibratory
analysis. A number of previous works show that
vibratory analysis issued signatures include pertinent
information about mechanical devices’ worsening
(Tandon, 1999) (Harsha, 2004). Note that conventional
approaches of signal processing don’t permit to exploit
this information amply especially if the related
signatures are not periodical signals (Juez, 2001).

The general frame of the present work deals with early
faults’ detection in industrial plants, especially with
mechanical faults’ detection in turning machines. For
the turning machines, the main faults which could be
diagnosed through vibration analysis are: imbalance,
misalignment, looseness, shaft, bearing and gear
damages, cavitations in pumps, turbulent flows in
ducts, foundation problems and electrical faults (Chen,
2003). An additional difficulty related to the above-
mentioned defects is due to the fact a large part of
mechanical devices in a turning machine are
inaccessible, because they are generally located inside
the machine. Concerning inaccessible mechanical
devices, the vibratory analysis issued techniques show
attractive features because they may detect vibratory
effects of internal devices from a global vibratory
signature.
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Figure 1: Examples of “Unbalanced Force Defect’s
Path Defect” in a bearing device (middle and right).

effect on turning plant’s rotation axis (left) and “Flaking



We propose different slant, associating wavelet
transform, vibratory analysis (because of the
aforementioned advantages) and Artificial Intelligence
issued approaches. In fact, beside the vibratory
analysis issued techniques’ advantages, wavelet
transform could act as some kind of “zoom” effect
(multi-resolution capability) in order to separate
appropriated frequencies’ components (those related to
potential faulty behavior) from monitoring signal’s of
others components. On the other hand, artificial
intelligence is used for classification tasks (fault’s
nature authentication). Taking advantage from neural
networks’ based classifiers and their learning and
generalization (Lippman, 1987) (Boulenger, 2004),
these techniques are applied for -characterizing
bearings deterioration. The two bearing device defects’
categories we are interested in this paper are:
“Unbalanced Force Defect” (UFD) and “Flaking Path
Defect” (FPD). Fig. 1 shows examples of the impact of
such defects on turning plants’ mechanical devices. A
comparative study between our hybrid technique and
two neural network based architectures, Radial Basis
Function (RBF) network and Learning Vector
Quantization (LVQ) network, has been presented.

The paper will respect the following structure: the next
section will briefly present wavelet base defect
detection within the vibratory analysis frame. The
section 3 will present the “expert-fusion” based
classification approach: a key part of the proposed
solution. Section 4 and its subsections will give
validation results and discussion. Finally, the last
section will conclude the paper and give a number o
perspective points.

2 VIBRATORY ANALYSIS AND
WAVELET BASED DEFECTS’
DETECTION

The detection procedure is based on the analysis of the
minor (details) components of the vibratory signature’s
wavelet transform: the occurrence of a shock in the
vibratory behaviour is highlighted by the amplitude of
the wavelet coefficients. The procedure includes four
steps:

1. Determining the needed resolution corresponding
to the wavelet coefficients ensuring the shocks’
detection,

2. Computing of detail (minor) wavelet transform
coefficients,

3. Computing of indicators’ values relative to the
vibratory signal,

4. Defect’s severity characterization by comparing
the indicators’ values to a set of knowledge based
thresholds values.

The vibratory signature’s wavelet transform based
processing opens the possibility of a “multi-bands”

vibratory analysis (e.g. multi-resolution detection),
involving several frequency bands. Thus, the proposed
detection procedure could be run for each of the
obtained spectrum ranges (detail) Zwinggelstien,
1996) (Barret, 2003) (Anoni, 2004) (Don, 2003)
(Kiral, 2003). Fig. 2 shows an example of obtained
bands from an electromechanical turning machine
issued vibratory signature. The presence of one or
several defects results in the apparition of new
frequencies. Detection of these new frequencies allows
distinguishing potential glitches, to classify them
according to their typological features (unbalanced
force defect, flaking path defect, etc.) and to warn their
consequences.
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Figure 2: Wavelet decomposition of a vibratory signal
corresponding to flaking path defect (depth 157um) at speed
of 1500 rpm with wavelet sym?7.
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Figure 3: Representation of the set of descriptions.

Concerning indicators, various scalar indicators as
energy (E), peak, crest factor (CF), power (P), root
mean square (rms), shape factor (SF) and kurtosis
(kur) (Kiral, 2003) (Don, 2003) could be valuable
markers to define a “Multi-Features Vector” (MFV)
which will be used as input for the classification unit.
Concerning bearing devices such MFV are constructed
for two directions of involved forces: horizontal and
vertical.

MFV =[Featurs,---, Feature,,--, Feature,]" . (1)

MFV =[E, peak,CF,P, rms, SF, kur] (2)



The analysis of data relative to the monitored plants’
faulty or healthy operational modes in such feature
spaces (defined on the basis of the constructed MFV)
is a crucial point in defining classes’ reparability
boundaries and rules in order to make the classifier’s
action more accurate. Fig. 3 shows the data
representation corresponding to different
aforementioned indicators in a bi-variables feature
subspace constructed from horizontal and vertical
components of those indicators. It shows the
possibility to identify appropriated shapes of
corresponding to healthy and deficient behaviours of
the concerned mechanical device (here a bearing
device). So, if the classification task is of major
importance in the proposed technique, the choice of
pertinent indicators (via the above-mentioned data
analysis in indicator’s issued feature space) and a
reliable detection (performed here by using a wavelet
based multi-resolution approach) are two other strong
points in our technique.

3 PROPOSED MULTI-EXPERTS
SYSTEM

The classification strategy we propose is based on
Multi-Experts principle also known as “Mixture of
Experts” based approach. In such class of processing
strategy the final output (the treatment’s result) is
constructed (obtained) from a set of local models
(experts) which are specialized (devoted) either to a
specific processing task or to a specific region of the

processed problem’s feature space. The final result is
obtained from a fusion of local models’ outputs or
from a decision policy involving either the whole
experts or a reduced number (a subset) of specialized
processing units.

It should be noted that the outputs’ fusion operation is
not exclusive (specific) to Multi-Experts schemes and
may be used as a resource to perform the decision task
in a multiple-outputs single-expert architecture. An
example is depicted in Fig.4 where a 3-categories
classifier, using a single artificial neural network, takes
advantage from a decision to carryout the final
classification. The decision policy could involve either
matching rules or combination policy to construct the
final decision. We will compare the performances of
this architecture with the proposed Multi-Expert one.

In our approach, the proposed scheme is a Multi-
Expert neural based classifier including three neural
networks (operating as local features’ classification
modules) where the final output (classification result)
matches three possible turning plant’s operational
categories. Two among those three categories
correspond to a faulty bearing device and one to a
healthy bearing device meaning a “Normal” state (N)
of the concerned mechanical device. The two bearing
device defects’ categories are “Unbalanced Force
Defect” (UFD) and “Flaking Path Defect” (FPD),
respectively. The decision unit operates on the basis
of combinatory matching rules in order to carryout a
unique class (category) among the three above-
mentioned possible categories.
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Figure 4: Single-Expert ANN based classifier.
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Figure 5: Multi-Expert ANN based classifier’s bloc-diagram.
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Figure 6: Training scheme of Multi-Expert ANN based classifier.
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Figure 7: Global bloc-diagram of the proposed solution.

Concerning the experts, each of them is specialized in
matching between two classes: one of them is
concerned with FPD and N classes’ discrimination, the
other deals with the classification of UFD and N
functioning categories and the last one distinguishes
between FPD and UFD classes of bearing defects. Fig.
5 gives the classifier’s bloc diagram. The neural based
classifier’s knowledge construction is done over a
training process involving each of the three neural
networks separately. Fig. 6 gives the learning mode’s
bloc diagram. Two kind of local neural network based
experts have been implemented and compared:
Learning Vector Quantization (LVQ) neural structure
and Radial Basis Function (RBF) neural model. The
global bloc-diagram of the proposed solution is shown
in Fig. 7.

4 VALIDATION, RESULTS AND
DISCUSSION

4.1 Experimental set-up and protocol

The experimental protocol for validation of the above-
described automated diagnosis chain has been based
on detection and diagnosis (authentication) of the two
aforementioned defects in SKF-6002 bearing device.
Table 1 gives topological and dynamical
characteristics of the SKF-6002. So, three operational
categories (classes) have to be detected and recognized:
the normal class, the unbalanced defect class and the

flaking path defect class (correspondent to a diagnosis
of the defect detected which is being a failing of the
flaking path of the outer race).

Table 1: Technical and geometrical features of deep
grove ball bearing SKF-6002.

Parameter Value
Ball diameter 4.762 mm
Inner race diameter (d ) 18.738 mm
Outer race diameter (D) 28.262 mm
Radial clearance (y) 20 um
Maximum waviness amplitude 3.0 um
Initial waviness amplitude (I1o) 2.0 um
Radial load (W) 6.0N
Mass of rotor (m) 0.6,1.0,2.4 kg
Damping factor (c) 200 Ns/m
Number of balls (Nb) 9
Number of wave lobes (N) 8
Angular location (S) /4
Hertzian elasticity (k) 7.055 N/m3/2

Table 2: Table 2: Number of Multi-Feature Vectors
(MFV) used in training and testing phases as well as
the ratio of signatures: healthy, unbalanced defect and
flaking path defect (%).

Number of MFV ~ Normal  Unb-D  Flak-D
1594 (for training) 34.6 29.9 35.5
798 (for testing) 49.9 30.1 20.0



According to the previously identified indicators, a
training database containing 1594 MFV has been
constructed, including a number of MFV
corresponding to each possible class. The ratio of each
class in the learning database is reported in table 2.
The same table gives the ratio of each class within the
testing database which includes 798 MFV. The two
kinds of above-described defects are present with

different degrees of impairment as well in learning
database as in testing one. Concerning the unbalance
forces’ related defects, the considered rotation axis
dislocations correspond to misbalancing forces
covering 10 to 100 g.cm. While, the flaking paths
defects correspond to fissures of 280 um average deep
and a varying width covering the range of 30 to 910
pm.

Table 3: Performances of the single neural network based classifier — plant’s rotation speed is 400 rpm.

Neural Dimension

Number of Data Sets

Correct Detect Rate

n f Aver
Network i?)(::?v:tie;nz of Input Detecﬁoig;ate
Type Vector N UFD FPD NR UDR  FDR
446 388 539 1373
o 446 388 539 =2 86,14 %
Memorization 4 551 477 566 351 277 366 1594 °
Generalization 4 se8 240 160 2L 26 97 800 _ 25199
LVQ 398 240 160 798
Memorization 14 551 477 566 ﬂ ﬁ ﬂ @ = 84,00 %
551 477 566 1594
299 222 112 633
o oz =2 1L 222 79329
Generalization 14 398 240 160 398 240 60 798 %
Memorization 4 551 477 ses 40 427 561 1438 005104
551 477 566 1594 ’
Generalization 4 398 240 160 ¥ 213 145 656 _er 919
398 240 160 798
RBF
Memorization 14 551 477 566 A4 78 405 27T 6120 %
551 477 566 1594
Generalization 14 398 240 160 362 55 81 ﬁ =62,41%

398 240 160 798

Table 4: Performances of the Multi-Experts based classifier — plant’s rotation speed is 400 rpm.

Number of Data Sets Correct Data Rate Individual Average
RBF architecture N UFD FPD Average Detection Rate
NR UDR FDR Detection
ANN, 551 0 566 462 - 366 1028 o 039
551 566 1117 ’
Memorization
4 indicators ANN, 551 art 0 ﬂ a5 - 249 =92,32% 92,71 %
551 477 1028
ANN, o] 477 566 — 419 339 B 9377 %
477 566 1043 ’
324 145 469
ANN 398 o] 160 B - — — = 9
1 398 160 ss5 H0s e
o 360 231 591
Generalization — —_— - —=92,63 %
A ndhcators ANN, 398 240 o] 398 240 638 ° 89,73
211 159 370
- i - —— =92,50 %
ANN, o] 240 160 240 160 200 °

For validation experiments we have considered two
following cases: a detection/authentication chain based
with a single neural network classifier and our hybrid
multi-experts scheme. As well for the single neural
network based classifier as for the hybrid solution, two
kind of neural models (LVQ-like neural net and RBF-
like model) have been implemented.

4.2 Experimental set-up and protocol

Table 3 summarizes results relative to obtained
performances using single neural network based
scheme. For each kind of classifiers different MFV
have been considered. The considered MFV are



composed by previously introduced (in section 2)
scalar indicators measures in horizontal and vertical
directions. They differ in number of components
(number of indicators composing the MFV). The
number of components varies from 4 (corresponding
to horizontal and vertical measures of 2 indicators) to
14 (corresponding to same measures of 7 indicators)
and defines the number of neurones of the input’s
layer. The output layer of each neural classifier
contains 3 neurons corresponding to the 3 possible
operation categories. In the same way and considering
the same MFV, Table 4 gives the obtained results for
hybrid Multi-Experts chain. The local neural experts
are RBF-like neural networks.

It is interesting to note from Table 3 that in the case of
RBF-like single neural network based classifier the
generalization (e.g. testing) using MFV including 2
indicators (e.g. 4 components) performs better results
than those obtained with a 7 indicators MFV (e.g. 14
components). This could be explained by the fact that
considering more indicators leads to increase the input
feature space dimensionality for a same number of
learned (representative) patterns and thus, the RBF-
like classifier (which operates on the basis of a patters’
distance issued matching policy) has to map a larger
feature space with the same number of learned
patterns. While the same table shows that LVQ-like
neural classifier leads to quite similar (rates of defects’
correct detection and classification between 75 and 80
%) either using MFV including 7 indicators or
exploiting 2 indicators MFV (even if the obtained
results are slightly better when 7 indicators are used).
This is due to the conjunction of two facts. The first
one is related to the fact that in LVQ-like neural model
the matching is obtained in “competitive layer” of such
network performing a “Winner Takes All” (WTA)
policy. In fact, the two defects’ categories as well as
the healthy operational state are matched essentially on
the basis of two (among seven) indicators, but as the
matching is obtained from a WTA based decision
policy (excusive decision), the increase of the input
feature space’s dimensionality remains of a limited
effect on classification performance. Beside this first
factor, another reason avoiding the classification rate
decreasing here is related to the fact that the major data
is discernible enough regarding the above-described
matching policy in 2-D feature space obtained from
the first two indicators. The similar performances
obtained with RBF-like -classifier (82% correct
classification) when 2 indicators are used confirms this

purpose.

However, the slightly better results obtained with RBF
architecture with MFV including 2 indicators (4
components) seems to privilege the use of this neural
classifier against in spite of the LVQ based classifier.
That is why the Multi-Experts architecture has been
implemented including three RBF networks. Results
are reported in Table 4. It is pertinent to note the

significant enhancement of classification rate. Fig. 8
completes the results of the two last tables by giving
learning and generalization performances versus the
number of involved (exploited) indicators. If Fig. 8-a
confirms the results consequences of the first table
(Table 3), the second (e.g. Fig. 8-b) reveals an
additional interesting point. In fact it is interesting to
note the enhancement of classification rate as well
when a 4 component MFV is exploited as when the
input MFV includes 14 components (a 15%
classification rate increasing). That shows the experts’
mixture strategy’s pertinence (efficiency).
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Figure 8: Performances of training and generalization
versus number of involved features for single neural
network based classifier (a) and Multi-Experts
classifier based solution (b)

5 CONCLUSION AND FURTHER
DEVELOPMENTS

We have presented a hybrid Multi-Experts neural
network based architecture for mechanical defects
detection and authentication in turning plants, which
are massively present in industrial production chains.
The pertinence of the experts’ mixture strategy has
been shown and validated. On the other hand, the
advantage of a wavelet transform based multi-
resolution detection leads to capability of simultaneous
detection of different kind of mechanical defects.
Finally, the use of vibratory analysis technique make
possible the inaccessible mechanical devices’



monitoring from a global vibratory signature obtained
from relatively low cost standard sensors.
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