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Abstract

This paper covers area of Collective Reinforcement
Learning. We introduce and describe new simple
approach to Collective Reinforcement Learning
named Related Temporal Difference. This
approach can supports coherence of agent’s
behavior in  distributed and structurally
complicated multi-agent system. We construct a
decentralized Multi-Agent system which describes
behaviors of multi-joint robot. Given experiments
show, that system of local learning procedures in
complex system can be much faster than learning
system on the whole.

1 Introduction

More and more, machine learning is being explored as
a vital component to address challenges in multi-agent
systems (MAS). For example, many application
domains are envisioned in which teams of software
agents or robots learn to cooperate amongst each other
and with human beings to achieve global objectives.
Learning may also be essential in many non-
cooperative domains such as economics and finance,
where classical game-theoretic solutions are either
infeasible or inappropriate. Teams of agents have the
potential for accomplishing tasks that are beyond the
capabilities of a single agent. An excellent and
demanding example of multi-agent cooperation is in
robot soccer.

At the same time, Multi-Agent learning (MAL) poses
significant theoretical challenges, particularly in
understanding how agents can learn and adapt in the
presence of other agents that are simultaneously
learning and adapting. This is a fertile area of research
that seems ripe for progress: the numerous and
significant theoretical developments of the 1990s, in
fields such as Bayesian, game-theoretic, decision-
theoretic, and evolutionary learning, can now be
extended to more challenging multi-agent scenarios
(Vidal 2009). The topic of this paper is combining
together Reinforcement Learning and Multi-Agent

Learning to achieve new level of collective behavior of
agents.

There are many principles and approaches to Multi-
Agent learning (Liviu Panait 2005; Eduardo Alonso
2001); there are some of them, important in this paper:

1. Some degree of decentralization of learning
process.

2. Interaction between agents during learning
process. Learning feedback (observer, critic,
teacher, e.t.c.).

3. Involvement of agents. Interconnections and
structure of Multi-Agent system must be
included in learning algorithm.

4. Learning in Multi-Agent systems is on
principle another kind of learning and
standard techniques of single learning must
be updated to use it into Multi-Agent systems.

We can use these principles as properties when we
design new Collective Learning algorithm. It next
sections we introduce new kind of Collective
Reinforcement Learning algorithm that correspond to
described principles and support’s coherence of agents
behavior into Multi-Agent Systems to produce
complex, synchronized actions of agents.

2 Reinforcement learning

Reinforcement learning is an approach to artificial
intelligence that emphasizes learning by the individual
from its interaction with its environment that produces
optimal behavior (A. G. Richard S. Sutton 1998). It is
often used for learning autonomous agents in unknown
environment. It emerged at the intersection of dynamic
programming, machine learning, biology, studies the
reflexes and reactions of living organisms (reflex
theory, animal cognition (Worgotter 2005, Dr.
Florentin Woergoetter 2008)). The core of all most
Reinforcement Learning methods is a Temporal
Difference (TD) learning (Sutton 1988, Barto 2007,
Peter Dayan 1994, Worgotter 2005). Usually, RL used
for learning autonomous agents, e.g. for robotics.
Classic RL-theory works only on MDP, so it widely
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used for learning in game theory, e.g. TD-Gammon
(Tesauro 1994). One iteration of RL-agent on MDP is
shown at fig. 1.
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Figure 1: One iteration of Reinforcement Learning
SARSA algorithm (1). Where o — learning rate, y -

discount factor.

AQ(s,a) = ar +Q(s',a’) —Q(s, a)le(s) @

Agent does some action in particular state, goes to next
state and receives reward as a feedback of recent
action. During learning agent try to select the best
action in some state (best action usually more
rewarded in future). Learning goal is to approximate
Q-function (1), e.g. finding true Q-values of Q-
function for each action in every state.

Natural extension of standard RL algorithm is a
including eligibility traces - are one of the basic
mechanisms of reinforcement learning. Eligibility
trace is a temporary records of the occurrence of an
event, such as the visiting of a state or the taking of an
action. At every time step (when a TD error occurs),
only the eligible states or actions are updated (Fig. 2).
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Figure 2: Action values increase by (a) one-step
SARSA, (b) by SARSA with Eligibility Trace, A=0.9
(adopted from (A. G. Richard S. Sutton 1998)).

AQ(s,a) = a[r +Q(s',a’) - Q(s, a)]e(s) 0]

Are(s) ifs#s,

e(s) = ) 3
Aye(s)+1 oterwise

Formula (2) called for every previously visited state if

e(s) >0, where €(S) - is a eligibility value, A -is

a eligibility discount factor.

Almost any temporal-difference method, such as Q-
learning or SARSA, can be combined with eligibility
traces to obtain a more general method that may learn
more efficiently. Its produce modified versions of

algorithms used in this work SARSA(A) and Watkins-
Q(1), Peng-Q(x) and another.

There are many versions of RL algorithms for single
and collective learning (Bab A 2008). But standard RL
is limited to use in Multi-Agent RL (Eduardo Alonso,
2001; Liviu Panait, 2005; Dr. Florentin Woergoetter,
2008):

1. Learning time grown up with state-action space.
2. Curse of dimensionality as a legacy of dynamic
programming (A. G Richard S. Sutton 1998);

3. Hard learning and convergence with function

approximations (linear and non-linear).

4. State-action  space grown  exponentially
depending on number of agents, and
generalization techniques need to be used to
avoid this problem (Tan 2005).

3 Collective reinforcement learning

In collective learning task we must learn agents
cooperatively, ~ with  other  agents, including
interconnections into Multi-Agent System and used
rules of environment to produce expected behavior of
the agents. Every agent must learn rules of
environment, rules of Multi-Agent system, and their
own behavior scenario to acts correctly with other
agent and environment. Also, collective learning
includes synchronization sequences of agent’s actions
to produce complex intellectual behavior. It’s very
important emergent effects of collective reinforcement
learning.

In many articles collective reinforcement learning
shown in context of game theory for founding Nash
equilibrium point for group of agents. Works (Vidal
2009, Tan 2005, Yoav Shoham, Rob Powers, Trond
Grenager 2006) provided generalized view to this
approach, and (Stone. May 2007 ) pointed, that Multi-
Agent learning is a still open question.

The simplest form of collective reinforcement learning
named Joint Reinforcement Learning where the whole
Multi-Agent system learned as one agent.
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Figure 3: Standard (left) and Joint (right) models of
Collective Reinforcement Learning

Like in standard RL model, every agent in Multi-
Agent system has state, and can select some action at
this state. We can collect all states into one composite
Multi-Agent system joint state s'(t). Also, if some
(may be all) agents in MAS produce actions at this



time step, we can collect these actions into one
composite joint action a‘'(t). Environment produce
composite state s'(t+1) and composite reward r(t+1)
and distribute it into MAS. After this we can learn
MAS using every TD procedure in different ways.

1. Joint MAS learning. On Multi-Agent system
level we can learn total MAS updating
Q(s*(t),a*(t))

2. Local-Joint Learning. We can learn every agent
locally updating  Q(s;(t),a () for  every
contributed agent. To use second update rule
composite reward must be divided into sub
rewards for agents contributed to composite
action (agent must produce action) in previous
time step t.

There is no principal difference between Joint RL and
standard RL. Experiments with Joint-RL model have
shown convergence to minimum error value with
expected behavior of MAS. But, using this technique
we don’t avoid described limitations of RL. For Joint-
RL convergence time is very slow and very sensitive
to number of agents because we must search optimal
policy in multidimensional state action space, where
number of dimensions is equal to number of agents.

Following for state-space complexity we have problem
with function approximation (but generalization
potential is greater in this case). We can use different
selecting technique for building composite actions to
force search process, for example Genetic Algorithms
with chromosome represented by composite action.

Local-Joint learning can’t produce coherence structure
and synchronization between agents. There is no
information exchange between agents. Hence, Joint
RL can be successfully applied only for simple MAL
tasks, without deep synchronization and emergent
effects between agents, e.g. to learn simple swarm
agents.

Following for more complex Multi-Agent learning
task we need to develop new collective learning
techniques.

3.1 Related temporal difference learning

Related TD — is new adaptation of standard TD
technique for Multi-Agent system. If some problem
solved cooperatively by agents, and they must learned
together, so their learning is related to each other. In
this case, actions from one agent may be directed to
another agents (and change their states), not only to
environment or himself (as in standard RL model).

Let’s see to A and B - agents interconnected into one
Multi-Agent system. Agent A actions directed not to
environment, but to agent B. Agent A at state s,
execute action a over agent B, and set it into new state
sp,. Agent B produce action b and execute it somewhere

(on another agent, or on environment). This situation is
shown at Fig. 4.
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Figure 4: Related Temporal Difference update rule

Actions a and b has their Q-values Q(s,, @) and Q(Sp,
b) respectively. Agent B sent to A feedback their Q-
value Q(sp, b) and reward r as a response to action a.
Receiving this feedback agent a can learn using
standard TD technique and can update their Q(s,, a).
Feedback reward I depends from agent B, and means
its reaction to actiona . Receiving this feedback agent
A can learn using related TD update rule. Agent A
update their Q-value Q(s,,a) corresponding to

actiona using formulas (4,5).
6AB = r+7Q(sbvb)_Q(sava) (4)

AQ(S,,8) = a8 g ®)

Formula (4) is a temporal difference error between
agent A and B. Part of (4), r+,Q(s,,b) - is a feedback

from agent, to which agent A influence. Update rule
(4) calculate TD error as measure of the inconsistency
of behavior policies between for agent A and B.

Ilustrated situation shows learning between two
agents when state of one agent depends from actions
of another (interaction). The main idea of related TD
is that we suppose aQ(s,,b)- is @ “future” Q-value of

agent A, and in this case RTD is equal to TD.
Feedback between agents included into update rule
produces coherence of their behaviors. In this
example, after learning, agent A will select actions that
put agent B in optimal state.

Described learning technique extends Temporal
Difference and adopts them to interactions in Multi-
Agent system. This technique looks to local
perspective and learn agents in multiagent system at
local level including interconnections with another
agents. Using related learning we can apply standard
RL model locally in multiagent system. It means that
we can learn agents one by one use only its local
interconnection with other agents in multiagent system
instead of learning system on the global level.

We have a few modifications of this technique with
including eligibility traces (we call them influence
traces) into update rule. Including eligibility traces we
can reduce decentralization of learning process and
propagate coherence relations more than between two
agents.



3.2 Related temporal difference learning with
influence trace

One of the biggest problems of collective learning — is
a decentralization of learning process. How efficient to
learn group of agent if they are structurally sparse far
away from each other. We use term coherence to refer
property of multiagent systems to be “as one
organism”. Such systems can easily produce
synchronized actions and have many interesting
properties.

Related TD with influence trace — it is a adaptation of
eligibility traces to related learning described in
previous section. We closely refer to idea of Eligibility
traces, but change the subject storing in the trace, and
way of propagation for trace. In original eligibility
traces we store in memory previously visited states
(see fig. 2), but in influence trace we store history (set)
of agent influences to each other, as humber of RTD
procedures. Eligibility traces distributed in time,
Influence trace — in structure (and may be in time too).

For example, let’s see to more complicated and
distributed example from previous chapter. Introduce
one more agent C. This situation is shown at Fig. 5.
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Figure 5: RTD with influence trace for agent C.
We have next scenario:

1. Agent A acts to agent B with Q(s,, a). Agent B
goes to state sp.

2. Agent B acts to agent C with Q(s,, b). Agent C
goes to state s..

3. Agent C acts with action ¢ to environment Env
and receive their reward.

4. Agent B produces feedback to agent A and
learns it using update rule (6).

AQ(s,,a) = a(r, + 7Q(S,,b) - Q(s,.a))i(d) |, (6)

5. Agent C produces feedback and reward to both
B and A agents, and learn it using extended
update rule (7-9).

AQ(S,,b) = a(r, +7Q(s,,¢) —Q(s, b))i(d) |, (7)
AQ(s,.a) = a(r, + 1Q(s,,¢) —Q(s,,a))i(d) |,_, (8)
i(d)=2" 9)

State of agent C depends from actions and states of
agents A and B, so it is forming their own influence

trace. We introduce parameter of influence distance
i(d) that shows how far away structurally produced

influence to this agent. Influence value is reduced with
increasing influence distance between agents.

4 Experiments

To verify described RTD learning rule and compare
their efficiency with Joint-RL, we test these techniques
in Multi-Joined Robot (MJR) learning task. MJR
model is simple decentralized model, which simulate
robot arm with N-degrees of freedom, where N — is a
number agents in MAS. Every segment — is an
intellectual agent learned via Reinforcement Learning.
The goal of experiment is to learn MJR reach some
target point. This problem requires synchronization of
local agent behaviors.

4.1 Model of Multi-Joined robot

MJR contains one root segment R, several
intermediate segments Sy, Sy, ..., Sm, and one terminal
segment T connected into chain from R to T (figure 1).
Every segment, excluding terminal, can rotate at full
circle (360°) all next segments. At one time step each
segment, excluding terminal, can rotate all next
segments at 5° to left or right, or do nothing.

First acts root segment R, then first intermediate S,
then second S, and so on, until Sy. Root segment
can’t move, can’t be moved and don’t change their
position. Terminal segment verify reaching the target
and receive actions from previous segments that
change their own position.

?/’;tonce to
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Figure 6: Multi-Joined Robot with 4 segments R, S,
S, T. a,b,c- Agentactions. I, I}, I, — Feedback

reward corresponds to actions.
Every segment — is an intellectual agent learned via
reinforcement learning. Goal of multi-agent system is
reaching a target grid. After learning MJR must reach
by oneself any acceptable target cell of grid world.

Used next learning procedure (one training start):

1. MJR moved to initial position.

2. Every segment selects and executes action in
order to structure of MJR. States of all next
agents are changed.



3. Terminal segment calculate distance to target
point.

4. If target is reached then MJR count grand-
prix reward and learned. Go to 1.

5. Else, terminal segment produce feedback
reward for previous agent to learn it
Feedbacks are propagated into MJR, so
agents learn via RTD until root segment will
be reached.

6. If simulation time is ended (1000 simulation
steps) go to 1. If average RTD-Error (7)
lover than limit value, then learning is over.

7. Next time step. Go to 2

4.2 Experimental results

Learning time depends on number of segments, used
algorithm and values of RL configuration parameters.

RL parameters include: ¢ (learning rate) = 0.05~0.1;
¥ (discount factor) = 0.7; A (eligibility discount

factor) = 0.7~0.99, d (influence discount factor) =
0.5~0.7
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Figure 8: Average RTD error for one agent per
episode.

Fig. 8 shows efficiency of compassion Joint-RL (in
legend marked as JAL) and RL algorithms under
Related TD learning with influence traces. We can see
experimentally that techniques using principle of local
learning such as RTD and RTD convergence much
faster.

Behavior policy variously changed in way of use
different algorithms. RL algorithms with influence
tract (SARSA(A), Watkins-Q(Xx)) shown more smooth
behavior and better synchronization than algorithms
without it (Q-Learning). Another unobvious result was
seen in robot behavior. For algorithms with eligibility

& {races robot prefer rotation about a fixed root point
=1 with segment reconfiguration on new round to reach
{ the target. Nevertheless, for Q-Learning (without

eligibility traces) robot prefer reach the target in a

- 8 straight way.

jam Conclusion
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Figure 5. Simulation of MJR in RepastJ simulation
environment. (a) — initial state of MJR. (b) -

successful learning, MJR reach the target. (¢) —
unsuccessful learning of MJR.

Simulation of MJR behavior at first steps looks like
chaotic. During learning become synchronization of
behaviors between segments (successful learning) and
MJR successfully can reach the target. Sometimes (5%
of experiments) MJR can’t synchronize at all
(unsuccessful learning). In this case, behaviors of
different segments compensate each other, and MJR
can’t successfully move in consolidate direction. It is
some case of “learning deadlock” where robot can’t
get a new experience to break the lock.

Quality of convergence depends from number of
segments. If MJR have more than 7-10 segments then
probability of convergence is much lower. Actions in
the beginning of robot not synchronized with actions
in the end of robot. In this case need to develop new
techniques of learning for reducing complexity, or use
hierarchical reinforcement learning (modular influence
traces).

This work suggests new approaches to Multi-Agent
Reinforcement Learning named Related Temporal
Difference. This technique was designed to change
standard Reinforcement Learning model in a best
essential way to Multi-Agent Learning. Using RTD we
can apply RL model between agents locally. We can
learn agents one by one only use its local
interconnection with each other, instead of learning
whole system on the global level, as JAL approach. An
experimental result shows faster convergence for CTD
approach than for JAL in Multi-Joined Robot learning.

There are many different reward-count strategies in
this MJR task. For example, we don’t regulate how
robot reaches the target. In future experiments we can
calculate additional reward for “speed” or “beauty” of
target reaching for robot. It is a topic of future
experiments.
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