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Abstract

This paper introduces a weighted self-organizing
map for clustering, analysis and visualization of
mixed data (binary/continuous). We propose a for-
malism dedicated to mixed data in which cells are
represented by a Bernoulli and Gaussian distribu-
tion. Each cell is characterized by a prototype with
the same coding as used in the data space. The learn-
ing of weights and prototypes is done in a simultane-
ous manner assuring an optimized data classification.
More a variable has a high weight, more the cluster-
ing algorithm will take into account the information
transmitted by this variable. The learning oh these
topological maps is combined with a weighting pro-
cess of the different variables by computing weights
which influence the quality of clustering.

We illustrate the power of this method with data
sets taken from a public data set repository: a hand-
written digit data set and other three data sets. The
results show a good quality of the topological order-
ing and homogenous clustering.

1 Introduction

The topological map proposed by Kohonen (2001) uses
a self-organization algorithm (SOM) which provides
quantification and clustering of the observation space.
More recently, new models of topological maps dedi-
cated to specific data were proposed in (Bishop et al.,
1998, Kaban et al., 2001, Lebbah et al., 2000). Some of
these models are based on a probabilistic formalism and
a learning procedure to maximize the likelihood function
of the data set, the others are quantization methods.

In the literature there are approaches based on
weighting as (Huang et al., 2005; Blansche et al., 2006;
Grozavu et al., 2008) and approaches based on feature
selection like (Basak et al., 1998; Bassiouny et al., 2004;
Liu et al., 2005; Questier et al., 2005; Li et al., 2006;
Wiratunga et al., 2006; Strickert et al., 2006; Li et al.,

2007; Guerif and Bennani, 2007). For the continuous
data, a model for local variables weighting using SOM
was proposed, calledlw-SOM (Grozavu et al., 2009).
This algorithm is an adaptation to SOM of the weighting
approach proposed forK-means by Huang et al. (2005).
The modellw-SOM is dedicated to continuous variables
and is not directly applicable to categorical data. Among
the probabilistical method of variable selection we find
the works of Kim et al. (2003) and Cord et al. (2006)
where methods of variables selection are used with
the EM algorithm. The main idea is that a variable
wich wasn’t selected don’t have a big influence in the
computation of the data likelihood.

In this paper we propose a topological self organizing
algorithm for analyzing mixed (continuous and binary)
data. It is a quantization model which provides a consis-
tent set of prototypes whose particularity is to be inter-
preted (prototypes and data belong to the same space and
have a meaningful interpretation). The variable weights
provide to a user the relevance of each variable for the
clustering. They correspond to the degree of use of vari-
able in the clustering process.
In section 2, we present the model and the iterative al-
gorithm. In the section 3, we present some applications
of proposed method. The experiments involve handwrit-
ten numerals (0 − 9), and three other data sets available
in Asuncion and Newman (2007). These data sets allow
us to prove the importance of the weighting for the clus-
tering process. Our conclusions are reported in section
4.

2 Local weighted Mixed Topologi-
cal Map

As with a traditional self-organizing map, we assume
that the latticeC has a discrete topology (discrete out-
put space) defined by an undirect graph. Usually, this
graph is a regular grid in one or two dimensions. We



denote the number of cells inC asNcell. For each pair
of cells (i,j) on the map, the distanceδ(i, j) is defined
as the length of the shortest chain linking cellsi andj.
Thelw-MTM (Local Weighted Mixed Topological Map)
model is based on the quantization formalism of topolog-
ical maps.

Let A be the learning data setx where each ob-
servationx = (x1, x2, ..., xk, ..., xd) is made of two
parts: continuous partxr[.] = (xr[1], xr[2], ..., xr[n])
(xr[.] ∈ Rn) and categorical partxc[.] =
(xc[1], xc[2], ..., xc[j], ..., xc[k]) where the lth com-
ponent xc[l] have Ml modalities. Each categorical
variable can be coded with a binary variable, thus,
each categorical variablexc[l], is coded with the vector
xb[.] = (xb[1], ..., xb[Ml]) wherexb[l] ∈ {0, 1}). The
categorical part can be represented by a binary part
xb[.] = (xb[1], xb[2], ..., xb[l], ..., xb[m]) such as each
observationx is thus, a realization of a random variable
which belongs toRn × {0, 1}m. Using these notations
a particular observationx = (xr[.],xb[.]) is a mixed
vector (continuous and binary variables) of dimension
d = n + m. In our model, we assume that a given data
set has been drawn fromNcell clusters.
For each cellc of the grid, we associate a referent vector
wc = (wr[.]

c ,wb[.]
c ) of dimensiond, wherewr

c ∈ Rn and
wb[.]

c ∈ βm which is a binary coding of multidimensional
categorical variablewc[.]

c . We denote byW the set of the
referents vectors, byWr the set of the numerical part and
byWb the binary part of the referent vectors.
In the following section we present a new model of topo-
logical map dedicated to mixed data. The associated
learning algorithm is derived from the batch version of
the Kohonen algorithm dedicated to numerical data (Ko-
honen, 2001) and the BinBatch algorithm which is dedi-
cated to binary data (Lebbah et al., 2000). These models
are improved to take into account the variable weights.
In this algorithm, the similarity measure and the estima-
tion of the referent vectors are specific for each type of
data : it is the Euclidian distance with the mean vector in
the continuous case and the Hamming distance with the
median center in the binary case.

2.1 Minimization of the cost function

As the classical topological maps we propose to mini-
mize the following cost function.

G(φ,W,Y) =
∑
x∈A

∑
j∈C

KT (δ(φ(x), j))yj
τ ||x−wj ||2

(1)
Where τ is a fitting parameter necessary for the es-
timation of the set of the weight vectorsY, and φ
assigns each observationx to a single cell inC. KT is
a neighborhood function depending on the parameterT

(called temperature):KT (δ) = K(δ/T ), whereK is a
particular kernel function which is positive and symmet-
ric ( lim

|x|→∞
K(x) = 0). ThusK defines for each cellj

a neighborhood region inC. The parameterT allows
to control the size of the neighborhood influencing a
given cell on the map. As with the Kohonen algorithm,
we decrease the value ofT between two valuesTmax

andTmin. The vectoryj = (yr[.]
j ,yc[.]

j ) is the weighted

vector, whereyr[.]
j is the continuous weight part andyc[.]

j

is a categorical weight variable (not binary variable).

In this expression||x−wj ||2 is the square of the Eu-
clidian distance. Since for binary vectors the Euclidian
distance is no more than the Hamming distanceH, then
the Euclidian distance can be rewritten by:

||x−wc||2 = ||xr[.] −wr[.]
c ||2 +H(xb[.],wb[.]

c )

As for the mixed topological map (MTM) algorithm, we
use this expression to rewrite the cost function as:

G(φ,W,Y) =
∑
x∈A

∑
j∈C

KT (δ(φ(x), j))yr[.]
j Deuc(xr[.],wr[.]

j )

+
∑
x∈A

∑
j∈C

K(δ(φ(x), j))yc[.]
j H(zb[.]

i ,wb[.]
j )](2)

Where

Gsom(φ,W,Y) =
∑
x∈A

∑
j∈C

KT (δ(φ(x), j))yr[.]
j ||xr[.]−wr[.]

j ||2

(3)
is the classical cost function used by the weighted Koho-
nen Batch algorithm (Grozavu et al., 2009), and

Gbin(φ,W,Y) =
∑
x∈A

∑
j∈C

KT (δ(φ(x), j))yb[.]
j H(xb[.],wb[.]

j )

(4)
is the modified cost function used in BinBatch algorithm
(Lebbah et al. 2000). The old cost function proposed is :

Gbin(φ,W) =
∑
x∈A

∑
j∈C

KT (δ(φ(x), j))H(xb[.],wb[.]
j )

(5)
Thus in this paper we propose a new cost function to
deal with mixed data, in the same way we define a new
function to binary data.
The minimization of the cost function (2), is made using
an iterative process with two steps:

• Assignment step: assuming thatW and Y are
fixed, we have to minimizeG(φ,W,Y) with re-
spect toφ. This leads to use the following assign-
ment function:φ(x) = arg minj((y

r[.]
j )τ ||xr[.] −

wr[.]
j ||2 + (yc[.]

j )τH(xb[.],wb[.]
j ))



• Quantization step: assuming thatφ and Y are
fixed, this step minimizesG(φ,W,Y) with respect
toW in the spaceRn × βm. The minimization of
the cost function (2) leads to minimize the function
Gsom(φ,W) (3) in Rn andGbin(φ,W) (4) in βm.
It is easy to see that these two minimizations allow
to define:

– the numerical partwr[.]
j of the referent vector

wj as the mean vector as:

wr[.]
j =

∑
i∈C

KT (δ(i, j))
∑

x∈A,φ(x)=i

xr[.]

∑
i∈C

KT (δ(i, j))ni

,

whereni represents the corresponding num-
ber of assigned observations.

– the binary partwb[.]
j of the referent vec-

tor wj as the median center of the binary
part of the observationsx ∈ A weihted by
KT (δ(j, φ(x))). Each componentwb[.]

j =

(wb[1]
j , ..., w

b[l]
j , ..., w

b[m]
j ) is then computed as

follows:

w
b[l]
j =

 0 if
[∑

x∈AKT (δ(j, φ(x)))(1− xb[l])
]
≥[∑

x∈AKT (δ(j, φ(x)))xb[l]
]

1 otherwise

• Quantization step: assuming thatφ andW are
fixed, this step minimizesG(φ,W,Y) with respect
toY in the spaceRn+m. The weights are computed
in the following way:

yl
j =


0, if Dl

j = 0

1∑
t

[
Dl

j

Dl
t

] 1
τ−1

, otherwise

where

Dl
j =

∑
x∈A

C∑
i=1

KT (δ(i, j))(xl
i − wl

j)
2

The minimization ofG(φ,W,Y) is run by iteratively
performing the two steps. At the end the vectorwc,
which shares the same code with the observations can
be decoded in the same way, allowing a symbolic inter-
pretation of binary part of referent vectors. The nature
of the topological model reached at the end of the algo-
rithm, the quality of the clustering and those of the topo-
logical order induced by the graph greatly depend on the

neighborhood functionK. In practice, as for traditional
topological map we use a smooth function to control the
size of the neighborhood asKT (δ(c, r)) = exp(−δ(c,r)

T ).
Using this kernel function,T becomes a parameter of the
model. As in the Kohonen algorithm (Kohonen, 2001),
we repeat the preceding iterations by decreasingT from
an initial valueTmax to a final valueTmin.

W

Y

Figure 1: The maplw-MTM 16×16 representing the set
of prototypesW and weightsY.

3 Experimental validations

To evaluate the quality of clustering, we adopt the ap-
proach of comparing the results to a "ground truth". We
use the clustering accuracy to measure the clustering re-
sults. This a common approach in the general area of
data clustering. In general, the result of clustering is usu-
ally assessed on the basis of some external knowledge
about how clusters should be structured. This may imply
evaluating separation, density, connectedness, and so on.
The only way to assess the usefulness of a clustering re-
sult is indirect validation, whereby clusters are applied to
the solution of a problem and the correctness is evaluated
against objective external knowledge. This procedure is
defined by Jain and Dubes (1988) as "validating cluster-
ing by extrinsic classification", and has been followed in
many other studies (Khan and Kant, 2007; Andreopou-
los et al., 2006). We feel that this approach is reasonable



one if we don’t want to judge clustering results by some
cluster validity index, which is nothing but a bias toward
some preferred cluster property (e.g., compact, or well
separated, or connected). Thus, to adopt this approach
we need labeled data sets, where the external (extrinsic)
knowledge is the class information provided by labels.
Hence, if thelw-MTM finds significant clusters in the
data, these will be reflected by the distribution of classes.
Therefore we operate a vote step for clusters and com-
pare them to the behavior methods from the literature.
The so-called vote step consists in the following. For
each clusterc ∈ C:

• Count the number of observations of each classl
(call it Ncl).

• Count the total number of observation assigned to
the cellc (call it Nc).

• Compute the proportion of observations of each
class (call itScl = Ncl/Nc).

• Assign to the cluster the label of the most repre-
sented class(l = arg maxl(Scl).

A clusterc for which Scl = 1 for some class labeled
l is usually termed a "pure" cluster, and a purity mea-
sure can be expressed as the percentage of elements of
the assigned class in a cluster. The experimental results
are then expressed as the fraction of observations falling
in clusters which are labeled with a different class from
that of the observation. This quantity is expressed as a
percentage and termed "error percentage" (indicated as
Err% in the results).

3.1 Handwritten data

This experiment concerns a data set consisting of the
handwritten numerals ("0"−"9") extracted from a col-
lection of Dutch utility maps, Asuncion and Newman
(2007). There are 200 samples of each digit such that
there is a total of 2000 samples. Each sample is a
15 × 16 binary pixel image. The data set consisted of a
2000× 240 binary data matrix. Each qualitative variable
is a pixel with two possible values "On=1" and "Off=0".
The figure 1 shows two maps obtained from the learn-
ing of lw-MTM map of 16 × 16 size with the fitting
parameterτ = 2. In the first figure we can visualize
the prototypes of the map which are binary where each
pixel “black/white” denotes the state of the binary vari-
able (“Off/On“). In the second figure the grey shading
shows the relevance of the variables. By analyzing these
two figures we observe that the topological order is re-
spected on the map (W) and the contours of the numbers
correspond to relevant variables which are detected by
our proposed approach..

3.2 Other data sets

We use the following three categorical data sets obtained
from UCI repository (Asuncion and Newman, 2007).
Heart disease

This is D. Detrano’s heart disease data set that was
generated by the Clevelande Clinic (Asuncion and New-
man, 2007). The data set has 303 observations, each one
is described by 6 continuous and 8 categorical variables.
The observations are also classified into two classes,
each class is either healthy (buff) or with heart-disease
(sick). In both cases we use a binary coding to code a
categorical variable. Hence, using a disjunctive coding
we obtainm = 17 binary variables forHeart disease
data set. The variable with two modalities is coded using
only one binary variable indicating a presence or absence
of modalities. The learning of a map with the dimensions
13× 7 cells is made with all observations.
Credit Approval

This file concerns credit card applications. All at-
tribute names and values have been changed to meaning-
less symbols to protect confidentiality of the data. This
dataset is interesting because there is a good mix of at-
tributes - continuous, nominal with small numbers of val-
ues, and nominal with larger numbers of values. There
are also a few missing values. The data set has 666 obser-
vations, each one is described by 9 continuous and 6 cat-
egorical variables. Examples represent positive and neg-
ative instances of people who were and were not granted
credit.
Thyroid disease

This dataset contains thyroid disease records supplied
by the Garavan Institute and J. Ross ; Quinlan, New
South Wales Institute, Syndney, Australia in 1987. The
data set has 3163 observations, each one is described by
7 continuous and 12 categorical variables. Five labora-
tories tests are used to try to predict whether a patient’s
thyroid to the class hypothyroidism or hyperthyroidism.
The diagnosis (the class label) was based on a complete
medical record, including anamnesis, scan etc. Table 1,
provides a short description of used data sets.

Table 1: Data sets used in the experimentation. #obs :
data set size; #cl: number of classes; dim.Cat : categori-
cal dimension; dim.Re: continuous variable dimension.

Data sets dim.Cat dim.Re #obs #cl
Heart disease 8 6 303 2

Credit 6 9 666 2
Thyroid 12 7 3163 2

We use the clustering accuracy for measuring the clus-
tering results. This index is a purity measure which can



% Purity MTM PrMTM lw-MTM
Heart disease (13× 7) 83.39 84.45 85.76

Credit (13× 10) 82.66 84.57 86.44
Thyroid (21× 14) 95.38 97.41 97.53

Table 2: Comparison oflw-MTM, MTM and PrMTM
using the purity index on 50 experimentations. MTM
: Classical topological map dedicated to mixed data.
PrMTM : Probabilistic mixed topological map using
Gaussian and Bernoulli distributions.

be expressed as the percentage of elements of the as-
signed class in a cluster. This is a common approach
in the general area of data clustering. We compared the
proposedlw-MTM model with the classical determinist
algorithm MTM and the probabilistic algorithm PrMTM.
We computed the purity index on 50 experiences. The
table 2 shows the performances obtained by the pro-
posed modellw-MTM and the other models MTM and
PrMTM. We observe an improvement of map purity on
all datasets.

For example, analyzing the table 2 we observe for the
Heart diseasedata set, an improvement of the purity
index from83.39% to 85.76% using the same map size.
For Credit data set, we observe also improvement of
the purity index from82.66% to 86.44%. Finally with
Thyroid data set, we improve the performance from
95.38% to 97.53% . thank to the introduced weights
during the learning process, we may observe a clear
improvement in the purity rate withlw-MTM model .

4 Conclusion

In this paper, we proposed a weighted self-organizing
map for clustering categorical and mixed data. The
weighting of the distance during the learning phase al-
lows to detect the degrees of participation of each vari-
able during the clustering process. More a variable has
a high weight, more the clustering algorithm will take
into account the informations transmited by this vari-
able. The distance weighting has the goal to adapt the
(dis)similarity measure between the observations and to
improve the clustering results by mainly strengthening
the most relevant variables. The distance weighting is
very useful in the case of mixed data, because if for the
learning dataset the categorical part is much larger than
the continous part (and vice versa), the weighting process
allows us to regularize the adaptations during the learn-
ing phase and to take into account the relevance of each
variable. A perspective of this work can be the use of the
computed weights to select the most relevant variables
and thus to reduce the dimensionality of the data.

Reference

Andreopoulos B., A. An and X. Wang (2006).Bi-
level clustering of mixed categorical and numeri-
cal biomedical data.International Journal of Data
Mining and Bioinformatics, v. 1, number 1, pages
19-56.

Asuncion A. and D.J. Newman (2007).
UCI Machine Learning Repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html,
University of California, Irvine, School of Informa-
tion and Computer Sciences.

Basak J., Rajat K. De and Sankar K. Pal (1998).Un-
supervised feature selection using a neuro-fuzzy ap-
proach;, In Pattern Recogn. Lett., v. 19, number 11,
pages 997-1006, Elsevier Science Inc., New York,
NY, USA.

Bassiouny S., M. Nagi and M. F. Hussein (2004).Fea-
ture Subset Selection in SOM Based Text Catego-
rization., IC-AI, pages 860-866.

Bishop, C. M., Svensén M. and Williams C. K. I.
(1998). GTM: The generative topographic map-
ping.Neural Comput journal, volume 10, pages 215-
234

Blansche A., P. Gancarski and J. Korczak (2006).
MACLAW: A modular approach for clustering with
local attribute weighting.Pattern Recognition Let-
ters, v. 27(11), pages 1299-1306.

Cord A., Ambroise C. and J.-P. Cocquerez (2006).Fea-
ture selection in robust clustering based on Laplace
mixture.In Pattern Recognition Letters, v. 27, num-
ber 6, pages 627-635.

Grozavu N., Y. Bennani and M. Lebbah (2008).
Pondération locale des variables en apprentissage
numérique non-supervisé, Extraction et Gestion des
Connaissances (EGC 08), pages 45-54, Sophia-
Antipolis, France.

Grozavu N., Bennani Y. and M. Lebbah (2009).From
variable weighting to cluster characterization in to-
pographic unsupervised learning.IJCNN’09: Pro-
ceedings of the 2009 international joint confer-
ence on Neural Networks, isbn 978-1-4244-3549-4,
pages 609–614, Atlanta, Georgia, USA.

Guérif S. and Y. Bennani (2007). Dimensionality
reduction trough unsupervised features selection.
International Conference on Engineering Applica-
tions of Neural Networks, Hellas.

Huang J. Z., Michael K. Ng, H. Rong and Z. Li (2005).
Automated Variable Weighting in k-Means Type



Clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, v. 27(5), pages 657-668.

Jain K. and C. Dubes (1988).Algorithms for cluster-
ing data. isbn 0-13-022278-X, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

Kaban A. and M. Girolami (2001).A combined latent
class and trait model for the analysis and visual-
ization of discrete data.IEEE Trans. Pattern Anal.
Mach. Intell, V. 23, pages 859-872.

Khan S. and Kant S. (2007).Computation of Initial
Modes for K-modes Clustering Algorithm Using
Evidence Accumulation.IJCAI, pages 2784-2789.

Kim Y., Street W.N. and F. Menczer (2002).Evolution-
ary model selection in unsupervised learning.In
Intelligent Data Analysis Journal, v. 6, pages 531-
536

Kohonen, T. (2001).Self-organizing Maps.Springer
Berlin, Vol. 30, 501 pages, ISBN=3-540-67921-9.

Lebbah M., S. Thiria and F. Badran (2000).Topological
Map for Binary Data.In Proceedings of European
Symposium on Artificial Neural Networks-ESANN
2000, Bruges, pages 267-272.

Li Y., Lu B.-L. and Z.-F. Wu (2006).A Hybrid Method
of Unsupervised Feature Selection Based on Rank-
ing. ICPR ’06: Proceedings of the 18th Interna-
tional Conference on Pattern Recognition, isbn 0-
7695-2521-0, pages 687-690, IEEE Computer So-
ciety, Washington, DC, USA.

Li Y., Lu B.-L. and Z.-F. Wu (2007). Hierarchical
fuzzy filter method for unsupervised feature selec-
tion. Journal of Intelligent and Fuzzy Systems, v.
18, number 2, pages 157-169.

Liu L., Kang J., Yu J. and Z. Wang (2005),A compar-
ative study on unsupervised feature selection meth-
ods for text clustering.pages 597-601.

Strickert M., Sreenivasulu N., Peterek S., Weschke W.,
Mock H.-P. and U. Seiffert (2006).Unsupervised
Feature Selection for Biomarker Identification in
Chromatography and Gene Expression Data.In
ANNPR, pages 274-285.

Questier F., R. Put, D. Coomans, B. Walczak and Y.
Heyden (2005).The use of CART and multivariate
regression trees for supervised and unsupervised
feature selection.pages 45-54.

Wiratunga N., Lothian R. and S. Massie (2006).Un-
supervised Feature Selection for Text Data.In EC-
CBR, Lecture Notes in Computer Science, v. 4106,
pages 340-354.


