A New Validity Measure for Heuristic Possibilistic Clustering 
Abstract

A heuristic approach to possibilistic clustering is the effective tool for the data analysis. The approach is based on the concept of allotment among fuzzy clusters. To establish the number of clusters in a data set, a validity measure is proposed in this paper. An illustrative example of application of the proposed validity measure to the Anderson’s Iris data is given. A comparison of the validity measure with some well-known cluster validity indices for objective function-based fuzzy clustering algorithms is given. Preliminary conclusions are formulated.

1   INTRODUCTION

The objective of a fuzzy clustering algorithm is to partition a data set 
[image: image1.wmf]}

,...,

{

1

n

x

x

X

=

 into 
[image: image2.wmf]с

 homogeneous fuzzy clusters. The most widely used fuzzy clustering algorithm is the FCM-algorithm which was proposed by Bezdek (1981). The FCM-algorithm is the basis of the family of fuzzy clustering algorithms. The family of objective function-based fuzzy clustering algorithms includes

· fuzzy c-lines algorithm (FCL);
· fuzzy c-rings algorithm (FCR);
· fuzzy c-shells algorithm (FCS);
· fuzzy c-rectangular shells algorithm (FCRS).
These and other well-known fuzzy clustering algorithms were proposed by different authors and they are considered by Höppner, Klawonn, Kruse and Runkler (1999) in detail. Moreover, some other fuzzy clustering algorithms were also proposed.
All fuzzy clustering algorithms require the user to pre-define the number of clusters, 
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. However, it is not always possible to know the number of clusters in advance. Different fuzzy partitions are obtained at different values of 
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. Thus, a methodology of evaluation of fuzzy partitions is required to validate each fuzzy partition to obtain the optimal number of clusters, 
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.
Many cluster validity criterion have been proposed for validating fuzzy partition. In particular, the partition coefficient (
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), the partition entropy (
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), the Xie-Beni index (
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), the Fukuyama-Sugeno index (
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) are well-known validity measures, and these criteria are considered by Höppner, Klawonn, Kruse and Runkler (1999).
However, the condition of fuzzy partition is very difficult from essential positions. That is why a possibilistic approach to clustering was proposed by Krishnapuram and Keller (1993) and developed by other researchers. This approach can be considered as a way in the optimization approach in fuzzy clustering because all methods of possibilistic clustering are objective function-based methods. A concept of possibilistic partition is a basis of possibilistic clustering methods and membership values can be interpreted as the values of typicality degree.
An outline for a new heuristic method of fuzzy clustering was presented by Viattchenin (2004), where concepts of fuzzy 
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-cluster and allotment among fuzzy 
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-clusters were introduced and a basic version of direct fuzzy clustering algorithm was described. The basic version of direct fuzzy clustering algorithm requires that the number 
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 of fuzzy 
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-clusters be fixed. That is why the basic version of the algorithm, which was proposed by Viattchenin (2004), can be called the D-AFC(c)-algorithm. Moreover, the allotment of elements of the set of classified objects among fuzzy 
[image: image14.wmf]a

-clusters can be considered as a special case of possibilistic partition. So, the D-AFC(c)-algorithm can be considered as a direct algorithm of possibilistic clustering. The fact was demonstrated by Viattchenin (2007).
The results of application of the D-AFC(c)-algorithm to the Anderson’s (1935) Iris data are considered by Viattchenin (2006) and the results shows that the D-AFC(c)-algorithm is a precise and effective numerical procedure for solving classification problems. However, a unique validity measure for the D-AFC(c)-algorithm was proposed by Viattchenin, Damaratski, and Novikau (2009) and the proposed linear measure of fuzziness of the allotment is not effective in every classification problem. So, the main goal of this paper is a proposition of a new validity measure for the D-AFC(c)-algorithm. The contents of this paper is as follows: in the second section basic concepts of the clustering method are considered, the linear measure of fuzziness of the allotment is presented and a new cluster validity index for the D-AFC(c)-algorithm is proposed, in the third section an example of application of the D-AFC(c)-algorithm with the proposed validity measure to the Anderson’s (1935) Iris data set is given in comparison with the linear measure of fuzziness of the allotment and some validity criteria for validating fuzzy partition, in the fourth section methods of the data preprocessing are considered and numerical in comparison with the compactness and separation index for objective function-based fuzzy clustering algorithms, in the fifth section some final remarks are stated.
2   A HEURISTIC METHOD OF POSSIBILISTIC CLUSTERING 

The basic concepts of the heuristic method of possibilistic clustering are considered in the first subsection. The linear measure of fuzziness of the allotment is presented in the second subsection and a new validity measure is proposed in the third subsection of the section.
2.1   Basic concepts 

Let us remind the basic concepts of the D-AFC(c)-algorithm. The concept of fuzzy tolerance is the basis for the concept of fuzzy 
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-cluster. That is why definition of fuzzy tolerance must be considered in the first place.
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 being its membership function. Fuzzy tolerance is the fuzzy binary intransitive relation which possesses the symmetricity property 
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and the reflexivity property
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Let 
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-cluster or, simply, fuzzy cluster. So 
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The membership degree of the element 
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where an 
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. Membership degree can be interpreted as a degree of typicality of an element to a fuzzy cluster. The value of a membership function of each element of the fuzzy cluster in the sense of (3) is the degree of similarity of the object to some typical object of fuzzy cluster.

Let 
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is called a typical point of the fuzzy cluster 
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 be a family of fuzzy clusters for some value of tolerance threshold 
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is met for all fuzzy clusters 
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It should be noted that several allotments 
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The condition (5) requires that every object 
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 must be more than two. Obviously, the definition of the allotment among fuzzy clusters (5) is similar to the definition of the possibilistic partition. So, the allotment among fuzzy clusters can be considered as the possibilistic partition and fuzzy clusters in the sense of (3) are elements of the possibilistic partition.
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are met for all fuzzy clusters 
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 is the maximum number of elements in the intersection area of different fuzzy clusters. 
Obviously, if 
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 in conditions (6) and (7) then the intersection area of any pair of different fuzzy cluster is an empty set and fuzzy clusters are fully separate fuzzy clusters.

Detection of fixed 
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 are the results of classification. 
A plan of the D-AFC(c)-algorithm is presented, for example, by Viattchenin (2007).
2.2   The linear measure of fuzziness of the allotment 
The linear measure of fuzziness of the allotment which is the validity measure for the D-AFC(c)-algorithm was defined by Viattchenin, Damaratski, and Novikau (2009) as follows:
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where 
[image: image111.wmf])

(

)

(

l

L

A

I

a

 is a modification of the linear index of fuzziness which was defined by Viattchenin (2006) as
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between the fuzzy cluster 
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where 
[image: image123.wmf]]

1

,

0

(

Î

a

.

The fuzziness of the allotment 
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2.3   A new cluster validity measure
From other hand, a density of fuzzy clusters can be taken into account for the validating allotment. The density of fuzzy cluster was defined by Viattchenin (2006) as follows:
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is met for each fuzzy cluster 
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The density of fuzzy cluster (12) can be considered as the basis for a validity measure, too. The validity measure must be taking into account the compactness of fuzzy clusters which is characterized by their density. The density of each fuzzy cluster 
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 must be taken into account. So, the validity measure can be defined as the ratio of the sum of densities of fuzzy clusters of some allotment to the number of fuzzy clusters minus the value of the tolerance threshold 
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Thus, the measure of compactness of the allotment can be defined in the following way:
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where 
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3   AN ILLUSTRATIVE EXAMPLE
The Anderson's (1935) Iris data set represents different categories of Iris plants having four attribute values. The four attribute values represent the sepal length, sepal width, petal length and petal width measured for 150 irises. It has three classes Setosa, Versicolor and Virginica, with 50 samples per class. The problem is to classify the plants into three subspecies on the basis of this information. The Anderson's Iris data can be presented as a matrix of attributes 
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We applied the D-AFC(c)-algorithm to the matrix of fuzzy tolerance for 
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. So, we calculated the values of the linear measure of fuzziness of the allotment and the measure of compactness of the allotment for different 
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 values and we plotted these validity measures in Figure 1 and Figure 2.
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Figure 1: Plot of the linear measure of fuzziness of the allotment as a function of the number of clusters.
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Figure 2: Plot of the measure of compactness of the allotment as a function of the number of clusters.

By executing the D-AFC(c)-algorithm for
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 corresponds to the first maximum for the validity measure. From other hand, the measure of compactness of the allotment finds the optimal cluster number 
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. Allotments among fully separated fuzzy clusters were obtained for 
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 is equal 10 for the allotment among four particularly separate fuzzy clusters and for 
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. So, the result of the proposed validity measure is seems as appropriate.
To demonstrate the effectiveness of the proposed validity measure, we conducted extensive comparison with some cluster validity indices for validating fuzzy partition. The partition coefficient (
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), the partition entropy (
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), the Xie-Beni index (
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), the Fukuyama-Sugeno index (
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) were selected for the comparison. The numbers of clusters yielded by all the validity indices for the Anderson’s Iris data set are given in Table 1.
Table 1: Values of c preferred by each cluster validity index for the Iris data set.
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Note that most validity measures reported in the literature provides two clusters for this data (Bouguessa, Wang, Sun, 2006).
4   CONCLUSIONS
A new cluster validity measure for the heuristic D-AFC(c)-algorithm of possibilistic clustering is introduced in the paper and a numerical experiment confirmed its utility. Thus, the result of application of the proposed validity measure to the data set shows that the validity measure is an effective tool for solving the classification problem. 
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