Hi all, The assignments bellow was also given in today's Pattern Recognition course (Thursday 15th October). The due date is the same as the previous homework. Akira, ---------- 8< ---------- 8< ---------- 8< ---------- We now assume two classes in which variance matrix is not a diagonal one, that is, ============================================== 1.1 0.3 Sigma = ,mu-1 = (0, 0) <= class-1 0.3 1.9 ============================================== 1.1 0.3 Sigma = ,mu-2 = (3, 3) <= class-2 0.3 1.9 ============================================== Example 100 points from each of the two classes are attoched below. (1) Plot all of the 200 points on an appropriate coordinate of (x1, x2). (2) Obtain the equation of the border of these two classes and draw it on the coordinate of (1). (3) We now want to classify a vector x = (1.0, 2.2). Answer the following question. i) Plot x on the coordinate of (1) ii) Calculate Eucledean distance to both of the center of the two classes, i.e. mu-1 and mu-2. Answer your geuss which class do you think x is classified from the calculation? iii) Calculate Mahalanobis distance to both of the center of the two classes, i.e. mu-1 and mu-2. Answer if you change your decision in (ii). 4) Draw the line from which the Mahalanobis distance to mu-1 is 0.5, 1.0, 1.5, and 2.0 respectively on the coordinate of (1). 5) Same as (4) but the Mahalanobis distance to mu-2. class-1: ============ 0.08, 0.63 -0.57, -1.95 0.04, 1.60 -0.62, 0.76 0.62, 1.88 -0.64, -0.62 0.85, 1.41 -0.35, -1.82 -0.66, 2.69 -0.28, -1.10 0.24, -0.69 -0.33, -3.18 0.83, -0.57 -1.44, -0.44 2.54, 0.09 1.00, 0.48 0.18, 0.74 1.49, 0.22 0.59, -1.58 -1.74, -2.38 -0.31, 0.41 1.58, 2.90 -0.03, -2.36 1.21, 1.62 -0.02, -1.81 0.34, -1.44 -0.58, -1.25 -0.40, 0.41 -0.80, -0.46 0.31, -1.08 -1.81, -1.77 0.13, 0.45 -0.09, -0.68 -0.60, 1.48 -0.43, -1.77 -0.39, -0.16 0.97, 1.52 -0.32, 1.86 -0.53, 0.29 1.33, 0.77 -2.15, 0.52 -0.04, 1.02 -0.38, -0.29 -0.74, -0.36 -0.13, 1.01 0.23, 2.65 0.40, 1.29 -0.25, -2.31 -0.34, 0.90 -2.06, 0.39 0.31, 1.99 0.01, -1.70 -0.12, -2.74 0.16, -0.22 0.83, 1.16 -1.44, -0.96 0.61, 0.11 0.65, 1.32 0.07, -1.02 -1.50, -0.86 1.15, 1.48 -2.55, -0.25 -1.96, -0.02 0.24, 0.58 0.70, 0.29 -0.36, 0.44 -1.07, -2.29 -1.03, -0.70 2.29, 1.13 2.19, -1.48 -0.83, 2.45 1.15, -1.79 1.46, -0.43 0.47, -0.80 0.21, -1.01 0.45, 1.10 0.68, 0.59 -0.37, -1.46 -0.30, 0.28 1.34, 3.70 0.91, 0.82 0.69, -1.04 -0.72, 0.15 0.73, -0.60 0.84, -1.75 0.72, -0.78 1.21, 1.56 -0.75, 0.34 0.82, -0.12 -0.09, 1.29 -0.08, -2.56 0.13, -0.04 -0.16, 0.21 -2.31, 1.34 2.01, -1.22 -1.48, 1.28 0.64, 2.08 -0.82, -0.70 -1.13, 1.62 -0.14, 1.14 class-2: ============ 2.76, 3.26 3.61, 6.35 4.27, 4.01 4.44, 6.03 1.99, 2.43 2.74, 3.65 3.80, 5.82 4.61, 6.21 2.73, 4.33 2.81, 5.60 1.34, 2.16 2.58, 4.15 2.05, 3.11 2.16, 4.82 3.76, 6.14 1.66, 3.66 2.67, 2.22 2.67, 4.82 3.93, 4.87 3.99, 3.40 2.64, 5.57 3.13, 5.69 2.28, 3.75 4.78, 2.69 2.43, 2.34 3.92, 5.82 2.82, 5.40 3.00, 1.59 1.89, 2.68 -0.01, 3.29 3.18, 1.68 5.15, 2.39 2.82, 2.87 2.97, 3.41 2.40, 0.49 2.96, 6.46 3.60, 4.93 4.02, 3.94 4.32, 3.88 3.55, 5.83 2.39, 2.27 3.92, 5.77 2.49, 2.25 1.85, 2.55 3.94, 4.55 2.35, 4.28 1.72, 2.37 1.90, 3.96 3.11, 5.83 3.16, 5.34 3.44, 6.26 1.89, 5.36 2.45, 5.40 4.67, 5.14 2.86, 2.40 2.25, 1.24 5.94, 5.28 3.57, 3.46 2.84, 2.36 1.80, 3.19 2.34, 4.08 4.28, 4.93 3.89, 2.84 3.43, 1.65 3.10, 5.12 4.37, 5.34 5.24, 2.92 3.61, 0.96 4.73, 3.10 3.67, 4.74 2.19, 2.77 2.71, 4.83 2.17, 2.27 4.30, 6.17 0.68, 3.90 2.57, 3.82 3.35, 3.31 2.21, 3.22 2.48, 4.02 4.78, 4.32 2.37, 1.55 2.09, 4.10 4.10, 5.93 2.55, 4.30 3.11, 6.27 4.98, 4.11 3.67, 6.53 3.09, 2.18 2.22, 4.57 4.87, 4.76 4.07, 3.61 1.25, 2.75 4.65, 4.84 3.45, 4.24 2.64, 5.46 4.86, 3.97 3.58, 3.55 4.59, 4.43 4.19, 5.89 3.94, 3.35