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� What is Pattern Recognition?

• A typical example:

– Hand-written character recognition:

with inputs being pixel values.

• What else?

– Face recognition;

– Speech recognition;

– Robot’s eye/ear.
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• Can we recognize them with fewer information?

– Yes!

– To recognize hand-written characters, e.g.,

∗ Perimeter of the boundary:

Pi =
N−1∑
i=1

‖xi−1 − xi‖ + ‖x0 − x1‖. (1)

∗ Area inside the boundary: A.

∗ Roundness ratio:
r = p2/4πA. (2)

∗ Bending energy (defined at a point n):

E(n) =
1

P

n−1∑
i=0

|ki|2 (3)

where ki (curvature of boundary) is:

kn = θn+1 − θn, n = 0, 1, · · · , N − 1. (4)

and

θn = tan−1 yn+1 − yn

xn+1 − xn
, n = 0, 1, · · · , N − 1. (5)

∗ Number of halls.

∗ Number of corners:

the number of points where the curvature ki takes large values (in-
finity in theory)

– They are called features.

– Then, how many features are enough?
(Minimize the number of features.)

In short:

• pattern recognition is a classifier.

– Especially usfull for classification in high-dimensional feature space.

• Application:

– diagnosis.

– what else?



(Pattern Recognition) 4

� Statistical Classification:
Bayes Decision Theory

— for the design of classifiers.

Pattern Recognition is more or less statistical due to:

– statistic variation of patterns;

– statistic nature of feature selection;

– noise in employing sensors.

So, the task is:

– to classify unknown patterns into the most probable class.

Then

– what does “the most probable” means?

To answer this question:

– we study here the Bayesian Statistical Theory.
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• When we classify an unknown pattern which is represented by a feature vector
x, we consider M conditional probabilities:

p(ωi|x) i = 1, · · · , M (6)

• Then we define “the most probable class” as the class ωi which has the highest
p(ωi|x).

• We have the other possible statistical quantities:

p(ωi), p(x|ωi), p(x)

• The Bayesian rule gives a relationship of these quantities:

p(ωi|x) =
p(x|ωi)p(ωi)

M∑
k=1

p(x|ωk)p(ωk)

(7)

where the denominator is:

M∑
k=1

p(x|ωk)p(ωk) = p(x). (8)
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• Example 1.
— to understand the Bayesian Rule

· We have two bags of no difference from its outlook.

· One bag called R has 70 red balls and 30 blue balls.

· The other bag called B has 30 red balls and 70 blue balls.

· When we take one bag at random and pick up 12 balls, returning it to the bag
at each time.

· The result was 8 red balls and 4 blue one.

· Then was the bag estimated to be R or B, and how probable the estimate is?

Clearly,
p(R) = p(B) = 1/2

p(D|R) = 12C8(0.7)8(0.3)4

p(D|B) = 12C8(0.3)8(0.7)4

So we obtain

p(R|D) =
(0.7)8(0.3)4

(0.7)8(0.3)4 + (0.3)8(0.7)4 ≈ 0.97

(How big it is compared to our intuitive estimation!)
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• Example 2.

· Three prisoners (A, B, and C) are in a prison.

· A knows that the two out of the three are to be executed tomorrow, and the
rest becomes free.

· A thought either one of B or C is sure to be executed.

· Then, A asked a guard “even if you tell me which of B and C is executed, that
will not give me any information as for me. So please tell it to me.”

· The guard answers that C will. ⇒ data D

· Now, A knows one of A or B is sure to be free.

Do you guess probability p(A|D) = 1/2?

If this is correct, then the answer of the guard had given an information as for A,
since probability p(A) = 1/3.

You agree that
p(A) = p(B) = p(C) = 1/3.

Then, try to apply Bayesian rule, i.e., obtain the conditional probability of the data
“C will be executed” under the condition that “A will be free tomorrow” And in
the same way for B and C. They are:

p(D|A) = 1/2.

p(D|B) = 1.

p(D|C) = 0.

In conclusion:

p(A|D) =
p(D|A)p(A)

p(D|A)p(A) + p(D|B)p(B) + p(D|C)p(C)
= 1/3.

This shows probability did not change after the information!



(Pattern Recognition) 8

• Now it’s clear that

– p(A) and so on are to be called

� a priori probabilities;

– and p(A|D) and so on to be

� a posteriori probabilities.

• In the same way,

– p(ωi) is called

� a priori probability2 ;

– p(ωi|x)

� a posteriori probabilities.

Furthermore

– p(x) is called

� p.d.f. of x

– p(x|ωi)

� class-conditional p.d.f.3

· which describes the distribution of the feature vectors x in each of
the classes ωi.

2 Usually given, but if unknown, it can be estimated as Ni/N where Ni is the number of training samples which
belong to class ωi, and N is the total number of training samples

3 This is also estimated from training data which will be explained later more in detail.
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� The Bayesian Classifier:

Definition 1 (The Bayesian Classifier) classify x to the class ωi such that p(ωi|x)
takes the maximum value.

• Two-class case:

� if p(ω1|x) > p(ω2|x), then classify x to ω1

� if p(ω1|x) < p(ω2|x), then classify x to ω2

The region where p(ω1|x) > p(ω2|x) is the region where

p(x|ω1)p(ω1)

p(x)
>

p(x|ω2)p(ω2)

p(x)
(9)

Since p(x) > 0 and p(ω1) = p(ω2), the region is where

p(x|ω1) > p(x|ω2) (10)

holds. Now assume the two Gaussian distribution cross at x = x0, we can conclude:

� if x < x0 then classify x to class ω1, and vice versa.

x0

p ( x | ω1 ) p ( x | ω2 )

Excersise 1 If we assume that p(ω1|x) = N(0, 1/2)4 , p(ω2|x) = N(1, 1/2) and
p(ω1) = p(ω2) = 1/2, then how is our classification like?

4 N(μ, σ2) =
1√
2πσ

exp− (x − μ)2

2σ2
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� l-dimensional Gaussian distribution:

• What does it mean by Gaussian distribution of a vector x?

x = (x1, x2, · · · , xl)

Assume we have p samples each of xi has a value xik (k = 1, 2, · · · , p) such as:

x1k x2k · · · xlk

k = 1 3.2 7.4 9.4
k = 2 2.3 8.1 8.7

· · ·
k = p 2.9 9.2 7.9

μi

σ2
i

You may fill the blancs for μi and σi.

Then you define the pdf as:

p(x) =
1

(2π)l/2|Σ|1/2 exp(−1

2
(x − μ)TΣ−1(x − μ)) (11)

where
μ = (μ1, μ2, · · · , μl)

and

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ2
1 σ12 · · · σ1l

σ21 σ2
2 · · · σ2l

· · ·
σl1 σl2 · · · σ2

l

⎞
⎟⎟⎟⎟⎟⎟⎠ (12)
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In summary,

· x = (x1, x2, · · · , xl);

· μ is a l-dimensional vector whose i-th element μi is the mean value of xi,
i.e.,

μi =

p∑
k=1

xik

p

· σ2
i is the variance of xi, i.e.,

σ2
i =

p∑
k=1

(xik − μi)
2

p

· σij is the covariance between xi and xj, i.e.,

σij =

p∑
k=1

(xik − μi)(xjk − μj)

p

· |Σ| is determinant of the matrix Σ;

· Σ−1 is inverse matrix of Σ5 ;

· xT is transverse of vector x6 .

5 If we assume

A =
(

a b
c d

)
(13)

then
|A| = ad − bc (14)

and

A−1 =
1

ad − bc

(
d −b

−c a

)
(15)

6 That is, when x = (x1, x2)

xT =
(

x1

x2

)
(16)
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• 2-dimensional Gaussian

We can calculate l = 2 version from the Equation (11) as:

p(x1 , x2) =
1√

2πσ1σ2
√

1 − ρ2
· exp{(− 1

2(1 − ρ2)
·

(
(
x1 − μ1

σ1
)2 − 2ρ(

x1 − μ1

σ1
)(

x2 − μ2

σ2
) + (

x2 − μ2

σ2
)2
)
}

(17)

where ρ is correlation coefficient defined as:

ρ =
σ12

σ1σ2
(18)

Excersise 2 Try the following two problems.

1. Derive the equation (17) from the equation (11).

2. By giving your own set of five parameters:
μ1, μ2, σ1, σ2, and σ12

Draw the Gaussian surface on (x1, x2) coordinate. Then explore a couple of
configurations of these five parameters.
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� Decision Surfaces and Discriminant Functions:
— to partition the feature space into M regions.

• If regions Ri and Rj are contiguous

p(ωi|x) − p(ωj|x) = 0 (19)

determines the surface that partition Ri and Rj.

• Or, if necessary, using a monotonic function f(x)7 , we define:

gi(x) = f(p(ωi|x)) (20)

and we can say

if gi(x) > gj(x) classify x to ωi. (21)

Hence

gij ≡ gi(x) − gj(x) = 0 (22)

determines the decision surfaces separating contiguous regions and called dis-
criminant function.

7 e.g., f(x) = ln(x) for the Gaussian distribution.
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� Examples of Decision Surface:

• 1-D Gaussian case.

The Equation (19) in 1-D Caussian cases leads:

p(ω1|x) = p(ω2|x) (23)

That is,
1√

2πσ1
exp{−(x − μ1)

2

2σ1
2 } =

1√
2πσ2

exp{−(x − μ2)
2

2σ2
2 }. (24)

Solving this equation w.r.t. x you can obtain decision surface, actually a point in
this case, x0.

8

Excersise 3 Obtain the decision boundary x0 when the two classes follow the Gaus-
sian distributions with N(1, 1

2) and N(3, 1
2) respectively.

• General Gaussian case.

The Equation (11) with taking the function ln as f(·) in the Equation (20), we
obtain our discriminating function gi as:

gi(x) = ln(p(x|ωi)p(ωi))

= ln p(x|ωi) + ln p(ωi)

= −1

2
(x − μi)

TΣ−1
i (x − μi) + ln p(ωi) + ci

where
ci = −(l/2) ln(2π) − (1/2) ln |Σi| (25)

8 See also the Eqations (9) and (10).
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• 2-D Gaussian case.

Our discriminat function (25) for 2-D Gaussian pdf is

gi(x) = −1

2
(x − μi)

TΣ−1
i (x − μi) + ln p(ωi) + ci (26)

where
ci = −(1/2) ln(2π) − (1/2) ln |Σi|. (27)

This is simplified

� if

Σi =

⎛
⎝ σ2

1 0
0 σ2

2

⎞
⎠

then

gi =
(x1 − μ1)

2

−2σ2
1

+
(x2 − μ2)

2

−2σ2
2

− 1

2
ln(σ2

1σ
2
2) + ln p(ωi) − 1

2
ln(2π) (28)

Note that the last two terms in the right hand side of the above equation will be
cancelled when obtaining the border gi − gj = 0.

- This kind of two distributions construct a quadratic decision surface.

· ellipsoid

· hyperbola

· parabola

· pair of lines

- If expanded to l > 2 case, then it is called hyper-quadratic.

- If σ1 = σ2 holds in both Σi and Σj then the decision surface is a circle.

- Furthermore, if Σi = Σj holds then the decision surface is a straight line.
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Excersise 4 When p(ω1) = p(ω2), μ1 = (0, 0) and μ2 = (1, 1) obtain decision
surface in the following four cases.

(1) Σ1 =

(
0.10 0
0 0.10

)
, Σ2 =

(
0.10 0
0 0.10

)

(2) Σ1 =

(
0.10 0
0 0.10

)
, Σ2 =

(
0.20 0
0 0.20

)

(3) Σ1 =

(
0.10 0
0 0.15

)
, Σ2 =

(
0.20 0
0 0.25

)

(4) Σ1 =

(
0.20 0
0 0.10

)
, Σ2 =

(
0.30 0
0 0.10

)

(5) Σ1 =

(
0.10 0
0 0.15

)
, Σ2 =

(
0.15 0
0 0.10

)

Excersise 5 When p(ω1) = p(ω2) again, but μ1 = μ2 = (0, 0) this time, obtain
decision surface.

(6) Σ1 =

(
0.30 0
0 0.30

)
, Σ2 =

(
0.10 0
0 0.90

)

Excersise 6 When p(ω1) = p(ω2), what condition is needed for the border of two
classes to be the following decision surface?

(1) ellipse;

(2) parabola;

(3) hyperbola;

(4) two straight lines.
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• Examples of border — from Excersise 4 and 5.
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The equations of the above borders are:

(1)
x1 + x2 = 1.

(2)
(x1 + 1)2 + (x2 + 1)2 = 4 − 0.2 ln(1/4).

(3)
15(x1 + 1)2 + 8(x2 + 3/2)2 = 93/2 − 6 ln(3/10).

(4)
x2

1 + 4x1 + 12x2 − 8 + 0.6ln(2/3) = 0.

(5)
(x1 + 1)2 − (x2 − 3/2)2 = 3/2.

(6)
(
√

3x1 +
√

5)(
√

3x1 −
√

5) = 0.
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� An example of more general case:

That is, our Σ is no more of the form
⎛
⎝ σ2

1 0
0 σ2

2

⎞
⎠

but, instead, of the more general form
⎛
⎝ σ2

1 σ12

σ21 σ2
2

⎞
⎠ .

Then the Equation (26) leads an equation of the form

c1x
2
1 + c2x

2
2 + c3x1x2 + c4x1 + c5x5 + c6 = 0.

Excersise 7 When p(ω1) = p(ω2), μ1 = (0, 0) and μ2 = (1, 1) still holds, obtain
decision surface in the following case.

Σ1 =

(
0.3 0.1
0.1 0.4

)
, Σ2 =

(
0.5 0.3
0.3 0.2

)

The border of the Excersise 7 will be

18x2
1 − 67x1x2 − 52x2

2 = (11/10) ln 11.

Excersise 8 But how can we draw the graph of this equation?
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� Classification by distance from mean:

Recalling that we classify x to ωi such that gi is maximized, the Equation (25)
implies we minimize:

(x − μi)
TΣ−1(x − μi) (29)

that is,

• for diagonal Σ = σ2I, minimize

dE ≡ ‖x − μi‖ (30)

• for no-diagonal Σ, minimize

dM ≡ (x − μi)
TΣ−1(x − μi) (31)

which is called Mahalanobis distance.

Note that:

• dE = const. ⇒ hyper-sphere

• dM = const. ⇒ hyper-ellipse

Excersise 9 About a two-class, two dimensional Bayesian classifier where

p(ω1) = p(ω2), μ1 = (0, 0), μ2 = (1, 0)

and

Σ1 = Σ2 = Σ =

⎛
⎝ 1.1 0.3

0.3 1.9

⎞
⎠

answer the following questions.

(1) Obtain dM of x = (1.0, 2.2) from μ1 and μ2, respectively.

(2) Should x classified to ω1 or ω2?
(Compare the result when we use dE instead of dM .
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� Diagonalization of Variance Matrix:
— to learn the shape of the ellipses

Definition

• Eigenvalue of Σ are λ’s that satisfy

|Σ − λI| = 0 (32)

• Eigenvector of Sigma are x’s that satisfy

Σx = λx (33)

Then we have the following relation:

Σ = ΦΛΦT (34)

where Λ is the diagonal matrix whose elements are the eigenvalues of Σ, Φ is a
matrix whose columns are corresponing eignevectors of Σ, and due to its symmetry
ΦT = Φ−1.

Hence, our ellipse dM = c2 becomes:

(x − μ)TΦΛΦT (x − μ) = c2. (35)

This is interpreted as:
(X − μ)TΛ(X − μ) = c2 (36)

on the (rotated) new coordinate:
⎛
⎝ X1

X2

⎞
⎠ = X = ΦTx (37)

where the ellipse has the equation of the form:

a1X
2
1 + a2X

2
2 = c

instead of the form:
a1x

2
1 + a2x

2
2 + a3x1x2 = c
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Excersise 10 When

Σ =

⎛
⎝ 1.1 0.3

0.3 1.9

⎞
⎠

answer the following questions.

(1) Obtain Eigenvalues of Σ.

(2) Obtain Eigenvectors of Σ.

(3) Solve the equation w.r.t. x1 and x2.

xTΣ−1x = 1.

(4) Obtain Φ and Λ, and ascertain the relation:

Σ = Φ−1ΛΦ.

(5) Obtain the equation of the projected ellipse w.r.t. X1 and X2

xT (ΦΛ−1ΦT )x = 1

that is,
XTΛ−1X = 1.
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• Examples of border — from Excersise 10

Since now our Σ is

Σ =

(
1.1 0.3
0.3 1.9

)

xT Σx = (x1 x2)

(
0.95 −0.15
−0.15 0.55

)(
x1

x2

)
= · · · = 0.95x2

1 − 0.30x1x2 + 0.55x2.

So our ellipse is, e.g.,
0.95x2

1 − 0.30x1x2 + 0.55x2 = 1.

In order to learn the shape of the ellipse we transform it with Σ = ΦΛΦT where

Φ =
1√
10

(
3 1
−1 3

)

and

Λ =

(
1 0
0 2

)

That is, our ellipse xT Σ−1x = 1 is expressed as xT ΦΛ−1ΦT x = 1 where

xT Φ = (x1 x2)

(
3 −1
1 3

)
/
√

10 = (3x1 − x2 x1 + 3x2)/
√

10

and

ΦTx =

(
3 −1
1 3

)(
x1

x2

)
/
√

10 = (3x1 − x2 x1 + 3x2)/
√

10

Hence, if we use the new coordinate:

(X1 X2) = (3x1 − x2 x1 + 3x2)/
√

10

our ellipse is

(X1 X2)

(
1 0
0 2

)(
X1

X2

)
= 1

That is
X2

1 + 2X2
2 = 1

X 2

X 1
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• From Excersise 9 and 10.

· Points whose Mahalanobis distance is identical from center (mean) of the two classes respectively.
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x1



(Pattern Recognition) 25

� Pattern Classification by Neural Network

• We can use Neural Networks to classify for any number of features to any
number of classes.

......

......

1 2 M

1 2 N

Neural Network

M feature input (M dimensional)

of unknown vector 

Which of N classes

should be classifiedx

x

• What is Neural Networks?

– Neuron

– Synaps

– Synaptic weight and Transfer function

– Learning

10x6x4=240 synapses

A Layered Type Neural Network

Output layer

Hidden layer

Input layer
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• Definition of variables:

– L layers of neurons.

– kr neurons in the r-th layer. r = 1, 2, · · · , L.

– M input neurons (k1 = M) and N output neurons (kL = N).

– wr
ij: weight from the j-th neuron in the r-th layer to the i-th neuron in the

r-th layer.

– p training pairs: (x(μ), z(μ)), i = 1, 2, · · · , p.

– yr
i (μ): the output of the i-th neuron in the r-th layer when the μ-th training

sample is given.

– fan-in’s to j-th neuron in the r-th layer when the μ-th training sample is
given.

hr
j(μ) ≡

kr−1∑
k=1

wr
jky

r−1
k (i) + wr

j0 =
kr−1∑
k=0

wr
jky

r−1
k (i), (38)

where
yr−1

0 = 1

and
(y1

1(μ), · · · , y1
M(μ)) = (x1(μ), · · · , xM(μ)) = x(μ).

– Each output neuron’s error:

ei(μ) ≡ yi(μ) − zi(μ), i = 1, 2, · · · , N. (39)

where (z1(μ), · · · , zN(μ)) = z(μ)

– Error function to be minimized:

D =
1

2

p∑
μ=1

N∑
i=1

ei(μ)2 (40)



(Pattern Recognition) 27

• An example of the notations

- L = 3, M = k1 = 4, N = k3 = 3 and k2 = 2.

x1 x2 x3 x4

h

w

y

24

1w
11

1

2
1

2
2

y14 = x4

y32

y22

h21

h31 h32 h33

y33y31

w
32

2

- e.g.

� h2
2(μ) = w1

21 · x1(μ) + w1
22 · x2(μ) + w3

23 · x3(μ) + w1
24 · x4(μ).

� h3
2(μ) = w2

21 · y2
1(μ) + w2

22 · y2
2(μ).
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� Back Propagation
— Learning for multi-layered analog neural networks.

• The algorithm:

1. Initialization:

· Initialize all the weights with small random values.

2. Forward computations:

· For each of the training vectors

x(i), μ = 1, 2, · · · , p

compute all the
yr

j (μ) = f(hr
j(μ)) (41)

for j = 1, 2, · · · , kr and r = 1, 2, · · · , L.

3. Backward computations:

· For each μ = 1, 2, · · · , p and j = 1, 2, · · · , N compute

δL
j (μ) = ej(μ)f ′(hL

j (μ)). (42)

· Then compute
δr−1
j (μ) = er−1

j (μ)f ′(hr−1
j (μ)) (43)

for r = L,L − 1, · · · , 2 and j = 1, 2, · · · , kr where

er−1
j (μ) =

kr∑
k=1

δr
k(μ)wr−1

kj . (44)

4. Update the weights for r = 1, 2, · · · , L and j = 1, 2, · · · , kr

wr
jk [new] = wr

jk [old] + 	wr
jk (45)

where
	wr

jk = −εδr
j (μ)yr

k(μ). (46)

until no change occurs during the training cycle of μ = 1, 2, · · · , p.
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(� Forward calculation in our previous toy example: From the bottom to top.)

y1
1(μ) = x1(μ), y1

2(μ) = x2(μ), y1
3(μ) = x3(μ), y1

4(μ) = x4(μ).

⇓

h2
1(μ) = w1

11 · y1
1 + w1

12 · y1
2 + w1

13 · y1
3 + w1

14 · y1
4 from (38)

⇓

similarly h2
2(μ).

⇓

y2
1 = f(h2

1(μ)) from (41)

⇓

similarly y2
2(μ).

⇓

h3
1(μ) = w2

11 · y2
1 + w2

12 · y2
2 from (38) again

⇓

similarly h3
2(μ) and h3

3(μ).

⇓

y3
1 = f(h3

1(μ)) from (41) again

⇓

similarly y3
2(μ) and y3

3(μ).
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(� Backward calculation in our previous toy example: From the top to bottom.)

e
(3)
1 = y3

1 − z1(μ) from (39)

⇓

similarly e
(3)
2 (μ) and e

(3)
3 (μ).

⇓

δ3
1(μ) = e

(3)
1 · f ′(h3

1(μ)) from (42)

⇓

similarly δ3
2(μ) and δ3

3(μ).

⇓

e2
1(μ) = δ3

1(μ) · w2
11 + δ3

2(μ) · w2
21 + δ3

3(μ) · w2
31

⇓

similarly e2
2(μ) from (44).

⇓

δ2
1(μ) = e2

1(μ) · f ′(h2
1(μ)) from (43)

⇓

similarly δ2
2(μ).

⇓

e1
1(μ) = δ2

1(μ) · w1
11 + δ2

2(μ) · w1
21

e1
2(μ) = δ2

1(μ) · w1
12 + δ2

2(μ) · w1
22

e1
3(μ) = δ2

1(μ) · w1
13 + δ2

2(μ) · w1
23

e1
4(μ) = δ2

1(μ) · w1
14 + δ2

2(μ) · w1
24

from (44) again

⇓

δ1
1(μ) = e1

1(μ) · f ′(h1
1(μ)) from (43) again

⇓

similarly δ1
2(μ), δ1

3(μ), δ1
4(μ).
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• Rationale

� Thought Experiment: 1-D weight

0

2

4

6

8

10

-0.5 0 0.5 1 1.5 2 2.5

w

D

dJ
dw w=w start

dJ
dw w=w goal

dJ
dw w=w i

= 0

Δw0 Δw1 Δw2 Δwgoal =0

(error)

(weight)

D = 5 w - 20 w + 22 w - 8 w + 9
4 3 2

............

Modification:
wnew = wold + 	w (47)

where

	w = −ε · dD

dw
|w=wold (48)

means that starting from w0, w gradually approaches the point where D takes a
minimum value with δw being decreased.
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� An example: XOR (revisited)

x

y

w

1 x 2

1

1
y1

2

h2

1
h2

1

y2

1
y2

2

h3

1

y
1

1

11 w
1

21
w1

22w1

12

w2

12
w2

11

δ3
1

δ2
1 δ2

2

e(3)
1

e2
1

e2
2

e2
1

e2
1

(3)

In this example,

D =
1

2
{e(3)

1 }2

=
1

2
{y(3)

i − zi}2

=
1

2
{(f(h3

i ) − zi}2

=
1

2
{f(w2

11 · y2
1 + w2

12 · y2
2) − z1}2

=
1

2
{f(w2

11 · f(h2
1) + w2

12 · f(h2
2) − z1}2

=
1

2
{f(w2

11 · f(w1
11 · y1

1 + w1
12 · y1

2) + w2
12 · f(w1

21 · y1
1 + w1

22 · y1
2) − z1}2

=
1

2
{f(w2

11 · f(w1
11 · x1 + w1

12 · x2) + w2
12 · f(w1

21 · x1 + w1
22 · x2) − z1}2

You can see that D is a function of only all the weights (6-D in this case).
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� Where are the definitions of δr
j and er−1

j in (43) and (44) from?

We have studied that

D =
1

2

N∑
i=1

ei
2 (49)

=
1

2

N∑
i=1

(yi − zi)
2 (50)

=
1

2

N∑
i=1

(f(hL
i ) − zi)

2 (51)

where

hr+1
i =

kr∑
k=1

wr
ik · yr

k (52)

So, D is a function of all the wr
ik and

∂D

∂wr
jk

=
∂D

∂hr+1
j

· ∂hr+1
j

∂wr
jk

(53)

holds. From (52)
∂hr+1

j

∂wr
jk

= yr
k (54)

and we put

δr+1
j ≡ ∂D

∂hr+1
j

(55)

Since D is a function of hL
i and

hr+1
i =

kr∑
k=1

wr
ikf(hr

k), (56)

recursive use of this equation D can be expressed as a function of

kr∑
k=1

wr
ikf(hr

k)

for any r. So δr−1
i is defined as

δr−1
i ≡ ∂D

∂hr−1
i

=
kr∑
i=1

∂D

∂hr−1
k

· ∂hr
k

∂hr−1
k

=
kr∑
i=1

δr
k ·

∂hr
k

∂hr−1
k

(57)

Here,

∂hr
k

∂hr−1
k

=

∂

(kr−1∑
m=1

wr
km · f(hr−1

m )

)

∂hr−1
k

= wr
kj · f ′(hr−1

j ) (58)
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Hence,

δr−1
i =

kr∑
k=1

δr
k · wr

kj · f ′(hr−1
j ) (59)

In conclusion, if we define

er−1
j =

kr∑
k=1

δr
k · wr

kj (60)

we obtain
δr−1
j = er−1

j · f ′(hr−1
j ) (61)
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� Linear Transformation
— to reduce number of features.

• Discrete Fourier Transform (DFT)

y(k) =
1√
N

N−1∑
n=0

x(n) exp(−j
2π

N
kn) (62)

· Inverse DFT

x(n) =
1√
N

N−1∑
k=0

y(k) exp(j
2π

N
kn) (63)

- DFT transforms x(0), x(1), · · · , x(N − 1) to y(0), y(1), · · · , y(N − 1).

- For example, we can send transformed data y instead of real data x.

- The number of data is not reduced directly, but usually most of the energy lies
in the low-frequency region.

- Matrix form of the transformation e.g. N = 4

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

⎞
⎟⎟⎟⎟⎟⎟⎠

• Kalhunen-Loeve Transform (KL)

K-L Transform is calculated from the correlation matrix R of the data, so that the
n-th raw is the eigen vector of R corresponding to the n-th largest eigen value.

Excersise 11 Obtain the K-L Transform for the correlation matrix:

R =

⎛
⎜⎜⎜⎝

0.3 0.1 0.1
0.1 0.3 −0.1
0.1 −0.1 0.3

⎞
⎟⎟⎟⎠
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• Hadamar Transform:

· For a 2n-dimensional vector x (2n feature vector), the transform and its inverse
transform are:

y = Hnx, x = Hny (64)

where
Hn = H1 ⊗ Hn−1 (65)

and

H1 =
1√
2

⎛
⎝ 1 1

1 −1

⎞
⎠ (66)

Here ⊗ denotes the Kronecker product for two matrices:9

[A ⊗ B]ij = AijB (70)

• Haar Transform:

· For a 2n-dimensional vector x:

(1) Define Haar function hk(z), which is continuous and are defined in [0, 1] as
follows:

- Decompose k into two integers p and q, such that

k = 2p + q − 1, k = 0, 1, · · · , L − 1 (71)

which is unique when
⎧⎨
⎩ q = 0 or 1 if p = 0

0 ≤ p ≤ n − 1, 0 < q ≤ 2p if p 
= 0
(72)

9 for example, if

A =
(

1 2
3 4

)
(67)

and

B =
(

5 6
7 8

)
(68)

then we define

A ⊗ B =

⎛
⎜⎜⎝

5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32

⎞
⎟⎟⎠ (69)
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- then Haar functions are

h0(z) ≡ h00(z) =
1√
L

(73)

and

hk(z) ≡ hpq(z) =
1√
L

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
p
2 if q−1

2p ≤ z <
q−1

2

2p

−2
p
2 if

q−1
2

2p ≤ z < q
2p

0 otherwise in [0, 1]

(74)

(2) The k-th raw of the Haar transform matrix of order L = 2n is:

z =
m

L
, m = 0, 1, 2, · · ·L − 1.

Excersise 12 Obtain the 8 × 8 transform matrix.

· An example of n = 3, that is, L = 8.

k = 2p + q − 1, k = 0, 1, · · · , 7 (75)

where ⎧⎨
⎩ q = 0 or 1 if p = 0

0 ≤ p ≤ 2, 0 < q ≤ 2p if p 
= 0.
(76)

So,

p=0 q=0 k=0
q=1 k=1

(0 < q ≤ 2) (k = 1 + q)
p=1 q=1 k=2

q=2 k=3

(0 < q ≤ 4) (k = 3 + q)
p=2 q=1 k=4

q=2 k=5
q=3 k=6
q=4 k=7

Hence,
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k 0 1 2 3 4 5 6 7
p 0 0 1 1 2 2 2 2
k 0 1 1 2 1 2 3 4

Then the Haar functions are:

h1(z) ≡ h01(z) =
1√
8

⎧⎨
⎩ 1 if −1 ≤ z < 1

2
−1 if 1

2 ≤ z < 1
(77)

h2(z) ≡ h11(z) =
1√
8

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2 if 0 ≤ z < 1

4
−√

2 if 1
4 ≤ z < 1

2
0 otherwise in [0, 1]

(78)

h3(z) ≡ h12(z) =
1√
8

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2 if 1

2 ≤ z < 3
4

−√
2 if 3

4 ≤ z < 1
0 otherwise in [0, 1]

(79)

· · · · · ·
h7(z) ≡ h24(z) =

1√
8

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if 3
4 ≤ z < 7

8
−2 if 7

8 ≤ z < 1
0 otherwise in [0, 1]

(80)

and

h0(z) 1 1 1 1 1 1 1 1
h1(z) 1 1 1 1 –1 –1 –1 –1

h2(z)
√

2
√

2 −√
2 −√

2 0 0 0 0

h3(z) 0 0 0 0
√

2
√

2 −√
2 −√

2
h4(z) 2 –2 0 0 0 0 0 0
h5(z) 0 0 2 –2 0 0 0 0
h6(z) 0 0 0 0 2 –2 0 0
h7(z) 0 0 0 0 0 0 2 –2

Since

Hij =
1√
L

hj(
j

L
), (81)
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we obtain

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −√

2 −√
2 0 0 0

0 0 0 0
√

2
√

2 −√
2 −√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(82)


