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1T pick up some of the topics from the following book:
e S. Theodoridis, and K. Koutroumbas (1999) Pattern Recognition. Academic Press.

which is available, for example, at http://www.amazon.com.
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O What is Pattern Recognition?

e A typical example:

— Hand-written character recognition:

with inputs being pixel values.

e What else?
— Face recognition;
— Speech recognition;

— Robot’s eye/ear.
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e Can we recognize them with fewer information?

— Yes!
— To recognize hand-written characters, e.g.,
x Perimeter of the boundary:
N-1
P = 2—21 [2i1 = @il + [lzo — @], (1)
x Area inside the boundary: A.

*+ Roundness ratio:

r=p*/4TA. (2)
* Bending energy (defined at a point n):
1 n—1 5
E(n) = 2 > kil (3)
i=0

where k; (curvature of boundary) is:

k,=0,.1—0n, n=0,1,---,N —1. (4)
and B

Hn:tan_lw, n=0,1,---,N —1. (5)

Tp+1l — Tn

* Number of halls.
+ Number of corners:

the number of points where the curvature k; takes large values (in-
finity in theory)

— They are called features.

— Then, how many features are enough?
(Minimize the number of features.)

In short:
e pattern recognition is a classifier.
— Especially usfull for classification in high-dimensional feature space.
e Application:

— diagnosis.

— what else?
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O Statistical Classification:
Bayes Decision Theory
— for the design of classifiers.

Pattern Recognition is more or less statistical due to:

— statistic variation of patterns;
— statistic nature of feature selection;

— noise in employing sensors.

So, the task is:

— to classify unknown patterns into the most probable class.

Then

— what does “the most probable” means?

To answer this question:

— we study here the Bayesian Statistical Theory.
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e When we classify an unknown pattern which is represented by a feature vector
x, we consider M conditional probabilities:

plwi|x) i=1,--- M (6)

e Then we define “the most probable class” as the class w; which has the highest
plwilx).

e We have the other possible statistical quantities:

p(wi), pxw), px)

e The Bayesian rule gives a relationship of these quantities:

p(X|wi)p(wi) (7)

p(wilx) = +;
glp(xm)p(wk)

where the denominator is:
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e Example 1.
— to understand the Bayesian Rule

- We have two bags of no difference from its outlook.
- One bag called R has 70 red balls and 30 blue balls.
- The other bag called B has 30 red balls and 70 blue balls.

- When we take one bag at random and pick up 12 balls, returning it to the bag
at each time.

- The result was 8 red balls and 4 blue one.

- Then was the bag estimated to be R or B, and how probable the estimate is?

Clearly,

So we obtain

(0.7)%(0.3)4 N
(0.7)8(0.3)% + (0.3)%(0.7)* ~ 0.97

(How big it is compared to our intuitive estimation!)

p(R|D) =
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e Example 2.

- Three prisoners (A, B, and C) are in a prison.

- A knows that the two out of the three are to be executed tomorrow, and the
rest becomes free.

- A thought either one of B or C is sure to be executed.

- Then, A asked a guard “even if you tell me which of B and C is executed, that
will not give me any information as for me. So please tell it to me.”

- The guard answers that C will. = data D

- Now, A knows one of A or B is sure to be free.

Do you guess probability p(A|D) = 1/27

If this is correct, then the answer of the guard had given an information as for A,
since probability p(A) = 1/3.

You agree that
p(A) = p(B) = p(C) =1/3.
Then, try to apply Bayesian rule, i.e., obtain the conditional probability of the data

“C will be executed” under the condition that “A will be free tomorrow” And in
the same way for B and C. They are:

p(D|A) = 1/2.
p(D|B) = 1.
p(D|C) = 0.
In conclusion:
p(D|A)p(A)

p(A|D) =

p(DIAIP(A) 1 p(DIB)p(B) + p(DIO)p(C) ~ />

This shows probability did not change after the information!
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e Now it’s clear that

— p(A) and so on are to be called
* a priori probabilities;
— and p(A|D) and so on to be

* a posteriori probabilities.

e In the same way,

— p(w;) is called
% a priori probability? ;
- p(wilx)

* a posteriori probabilities.

Furthermore

— p(x) is called
* p.d.f. of x
— p(x|wi)
* class-conditional p.d.f.3

- which describes the distribution of the feature vectors x in each of
the classes w;.

2 Usually given, but if unknown, it can be estimated as N;/N where N; is the number of training samples which
belong to class w;, and N is the total number of training samples
3 This is also estimated from training data which will be explained later more in detail.
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O The Bayesian Classifier:

Definition 1 (The Bayesian Classifier) classify x to the class w; such that p(w;|x)
takes the mazximum value.

e T'wo-class case:
* if p(wi|x) > p(we2|x), then classify x to w

* if p(wi]|x) < p(w2|x), then classify x to we

The region where p(wq|x) > p(wz|x) is the region where

p(x|wi)p(wr) _ p(x|w2)p(ws)
WX ¥

Since p(x) > 0 and p(w1) = p(ws), the region is where
p(x|wi) > p(x|ws) (10)
holds. Now assume the two Gaussian distribution cross at x = x(, we can conclude:

* if © < x( then classify x to class wy, and vice versa.

p(x|w,) P (x]|m,)

Excersise 1 If we assume that p(wi|x) = N(0,1/2)*, plws|x) = N(1,1/2) and
p(w1) = p(ws) = 1/2, then how is our classification like?

2
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O [-dimensional Gaussian distribution:

e What does it mean by Gaussian distribution of a vector x?

X = (1,22, -, 17)

Assume we have p samples each of x; has a value z; (k=1,2,--

L1k X2k - Tk
k=1 32 74 9.4
k=2 23 8.1 8.7
k=p 29 92 7.9
i
o2

You may fill the blancs for u; and o;.

Then you define the pdf as:

P39 = Gyarsrrs exp(—5 06— 27 e )

where
M=(M1,M2,“'7Mz)
and
of o1 -+ ou
021 0% 09

2
on op - 0

-, p) such as:

(11)

(12)



(rrattern fvecoginition)

In summary,

- X = (xlax%‘”axl);

- 1 is a [-dimensional vector whose ¢-th element u; is the mean value of x;,

ie.,

P
Z Lik;
k=1

p
- 02 is the variance of x;, i.e.,
P
> (@ix — pi)
e !
p

- 04 1s the covariance between x; and z;, i.e.,

i (ir — i) (Tjr — py)

_ k=1
p

- |X] is determinant of the matrix 3;
. ¥~ is inverse matrix of X7 ;

. xT is transverse of vector x5 .

5 If we assume

then

and

6 That is, when x = (21, 72)

(13)

(14)

(15)

(16)
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e 2-dimensional Gaussian

We can calculate [ = 2 version from the Equation (11) as:

1 1
T ar A ()
<(:r:1 THye o LTy T Ty (T T M2)2>}

01 01 09 092
(17)
where p is correlation coefficient defined as:
012
= — 18
= (18)

Excersise 2 Try the following two problems.
1. Derive the equation (17) from the equation (11).

2. By giving your own set of five parameters:
p1; f2, 01, O3, and 012
Draw the Gaussian surface on (x1,x2) coordinate. Then explore a couple of
configurations of these five parameters.



6.

p(x1,x2)

5.5

— () fa) P s g

-1.0
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O Decision Surfaces and Discriminant Functions:
— to partition the feature space into M regions.

o If regions R; and R; are contiguous
p(wilx) = p(wjlx) = 0 (19)

determines the surface that partition R; and R;.

e Or, if necessary, using a monotonic function f(z)7 , we define:

gi(x) = f(p(wilx)) (20)
and we can say
if gi(2) > g;() classify x to wi. (21)
Hence
9ij = 9i(x) — gj(x) =0 (22)

determines the decision surfaces separating contiguous regions and called dis-
criminant function.

T e.g., f(x) = In(x) for the Gaussian distribution.
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O Examples of Decision Surface:
e 1-D Gaussian case.

The Equation (19) in 1-D Caussian cases leads:
plwi]x) = plws|x) (23)

That is,
(z — )’ 1 (x — p2)?
ex exp{————}. 24
\/27r01 pi= 2012 oo T V2o pi 209 2 } (24)
Solving this equation w.r.t. = you can obtain decision surface, actually a point in
this case, xg. °

Excersise 3 Obtain the decision boundary xo when the two classes follow the Gaus-
sian distributions with N(1,3) and N(3,3) respectively.

e General Gaussian case.

The Equation (11) with taking the function in as f(-) in the Equation (20), we
obtain our discriminating function g; as:

9i(x) = In(p(x|w;)p(w:))
= Inp(x|w;) + In p(w;)

= —o(x =) S (x = ) + Inp(w) + ¢

where
—(1/2) In(2m) — (1/2) In[%] (25)

8 See also the Eqations (9) and (10).
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e 2-D Gaussian case.
Our discriminat function (25) for 2-D Gaussian pdf is

a(x) =~ — )5 )+ ple) + (20)

where
c; = —(1/2)In(27) — (1/2) In|%]. (27)

This is simplified

* if
2
(o1 O
i = ( 0 o3 )
then
(21 —m)* (22— p2)® 1 2 2 1
gi = 902 + 207 §ln(0102) + Inp(w;) — 3 In(27) (28)

Note that the last two terms in the right hand side of the above equation will be
cancelled when obtaining the border g; — g; = 0.

- This kind of two distributions construct a quadratic decision surface.

- ellipsoid
- hyperbola
- parabola

- pair of lines

If expanded to [ > 2 case, then it is called hyper-quadratic.

- If 0y = 09 holds in both ¥; and ¥, then the decision surface is a circle.

Furthermore, if »J; = >J; holds then the decision surface is a straight line.



(£~attern [ecogiition) i

Excersise 4 When p(w1) = p(ws), p1 = (0,0) and py = (1,1) obtain decision
surface in the following four cases.

1) = ( 0'&0 020 ) ’ 2= < O‘(}O 020 )
(2) %= ( 0'010 o.(io ) ’ 2= < 0.30 0-(;0 )
(3) %= < 0'&0 025 ) 2= ( 0‘30 0%5 )
(4) ¥ = ( 0'30 0.010 ) ’ 2= < 0.30 020 )
(5) 1= < " 05 ) ’ = ( "0 ot )

Excersise 5 When p(wi) = p(ws) again, but p; = ps = (0,0) this time, obtain

decision surface.
030 O 010 O
(6) El_( 0 0.30)’ Z2_< 0 0.90)

Excersise 6 When p(w;) = p(ws), what condition is needed for the border of two
classes to be the following decision surface?

(1) ellipse;
(2) parabola;
(3) hyperbola;

(4) two straight lines.
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e Examples of border — from Excersise 4 and 5.

1 2
Y 25@ :
L5 . 2 RN
’ ) ° oooo 000300000 o ° 15} ) 280:‘9‘% ° 0 0
o Q)Oog 0f o @
o 0o o, . 05l
x2 05 & X2
. ° Or
0 05}
b
05
-1.5¢
1 .
1 05
(©)
2t
1L
x2
0t
-1k
2 .
4
5
.0
3
2
X2 1
0
1
2 .
3 2

The equations of the above borders are:

(1)
1 +x0 = 1.

(2)

(14 1)? + (22 +1)> =4 —0.21n(1/4).
(3)

15(z1 4 1)% + 8(x2 + 3/2)* = 93/2 — 61n(3/10).

(4)

2} + 4y + 1229 — 8 + 0.6In(2/3) = 0.
(5)

(z1 4+ 1)% = (23 — 3/2)* = 3/2.

(6)

(V3z1 +V5)(V3z; — V5) = 0.
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* An example of more general case:

That is, our X is no more of the form
o? 0
0 o3
but, instead, of the more general form
0'% 012
021 O’% '
Then the Equation (26) leads an equation of the form

2 2
1] + 25 + c3T179 + 41 + ey + ¢ = 0.

Excersise 7 When p(w1) = p(ws), p1 = (0,0) and ps = (1,1) still holds, obtain
decision surface in the follounng case.

0.3 0.1 0.5 0.3
21_<0.1 0.4)’ 22_<0.3 0.2)

The border of the Excersise 7 will be

1822 — 67z 2y — 52235 = (11/10) In 11.

Excersise 8 But how can we draw the graph of this equation?
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O Classification by distance from mean:

Recalling that we classify x to w; such that g; is maximized, the Equation (25)
implies we minimize:

(x — i) "2 (x = i) (29)
that is,
e for diagonal ¥ = o2/, minimize
dp = ||1x — pul] (30)
e for no-diagonal 3, minimize

dy = (x — i) S7(x — ) (31)

which is called Mahalanobis distance.

Note that:
e dp = const. = hyper-sphere

e d); = const. = hyper-ellipse

Excersise 9 About a two-class, two dimensional Bayesian classifier where
p(W1) = p(w2)7 H1 = (070)7 M2 = (170)

and

21:22:2:(1'1 0.3)

0.3 1.9

answer the following questions.

(1) Obtain dy; of x = (1.0,2.2) from puy and pe, respectively.

2) Should x CZG,SS’i?in to w1 or wQ?
( )
(C’ompare the result when we use dE instead 0] dM.
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O Diagonalization of Variance Matrix:
— to learn the shape of the ellipses

Definition

e Figenvalue of Y are \’s that satisfy
X = M| =0 (32)
e Figenvector of Sigma are x’s that satisty

Yx = Ax (33)

Then we have the following relation:
¥ = dAPT (34)

where A is the diagonal matrix whose elements are the eigenvalues of X, ® is a

matrix whose columns are corresponing eignevectors of >, and due to its symmetry
o7 = o1,

Hence, our ellipse dy; = ¢? becomes:

(x — )T OADT (x — p) = & (35)
This is interpreted as:
(X =)' AX —p) =¢’ (36)
on the (rotated) new coordinate:
X1\ a7
(Xg)_X_(DX (37)

where the ellipse has the equation of the form:

an X: +a X3 =c

instead of the form:
2 2
a1Ty] + a9y + a3r1x9 = C
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Excersise 10 When
1.1 0.3
> = ( 0.3 1.9 )
answer the following questions.
(1) Obtain Eigenvalues of X.

(2) Obtain Figenvectors of ¥.

(3) Solve the equation w.r.t. x1 and xs.
x!'Y x =1,
(4) Obtain ® and A, and ascertain the relation:
Y =0 'AD.
(5) Obtain the equation of the projected ellipse w.r.t. Xy and Xo
xT(OA O )x =1

that 1s,
XTAIX = 1.
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e Examples of border — from Excersise 10

Since now our X is
1.1 0.3
X = < 0.3 1.9 )
$TNx = (21 72) ( 0.95  —0.15 ) ( 21 ) = ... = 0.9502 — 0.30z122 + 0.55z2.

—0.15 0.55 T2

So our ellipse is, e.g.,
0.952% — 0.30z129 4 0.5529 = 1.

In order to learn the shape of the ellipse we transform it with ¥ = ®A®” where

1 3 1
=gl )

(1)

That is, our ellipse x7 ¥ 7'x = 1 is expressed as x! PA1®Tx = 1 where

and

$T® = (21 29) < ’ _;) ) IVI0 = (321 — o 1 + 322)/V/10

and

<I>TX_<:;’ _;><i;>/\/l_—(3x1—x2 ac1—|—3x2)/\/1_0

Hence, if we use the new coordinate:

(X1 X2) = (31’1 — X2 X1+ 3.%2)/@

wonfi 1) (2)-

X?242X2=1

our ellipse is

That is

X2

X1
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e From Excersise 9 and 10.

- Points whose Mahalanobis distance is identical from center (mean) of the two classes respectively.

O
(e}
6 L ——————__ 0 o_o ©
-7 o \\\O 0. %0 o
/ 07~ 5 o
I/ o oo OOOO O% ~Q o
O ~
\ (@] (@] o \\
N
4L \ 6 _o8%8 o Q
\ ~ (¢} o0
N\ () 6 Y \\6 o \\OO
N 0 Y\ QOO < o N
—_—— A \A AN N
// \\\\ AN % AO O\\ O\()\O N
X2 / ~A N o) Ie) Ny O o) \
2 / ~ - XN o °~ J \
B A A S \\OAO O—— - \
I AAT BN ~ o o o® o
\ NS AA A AN D o
A ﬁ_ A a NN ~ |
x s AT N N /
ab ~ AN <
N N A A N ~— /
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2 ~ |
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O Pattern Classification by Neural Network

e We can use Neural Networks to classify for any number of features to any
number of classes.

Which of N classes

should X be classified

M feature input (M dimensional)

of unknown vector X

e What is Neural Networks?
— Neuron
— Synaps
— Synaptic weight and Transfer function

— Learning

A Layered Type Neural Network

Output layer

\ 24
}\\6‘4?2;1’,!5""//
AN

Hidden layer

AN

Input layer

10x6x4=240 synapses
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e Definition of variables:

— L layers of neurons.
— k, neurons in the r-th layer. r=1,2,---,L.
— M input neurons (k; = M) and N output neurons (k;, = N).

— wy;: weight from the j-th neuron in the r-th layer to the i-th neuron in the

r-th layer.

— p training pairs: (x(p),z(p)), i=1,2,---,p.
— yI'(p): the output of the i-th neuron in the r-th layer when the p-th training
sample is given.

— fan-in’s to j-th neuron in the r-th layer when the u-th training sample is

given.
krfl k'r‘fl
() = kZl whyyn ' (6) + wjy = kZO wiyn (i), (38)
where
y =1
and

(y1 (), yar(m) = (ap), - -+ war () = x(pa).

— Each output neuron’s error:

where (z1(p), -+, 2n (1)) = z(p)

— Error function to be minimized:

>3 el (40)
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e An example of the notations

L=3 M=k =4 N=k =3

- e.g.
* h3(p) = wyy - @1 (1) + wyy - xo(p)
* h3(p) = w3 - yi(p) + w3y - y3(1)

and ko = 2.

Zi
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O Back Propagation
— Learning for multi-layered analog neural networks.

e The algorithm:
1. Initialization:
- Initialize all the weights with small random values.
2. Forward computations:

- For each of the training vectors

compute all the
yi (i) = f(hj(p))
for y=1,2,---,k. and r=1,2,---, L.
3. Backward computations:
- Foreach pu=1,2,---,p and j=1,2,---,N compute
07 (1) = e; (1) f'(h} ().

- Then compute
07 () = e ) £ (R ()
for r=L,L—-1,---,2 and j=1,2,---,k. where
1 & 1
ej (1) = kaZ(u)wzjf :
4. Update the weights for r=1,2,---,L and j7=1,2,---,k,
W [new] = w [old] + Awly

where
Awiy, = —ebj (1)yr(1)-

until no change occurs during the training cycle of pu=1,2,---,p.

(41)

(42)

(43)

(44)

(45)

(46)
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(x* Forward calculation in our previous toy example: From the bottom to top.)

() = 21(p),  ya(p) =z2(p),  y3(p) =x3(),  yi(p) = za(p).

hi(p) = wiy - yi +wly - ys +wiy - y3 +wiy-yy  from (38)

U

similarly h2(u).
\

yi = f(hi(n))  from (41)

.

similarly y3(u).
U

hi(p) = wiy -y +wiy-y3  from (38) again

4

similarly A3(p)  and A3 (u).

yzf’ = f(h:f(,u)) from (41) again
I3

similarly y3(1)  and  y3(u).
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(* Backward calculation in our previous toy example: From the top to bottom.)

similarly 653) (n) and e§3) ().

U
B(p) = et - f/(h(n))  from (42)
U
similarly 63(p)  and  &3(p).
U

ef(p) = 6% () - wiy + 65 (1) - w3y + 63 () - w3

4
similarly e3(u)  from (44).
4
0t(p) = ei(n) - f'(h3(w))  from (43)
4

similarly 62(p).

I
ei(u) = 5§(u) wil + 5%(#) : w%
ex(p) = 67 () - wig + 65 () - way
e3(p) = 67 (1) - wiz + 65 (1) - wis
ei(p) = 6% (p) - wiy + 65 (p) - wiy

J
01(p) = ei(p) - f/(hi(p))  from (43) again
I

similarly 63 (1), 03(1),  04(1)-
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e Rationale

* Thought Experiment: 1-D weight

D‘er;‘g) D=5w’-20w®+22w?-8w +9
N dJ
dw W=W start
6L i |
g dJ
; dW W=W
2} i
dJ
dw [w=w goal
0 L L L L L
0.5 0 0.5 1 15 2 25
W (weight)
A\NO AWl A\Nz ............ AWgoaI 0
Modification:
W' = w4 Aw (47)
where iD
Aw — —€ * —/— |p=qpold 48
- (13)

means that starting from wy, w gradually approaches the point where D takes a
minimum value with dw being decreased.
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* An example: XOR (revisited)

In this example,
D = ey
= Sl -
= AU — =)
= %{f(wfl Ui+ wty - 3) — 21

1

= SAfh - fR]) + iy () — 1)

1

= §{f(w%1 (Wi Y+ Wiy Ya) Fwhy - flwyy Yl why - ys) — 21}
1

= §{f(w%1 : f(wh T+ w%Q ' x2) + w%z : f(w%1 T+ w%Q ' $2) - 31}2

You can see that D is a function of only all the weights (6-D in this case).
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* Where are the definitions of ¢7 and ej " in (43) and (44) from?

We have studied that

M=
o

N
|
—

|
N
<.
~—
[N}

=

(yi

N~ N~ N -
=1
N

~

S

>

N—

I

R

N—

[\

~
I
—_

where .
Rt =30 wiy -y
k=1
So, D is a function of all the w}, and

oD oD ont!

r 41 r

holds. From (52)

r+1
My
8w§k
and we put
5+ — oD
J ahr—H

Since D is a function of h* and

k,
Wit = 2 wiy) ()

recursive use of this equation D can be expressed as a function of
k.
r T
> wif(h)
k=1

for any 7. So 877! is defined as

oD k9D  on, L ohj;
- : — N 5. K
O Z._Zlah;;—l Ohi~! ; bon!

P —
Here,
krfl 1
ohy~t Ohi 1

= uf, 0

(49)
(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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Hence,
Ky
6 = kZ oy, - wi; - f'(h;7)
=1

In conclusion, if we define
k.

r—=1 _ r r
k=1

we obtain

r—1 r—1 r—1

J

(59)

(60)

(61)



(rrattern fvecoginition)

O Linear Transformation
— to reduce number of features.

e Discrete Fourier Transform (DFT)

z(n) exp(—j5rkn) (62)

- Inverse DF'T
z(n) = N = y(k) exp(j—-kn) (63)

- DFT transforms z(0), z(1),---,z(N — 1) to y(0),y(1),---,y(N — 1).
- For example, we can send transformed data y instead of real data x.

- The number of data is not reduced directly, but usually most of the energy lies
in the low-frequency region.

- Matrix form of the transformation e.g. N =4

1 1 1 1
11 4§ -1 —j
211 =1 1 =1

L -7 -1 g

e Kalhunen-Loeve Transform (KL)

K-L Transform is calculated from the correlation matrix R of the data, so that the
n-th raw is the eigen vector of R corresponding to the n-th largest eigen value.

Excersise 11 Obtain the K-L Transform for the correlation matrix:

0.3 0.1 0.1
R=101 03 —-0.1
0.1 -0.1 0.3
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¢ Hadamar Transform:

- For a 2"-dimensional vector x (2" feature vector), the transform and its inverse

transform are:

Yy = an7 X:Hny
where
Hn — Hl & Hn—l
and
1 1 1
=17 ( 1 -1

Here ® denotes the Kronecker product for two matrices:

[A® Blij = Ai; B

e Haar Transform:

- For a 2"-dimensional vector x:

(64)

(65)

(66)
9

(70)

(1) Define Haar function hy(z), which is continuous and are defined in [0, 1] as

follows:

- Decompose k into two integers p and ¢, such that

k=2"+q—1,
which is unique when

{q:O or 1

9 for example, if
and

then we define

15 18 20

5 6 10
A®B— 7T 8 14
21 24 28

k=0,1,---,L—1 (71)
if p=0
it p#0 (72)
(67)
(68)
12
16
94 (69)
32
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- then Haar functions are

o

1
ho(2) = hoo(2) = —= 73
o(2) = hooz) = 7 (73)
and
L] 2 G <e<
hi(2) = hpy(2) = \/—Z —925 if q;f <z< g (74)
0  otherwise in [0, 1]
(2) The k-th raw of the Haar transform matrix of order L = 2" is:
z:%, m=01,2-L—1.
Excersise 12 Obtain the 8§ x 8 transform matriz.
- An example of n = 3, that is, L = 8.
k=2"4+q—-1, k=0,1,---,7 (75)
where
g=0 or 1 if p=0 (76)
0<p<2 0<qg<2r if p#0.
So,
p=0 q=0 k=0
q=1 k=1
0<q<?) (himl+g
p=1 q=1 k=2
q=2 k=3
0<q<d (hi=3+9
p=2 q=1 k=4
q=2 k=5
q=3 k=6
q=4 k=T

Hence,
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=T
o O O
—_ O =

— = DN

N — W

— N

)
W o o
N NIEN

Then the Haar functions are:

ha(2) = hoy(2) = % { B

1

| V2 if 0<z<]
hQ(Z) = hll(Z) = % —\/5 if i <z < %
0  otherwise in [0, 1]
V2 if 1<,<3
1 2 4
hg(z) = hlg(Z) = % —\/§ if 3 <z<l1
0  otherwise in [0, 1]
| 2 if % <z<i
h7(Z) = h24(2) = —8 —2 if 3 <z<l1
0  otherwise in [0, 1]
and
ho(z) 1 1 1 1 1 1 1 1
hi(z) 1 1 1 1 -1 -1 -1 -1
ho(z) V2 V2 —V/2 —v/2 0 0 0 0
hs(z) 0 0 0 0 V2 V2 V2 =2
he(z) 2 2 0 0 0 0 0 0
hs(z) 0 0 2 -2 0 0 0 0
he(z) 0 0 0 0 2 -2 0 0
h7(z) 0 0 0 0 0 O 2 -2
Since

(77)

(78)

(79)

(80)

(81)
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we obtain

(82)




