(to appear in The American Mathematical Monthly)

Probabilistic Pursuits on the Grid

A.M. Bruckstein , C.I.. Mallows , and [.A. Wagner

1 Introduction: Probabilistic Pursuit

The paths of a sequence of a(ge)nts engaged in a sequence of continuous pursuits converge to
the straight line between the origin and destination [2]. We consider a discrete setting where the
a(ge)nts are only allowed to visit grid points and chase each other according to a probabilistic rule
of motion, and prove a similar result: the average paths of ants in a chain of probabilistic pursuit
converge rapidly to a straight line. This discrete model of pursuit leads to interesting results also
in the context of linear and cyclic pursuits.

Assume that a sequence of ants Ag, Ay, Ay, ... are released from the origin at times ¢t =
0,A,2A,..., (A being an integer > 1), and each ant moves on the integer grid in the plane so
that A, 41 chases or pursues A, according to a probabilistic rule defined in the sequel. For sake of
simplicity, consider that each ant measures time from its moment of release: if A, ;1 is at time ¢
of its motion (i.e., on the ¢ th point of its trajectory), then A, is at time (£ + A). A pursuing ant
A, +1 stays one unit of time at a grid point A, 11(¢) = (2,41(t), Ynt1(t)). Then it looks around, and
decides where to move next according to the location A, (t+ A) = (z,(t+ A),y.(t + A)) of the

pursued ant. Ant locations on the grid will be encoded as complex numbers: A, (%) 2 (1) + Jyn(t),
where j = /—1.
Probabilistic pursuit is defined by the following rule. A, 11 chooses its next position as one of its

four nearest neighbor-points on the grid, under a probability distribution determined by its relative
position with respect to the pursued ant. Thus

Anga(t+ 1) = Apya (1) + 6nga (E+ 1), (1)
where §,,41(+) are random variables taking values in {1, -1, 7, —j} according to
Prob {8, 41(t + 1) = sign(d,)} = &l

Prob {6,41(t+ 1) = j - sign(d,)} = %

where d,, d, are defined as

dy = 2p(t+ A) — 2p41(2)
dy = yu(t + A) = ynqa (1)



and d = |dz| + |dy| is the “Manhattan distance” (the Manhattan norm of x + jy is defined as

|z + jyl| def |z| + |y|) between successive ants (see Figure 1). If d drops to zero at some time
during A, 41’s pursuit of A,, the ants merge and continue A,’s pursuit of A,_;. The preceding
equations define a probabilistic pursuit in the complex plane, with pursuit steps biased according
to the relative locations of the pursuer and pursued. The rule is trivial if A = 1, since then the
pursuing ant follows the leader exactly.

< Insert Figure 1 here >

Figures 2 - 4 display simulation results of probabilistic pursuits for various initial trajectories.
In each of these simulations we ran many pursuits with identical trajectories for Ag, starting at
(0,0) and ending at some grid point (a,b). The figures show the distribution of locations visited by
certain ants, the grey level of each pixel being proportional to the number of times the ant visited
that location. The ensemble-averaged path of the sample ants is depicted as a bold curve.

< Insert Figures 2-4 here >

2 Path Convergence to Straight Lines

Assume that the first ant Ag travels along an arbitrary grid path from the origin to a 4+ jb, where
it stops (without loss of generality we assume that @ > 0, b > 0). Then, for each n > 0, A, 14
pursues A, following the probabilistic pursuit rule given by (1) and (2). Let us define L,, as the
(rectilinear) length of this path:

Tn
Ly, = Z ||An(t + 1) - An(t)H ’
t=0

which equals T, - the total number of steps in the path of the n th ant.

We shall show that the pursuit paths converge, in a sense, to the “straightest” line on the grid
connecting the source 0 to the destination a + jb This will be done in three stages: first we show
that for any initial grid path taken by Ag the pursuit trajectories eventually become confined to
the rectangle defined by 0 and @ + jb, and are monotonic (of length @ + b). Then we show that
within the rectangle all monotonic paths have, in the limit, equal probability. This means that the
points near the straight diagonal are more likely to be visited, and that the straight diagonal from
0 to @ 4+ 7b is the average path in the limit. Then we show that the average path converges to the
straight line very fast.

2.1 The Pursuit Paths become Monotonic

We first show that the trajectory A, (t) eventually becomes monotonic. A discrete path is monotonic
if it has no “backtracking” - that is, 6(¢) € {1, 7} for all ¢ during the pursuit.

Lemma 1 L,, the Manhattan path-lengths of ants engaged in probabilistic pursuit, is a positive,
non-increasing (hence convergent) sequence.

Proof: Since T,, = L,, we show the claimed properties for T},. Ant A, starts its journey exactly
A units of time after A, has started. After T, units of time, A, stops at the destination and at
this point A, 41 has made T, — A steps along its trajectory. According to the probabilistic pursuit



rules, the distance between ants can never increase, hence when A, stops, its pursuer A, ;1 is at
a distance < A away from the destination. In the following A; < A units of time, A, decreases
its distance from the destination by exactly one per unit of time. Therefore we have

Lyyp1 =T, 11 =T, - A+A; <T, -A+A=T, =1,

and since the sequence L, is also bounded below by a + b, it converges. |

We next claim that if the path-length of an ant is greater than a+b, there is a positive probability
that the path-length of the next ant decreases.

Lemma 2

A -1\l
Prob{L,41 < L,—-2|L, >a+b} > (T)

Proof: Since an ant starts at 0 and finally arrives at a 4+ 7b, it is clear that for all n we must have

Ty
> 6u(t) = a+ jb.
t=0

From the definition of probabilistic pursuit we see that é,(t) € {£1,+j}, and if L, > a + b (as
we assume) the path of A, is necessarily non-monotonic, that is: there exist times ¢, %3 such that
0,(t2) = —6,(t1). Let us take (#1,%2) to be the earliest such interval, so that t; is the first time
(after ¢;) when A, makes a “backtracking” ; see Figure 5, in which we assume (without loss of
generality) that at time ¢; the ant A, moves to the left, then up, and at time ¢3 to the right.
Since we require {5 to be the first “backtracking”, A, moves upwards monotonically between ¢; 4+ 1
and t3 — 1, for h steps, where h = t; — 1 — 2. Since A, 41(¢) is A steps behind A, at time #; it
must be somewhere on the boundary of the square RVQ PTSW R. Now from the Figure it is clear
under what conditions the distance between the ants decreases during the time interval (¢,%3).
This happens if either (i) A,41(¢) is located to the left of W', in which case the distance decreases
at time ¢y, or (ii) it is located to the right of V, in which case the distance decreases at time ¢;.
Also, if A,41(2) is on S PQ) the distance decreases sometime between #; and t3. The only chance to
preserve the distance is when A, 1 happens to be located on the arc W RV at time ¢1; in this case
A, +1 may first get to PR, and then follow A, one step to the left of PR and later (after ¢3) to
the right, without ever shortening the distance between them. However this is not sure to happen.
Wherever A, 11 starts from, there is the possibility that after it reaches PR it never makes a step
to the left between t; and ¢3. Let us denote by I the event “A, 1, once it has arrived on the line
PR, stays there (at least) until time #3”. As explained previously

Prob{L,4+1 < L.} > Prob{I}.

To obtain a lower bound on the probability that I occurs, note that the probability that A, 4+ does
not move left in a certain time in (¢1, %), according to the probabilistic pursuit rule, is proportional
to the ratio of d, ((A —1) in our case) to d, +d, (A in our case). The event of staying on the line
PR should repeat t; — t; times (or fewer if A, 11 arrives on the line PR later than ¢;). Hence

e 3)

Prob{I} > (T



which is the probability that A, stays on the line PR during an interval that is not longer than
(t1,t2), given that A, is hopping along the line TW. This effort by A, 41 is eventually rewarded
at time ¢y, when A, turns right and the distance decreases by 2. Clearly,

t2_t1§Tn:Ln§L07

and hence the probability that the length of the (n+ 1)st path is shorter than that of the n th path
by two (or more) units is bounded below by ((A — 1)/A)™. ]

< Insert Figure 5 here >

Note that if the distance between ants A, 1 and A, drops, it drops in quanta of two if A, is
not stationary at @ + j7b. The proof of Lemma 2 also shows that chasing an ant that moves along
a non-monotonic path induces a positive probability for a drop in the distance between the ants.

The next theorem shows that the pursuit path eventually becomes monotonic: L, converges to
a+ b with probability 1. In general, a sequence of random variables { X,,} converges with probability
1 (or almost surely) to a value X (we write X,, “2 X ) if, given ¢,6 > 0, there exists an ng(e, §) such
that for all n > ng, Prob{|X, — X| <6} >1—e.

Theorem 1 There exist constants ky,ky > 0 such that, given € > 0, if
1
n > ng(€) = k1 + kg - log (E)
then
Prob{L,=a+b} > 1 —¢,
where L, is the length of the path of A, in a probabilistic pursuit from the origin to a + jb.

Proof: If L, > a + b then there must have been at most sp = [Lo — (a + b)] /2 — 1 ants in the
sequence Ag,...,A, for which a drop (of 2) in the distance to the pursued ant occured, since
a decrease in the distance between consecutive ants implies a decrease in the path length of the
pursuing ant. Hence, there were at least n — sp ants with no decrease in distance. Lemma 2
ensures that each ant path can be viewed as the outcome of an experiment in which the distance-
drop event occurs with a probability of at least p = ((A — 1)/A)L°. A sequence of ants engaged
in a probabilistic pursuit is a series of trials, with outcomes that are either a “success” - a drop in
the inter-ant distance (which has a probability at least p), or a “failure” - the distance does not
change. Define A to be the event “sy or fewer distance-drops in a chain of n ants”.

50
Prob{L, >a+b} = Prob{A4} = Z Prob {s successes up to n}

s=0

< (1—p>n+(’f)<1—p>n-l+---+(8’”;)(1—@”—50
= (1—1))”:)0(2)(1—19)_5

< <1—p>n(;);<1—p>s (for > 2s0)

< (1—p)”(;)(1_‘9;)50 <(1=p)"n®Cy = Cig"n



Here Cy,Cy, and ¢ < 1 are constants, independent of n and ¢. Since lim,_s C; - ¢" - n%2 = 0, there
exist constants C'3, (4 such that

foralln > Cs, C7-¢"- n? < Cy - ‘]n/2

and in order to get

Prob {A} < Cy-¢"? < ¢

2oy 2 1
~ ga&+1 lbgC)'
gl Tlogl " \e

it is sufficient to have

2.2 The Stationary Path-Distribution is Uniform

The paths followed by successive ants form a Markov chain, with the state-space being all paths
from the origin to a4+7b. Theorem 1 ensures that all paths longer than m = a+b are transitory. If we
restrict to paths of length exactly m, we shall show that the chain is irreducible and aperiodic (and
therefore ergodic), with the stationary distribution being uniform. If the initial path is monotone,
the rule (2) has the following interpretation, which greatly simplifies some of the proofs we offer:

Suppose we have a supply of black and white balls, and a series of urns Ug, Uy, Ug, .. .,
which initially are all empty. At time ¢t = 1,2,...,a + b an agent Ay places a ball,
either white or black, into Ugy. At each time A, A+ 1,..., agent Ay takes a ball at
random from Uy (which at time A contains A balls) and places it in Uy. At each time
2A,2A 4+ 1,..., agent Aj takes a ball at random from Uy and places it in Us, and so
on. For each urn, the number of balls it contains starts by rising from zero to A, stays
there a while, and then decreases to zero.

This description is equivalent to that of probabilistic pursuit, if we take a white ball for a right-step
and a black ball for an up-step, and identify the position A, (t) with w + jv where w (respectively,
v) is the total number of white (respectively, black) balls this agent has seen by time ¢. The number
of white (black) balls in urn U,,_; corresponds to the z (y) position of A,,_; relative to A,. If
A, (t)=w+jvand A,_1(t) = w+jv+a+ jy, so that the urn U, _; contains z white and y black
balls, then the probability that A, chooses a white ball (so that A, (t+ 1) = w+ 1+ jv) is just
z/(x+y).

Let S be the set of monotonic paths from the origin to a 4+ jb, and let M be the Markov chain
with state-space S and transition probabilities induced by the probabilistic pursuit procedure.

We first show that M is irreducible.

Lemma 3 For any two paths s,s’ € S there is a sequence of positive-probability transitions that
leads from s to s'.

Proof: One can interpret a monotonic path from 0 to @ + jb as a sequence of a 4+ b characters from
the set {u,r}, where r refers to a “right” move and « to an “up” move. There are exactly a 7’s
and b u’s. It is easy to see that if, in the target’s path s, there is a u at time ¢, followed by an r at
time ¢+ 1, then there is a positive probability that the pursuer’s path s’ will be equal to s with the



only exception that s’ has an r at time ¢ and a u at time ¢ + 1. The set S of monotonic paths is
closed under such “flip” operations - given a path s € 5, any other path in .5 can be reached from
s by a sequence of (positive probability) “flip” transitions. Hence the chain is irreducible. O

It is easy to see that M is aperiodic:
Lemma 4 For any path s € S, pss > 0.

Proof: There is always some positive probability that the pursuer follows the pursued’s path
exactly. O

Now we show
Lemma 5 The uniform distribution over S is stationary.

Proof: The number of different paths from the origin to a + jb is

= (2)

For the uniform distribution of paths, the position at time ¢ (starting from the origin at ¢ = 0 ) is
z + jy (where z + y = t) with probability

Prob {z|m,t,a} = ﬁ ( ; ) ( ?:; ) . (4)

This is the hypergeometric distribution, which governs the number of white balls (2) in a random
sample of ¢ balls chosen from an urn that contains a white and b black balls. Thus we can generate
a random path by choosing balls sequentially at random from an urn that initially has ¢ white and
b black balls.

Next consider the case when t4+ A < a+b. Suppose the path of the pursued (“target”) ant, A4,
is chosen uniformly from 5, e.g., by drawing from an urn with a white and b black balls, and moving
right on white and up on black. Using the “urn” representation, we can obtain the distribution
over all possible paths for the k& th ant by considering a sequence of urns Ug, Uy, ..., Ug,... with
the black and white balls being moved downstream according to the following rule:

Start with Uy containing a white and b black balls. At each time unit draw a ball at
random from Uyg and place it into Uy until A balls are accumulated there. Then also
start moving randomly chosen balls from Uy to Us until A balls are in Uy and so forth.

The distribution of paths for the k& th ant is given by the distribution of ball-color sequences seen
entering the urn Uy in this process. Disregarding the color of balls, by symmetry all (a + b)!
sequences of balls are equally probable to appear as inputs to Uyp.

Hence the
(a+b)! [ a+d
alb! a

possible sequences of black and white balls are also equiprobably seen entering the k£ th urn O




This property is strongly related to the concept of exchangeability, defined as follows (see [6,
pp. 97-105]): A countable sequence of events Vi, Vs, ... is exchangeable if for any possible choice
1 <4y < iy < -+ < iy of k subscripts, Prob(V;, N V;, Nn---NV;,) = pr depends only on k but not
on the actual subscripts ¢;. If the event V; is defined as “a white ball enters the last urn at time
1”7, then the probability of having a such events does not depend on the order in which they occur,
hence the sequence is exchangeable and all paths are equiprobable.

The preceding result is quite general. In fact, if we take a sequence of urns with ¢ white and
b black balls in the first one and move them downstream, choosing balls at random from Uj; to be
placed into U;yq, according to any given schedule ensuring that all balls pass through each urn,
then all the possible color sequences of balls entering each urn have the same probability. This
shows that for monotone pursuits one can vary the inter-ant intervals arbitrarily, and the paths of
the ants engaged in pursuit will be uniformly distributed if the first ant chooses a path at random
from (0,0) to (a,b). This also generalizes to higher dimensions (= more colors for balls). Thus the
paths generated by this rule are also governed by a uniform stationary distribution.

From lemmas 3, 4, and 5 we have

Theorem 2 M is an ergodic Markov chain and its unique stationary distribution is uniform.

Two immediate corollaries of Theorem 2 are:
Corollary 1 Assuming stationarity, the average path is the straight line from 0 to a 4+ jb.

Proof: A standard result for the hypergeometric distribution (4) is that E [z |m,t,a] = ta/m. O

Corollary 2 Assuming stationarity, ants are usually very near the average path.
Proof: For the hypergeometric distribution (4), the variance of z is
V [z |m,t,a] = t(m — t)ab/(m — 1)m?.
Thus if a = am, b= pm, andt = 7rm (where a + § = 1) we have:
Viz(t)] = mapr(l—71)+0(1).

Suppose m is large. We can bound the probability that at time ¢ the ant is outside a region of
width m® around the average, € being a number in (%, 1). Using Chebyshev’s inequality

2
Prob{ x(t) — o > mE} = Prob{ x(t) — o > mze}
m m
Vv t m— 00
= %( Lo aprt - mymi=  o(m) g

The normalized width of the strip with positive probability is n°/am, which clearly converges to
zero when m — oo. See Figure 6 for the line width in the stationary distributions for various values
of m. |

< Insert Figure 6 here >

!Chebyshev’s inequality ([5, p. 376]) says: let X be a random variable with expected value E[X] and variance
V[X]. Then (Prob{(X —E[X])’>a} < V[X]/a for any a > 0.



3 Convergence to the straight line is fast

We now show that the average of the ant-paths converges to the straight line between source and
destination exponentially fast.

In the following, we ignore the initial non-monotonic transient, and assume that the leading ant
Ay executes an arbitrary monotonic path. Let us define a new entity D,, (a determin-ant?) which
progresses along the average path of A, i.e. such that at each time ¢, D, (¢) = E[A,(?)]. Then

Dot 4 1) = Dy (1) 4 2UF R = Poall) (5)

To justify this equation, note that the expectation of the step made by A, 41 at time 7 is

E[An(t+ A)] - E[An1 ()]

E[Ani1(t+ D] = Ang1 ()] = A

Let us denote the average path of the ant A, by the complex vector d = (d(0),d(1),d(2),...,d(m)),
where m = a 4+ b, and denote the path of the pursuing ant by d' = (d'(0), d'(1),d'(2),...,d'(m)).
We measure the distance between these two paths by the maximum distance between any of their
components, i.e.,

. o L
dist(d, d') = max |d(/) - d'(i)],

where |-| stands for the FEuclidean distance. Now we can show that the average path approaches its
linear limit exponentially fast.

Theorem 3

dist(d,,,do) < mm — 1) (1-am=2)", (6)

am—A
where a = (A —1)/A.

Proof: First we show that the limit average path, d.., is indeed the straight line. We can write
the evolution equations as

0<t<m—A:  d(t+1)—d(1) = LFA)=

m-A<t<m:  d(t+1)-d(1)= 220

m—1

with boundary conditions
d(0)=d'(0) =0,  d(m)=d(m)=a+jb,

where the denominators represent the Manhattan distances between A, and A, ;1. This distance
is initially A, and stays constant until A, reaches a + jb, whereupon the distance decreases by one
per unit of time. Hence we can relate the vectors d and d’ in the following way:



d'(0
Ad'(1) + (1 — A)d'(0

P N
ll
=
~~
L
~—r

Ad'(2)4+ (1-A)d'(1) = dA+1)
Ad(m—A+1)+ (1 -A)d'(m—-A) - d(m) (8)
(A=Dd'(m-A+2)+(2-A)d'(m—-A+1) = d(m)
(A=2)d'(m—-A+3)+B3-A)d'(m—-A+2) = d(m)
2d'(m —1)4 (-1)d'(m - 2) - d(m)
d(m) = d(m)

A fixed point of this linear iterative process is a vector d such that d’ = d. In such a vector,
d(t+ 1) — d(t) must be constant for all . Otherwise, assume that there is a solution for which the
sequence d(t + 1) — d(t) is not constant, and denote z(¢) = Rd(¢); the same argument holds for
y(t) = Sd(t). Denote by o the smallest integer in [0, m — 2] such that the difference z(to+1) — z(%o)
is an extremum - either a minimum or a maximum. This difference is necessarily nonnegative since
the path is monotonic. From (7) it follows that

&
wlio+ 1) — a(ty) = ot ‘52 —alto) _ % S (alto + k) — 2(to + k — 1))
k=1
&
- %Z|x(to—|—k)—x(to—|—k—1)|.
k=1

Hence

llrsn]jlslé le(to+ k) —a(to+k—1)] < |z(to+ 1) — z(to)] < max, |e(to + k) —a(to+ k—1)|,
where ¢ = min{A,m — tp} > 1. The last inequality is strict since not all the differences are
equal. But this contradicts our assumption that z(to + 1) — z(%o) is an extremum. Moreover, ty
cannot equal m — 1, since then both the minimum and maximum would occur at the same index,
contradicting the assumption that the sequence is non-constant.

Since d(0) and d(m) are not affected by the iterative process, the vector d,, converges to a limit
that is a sequence of points equi-spaced on the straight line from d(0) to d(m).

We next show that the distance from the limit decreases exponentially fast. The set of difference
equations (8) can be written as:

&d’ = ¥d,



where the matrices ® and V¥ are

— A —
1 0 0
I-A A 0 ... 0
0 1-A A 0 0
Pty (my1) = 1-A| A
2-A A—1
: -1 2
0 0 1
and
— A —
10 ...0l0 0 0 0
00 ... 0/1 0 0 0
00 ... 0[0 1 0 0
Vims)x(mt1) = 1 0
0 1
1 T
' A—1
0 1 !

Note that ® and ¥ are independent of the specific path. Hence, the dynamics of the averaged
ant-paths is described by
d=90"v.d=P-d

i.e., a fixed matrix operator repeatedly acting on the average ant-path vector. Let us now sketch
the form of this operator and derive a bound on its second-largest eigenvalue.
With some algebraic manipulations, it can be found that

1
@ B
a? af B
a3 a?p af 0
(I)—l B am—A-I—l am—Aﬁ . ﬁ
@ (35) amods(3) 3 (83) | (wiiden) =5
oA (5h) 025 (5h) 8 (s5) | (w=n=s) 2
0 0 0

10




with a = (A —=1)/A and [ =1/A, and hence

— A —

1 0 0 0 0

o 0 0 J¥

a? 0 0 af J¥

0 0 a?p af 0
A 0 0 : 0
P=0¢o"'0= o BAFT 0 0 am AR B

am—AH (822 0 0] am25(422) ... 2
ammAH (222 0 0] am=25 (42 3

: 0 0 : :
e = 0] a™25 (5) ... act

0 0 0 0 0 1

Note that the row sums of P are all 1.

Since the fixed point of the proccess d’ = P - d is the straight line from d(0) to d(m), and
is independent of the entries d(1),d(2),...,d(m — 1) in the initial d, we know that as n tends to
infinity, P™ approaches the form of two non-zero columns on left and right, all other entries being
zeroes. In order to analyze the rate of convergence of this process, let us bound the value of pE;),
the (¢,7) th entry in P™. An observation we need for this purpose is that the sum of the central

m — 1 entries in any row of P is bounded from above:
m—1
Y opr<1—am,
k=1

with equality achieved at the (m — A +1) th row of P. Using this observation and the fact that the
top and bottom entries in the m — 1 central columns of P™ are zero for all n, we have the following
recursive argument:

pY = T:Z:_:llpik -pﬁjfl)
m—1
< (;::1 pik) - max. {pﬁg;‘”}
< (1-am?) C max {p "} (9)
¢ (1) )

< (1-am2)"

Hence, the magnitudes of all the entries of P™ except for those in the leftmost and rightmost
columns tend to zero rather quickly. Now let us consider the 0 th and m th columns. Due to the

11



special structure of P and the inequalities (9) we have that for all ¢, 0 < ¢ < m,

m—1
pS = o5V Y ko
k=1
< Ay m-1) (1-ams) T
and
- k
Py = < m-1)Y (1-amm?)
k=n
m—1 A\
= am—A (1 — A) )

i.e., the leftmost entries of P™ approach their limit values exponentially fast, too. A similar argu-
ment holds for the entries pEZL) of the rightmost column. We conclude that the effect of the initial
conditions (i.e., of d(1),d(2),...,d(m — 1) in dg) decays exponentially fast, and the average ant
path converges to the straight line as expressed by (6). O

4 Related Topics

We now consider several extensions to the probabilistic pursuit model.

4.1 Probabilistic Linear Pursuit

Consider two ants, the first of which, Ag, is happily hopping along a straight line parallel to the
y-axis: Ag(t) = r + jt, where r is a constant. A second ant, Aj, is chasing Ag, and both are
traveling at the same speed. Using our probabilistic pursuit model, one can get an equation for

the average trajectory of A;(t), similar to the corresponding deterministic results found in [1, pp.
251-253] and [4, pp. 113-127] .

Theorem 4 If Ag is launched from (r,0) at time 0 and is going upwards at speed 1, and if Ay is
launched from (0,0) at time 0 and is pursuing Ag according to the probabilistic pursuit model, the
average behavior of A1(t) is described by the curve

o = 08 (5®)
y(z) log (%)

Proof: Since the behavior of the ants can be described by the equations

— X.

Ao(t) T —|—]t
A1(0) 0 (10)
Aq(t) A(t = 1)+ 6(2),

where 6(t) is the random variable defined

in (2).

Since the rectilinear distance between them is

always r, the average y-coordinate of Ay at time ¢ is

Yt = Yr—1 +

t—1—y1
,

12



1

with initial condition yo = 0. Substituting a = (1 — ;), b= %, and using the fact that g = yo = 0,

it turns out that

a1+t —1)=alay—2+ T -2))+6(t-1)="---

t—1 -1
BY o Nt —k)=pa’" Y kaF
k=1 k=1

1 t
= 7‘(1——) +1 -
T

Solving (10) for z;, we get

Yt

v = avg+l=a*ystatl="-

t—1 1 _ Oét
= atwo + Z ak =
k=0

1 -«
1 1
= 7‘—7‘(1——) ,
r

T—x

y(a) = log (5

_ log (%)
log (r;1)

hence

— X.

This result is quite similar to the one obtained for continuous linear pursuit [1, p. 251] :

(e =) ,

y(z) = P log(r —a) + ¢,
where ¢, ¢’ are constants. The difference is explained by the different measures of distance involved:
in our model the ant moves toward its target with a constant speed, maintaining a constant Man-
hattan distance to it (with a constant speed) but the length of the average step it takes in the
direction of the target varies, while in [1] the pursuit is carried out with constant Euclidean ve-
locity pointed at the chased ant. Note that the Euclidean ant is asymptotically at distance r/2
behind its target, while the Manhattan ant never decreases its distance below r. See Figure 7 for

a graphic comparison of pursuit path induced by these two models.

< Insert Figure 7 here >

4.2 Probabilistic Cyclic Pursuit

Assume that A = {Ag, Ay,...,A,} is a set of ants, chasing each other cyclically, that is: Ay is
chasing Ag, Ay is chasing Ay, etc., and Ag is chasing A,,. The set A begins at positions A(0) at
time ¢t = 0 and then evolves on according to the probabilistic pursuit rules defined in the previous
section.

13



Denote by C} the Manhattan circumference of the set A:
Cr =Y 1A () = Ai(1)]
=0

where ||u — v|| denotes the Manhattan distance between points » and v. In [2] and [3] it was shown
that ants engaged in deterministic cyclic pursuit always converge to a point of mutual encounter
(and all captures are almost always simultaneous, see [7]). Here we shall show that the ants reach
a limit cycle, each ant being not more than one unit of distance away from its chaser.

Theorem 5 Ants engaged in cyclic probabilistic pursuit with initial distances dy,d>,...,d, con-
verge to a limit cycle with circumference

Z (d; mod 2).
=0

Moreover, this convergence is exponentially fast: for any given € > 0, if t > to(e) = O (log (%))
then
Prob{C; = Cy} >1—¢

Proof : Inter-ant distances never increase in probabilistic pursuit, hence C} is a non-increasing
positive, hence convergent, sequence. Arguments similar to those in the proof of Lemma 2 show
that whenever the distance between two ants is greater than 1 there is a positive probability,
bounded from below, for a decrease (by 2) in this distance, provided the pursued ants’ path is non-
monotonic. But, in the case of cyclic pursuit, the paths of all ants are obviously non-monotonic,
since they all have infinite length and are confined to the “bounding box” of the initial configuration.
Hence ', must correspond to a limiting pursuit configuration in which all distances are less than
2, proving the first part of the assertion of the Theorem.

To prove that the convergence is exponentially fast, note that, as in the proof of Lemma 2, the
inter-ant distance drops by 2 with probability higher than

(1 ) length of non monotonic run (1) Co
2 2

(since (g is an obvious upper bound on all such runs) each time a non-monotonic run occurs in the
pursued ant’s trajectory. But this happens at least once every Cj steps (since the ant must stay
within a bounding box of Manhattan perimeter of at most Cy). Hence we have

1\
Prob {CH—CO < Ct -2 | Ct > Coo} > (5) .

In order to get

Prob{Cy =Cy} >1—¢,

we must (as in Theorem 1) have ¢ of the order of log (%) ]

14



< Insert Figure 8 here >

The limit cycle may be a polygon with (up to) n 4 1 vertices, as long as the length of each
edge is exactly one unit; see Figure 8 for an example. Such a polygon is stable since in this case
each ant A;;q1 “replaces” the pursued one A;, the overall shape is preserved. Figures 9 - 14 exhibit
simulation examples of the probabilistic cyclic pursuit. For each of the initial configurations we
show the evolution of the probability distribution calculated over a large number of experiments,
as well as the actual ant locations in a single experiment. It would be interesting to investigate the
relation between the shape of the initial polygon whose vertices are 4;(0),¢=0,1,...,n, and the
shape of the limit cycle.

< Insert Figures 11 - 14 here >

5 Concluding Remarks

Many of the results of this paper continue to hold when the lag A is not held constant, but is
allowed to vary from one ant to the next. We could also allow for the chasing ant to be guided
by an ant other than the one immediately ahead. To achieve the asymptotic results, we need only
ensure that eventually the current ant is many generations removed from the first one. Also we
need to have A > 2 infinitely often at each stage of the walk.

The results discussed in this paper can be generalized to three (or more) dimensional space.
The probability of A, +; moving along each axis will, in this case, be proportional to the projection
of the vector A,, — A, 41 along this axis.

Ants obeying the probabilistic pursuit model have the property of moving, on the average, in
the same direction as a continuous pursuit. However, their speed is not constant since it depends
on the location of the chaser relative to the target. To overcome this problem, for purposes of
approximating continuous pursuit, one might consider the following Euclidean probabilistic rule of
pursuit:

. ds
P, = Prob{6,41(t+ 1) = sign(d,)} I%'yﬁiﬁf

. . d
Py = Prob{é,41(t+1)=j-sign(dy)} = % ) \/% (11)
PO — Prob {6n+1(t + 1) — 0} =1 1, |da |41y |

22+

where d,., d, are defined as before:

dy = 2p(t+ A) — 2p41(2)

dy = yn(l+ A) = yny1(1).
The additional “Fuclidization” factor does not affect the average direction of the chaser, but does
normalize its velocity to %, independent of the target’s location: it is easy to verify that P, + P, +

Py =1 and that /P2 + Py2 = % It is an open question whether some or all of our results hold for

this model. The main difficulty is caused by the non-zero probability for the chaser to stay at its
current location, which means that the pursuit distance is not monotonically decreasing, as it is in
the Manhattan case.
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Pr(up)=dy/d

An+1 T—»

Pr (right)=dx/d dx d=dx-+dy

Figure 1: The probabilistic model for ant pursuits on Z?
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ant A_O ant A_1 ant A_2

ant A_S5 ant A_10 ant A_20

ant A_50 ant A_83 ant A_100

Probabilistic chain pursuit of 100 ants from (0,0) to (20,20)

Gray level - Distribution of sites visited by sample ants
Bold lines - the average path in 200 simulation runs
Initial Manhattan distance = 5

Figure 2: Probability distribution with a simple 'maze’ initial path
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ant A_O ant A_1 ant A_2

ant A_S5 ant A_10 ant A_20

ant A_80 ant A_160 ant A_240

Probabilistic chain pursuit of 240 ants from (0,0) to (20,20)

Gray level - Distribution of sites visited by sample ants
Bold lines - the average path in 100 simulation runs
Initial Manhattan distance = 5

Figure 3: Probability distribution with yet another 'maze’ initial path
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]

ant A_O ant A_1

p

ant A_2

P

[

ant A_S5 ant A_10 ant A_20

ant A_50 ant A_83 ant A_100
Probabilistic chain pursuit of 100 ants from (0,0) to (20,20)
Gray level - Distribution of sites visited by sample ants
Bold lines - the average path in 200 simulation runs

Initial Manhattan distance = 5

Figure 4: Probability distribution with a self-crossing initial path
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t1
An+(1 )

Possible locations for
when the M—distance 2\ is given

h
S ‘; """""""""""""""""""""
A (t1) .
n+1 .,
| <
™
| At —A (D) |
n n+l
of a non-monotonic ant path

Figure 5: An illustration
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n = 20, width = 0.30 n = 30, width = 0.27 = 40, width = 0.25

n = 60, width = 0.20 n = 80, width = 0.15 n = 100, width = 0.14

n =120, width = 0.13 n = 180, width = 0.11 n = 300, width = 0.08

Stationary distribution of paths from (0,0) to (2n,n)
Gray level - Distribution of sites visited by sample ants

Width defines the strip where 80% of the probability is concentrated

Figure 6: Line widths for stationary distribution when a = 2b
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161 E
Manhattan vs. Euclidean Pursuit

141 ]

12f X-X pursued +

10 +-+ Manhattan pursuer 3

0-0 Euclidean pursuer

Figure 7: Comparison of the Manhattan and Euclidean models of pursuit
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Figure 8: A possible limit cycle for a cyclic pursuit
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t = 37 t =50 t = 62
t =75 t = 87 t = 100

Cyclic ants pursuit
Number of Ants = 8; Time = 100

Number of experiments = 50;

Figure 9: Probability distribution in cyclic pursuit - initial configuration 1
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t =74 t 86 t 99

Cyclic ants pursuit
Number of Ants = 8; Time = 100
Result of one experiment out of 50;

Initial M-distances 13 14 13 20 47 54

Il
—

Final M-distances

Il
—
-
o
[
o
[
o

Figure 10: A single run of cyclic pursuit - initial configuration 1

26



Cyclic
Number

Number

ants pursuit

of Ants = 8; Time

of experiments

Figure 11: Probability distribution in cyclic pursuit - initial configuration 2




t =0 t =14 t = 29
t = 44 t = 59 t = 74
< s .
t = 89 t = 104 t =119
Cyclic ants pursuit
Number of Ants = 8; Time = 120
Result of one experiment out of 50;
Initial M-distances = [ 20 20 20 20 20 20 20 20
Final M-distances = [ 0 0 0 0 0 0 0 0

Figure 12: A single run of cyclic pursuit - initial configuration 2
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L
S
t = 45 "t =60 t = 175
o ) )
t = 90 t = 105 t = 120

Cyclic ants pursuit
Number of Ants = 8; Time = 120

Number of experiments = 50;

Figure 13: Probability distribution in cyclic pursuit - initial configuration 3
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t =0 t =14 t = 29

ol =
t = 44 t = 59 t = 74

2+ 32

t = 89 t = 104 t =119
Cyclic ants pursuit
Number of Ants = 8; Time = 120
Result of one experiment out of 50;
Initial M-distances = [ 39 41 39 39 41 39 38 38
Final M-distances = [ 1 1 1 1 1 1 0 0

Figure 14: A single run of cyclic pursuit - initial configuration 3
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