
(to appear in The American Mathematical Monthly)Probabilistic Pursuits on the GridA.M. Bruckstein , C.L. Mallows , and I.A. Wagner1 Introduction: Probabilistic PursuitThe paths of a sequence of a(ge)nts engaged in a sequence of continuous pursuits converge tothe straight line between the origin and destination [2]. We consider a discrete setting where thea(ge)nts are only allowed to visit grid points and chase each other according to a probabilistic ruleof motion, and prove a similar result: the average paths of ants in a chain of probabilistic pursuitconverge rapidly to a straight line. This discrete model of pursuit leads to interesting results alsoin the context of linear and cyclic pursuits.Assume that a sequence of ants A0;A1;A2; : : : are released from the origin at times t =0;�; 2�; : : :, (� being an integer > 1), and each ant moves on the integer grid in the plane sothat An+1 chases or pursues An according to a probabilistic rule de�ned in the sequel. For sake ofsimplicity, consider that each ant measures time from its moment of release: if An+1 is at time tof its motion (i.e., on the t th point of its trajectory), then An is at time (t +�). A pursuing antAn+1 stays one unit of time at a grid point An+1(t) = (xn+1(t); yn+1(t)). Then it looks around, anddecides where to move next according to the location An(t+�) = (xn(t+�); yn(t+�)) of thepursued ant. Ant locations on the grid will be encoded as complex numbers: An(t) 4= xn(t) + jyn(t),where j = p�1.Probabilistic pursuit is de�ned by the following rule. An+1 chooses its next position as one of itsfour nearest neighbor-points on the grid, under a probability distribution determined by its relativeposition with respect to the pursued ant. ThusAn+1(t+ 1) = An+1(t) + �n+1(t+ 1); (1)where �n+1(�) are random variables taking values in f1;�1; j;�jg according toProb f�n+1(t+ 1) = sign(dx)g = jdxjdProb f�n+1(t+ 1) = j � sign(dy)g = jdyjd (2)where dx; dy are de�ned as dx = xn(t+�)� xn+1(t)dy = yn(t +�)� yn+1(t)1



and d = jdxj + jdyj is the \Manhattan distance" (the Manhattan norm of x + jy is de�ned askx+ jyk def= jxj + jyj) between successive ants (see Figure 1). If d drops to zero at some timeduring An+1's pursuit of An, the ants merge and continue An's pursuit of An�1. The precedingequations de�ne a probabilistic pursuit in the complex plane, with pursuit steps biased accordingto the relative locations of the pursuer and pursued. The rule is trivial if � = 1, since then thepursuing ant follows the leader exactly.< Insert Figure 1 here >Figures 2 - 4 display simulation results of probabilistic pursuits for various initial trajectories.In each of these simulations we ran many pursuits with identical trajectories for A0, starting at(0; 0) and ending at some grid point (a; b). The �gures show the distribution of locations visited bycertain ants, the grey level of each pixel being proportional to the number of times the ant visitedthat location. The ensemble-averaged path of the sample ants is depicted as a bold curve.< Insert Figures 2-4 here >2 Path Convergence to Straight LinesAssume that the �rst ant A0 travels along an arbitrary grid path from the origin to a+ jb, whereit stops (without loss of generality we assume that a � 0; b � 0). Then, for each n � 0, An+1pursues An following the probabilistic pursuit rule given by (1) and (2). Let us de�ne Ln as the(rectilinear) length of this path: Ln = TnXt=0 kAn(t + 1)�An(t)k ;which equals Tn - the total number of steps in the path of the n th ant.We shall show that the pursuit paths converge, in a sense, to the \straightest" line on the gridconnecting the source 0 to the destination a + jb This will be done in three stages: �rst we showthat for any initial grid path taken by A0 the pursuit trajectories eventually become con�ned tothe rectangle de�ned by 0 and a + jb, and are monotonic (of length a + b). Then we show thatwithin the rectangle all monotonic paths have, in the limit, equal probability. This means that thepoints near the straight diagonal are more likely to be visited, and that the straight diagonal from0 to a+ jb is the average path in the limit. Then we show that the average path converges to thestraight line very fast.2.1 The Pursuit Paths become MonotonicWe �rst show that the trajectoryAn(t) eventually becomes monotonic. A discrete path is monotonicif it has no \backtracking" - that is, �(t) 2 f1; jg for all t during the pursuit.Lemma 1 Ln, the Manhattan path-lengths of ants engaged in probabilistic pursuit, is a positive,non-increasing (hence convergent) sequence.Proof: Since Tn = Ln, we show the claimed properties for Tn. Ant An+1 starts its journey exactly� units of time after An has started. After Tn units of time, An stops at the destination and atthis point An+1 has made Tn�� steps along its trajectory. According to the probabilistic pursuit2



rules, the distance between ants can never increase, hence when An stops, its pursuer An+1 is ata distance � � away from the destination. In the following �f � � units of time, An+1 decreasesits distance from the destination by exactly one per unit of time. Therefore we haveLn+1 = Tn+1 = Tn ��+�f � Tn ��+� = Tn = Lnand since the sequence Ln is also bounded below by a + b, it converges. 2We next claim that if the path-length of an ant is greater than a+b, there is a positive probabilitythat the path-length of the next ant decreases.Lemma 2 Prob fLn+1 � Ln � 2 jLn > a+ bg � ��� 1� �L0Proof: Since an ant starts at 0 and �nally arrives at a+ jb, it is clear that for all n we must haveTnXt=0 �n(t) = a+ jb:From the de�nition of probabilistic pursuit we see that �n(t) 2 f�1;�jg, and if Ln > a + b (aswe assume) the path of An is necessarily non-monotonic, that is: there exist times t1; t2 such that�n(t2) = ��n(t1). Let us take (t1; t2) to be the earliest such interval, so that t2 is the �rst time(after t1) when An makes a \backtracking" ; see Figure 5, in which we assume (without loss ofgenerality) that at time t1 the ant An moves to the left, then up, and at time t2 to the right.Since we require t2 to be the �rst \backtracking",An moves upwards monotonically between t1+1and t2 � 1, for h steps, where h = t2 � t1 � 2. Since An+1(t) is � steps behind An, at time t1 itmust be somewhere on the boundary of the square RVQPTSWR. Now from the Figure it is clearunder what conditions the distance between the ants decreases during the time interval (t1; t2).This happens if either (i) An+1(t) is located to the left of WT , in which case the distance decreasesat time t1, or (ii) it is located to the right of V , in which case the distance decreases at time t2.Also, if An+1(t) is on SPQ the distance decreases sometime between t1 and t2. The only chance topreserve the distance is when An+1 happens to be located on the arc WRV at time t1; in this caseAn+1 may �rst get to PR, and then follow An one step to the left of PR and later (after t2) tothe right, without ever shortening the distance between them. However this is not sure to happen.Wherever An+1 starts from, there is the possibility that after it reaches PR it never makes a stepto the left between t1 and t2. Let us denote by I the event \An+1, once it has arrived on the linePR, stays there (at least) until time t2". As explained previouslyProb fLn+1 < Lng � Prob fIg :To obtain a lower bound on the probability that I occurs, note that the probability thatAn+1 doesnot move left in a certain time in (t1; t2), according to the probabilistic pursuit rule, is proportionalto the ratio of dy ((�� 1) in our case) to dx + dy (� in our case). The event of staying on the linePR should repeat t2 � t1 times (or fewer if An+1 arrives on the line PR later than t1). HenceProb fIg � ��� 1� �t2�t1 ; (3)3



which is the probability that An+1 stays on the line PR during an interval that is not longer than(t1; t2), given that An is hopping along the line TW . This e�ort by An+1 is eventually rewardedat time t2, when An turns right and the distance decreases by 2. Clearly,t2 � t1 � Tn = Ln � L0;and hence the probability that the length of the (n+1)st path is shorter than that of the n th pathby two (or more) units is bounded below by ((�� 1)=�)L0 . 2< Insert Figure 5 here >Note that if the distance between ants An+1 and An drops, it drops in quanta of two if An isnot stationary at a + jb. The proof of Lemma 2 also shows that chasing an ant that moves alonga non-monotonic path induces a positive probability for a drop in the distance between the ants.The next theorem shows that the pursuit path eventually becomes monotonic: Ln converges toa+b with probability 1. In general, a sequence of random variables fXng converges with probability1 (or almost surely) to a value X (we write Xn a:s:! X) if, given �; � > 0, there exists an n0(�; �) suchthat for all n > n0; Prob fjXn �X j < �g > 1� �:Theorem 1 There exist constants k1; k2 > 0 such that, given � > 0, ifn > n0(�) = k1 + k2 � log�1��then ProbfLn = a + bg > 1� �;where Ln is the length of the path of An in a probabilistic pursuit from the origin to a + jb.Proof: If Ln > a + b then there must have been at most s0 = [L0 � (a+ b)]=2� 1 ants in thesequence A0; : : : ;An for which a drop (of 2) in the distance to the pursued ant occured, sincea decrease in the distance between consecutive ants implies a decrease in the path length of thepursuing ant. Hence, there were at least n� s0 ants with no decrease in distance. Lemma 2ensures that each ant path can be viewed as the outcome of an experiment in which the distance-drop event occurs with a probability of at least p = ((�� 1)=�)L0 . A sequence of ants engagedin a probabilistic pursuit is a series of trials, with outcomes that are either a \success" - a drop inthe inter-ant distance (which has a probability at least p), or a \failure" - the distance does notchange. De�ne A to be the event \s0 or fewer distance-drops in a chain of n ants".Prob fLn > a+ bg = Prob fAg = s0Xs=0Prob fs successes up to ng� (1� p)n +  n1 ! (1� p)n�1 + � � �+  ns0 ! (1� p)n�s0= (1� p)n s0Xs=0 ns ! (1� p)�s� (1� p)n  ns0 ! s0Xs=0(1� p)�s (for n > 2s0)� (1� p)n  ns0 ! s0(1� p)s0 � (1� p)nns0C1 = C1qnnC24



Here C1; C2, and q < 1 are constants, independent of n and �. Since limn!1 C1 � qn � nC2 = 0, thereexist constants C3; C4 such thatfor all n > C3; C1 � qn � nC2 < C4 � qn=2and in order to get Prob fAg < C4 � qn=2 < �it is su�cient to have n > 2 logC4log 1q + 2log 1q log�1�� : 22.2 The Stationary Path-Distribution is UniformThe paths followed by successive ants form a Markov chain, with the state-space being all pathsfrom the origin to a+jb. Theorem 1 ensures that all paths longer thanm = a+b are transitory. If werestrict to paths of length exactly m, we shall show that the chain is irreducible and aperiodic (andtherefore ergodic), with the stationary distribution being uniform. If the initial path is monotone,the rule (2) has the following interpretation, which greatly simpli�es some of the proofs we o�er:Suppose we have a supply of black and white balls, and a series of urns U0;U1;U2; : : :,which initially are all empty. At time t = 1; 2; : : : ; a + b an agent A0 places a ball,either white or black, into U0. At each time �;� + 1; : : : ; agent A1 takes a ball atrandom from U0 (which at time � contains � balls) and places it in U1. At each time2�; 2�+ 1; : : : ; agent A2 takes a ball at random from U1 and places it in U2, and soon. For each urn, the number of balls it contains starts by rising from zero to �, staysthere a while, and then decreases to zero.This description is equivalent to that of probabilistic pursuit, if we take a white ball for a right-stepand a black ball for an up-step, and identify the position An(t) with w+ jv where w (respectively,v) is the total number of white (respectively, black) balls this agent has seen by time t. The numberof white (black) balls in urn Un�1 corresponds to the x (y) position of An�1 relative to An. IfAn(t) = w+ jv and An�1(t) = w+ jv+x+ jy, so that the urn Un�1 contains x white and y blackballs, then the probability that An chooses a white ball (so that An(t + 1) = w + 1 + jv) is justx=(x+ y).Let S be the set of monotonic paths from the origin to a+ jb, and letM be the Markov chainwith state-space S and transition probabilities induced by the probabilistic pursuit procedure.We �rst show thatM is irreducible.Lemma 3 For any two paths s; s0 2 S there is a sequence of positive-probability transitions thatleads from s to s0.Proof: One can interpret a monotonic path from 0 to a+ jb as a sequence of a+ b characters fromthe set fu; rg, where r refers to a \right" move and u to an \up" move. There are exactly a r'sand b u's. It is easy to see that if, in the target's path s, there is a u at time t, followed by an r attime t+1, then there is a positive probability that the pursuer's path s0 will be equal to s with the5



only exception that s0 has an r at time t and a u at time t + 1. The set S of monotonic paths isclosed under such \
ip" operations - given a path s 2 S, any other path in S can be reached froms by a sequence of (positive probability) \
ip" transitions. Hence the chain is irreducible. 2It is easy to see thatM is aperiodic:Lemma 4 For any path s 2 S, pss > 0.Proof: There is always some positive probability that the pursuer follows the pursued's pathexactly. 2Now we showLemma 5 The uniform distribution over S is stationary.Proof: The number of di�erent paths from the origin to a+ jb isjSj =  ma !:For the uniform distribution of paths, the position at time t (starting from the origin at t = 0 ) isx+ jy (where x+ y = t) with probabilityProb fxjm; t; ag= 1jSj  tx ! m� ta� x ! : (4)This is the hypergeometric distribution, which governs the number of white balls (x) in a randomsample of t balls chosen from an urn that contains a white and b black balls. Thus we can generatea random path by choosing balls sequentially at random from an urn that initially has a white andb black balls.Next consider the case when t+� < a+b. Suppose the path of the pursued (\target") ant,A1,is chosen uniformly from S, e.g., by drawing from an urn with a white and b black balls, and movingright on white and up on black. Using the \urn" representation, we can obtain the distributionover all possible paths for the k th ant by considering a sequence of urns U0;U1; : : : ;Uk ; : : : withthe black and white balls being moved downstream according to the following rule:Start with U0 containing a white and b black balls. At each time unit draw a ball atrandom from U0 and place it into U1 until � balls are accumulated there. Then alsostart moving randomly chosen balls fromU1 toU2 until � balls are in U2 and so forth.The distribution of paths for the k th ant is given by the distribution of ball-color sequences seenentering the urn Uk in this process. Disregarding the color of balls, by symmetry all (a + b)!sequences of balls are equally probable to appear as inputs to Uk .Hence the (a+ b)!a!b! =  a+ ba !possible sequences of black and white balls are also equiprobably seen entering the k th urn 26



This property is strongly related to the concept of exchangeability, de�ned as follows (see [6,pp. 97-105]): A countable sequence of events V1; V2; : : : is exchangeable if for any possible choice1 � i1 < i2 < � � � < ik of k subscripts, Prob (Vi1 \ Vi2 \ � � � \ Vik) = pk depends only on k but noton the actual subscripts ij . If the event Vi is de�ned as \a white ball enters the last urn at timei", then the probability of having a such events does not depend on the order in which they occur,hence the sequence is exchangeable and all paths are equiprobable.The preceding result is quite general. In fact, if we take a sequence of urns with a white andb black balls in the �rst one and move them downstream, choosing balls at random from Ui to beplaced into Ui+1, according to any given schedule ensuring that all balls pass through each urn,then all the possible color sequences of balls entering each urn have the same probability. Thisshows that for monotone pursuits one can vary the inter-ant intervals arbitrarily, and the paths ofthe ants engaged in pursuit will be uniformly distributed if the �rst ant chooses a path at randomfrom (0; 0) to (a; b). This also generalizes to higher dimensions (= more colors for balls). Thus thepaths generated by this rule are also governed by a uniform stationary distribution.From lemmas 3, 4, and 5 we haveTheorem 2 M is an ergodic Markov chain and its unique stationary distribution is uniform.Two immediate corollaries of Theorem 2 are:Corollary 1 Assuming stationarity, the average path is the straight line from 0 to a+ jb.Proof: A standard result for the hypergeometric distribution (4) is that E [x jm; t; a ] = ta=m. 2Corollary 2 Assuming stationarity, ants are usually very near the average path.Proof: For the hypergeometric distribution (4), the variance of x isV [x jm; t; a] = t(m� t)ab=(m� 1)m2:Thus if a = �m; b = �m; and t = �m (where �+ � = 1) we have:V [x(t)] = m���(1� �) +O(1):Suppose m is large. We can bound the probability that at time t the ant is outside a region ofwidth m� around the average, � being a number in (12 ; 1). Using Chebyshev's inequality 1Prob�����x(t)� atm ���� � m�� = Prob(����x(t)� atm ����2 � m2�)� V [x(t)]m2� = ���(1� �)m1�2� +O(m�2�) as m!1�! 0The normalized width of the strip with positive probability is n�=�m, which clearly converges tozero when m! 1. See Figure 6 for the line width in the stationary distributions for various valuesof m. 2< Insert Figure 6 here >1Chebyshev's inequality ([5, p. 376]) says: let X be a random variable with expected value E [X] and varianceV [X]. Then (Prob�(X �E [X])2 � �	 � V [X] =� for any � > 0.7



3 Convergence to the straight line is fastWe now show that the average of the ant-paths converges to the straight line between source anddestination exponentially fast.In the following, we ignore the initial non-monotonic transient, and assume that the leading antA0 executes an arbitrary monotonic path. Let us de�ne a new entity Dn (a determin-ant?) whichprogresses along the average path of An, i.e. such that at each time t, Dn(t) = E[An(t)]. ThenDn+1(t+ 1) = Dn+1(t) + Dn(t+ �)�Dn+1(t)� : (5)To justify this equation, note that the expectation of the step made by An+1 at time t isE[An+1(t+ 1)]� An+1(t)] = E[An(t+ �)]�E[An+1(t)]� :Let us denote the average path of the antAn by the complex vector d = (d(0); d(1); d(2); : : : ; d(m)),where m = a + b, and denote the path of the pursuing ant by d0 = (d0(0); d0(1); d0(2); : : : ; d0(m)).We measure the distance between these two paths by the maximum distance between any of theircomponents, i.e., dist(d;d0) = max0�i�m ��d(i)� d0(i)�� ;where j�j stands for the Euclidean distance. Now we can show that the average path approaches itslinear limit exponentially fast.Theorem 3 dist(dn;d1) � m(m� 1)�m�� �1� �m���n ; (6)where � = (�� 1)=�.Proof: First we show that the limit average path, d1, is indeed the straight line. We can writethe evolution equations as0 � t � m�� : d0(t+ 1)� d0(t) = d(t+�)�d0(t)�m�� < t < m : d0(t + 1)� d0(t) = d(m)�d0(t)m�t (7)with boundary conditions d(0) = d0(0) = 0; d(m) = d0(m) = a+ jb;where the denominators represent the Manhattan distances between An and An+1. This distanceis initially �, and stays constant until An reaches a+ jb, whereupon the distance decreases by oneper unit of time. Hence we can relate the vectors d and d0 in the following way:8



d0(0) = d(0)�d0(1) + (1��)d0(0) = d(�)�d0(2) + (1��)d0(1) = d(�+ 1)...�d0(m��+ 1) + (1��)d0(m��) = d(m)(�� 1)d0(m��+ 2) + (2��)d0(m��+ 1) = d(m)(�� 2)d0(m��+ 3) + (3��)d0(m��+ 2) = d(m)...2d0(m� 1) + (�1)d0(m� 2) = d(m)d0(m) = d(m) (8)A �xed point of this linear iterative process is a vector d such that d0 = d. In such a vector,d(t+ 1)� d(t) must be constant for all t. Otherwise, assume that there is a solution for which thesequence d(t + 1) � d(t) is not constant, and denote x(t) = <d(t); the same argument holds fory(t) = =d(t). Denote by t0 the smallest integer in [0; m�2] such that the di�erence x(t0+1)�x(t0)is an extremum - either a minimum or a maximum. This di�erence is necessarily nonnegative sincethe path is monotonic. From (7) it follows thatx(t0 + 1)� x(t0) = x(t0 + �)� x(t0)� = 1� �Xk=1 (x(t0 + k)� x(t0 + k � 1))= 1� �Xk=1 jx(t0 + k)� x(t0 + k � 1)j :Hencemin1�k�� jx(t0 + k)� x(t0 + k � 1)j < jx(t0 + 1)� x(t0)j < max1�k�� jx(t0 + k)� x(t0 + k � 1)j ;where � = minf�; m � t0g > 1. The last inequality is strict since not all the di�erences areequal. But this contradicts our assumption that x(t0 + 1) � x(t0) is an extremum. Moreover, t0cannot equal m� 1, since then both the minimum and maximum would occur at the same index,contradicting the assumption that the sequence is non-constant.Since d(0) and d(m) are not a�ected by the iterative process, the vector dn converges to a limitthat is a sequence of points equi-spaced on the straight line from d(0) to d(m).We next show that the distance from the limit decreases exponentially fast. The set of di�erenceequations (8) can be written as: �d0 = 	d;
9



where the matrices � and 	 are�(m+1)�(m+1) =  � � �!0BBBBBBBBBBBBBBBBBBB@
1 0 : : : : : : 01�� � 0 : : : : : : 00 1�� � 0 : : : : : : 0... . . . ...: : : 1�� � : : ...: : : : 2�� �� 1 : ...... ...... �1 2 ...0 : : : 0 1

1CCCCCCCCCCCCCCCCCCCA "�� 1#and 	(m+1)�(m+1) =  � � �!0BBBBBBBBBBBBBBBBB@ 1 0 : : : 0 0 0 0 : : : 00 0 : : : 0 1 0 0 : : : 00 0 : : : 0 0 1 0 : : : 0... . . . ...: : : : : : 1 0: : : : : : 0 1... 1... ...0 : : : 1
1CCCCCCCCCCCCCCCCCA "�� 1#Note that � and 	 are independent of the speci�c path. Hence, the dynamics of the averagedant-paths is described by d0 = ��1 �	 � d = P � di.e., a �xed matrix operator repeatedly acting on the average ant-path vector. Let us now sketchthe form of this operator and derive a bound on its second-largest eigenvalue.With some algebraic manipulations, it can be found that��1 = 0BBBBBBBBBBBBBBBBBBBBBBB@

1 0� ��2 �� ��3 �2� �� �... . . .�m��+1 �m��� : : : ��m��+1 ���2��1� �m��� ���2��1� � � � � ���2��1� 1��1�m��+1 ���3��1� �m��� ���3��1� � � � � ���3��1� � ��3(��1)(��2)� 1��2... . . .�m��+1 � 1��1� �m��� � 1��1� � � � � � 1��1� � 1(��1)(��2)� � � � 120 0 : : : 0 1
1CCCCCCCCCCCCCCCCCCCCCCCA10



with � = (�� 1)=� and � = 1=�, and henceP = ��1	 =  � � �!0BBBBBBBBBBBBBBBBBBBBBBBB@
1 0 : : : 0 0 0� 0 : : : 0 ��2 0 : : : 0 �� �... 0 : : : 0 �2� �� ��m�� 0 : : : 0 ... . . . 0�m��+1 0 : : : 0 �m��� : : : ��m��+1 ���2��1� 0 : : : 0 �m��� ���2��1� : : : 2��m��+1 ���3��1� 0 : : : 0 �m��� ���3��1� : : : 3�... 0 : : : 0 ... ...�m��+1 � 1��1� 0 : : : 0 �m��� � 1��1� : : : ��1�0 0 : : : 0 0 : : : 0 1

1CCCCCCCCCCCCCCCCCCCCCCCCA :Note that the row sums of P are all 1.Since the �xed point of the proccess d0 = P � d is the straight line from d(0) to d(m), andis independent of the entries d(1); d(2); : : : ; d(m� 1) in the initial d, we know that as n tends toin�nity, Pn approaches the form of two non-zero columns on left and right, all other entries beingzeroes. In order to analyze the rate of convergence of this process, let us bound the value of p(n)ij ,the (i; j) th entry in Pn. An observation we need for this purpose is that the sum of the centralm� 1 entries in any row of P is bounded from above:m�1Xk=1 pik � 1� �m�� ;with equality achieved at the (m��+1) th row of P. Using this observation and the fact that thetop and bottom entries in the m� 1 central columns of Pn are zero for all n, we have the followingrecursive argument: p(n)ij = m�1Xk=1 pik � p(n�1)kj�  m�1Xk=1 pik! � max0<k<mnp(n�1)kj o� �1� �m��� � max0<k<m np(n�1)kj o (9)� �1� �m���2 � max0<k<mnp(n�2)kj o...� �1� �m���n :Hence, the magnitudes of all the entries of Pn except for those in the leftmost and rightmostcolumns tend to zero rather quickly. Now let us consider the 0 th and m th columns. Due to the11



special structure of P and the inequalities (9) we have that for all i, 0 � i � m,p(n)i0 = p(n�1)i0 + m�1Xk=1 p(n�1)ik � pk0� p(n�1)i0 + (m� 1) �1� �m���n�1 ;and ���p(n)i0 � p(1)i0 ��� � (m� 1) 1Xk=n �1� �m���k= m� 1�m�� �1� �m���n ;i.e., the leftmost entries of Pn approach their limit values exponentially fast, too. A similar argu-ment holds for the entries p(n)im of the rightmost column. We conclude that the e�ect of the initialconditions (i.e., of d(1); d(2); : : : ; d(m � 1) in d0) decays exponentially fast, and the average antpath converges to the straight line as expressed by (6). 24 Related TopicsWe now consider several extensions to the probabilistic pursuit model.4.1 Probabilistic Linear PursuitConsider two ants, the �rst of which, A0, is happily hopping along a straight line parallel to they-axis: A0(t) = r + jt, where r is a constant. A second ant, A1, is chasing A0, and both aretraveling at the same speed. Using our probabilistic pursuit model, one can get an equation forthe average trajectory of A1(t), similar to the corresponding deterministic results found in [1, pp.251-253] and [4, pp. 113-127] .Theorem 4 If A0 is launched from (r; 0) at time 0 and is going upwards at speed 1, and if A1 islaunched from (0; 0) at time 0 and is pursuing A0 according to the probabilistic pursuit model, theaverage behavior of A1(t) is described by the curvey(x) = log � r�xr �log � r�1r � � x:Proof: Since the behavior of the ants can be described by the equationsA0(t) = r + jtA1(0) = 0 (10)A1(t) = A1(t� 1) + �(t);where �(t) is the random variable de�ned in (2). Since the rectilinear distance between them isalways r, the average y-coordinate of A1 at time t isyt = yt�1 + t� 1� yt�1r12



with initial condition y0 = 0. Substituting � = �1� 1r�, � = 1r , and using the fact that x0 = y0 = 0,it turns out that yt = �yt�1 + �(t� 1) = �(�yt�2 + �(t� 2)) + �(t� 1) = � � �= � t�1Xk=1�k�1(t� k) = ��t�1 t�1Xk=1 k��k= r�1� 1r�t + t � r:Solving (10) for xt, we get xt = �xt�1 + 1 = �2xt�2 + � + 1 = � � �= �tx0 + t�1Xk=0�k = 1� �t1� �= r � r�1� 1r�t ;hence y(x) = log � r�xr �log � r�1r � � x: 2This result is quite similar to the one obtained for continuous linear pursuit [1, p. 251] :y(x) = (x� r)24c � c2 log(r � x) + c0;where c; c0 are constants. The di�erence is explained by the di�erent measures of distance involved:in our model the ant moves toward its target with a constant speed, maintaining a constant Man-hattan distance to it (with a constant speed) but the length of the average step it takes in thedirection of the target varies, while in [1] the pursuit is carried out with constant Euclidean ve-locity pointed at the chased ant. Note that the Euclidean ant is asymptotically at distance r=2behind its target, while the Manhattan ant never decreases its distance below r. See Figure 7 fora graphic comparison of pursuit path induced by these two models.< Insert Figure 7 here >4.2 Probabilistic Cyclic PursuitAssume that A = fA0;A1; : : : ;Ang is a set of ants, chasing each other cyclically, that is: A1 ischasing A0, A2 is chasing A1, etc., and A0 is chasing An. The set A begins at positions A(0) attime t = 0 and then evolves on according to the probabilistic pursuit rules de�ned in the previoussection. 13



Denote by Ct the Manhattan circumference of the set A:Ct = nXi=0 kAi+1(t)�Ai(t)kwhere ku � vk denotes the Manhattan distance between points u and v. In [2] and [3] it was shownthat ants engaged in deterministic cyclic pursuit always converge to a point of mutual encounter(and all captures are almost always simultaneous, see [7]). Here we shall show that the ants reacha limit cycle, each ant being not more than one unit of distance away from its chaser.Theorem 5 Ants engaged in cyclic probabilistic pursuit with initial distances d1; d2; : : : ; dn con-verge to a limit cycle with circumferenceC1 = nXi=0(di mod 2):Moreover, this convergence is exponentially fast: for any given � > 0, if t > t0(�) = O �log �1���then ProbfCt = C1g > 1� �:Proof : Inter-ant distances never increase in probabilistic pursuit, hence Ct is a non-increasingpositive, hence convergent, sequence. Arguments similar to those in the proof of Lemma 2 showthat whenever the distance between two ants is greater than 1 there is a positive probability,bounded from below, for a decrease (by 2) in this distance, provided the pursued ants' path is non-monotonic. But, in the case of cyclic pursuit, the paths of all ants are obviously non-monotonic,since they all have in�nite length and are con�ned to the \bounding box" of the initial con�guration.Hence C1 must correspond to a limiting pursuit con�guration in which all distances are less than2, proving the �rst part of the assertion of the Theorem.To prove that the convergence is exponentially fast, note that, as in the proof of Lemma 2, theinter-ant distance drops by 2 with probability higher than�12�length of non monotonic run > �12�C0(since C0 is an obvious upper bound on all such runs) each time a non-monotonic run occurs in thepursued ant's trajectory. But this happens at least once every C0 steps (since the ant must staywithin a bounding box of Manhattan perimeter of at most C0). Hence we haveProb fCt+C0 � Ct � 2 j Ct > C1g � �12�C0 :In order to get Prob fCt = C1g > 1� �;we must (as in Theorem 1) have t of the order of log �1��. 214



< Insert Figure 8 here >The limit cycle may be a polygon with (up to) n + 1 vertices, as long as the length of eachedge is exactly one unit; see Figure 8 for an example. Such a polygon is stable since in this caseeach ant Ai+1 \replaces" the pursued one Ai, the overall shape is preserved. Figures 9 - 14 exhibitsimulation examples of the probabilistic cyclic pursuit. For each of the initial con�gurations weshow the evolution of the probability distribution calculated over a large number of experiments,as well as the actual ant locations in a single experiment. It would be interesting to investigate therelation between the shape of the initial polygon whose vertices are Ai(0), i = 0; 1; : : : ; n, and theshape of the limit cycle. < Insert Figures 11 - 14 here >5 Concluding RemarksMany of the results of this paper continue to hold when the lag � is not held constant, but isallowed to vary from one ant to the next. We could also allow for the chasing ant to be guidedby an ant other than the one immediately ahead. To achieve the asymptotic results, we need onlyensure that eventually the current ant is many generations removed from the �rst one. Also weneed to have � � 2 in�nitely often at each stage of the walk.The results discussed in this paper can be generalized to three (or more) dimensional space.The probability ofAn+1 moving along each axis will, in this case, be proportional to the projectionof the vector An � An+1 along this axis.Ants obeying the probabilistic pursuit model have the property of moving, on the average, inthe same direction as a continuous pursuit. However, their speed is not constant since it dependson the location of the chaser relative to the target. To overcome this problem, for purposes ofapproximating continuous pursuit, one might consider the following Euclidean probabilistic rule ofpursuit: Px = Prob f�n+1(t+ 1) = sign(dx)g = 12 � jdxjpdx2+dy2Py = Prob f�n+1(t+ 1) = j � sign(dy)g = 12 � jdy jpdx2+dy2P0 = Prob f�n+1(t+ 1) = 0g = 1� 12 � jdxj+jdy jpd2x+d2y (11)where dx; dy are de�ned as before:dx = xn(t+�)� xn+1(t)dy = yn(t+ �)� yn+1(t):The additional \Euclidization" factor does not a�ect the average direction of the chaser, but doesnormalize its velocity to 12 , independent of the target's location: it is easy to verify that Px + Py +P0 = 1 and that qP 2x + P 2y = 12 . It is an open question whether some or all of our results hold forthis model. The main di�culty is caused by the non-zero probability for the chaser to stay at itscurrent location, which means that the pursuit distance is not monotonically decreasing, as it is inthe Manhattan case. 15
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Figure 1: The probabilistic model for ant pursuits on Z2
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Probabilistic chain pursuit of 100 ants from (0,0) to (20,20)

Gray level - Distribution of sites visited by sample ants

Bold lines - the average path in 200 simulation runs

Initial Manhattan distance = 5

ant A_0 ant A_1 ant A_2

ant A_5 ant A_10 ant A_20

ant A_50 ant A_83 ant A_100

Figure 2: Probability distribution with a simple 'maze' initial path18



Probabilistic chain pursuit of 240 ants from (0,0) to (20,20)

Gray level - Distribution of sites visited by sample ants

Bold lines - the average path in 100 simulation runs

Initial Manhattan distance = 5

ant A_0 ant A_1 ant A_2

ant A_5 ant A_10 ant A_20

ant A_80 ant A_160 ant A_240

Figure 3: Probability distribution with yet another 'maze' initial path19



Probabilistic chain pursuit of 100 ants from (0,0) to (20,20)

Gray level - Distribution of sites visited by sample ants

Bold lines - the average path in 200 simulation runs

Initial Manhattan distance = 5

ant A_0 ant A_1 ant A_2

ant A_5 ant A_10 ant A_20

ant A_50 ant A_83 ant A_100

Figure 4: Probability distribution with a self-crossing initial path20
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Stationary distribution of paths from (0,0) to (2n,n)

Gray level - Distribution of sites visited by sample ants

Width defines the strip where 80% of the probability is concentrated

n = 20, width = 0.30 n = 30, width = 0.27 n = 40, width = 0.25

n = 60, width = 0.20 n = 80, width = 0.15 n = 100, width = 0.14

n = 120, width = 0.13 n = 180, width = 0.11 n = 300, width = 0.08

Figure 6: Line widths for stationary distribution when a = 2b22
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Figure 8: A possible limit cycle for a cyclic pursuit
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Cyclic ants pursuit

Number of Ants = 8; Time = 100

Number of experiments = 50;

t = 0 t = 12 t = 25

t = 37 t = 50 t = 62

t = 75 t = 87 t = 100

Figure 9: Probability distribution in cyclic pursuit - initial con�guration 125



Cyclic ants pursuit

Number of Ants = 8; Time = 100

Result of one experiment out of 50;

Initial M-distances = [   13   14   13   20   47   54   27   40 ] 

Final   M-distances = [    1    0    1    0    1    0    1    0 ] 

t = 0 t = 12 t = 24

t = 37 t = 49 t = 61

t = 74 t = 86 t = 99

Figure 10: A single run of cyclic pursuit - initial con�guration 126



Cyclic ants pursuit

Number of Ants = 8; Time = 120

Number of experiments = 50;

t = 0 t = 15 t = 30

t = 45 t = 60 t = 75

t = 90 t = 105 t = 120

Figure 11: Probability distribution in cyclic pursuit - initial con�guration 227



Cyclic ants pursuit

Number of Ants = 8; Time = 120

Result of one experiment out of 50;

Initial M-distances = [   20   20   20   20   20   20   20   20 ] 

Final   M-distances = [    0    0    0    0    0    0    0    0 ] 

t = 0 t = 14 t = 29

t = 44 t = 59 t = 74

t = 89 t = 104 t = 119

Figure 12: A single run of cyclic pursuit - initial con�guration 228



Cyclic ants pursuit

Number of Ants = 8; Time = 120

Number of experiments = 50;

t = 0 t = 15 t = 30

t = 45 t = 60 t = 75

t = 90 t = 105 t = 120

Figure 13: Probability distribution in cyclic pursuit - initial con�guration 329



Cyclic ants pursuit

Number of Ants = 8; Time = 120

Result of one experiment out of 50;

Initial M-distances = [   39   41   39   39   41   39   38   38 ] 

Final   M-distances = [    1    1    1    1    1    1    0    0 ] 

t = 0 t = 14 t = 29

t = 44 t = 59 t = 74

t = 89 t = 104 t = 119

Figure 14: A single run of cyclic pursuit - initial con�guration 330


