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1 IntroductionOne of the basic theoretical (and practical) problems in multiagent systems is how to design adaptiverules of behavior for the individual, that will lead to the required colony behavior while reducingcost in terms of communication overhead and hardware complexity. We shall consider a cleaningtask in which the 
oor of a building has to be cleaned by a group of autonomous robots which donot have a prior knowledge of the building's 
oorplan. We model the 
oor of the building as beingcomposed of small tiles, all of the same size, and assume that a tile can be cleaned in one unitof time. To help their navigation, the robots are allowed to leave traces along their walk, e.g. bymeans of odor, heat, or color trails. We assume that the intensity of traces decreases with time,therefore by comparing the trace levels at two neighbor tiles, the robot can deduce which tile wasvisited more recently. The cleanness of the path can also serve as a trace, if the dust is slowly fallingback on the 
oor and hence enables a chronological comparison bwtween tiles. See Figure 1 for anexample. The topology of the building may change while the robots work; e.g. people or furnituremay move and doors may open or close, hence a preliminary phase of 
oorplan mapping will not beof much help here. Such a problem is critical in case of a damage to a nuclear reactor, where robotsare the only creatures that can survive the radiation and move around to clean hazardous waste[29]. Central control is usually not possible since the strong radioactive radiation avoids almost anypossibility of wireless communication. Similarly, one might consider a surveillance task in whichrobotic guards have to visit the rooms and corridors of a dynamic art gallery, and to guaranteethat each and every room and corridor is visited frequently enough.In this paper we present systematic methods for local, cue-based operation of a group of robotsthat solves the above problems. As a (simplifying) mathematical model, we use graph traversal,inspired by ant foraging, based on the assumption that the world is divided into vertices (tiles) andedges (tile-separating lines), and an ant leaves a constant amount of pheromone at each point itvisits. These traces are later used by the ant and its fellows as a memory of the latest time thispoint has been visited so far. We shall describe three search algorithms, prove their convergence,bound their worst-case time complexity, and test them empirically.As far as we know, this work presents the �rst performance analysis of a model that consid-ers the cooperative potential of trace-oriented behavior in terms of time-complexity, under noisycircumstances.Related Work. (a) Robotics An interesting problem of cleaning and maintenance of asystem of pipes by an autonomous robot is discussed in [39]. The importance of cleaning hazardouswaste by robots is described in [29]. Cleaning and other household robotics applications are dis-cussed in [31]. Another critical application of the covering problem is demining, i.e. the removalof mines from old mine-�elds. A centralized multi-robot system for the exploration and cleaningof mines is presented in [40]. Odor marking as an assistance in robot covering and navigation hasbeen presented in [41], where the structure of smell sensors is described. In an earlier work [42],heat trails are used as traces to help robot trail-following. Signi�cant e�ort has been invested in de-sign, simulation and implementation of multi-agent systems (e.g. [46], [8], [45]). Unfortunately thegeometrical theory of such multi-agent systems is far from being satisfactory, as has been pointedout in [5] and many other papers. In [49] an initial step is done towards developing an analyti-cal approach to a cooperative cleaning method where the dirt on the 
oor is used as a marking.(b) Computing Graph search is an old problem; several methods exist for deterministic (e.g.[48], [24]) random (e.g. [2], [11], [13]) and semi-random ([25]) covering, but a lot more needs tobe done in order to make the theory useful in the context of robotic covering problems. A steptowards a trace-oriented theory of search was done in [10] and [12], where pebbles are used to assist2



the search. Pebbles are tokens that can be placed on the 
oor and later be removed. In [12] itis shown that a �nite automaton with two Pebbles can search all mazes, but no timing analysisis done. In a sense, our work is a generalization of this work, since one may use \diminishingpebbles" or \de
ating tokens" as a model of odor markings. We consider our algorithms to bea reasonable trade-o� between the rigid, highly sensitive DFS on one hand, and the absolutelyadaptive (but very time-consuming) random walk, on the other hand. Note that the problem of�nding the shortest traversal of a graph, is NP-complete even if the graph is completely known,its vertices are grid points and its edges are grid-lines [30]. (c) Biology Some aspects of the be-havior of continuous smell-oriented swarms were investigated in [37], where a di�erential equationmodel is used to investigate the stability properties and the patterns generated in the process. Onthe biological side, several models have been suggested for the social behavior of ant-colonies, e.g.correlated random-walk in [1]. In a di�erent context, models were investigated for chemosensitivecells (like bacteria or leukocytes) in a random walk that is biased by the concentration of chemicals(e.g. [3]). The foraging and trail-following behaviors have been thoroughly investigated in severalworks; see e.g. [26] and [21].The rest of the paper is organized as follows: in the next section we state the problem formally,and state the main results. Section 3 presents the �rst algorithm, ANT-WALK-1 with its analysis.Section 4 is devoted to an improved algorithm, ANT-WALK-2, and section 5 - to a vertex orientedmethod of search. Open questions and further research directions are the topic of the discussion inSection 6. In the appendix we discuss an interesting application of trace-oriented walks for creatingand maintaining a spanning tree in a dynamic network.2 Problem de�nition and summary of resultsThe task considered here is the traversal of a region by a group of robots which can carry outuseful tasks such as cleaning or guarding this region. We are interested in the capabilities of robotsworking in a distributed unsupervised mode, i.e. the robots determine their motion themselvesfrom local cues and do not rely on external guidance. The aim may be either to cover this region asfast as possible or to move so that all parts of the region will be covered as \uniformly" as possible.This task gets more complicated if there is more than one robot, but, as far as we know, was notconsidered analytically even in the context of a single robot.Our approach is computational and consider this task in a generic, abstract context. It uses agraph G = (V;E) to describe the parts of the region to be covered and the connections betweenthem. In this graph every vertex represents an atomic region (\tile") and every arc represents aneighborhood relation between two such tiles. Our assumption is that the robots are small enoughsuch that several robots can occupy the same tile simultaneously. The task is to cover the graph\as fast as possible". To achieve this task we specify several strategies. Every such strategy is ade�nition of a local behavior rule followed by the robot. A strategy is considered better if it coversthe region faster, and the e�ciency of the di�erent strategies is evaluated by measuring the timefrom the start until the last yet unvisited tile is reached.The di�erence between the strategies we propose is in the assumption we make regarding theamount of memory available to every robot, and regarding the \trace leaving" behavior. Speci�callywe shall consider either robots which do not have any memory or robots which are equipped withsome small memory enabling them to backtrack. We also consider robots which leave traces insidea tile (i.e. on vertices) vs. robots which leave their traces on the passage between di�erent tiles(i.e. on edges).In analyzing the strategies we shall look for several behavior characterizations: the �rst obvious3



one is that the robots indeed achieve their task and reach every part of the region. We show thatthis property, denoted convergence, indeed holds for all the proposed strategies even though thesestrategies are extremely simple, and the region is unknown, may be arbitrarily complicated andmay even change during the operation. Moreover, the covering processes converge even if someof the robots cease to work before completion; in such a case, the remaining ones will eventuallycomplete the mission.A second important characterization is the time required to cover all the region. We providehere rigorously derived bounds which quantify the time required to cover the region in the worstcase. In particular we show that two of the local rules yield a cover of the whole region in timepolynomial in the number of tiles. A particular adversary example shows that the quadratic timepredicted by this bound is indeed required in some situations. We also simulate the local-rule-driven behavior over several particular scenes and show that in these cases the global performanceis actually better.A third interesting characterization is the speedup achieved by using more than a single robot.Both the rigorous bounds and the simulations address this issue and show that a substantialreduction in cover-time is achieved by using more robots. This, however, is only true up to alimit where additional robots are of no help.The �rst local rule, denoted ANT-WALK-1, requires no individual memory on each machine.The only (shared) memory assumed comprises of the smell traces that are being laid on the edgesof the graph G. Denoting by tk the time needed to cover all edges of the graph by k agents thatfollow this rule, we prove the following upper bound on tk :Theorem 1 :For ANT-WALK-1 tk � n���(G) + (1 + �)nk �where � is the maximum vertex degree in G, n = jV (G)j, � is related to the measurement noise(� = 0 implies that the trace intensity sensors are perfectly precise), and �(G) is the cut-resistanceof G, de�ned in the sequel and obeying �(G) � n�1�(G) with �(G) being the edge-connectivity of G.The second rule of motion, ANT-WALK-2, is a generalization of the common Depth-First-Searchmethod. It relies on a limited amount of memory in each agent, and the ability to control its trace-laying mechanism. In reward, we get the following improved upper bound on the performance:Theorem 2:For ANT-WALK-2 tk � (n�=2) �(1 + �)k �where all notations are as before.The Third method, VERTEX-ANT-WALK is similar to the �rst one, but assumes that smelltraces are laid on the vertices rather than the edges. For this method we show thatTheorem 3:For VERTEX-ANT-WALK tk � n�dkwhere d is the diameter of G.Although the upper bound for VERTEX-ANT-WALK is quite high, our simulations show thatits performance is actually in the same order of magnitude of the other two algorithms (See Figures9,10). Another interesting property of the third algorithm is that the paths taken by the robotssometimes converge to cycle-covers of the graph of tiles; see Figures 15-17.4



3 ANT-WALK-1: Covering without individual memoryWe consider a graph G = (V;E) as a model for the 
oor to be cleaned. Every vertex in this graphcorresponds to a tile on the 
oor, and every edge - to the boundary between two neighbor tiles.Also, we assign for each edge (u; v) two \smell labels" : s(u; v) which is the time of the most recenttraversal of the edge in the u-to-v direction, and similarly s(v; u) for the other direction. All s-labelsare initially reset to 0. See Figure 2 for an example of a 
oor and its graph model. We assume thateach time an edge (u; v) is traversed, it is marked by a fresh trace of odor, s(u; v), that overridesthe previous trace on this edge in the (u; v) direction; s(v; u) remains unchanged.We want our group of agents (e.g. ants, robots) to traverse all the edges of the graph withoutcarrying any internal memory. The only traces that are allowed are in the environment - theseare the times of most recent visits to each edge in each direction, coded by the trace left there byan agent. In this rule of motion, an ant visiting vertex u 2 V (G) checks the labels on all edgesemanating from u, in the direction from u outside. Then it goes to an edge that has the smallesttrace on it, that is - the edge that was not visited for the longest time. In the course of traversingthe edge, the ant leaves there a constant amount of pheromone. The amount of smell on an edge(u; v), denoted s(u; v), decreases slowly with time, so by \smelling" two edges one can say whichone of them was visited before the other. (This ability may be limited by a sensing error � - inthe presence of which, one can only distinguish between traces that di�er by more than � \smellunits". More on this in section 3.2 in the sequel). Hence, leaving a smell trace on (u; v) at timet is similar to writing the t, the time of traversing this edge. For sake of simplicity, we'll denotetraces by the time they were left. In this discrete setting we assume that if an ant is located at anode u 2 V (G) it can move along any of the edges emanating from u to one of its neighbors. Theset of u's neighbors is denoted by N(u). Formally, the �rst and simplest local rule of motion to beconsidered is:Rule ANT-WALK-1(u vertex;)A) t := t+ 1;B) �nd an edge (u; v) emanating from u such thats(u; v) = minw2N(u) fs(u; w)g;(if there is more than one such neighbor - make some heuristic decision)/* while moving from u to v, drop some pheromone along (u; v) */C) go to v, and in the process set s(u; v) := t;end ANT-WALK-1.Note that more than one agent may occupy a tile at the same time; however the agents areexiting the vertex in slightly di�erent times. The order of exiting the tile can be determined bysome priority between the agents, which may be determined either by a unique hard-coded ID, arandom phase on the clock, or from geometrical considerations (e.g. the agent coming from thenorth is the �rst to select an edge, the one coming from the east is the next and so on). The actualway to implement it may be to cause each robot to have a slightly di�erent phase on his clock, or5



even use a random phase, which should avoid collisions with high probability. See Figure 2 for anillustration of the algorithm.3.1 Analysis of the ANT-WALK-1 algorithmIn this subsection we shall prove an upper bound on the time complexity of the ANT-WALK-1algorithm, assuming noiseless conditions, i.e. � = 0. Noisy sensing will be considered in the nextsubsection. The basic idea in our analysis of the cover time is a proof that the number of passagesalong one edge cannot di�er too much from the number of passages along any other edge in thegraph. First, consider the sequence Pu, which is the sequence of vertices visited just after u by allrobots, ordered chronologically; that is - each time a robot leaves u and goes to, say, v - then v isadded to the sequence. jPuj will denote the length of this sequence, i.e. the number of times nodeu has been left so far. Due to the rule of motion de�ned above, we can show thatLemma 1 For each vertex u 2 V , Pu is a periodic sequence with period du, where du is the degreeof u in G.Proof : According to the algorithm, a robot located at u should choose an outgoing edge (u; v)with smallest value of s(u; v). Then, in course of traversing the selected edge, the robot sets thelabel s(u; v) to the current clock value (step C), and, by doing so, makes s(u; v) to be the largestamong u's neighbors. So the edge (u; v) now has the lowest priority. In other words, one may de�nea queue between the edges emanating from u. This queue is prioritized by the value of s(:; :) oneach edge, and every time u is visited, the edge on the head of the queue is selected and then thisedge is moved back to the tail of the queue. Hence, the edges going out of u are visited in somecyclic order, and this order, once set, is never changed. We conclude that once (u; v) has beenvisited, it will be visited again after exactly du other visits to u. This implies that Pu is periodicwith period du. 2From now on we shall not use \smell" or \traces" anymore; rather, we shall only rely on thefact that the neighbors of each edge are always visited in the same cyclic order, no matter whatthis order is. Hence our results apply as well to any other local decision method that guaranteesthe cyclic-order property.Let f(u; v) be the 
ow along edge (u; v) 2 E, de�ned as the number of times any robot wentover this edge in the direction from u to v 1. Using Pu to denote the sequence of post-u-visits (asde�ned above, before Lemma 1), the periodicity proved in Lemma 1 implies that for any neighborv of u � jPujdu � � f(u; v) � � jPujdu � ; (1)Therefore the ANT-WALK-1 algorithm guarantees that two edges emanating from the same vertexwill not di�er too much in their respective number of visits, or in other words: the 
ow from avertex is fairly distributed among its neighbors.Lemma 2 If v and w are both neighbors of u, then, at all times during execution of ANT-WALK-1,jf(u; v)� f(u; w)j � 1: (2)1Please note that both Pu and f(u; v) are time-dependent; we, however, omit the time parameter in order tosimplify our notations. 6



Proof: implied by Equation 1.A similar fairness among the edges entering a vertex does not necessarily hold.Remark: The proof relies on the assumption, stated earlier, that several robots may residein the same tile. Furthermore, during each cycle (i.e. between time t and time t + 1), the robotsmove sequentially and every robot may plan its move based on the traces left by all previousmoving robots including those left by robots that move in the same cycle (before its move). As wasmentioned above, such a behavior can be achieved with high probability by assigning a randomphase to the clock of each robot or,alternatively may be guaranteed by setting hardwired prioritiesto the robots.We shall now bound the total 
ow through any cut in G. Let S � V be a (real) subset of thevertex-set of G, and write S for V n S. We denote by (S : S) the set of edges having a source in Sand a destination in S. The 
ow through the cut is then de�ned to bef(S : S) 4= Xx2S;y2S f(x; y):Lemma 3 At all times, and for all cuts (S : S) in G,���f(S : S)� f(S : S)��� � kwhere k is the number of agents travelling in G.Proof: For each agent ai, let us denote by fi(x; y) the number of times it traversed the edge (x; y)in this direction. Considering a cut (S : S), it clearly holds that the number of times an agent hascrossed the cut in one direction cannot di�er by more than 1 from the number of crossings, by thesame agent, in the opposite direction:������ X(x;y)2S (fi(x; y)� fi(y; x))������ � 1:Summing over all the k agents, we get the Lemma. 2Combining the fairness of 
ow (Lemma 2) and its boundedness (Lemma 3), shows that theintensity of 
ow cannot di�er too much between vertices in G.Let g(x) denote the maximum 
ow along an edge emanating from a vertex x 2 Vg(x) = maxy2N(x) ff(x; y)g :The 
ow f(x; y) associated with every edge (x; y) emanating from x satis�es g(x)� 1 � f(x; y) � g(x)(Lemma 2). Let S[1; n] be the set of all vertices fx1; : : : ; xng ordered in increasing order of g(:), i.e.g(x1) � g(x2) � : : :� g(xn):Let S[i; j] be the subset fxi; xi+1; : : : ; xjg, and consider the cut C(i; j) between S[1; i] and S[j; n],C(i; j) = f(xp; xq) j p � i; q � jg :In the following lemma we show that the function g(:) has a discrete \smoothness" property:7



Lemma 4 At all times and for all 1 � i � njg(xi)� g(xi+1)j � 1 + kjC(i; i+ 1)j :Proof: If g(xi) = g(xi+1) then our Lemma is clearly true. Otherwise, g(xi) < g(xi+1) and foreach edge (xp; xq) in C(i; i+ 1) (i.e. p � i; q � i + 1) we have that f(xq; xp) � f(xp; xq) + 1 �g(xi+1) � g(xi). The same is true for all the edges in this cut; hence the net 
ow across the cutC(i; i+ 1) is lower-bounded as follows:jf(S[1; i] : S[i+ 1; n])� f(S[i+ 1; n] : S[1; i])j � jC(i; i+ 1)j � (g(xi+1)� g(xi)� 1) :But this net 
ow is also bounded above by k (Lemma 3), so we get thatjC(i; i+ 1)j � (g(xi+1)� g(xi)� 1) � kand hence g(xi+1)� g(xi) � 1 + kjC(i; i+ 1)jwhich yields the lemma. 2It follows that the di�erence between the g-values of any two nodes in G cannot become toolarge:Corollary 1 8x; y 2 V : jg(x)� g(y)j � n � 1 + n�1Xi=1 kjC(i; i+ 1)jwhere n is the number of vertices in G.Also, since jC(i; i+ 1)j is bounded below by �(G), the edge connectivity of G 2, it can easilybe seen thatCorollary 2 8x; y 2 V : jg(x)� g(y)j � (n� 1)�1 + k�(G)� :Using the edge connectivity � has a disadvantage: its value for G is strongly biased by extremalareas of the graph, e.g. one narrow corridor may impose a low � value on an otherwise dense graph.Rather, we suggest a more realistic measure of the \resistance" of G to the motion of trace-orientedagents in it. For this purpose we de�ne the cut-resistance of a graph as follows:De�nition 1 Assume that fx1; : : : ; xng is the set of vertices in a graph G. For a given permutation� 2 Sn we de�ne the cut-resistance induced by this speci�c permutation to be�� 4= n�1Xi=1 1jC(�i; �i+1)jand the cut-resistance of G is de�ned as the maximum of �� over all possible permutations in Sn:�(G) 4= max�2Sn f��(G)g :2The edge-connectivity of a connected graph G is de�ned [6] as the minimum number of edges that need to beremoved in order to disconnect the graph, i.e. if G has edge connectivity �(G), there is no set of �(G)� 1 edges thedeletion of which will disconnect G. 8



The following observations on �(G) can easily be veri�ed:� if G is a path along n vertices, then �(G) = n � 1.� if G is a circle with n vertices, then �(G) = (n � 1)=2.� if G is the complete graph (Kn), then�(G) = 1(n� 1) + 12(n� 2) + 13(n� 3) + : : :+ 1(n� 1) < 1:� if G is an m�m grid-graph then �(G) = O(m) = O(pn).� for every graph, �(G) < (n� 1)=�(G), since any cut has at least �(G) edges in it.Intuitively: the denser the graph, the lower its cut-resistance.The following corollary results from Lemma 4Corollary 3 8x; y 2 V : jg(x)� g(y)j � n � 1 + k�(G):Recall that g(u) is the maximum 
ow along an edge emanating from u, and that this amount(according to Lemma 2) is at most 1 unit more than the minimum 
ow along an edge emanatingfrom u. Hence we getCorollary 48(u; v); (x; y) 2 E : jf(x; y)� f(u; v)j � 1 + k�(G) + (n� 1) = k�(G) + n:Remark: Another function that could come to mind here is the edge-expansion factor of thegraph, de�ned as minS�V;jSj�n=28<:���(S : S)���jSj 9=; :but it should be noted that �(G) is better suited for our purposes, since it represents the conductivityof the whole graph, not only the extremal (i.e. worst) regions in it. For example, consider agraph which constitutes of two complete subgraphs G1,G2 each isomorphic to Kn=2, with one edgeconnecting them. The edge-expansion factor of G will be as small as 2=n, while its cut-resistancewill not be much di�erent from that of the complete graph Kn, since almost any cut has at leastn=2 edges in it.Let tk(G) denote the time needed to cover the edges of a connected graph G by k agents thatfollow the ANT-WALK-1 algorithm. The following theorem establishes an upper bound on thistime.Theorem 1 tk � n��nk + �(G)�where � is the maximum vertex degree in G, n = jV (G)j and �(G) is the cut-resistance of G.9



Proof: Once started, our agents never rest; they traverse an edge in every clock cycle. Even whentwo (or more) agents occupy the same tile, they can both use the next cycle because we assumethat they have di�erent clock-phases. Hence, after t units of time, the total 
ow in the graph isX(x;y)2E f(x; y) = kt(Recall that f(x; y), the 
ow along an edge (x; y), is de�ned as the number of passages so faralong the edge in the x-to-y direction). Assume, in contradiction, that the time tk speci�ed by thetheorem has passed, yet there is an edge (x; y) such that f(x; y) = 0. Corollary 4 implies that noedge has a 
ow larger than k�(G) + n. Hence, the total amount of 
ow in G can be bounded fromabove: total 
ow in G = X(u;v)2E f(u; v) �� (jE(G)j � 1) (k�(G) + n) �� (n=2)�(k�(G) + n)(using jE(G)j � n�=2). Dividing by k we get that the time passed cannot exceed (n=2)�(�(G) +n=k); in contradiction with the assumed time. 2Remark 1: The bound we proved is tight up to a constant, as can be seen from the example inFigure 3 where an ant goes back and forth several times before covering the graph. Such problemscan sometimes be cured using a heuristic to resolve ties among edges with equal traces on them.Another solution is to allow backtracking as will be shown in algorithm ANT-WALK-2 that isdescribed in the next section.Remark 2: The expression in parentheses, �nk + �(G)�, can be explained intuitively as follows:If the graph is dense, its cut-resistance �(G) is small and the term nk is signi�cant, i.e. - morerobots deliver a faster cleaning. On the other hand if G is sparse �(G) is large and increasing thenumber of robots does not make much sense. This intuitive interpretation was also observed in oursimulations.3.2 The e�ect of noise and sensing-errors on the dynamics of ANT-WALK-1In reality, sensors and e�ectors are not perfectly reliable and noise can distort their operation. Thefollowing a rather skeptical statement was made in [14]:...[sensors]... simply do not return clean accurate readings. At best they deliver a fuzzyapproximation to what they are apparently measuring, and often they return somethingcompletely di�erent.However, the e�ect of noise depends on the type of algorithm that is being used in the system. Ina multiagent system the noise has another aspect - the individual agent cannot always be sure asfor the reliability of the others, hence a good multiagent algorithm should be tolerant to failuresoccurring in inter-agent communication. Formally, if one agent has a fault probability of p, thenan algorithm that relies on the correct behavior of all k agents will have failure probability of1� (1� p)k, which tends to 1 as k grows.We propose that our approach to covering problems is well-suited for noisy sensors/environments,since it does not rely too strongly on any speci�c data or hardware, but only on relative quantities10



which do not su�er so much from the errors in sensor readings. Let � be the amount of noise inthe sensor measurement. That is, if the smell along edge (x; y) is equal to s(x; y), then the noisysensor may tell us anything between s(x; y)� �2 and s(x; y) + �2 . Such a level of noise implies thata sensor (or an algorithm that relies on the sensor) cannot distinguish between a trace that wasleft at some time t and one that was left at time t+ �. This causes a deviation from the basic ruleof behavior which implies that the di�erence in 
ow (i.e. number of passages) between two edgesemanating from the same vertex may become as large as 1 + � (rather than 1 as before). In orderto estimate the quantitative e�ect of such noise on the performance of our ANT-WALK-1 algorithm,we rework our previous results to account the possible deviation.Lemma 2:� If v and w are both neighbors of u, and the sensor deviation is at most �, then,at all times during execution of ANT-WALK,jf(u; v)� f(u; w)j � �+ 1: (3)This modi�cation is due to the fact that an edge may be traversed up to � times before thenoisy sensor can see that this edge is favored over the others emanating from u.Consequently, Lemma 4 becomesLemma 4:� With sensor deviation at most �, it always holds that for all 1 � i < njg(xi)� g(xi+1)j � 1 + � + kjC(i; i+ 1)j :andTheorem 1:� tk � n��(1 + �)nk + �(G)� :where � is a bound on the deviation of the sensors.Observe that as the noise parameter � grows, there is more sense in using a larger numberof robots. Interestingly enough, this observation is similar to the experimental results presentedin [18] (in a rather di�erent context), where a crypt-arithmetic puzzle is being solved by severalcooperating agents that can exchange hints over a common blackboard. There, it was observed(empirically) that a group of solvers may demonstrate a better cooperation under noisy conditions.4 ANT-WALK-2: covering with backtracking - DFS extended tomultilevel searchAs we saw in the previous section, there are cases where ANT-WALK-1 gets into a series of \traps"that cause a useless re-visiting of the same locations. In this section we suggest another algorithmthat, in general, works more e�ciently, but requires some more complicated hardware. This al-gorithm is essentially a generalization of the famous Depth-First-Search algorithm. First, let usformulate the common DFS (as in [47],[28],[23]). The basic idea in Depth-First-Search is to tryand continue the search to a neighbor that has not yet been visited; if none exists, the search\back-tracks" along the edge used in the �rst entrance to the current vertex. If no such edge exists(i.e. the current vertex was the �rst in the search), the search terminates and reports that all edgesof G have been visited. To formalize it in our trace-oriented terms, we will need the following two11



de�nitions, that make use of the traces on the edges: for each vertex u, let tin(u) be the time ofthe �rst entry to u, i.e. tin(u) 4= minv2N(u);s(v;u)>0 fs(v; u)g ;and let tout(u) be the time of the �rst exit from u, i.e.tout(u) 4= minv2N(u);s(u;v)>0 fs(u; v)g :Recall that in the DFS algorithm an edge is never visited twice in the same direction (Lemma 3.1in [23]), hence the tin and tout values, once set, will never change. We assume that initially all tinand tout values are set to 0. Two observations can be made:1. If both tin(u) and Tout(u) are 0 then u is a \new" vertex, i.e. it has never been visited.2. If tin(u) > tout(u) > 0 (i.e. it was left before it was entered) then u was an initial vertex ofthe tour.The common DFS can now be formulated as follows:Rule DFS(u vertex;)A) t := t+ 1;B) if 9v 2 N(u) s.t. s(u; v) < 1thenset s(u; v) := t;if tin(v) < 1 go to v; /* am I back in the origin ? */C) if tin(u) > tout(u) > 0 then STOP. (the graph is covered)./* backtracking - all neighbors are old */D) �nd an edge (u; v) such that s(v; u) = tin(u);E) set s(u; v) := t;F) go to v.end DFS.Note that in order to perform a proper backtracking, one must be able to mark the entry edge foreach vertex. But if, for some reason, this mark is lost, or the graph is changed, then the desperatesearcher is hopeless and will never cover the graph. Hence, the DFS is not suitable for a noisyenvironment where marks and traces are prone to frequent change or misinterpretation. Anotherproblem in using DFS for multi-robot covering task is how to apply it for several cooperating robots.The reason is that once a robot got back to its starting point, it will (according to DFS) stop thereforever, rather then go around and help his hard-working fellows.12



In order to overcome the above disadvantages a multilevel DFS approach is suggested. In thismethod, when an agent r is facing a situation in which the search cannot continue (i.e. no backwardedge emanates from the current vertex), then a new level of search is started by increasing the valueof the search-level(r) variable, which is individual for robot r. This variables stores the time when\the new history begins" i.e. any edge/vertex visited before that time is now considered un-visitedby robot r, as opposed to the common DFS where all visited vertices are considered \visited"in exactly the same way. Hence, if tin(u) < search-level(r) for a robot r, then the vertex u isconsidered \new" by this robot. Initially, all search-level variables are set to 0, and the rule ofmotion for each agent is:/* multilevel DFS -initially all search-level's are set to 1, and all s(:; :)'s to 0. */Rule ANT-WALK-2(search-level(r) integer, u vertex;)A) t := t+ 1;B) if 9v 2 N(u) s.t. s(u; v) < search-level(r)thenset s(u; v) := t;if tin(v) < search-level(r) go to v;/* have I exhausted the current level of search ? */C) if tin(u) > tout(u) � search-level(r) thenset search-level(r) := t; /* backtracking - all neighbors are old */D) �nd an edge (u; v) such that s(v; u) = tin(u);E) set s(u; v) := t;F) go to v.end ANT-WALK-2.Note that Step B is taken if u has a neighbor not visited in the current search level, Step D is abacktracking step, and (in Step C) the search-level of agent r is increased if the current level ofDFS cannot be continued and a new level of search has to be established. This may happen in oneof three cases:1. The robot got back to the point where the current level of search has started. It should nowstart a new search by setting a new value of search-level, (rather than take a nap) in orderto help other agents.2. A change has occurred in the graph (e.g. an obstacle has been moved, which, in our model,means that an edge/vertex has been added or deleted) that makes it impossible to backtrackas usual. 13



3. The noise in the sensors makes the robot believe that option 1 above is true.Note that in this second algorithm each robot needs to remember its search-level, and to makemore calculations in each vertex it visits. However, the reward is a better performance as will nowbe shown.4.1 Analysis of ANT-WALK-2First assume that k = 1 (one agent) and there is no change in the graph. Then ANT-WALK-2 isjust another variation on Depth-First Search, that covers the graph in time at most 2 jEj (as provedin Lemma 3.1 of [23]), then starts a new tour and so on.For more then one agent, the work may or may not be distributed between the agents. In theworst case, they will just repeat each other's steps and create (at most) k levels of search before fullcovering is achieved. In this case there will be no speed-up. (an example for such a miserable caseis when all robots are initially placed near one end of a long and narrow corridor). But even if ingeneral the work is not necessarily evenly-distributed between the agents, the increase in numberof agents may be useful to reduce the e�ect of noise. Assume, as before, that the sensors are proneto an error of up to � units, as de�ned in Section 3.2. Then in the worst case, � levels of searchare needed to guarantee a full coverage of the graph. Formally,Theorem 2 k agents obeying ANT-WALK-2 and having sensory noise level of at most � units willcover a graph G in time tk where tk � (n�=2) �1 + �k � :Proof: If � = 0 then ANT-WALK-2 cannot be worse than the common DFS which is known tocover the graph in time bounded above by 2 jEj � n�=2. If there is noise, i.e. � > 0, then, in theworst case, an edge may need to be traversed up to 1 + � times per search-level before the robotcan \see" that this edge has indeed been visited. Therefore no edge is taversed more than 1 + �times before all its neighbors are traversed once. On the other hand, k robots traverse k timesmore edges than one does, hence their cover time tk cannot exceed l1+�k m times t1 - the cover timeof one noise-less robot. 2See Figures 6-7 for the evolution of ANT-WALK-2 with varying amount of noise, and Figures9-13 for a plot of the cover time vs. level of noise, for various noise levels and numbers of robots.Figure 14 shows how a group of ants obeying the ANT-WALK-2 rule can overcome a chnage in thetopology of the region to be covered.5 VERTEX-ANT-WALK - A Vertex-oriented searchIn certain scenario there is no need to cover all passages between the tiles and the previous algo-rithms, which aim to cover all edges require too much. Therefore, one can suggest another algorithmwhich makes its choice between all accessible tiles and uses a trace left on the tile itself as a basisfor its decision. The following VERTEX ANT WALK algorithm uses this principle. The trace s(u)left in the vertex u 2 V (G), is, again, the time of the visit t. The local decision rule for the antbeing in location u is to go to the neighbor with the least t-value. Formally,14



Rule VERTEX-ANT-WALK(u vertex;)A) t := t+ 1;B) �nd a vertex v in N(u) such thats(v) = minw2N(u) fs(w)g;(if there is more than one such neighbor - make some heuristic decision)/* now drop some trace on u */C) set s(u) := t;D) go to v;end VERTEX-ANT-WALK.The theorem provides a worst case bound which is exponential in the graph diameter. We believethat this bound is very far from tight. The simulations we conducted show that this algorithmperformance is close to those associated with the edge based algorithms, although it is sometimesinferior, especially when sensor inaccuracy is high.A system of agents obeying this rule is guaranteed to cover the vertices, and works quite wellin simulations. Its covering time is upper bounded in the following theorem.Theorem 3 Following the VERTEX-ANT-WALK rule, a group of k agents will cover the vertex setof a graph G within time tk, such that tk � n�dkwhere n is the number of vertices, � is the maximum degree and d is the diameter of G.Proof: (a) If (u; v) is an edge in G then u should be visited at least once every � visits to v,since after each visit to v one of its neighbors is visited and hence after � visits to v, if u has notbeen visited so far, all v's neighbors have s-value grater than s(u), hence u should be visited nolater than after the next visit to v. Hence we getf(u) � �(f(v) + 1) (4)where f(x) denotes the number of visits to node x so far.(b) Let us assume that some vertex, say x1, has not yet been visited, hence f(x1) = 0. Nowconsider the farthest vertex from x1, say xq, and a shortest path between them P = x1; x2; : : : ; xq.Clearly q, the length of the path, is smaller than or equal to d, the diameter of G. Using Equation4 we getf(xq) � �+�f(xq�1) � �+�2 + �2f(xq�2) � : : : � �q + f(x1) � �d + f(x1): (5)But since f(x1) = 0 we have f(xq) � �q, and the total amount of visits in G is hence boundedabove by �d(n� 1). 15



(c) Assuming that k agents are active on the graph, after t units of time there have been a totalof kt visits to vertices in the graph, hence tk � n�dk 2We assume that initially all agents are located on distinct vertices, hence when k !1, tk goesto 0 as the cover is immediate.The above is only a worst-case upper bound; Actually, simulations show a much better behavior.This gives rise to the hope that a tighter upper bound will eventually be discovered.The dynamics involved with this vertex-orient ant-walk has the interesting property of havingcycle covers of the graph among its �xed points, i.e. once the k agents are in a loop of one (ormore, up to k) cycle(s), they continue hoping on these cycles forever. In the case of a single agent,such a cycle is a Hamiltonian cycle; See Figure 15. For a k > 1, its a 2-factor (or \cycle cover") ofthe graph. See Figures 16 - 17 for some examples. Hence, such a dynamic may serve as a heuristicfor �nding a Hamiltonian path.6 Simulations and ExperimentsWe see the main goal of this paper in developing the necessary theory for proving upper bounds onthe covering times of our algorithms. However, experiments are useful for getting an idea on thepractically more interesting average behavior of the group of robots. Hence, the three ANT-WALKalgorithms were implemented in the C programming language on an IBM-Power2 workstation underthe AIX operating system. The algorithms were tried on several shapes and agent-numbers, witha subset of the integer lattice as the underlying graph. The numerical results of cover time arepresented in Figures 7 - 13. An important property of our algorithms is their ability to overcomenoisy conditions, so we simulated each rule on three levels of noise, namely 0,10 and 20 units. Dueto the random nature of the noise, it is also important to run the algorithm several times and�nd the average time of covering. A comparison between one-shot covering times (Figures 7 - 10)and average covering time (Figures 7 - 13) shows that, on the average, more robots bring a fastercovering period.In Figure 9 we show the time of covering vs. the number of agents, with varying amount ofnoise for the three algorithms. Noise is simulated in the following way: when a noise-level of �is assumed, and the actual smell is s, the sensor reading is interpreted as s + p�=2, where p is arandom number between �1 and 1. The plots in Figures 10 and 13 show the same information butordered by noise-level; it shows that ANT-WALK-1 and -2 are far better than VERTEX-ANT-WALKin noisy environment, while the latter is better when no noise is present.Speci�c examples are shown in Figures 4 - 7. In these �gures, the gray level in a tile representsthe trace intensity i.e. the time since last visit to this point. Figure 14 shows an example with ablocking obstacle that is removed during execution. It can be seen that the agents detect the changein topology by doing a multi-level DFS, following the ANT-WALK-2 rule. The other algorithms willhave no problems with this situation as well.In Figures 15-17 we show examples of the VERTEX-ANT-WALK dynamics with the cycle-coverthat emerges as a �xed point of the process. Note that the process does not necessarily convergeto a cycle-cover even if one exists in the graph. 16



We are now in the process of building an experimental robotic vehicle that is able of laying tracesand using them for navigation. This will serve to test our model and algorithms in a \real-life"situation.7 DiscussionWe addressed the problem of exploring an unknown area, with simple robots that can leave andsense traces on the ground, and this is their only way of communication. We have shown thateven such simple imitations of ants can cooperate e�ciently in their mission of exploration. Weproved that a group of k such ants, obeying either the ANT-WALK-1 or ANT-WALK-2 rule, coversa graph in polynomially-bounded time. For a third algorithm, VERTEX-ANT-WALK, we showed anexponential upper bound and presented a fascinating property of its limit behavior, namely thatcycle-covers of the graph are among the limit cycles of this process. Another application to thetrace-oriented cover methods is the maintenance of spanning tree that can recover from changes inthe graph.An advantage of our algorithms over existing search methods is in their adaptivity to changesin the environment and to noise in the reading of the sensors. This property comes from our usageof relative rather than absolute value of traces.Although we assumed that the explored area is divided into equally-shaped tiles in the form of agrid, this is not at all necessary; actually our algorithms and proofs apply to any set of local missionsthat are geometrically connected by neighborhood relations. For example, we can associate rooms(rather than tiles) with the vertices in the graph, and instruct the robot to clean the full roombefore leaving it. If we de�ne a room to be, say, an m�m square array of tiles, then the e�ort atevery vertex is multiplied by m2, but the number of vertices is now m2 times smaller. Recall thatthe worst case complexity of the �rst algorithm depends on the square of the number of vertices;this makes the total complexity much smaller.Our model was inspired by ants behavior, but can be used to design practical multi-agentrobotic systems. Some of the potential applications of the smell-oriented navigation model are incooperative cleaning of a dirty region with obstacles, and in the maintenance of spanning tree in acommunication network (see the Appendix).There are several other issues that may be of interest for a practical implementation of coveringalgorithms, and should be further investigated by both analysis and simulations:� Continuous trace-oriented walk: our analysis referred to discrete tiles on a grid. Achallenging question is whether a continuous version of one (or more) of our algorithms willwork in a continuous setting, and how fast can it be. Our simulations on such a settingshow very good convergence times, but a rigorous quantitative analysis will probably give thenecessary insight into the dynamics.� Rate of covering: the amount of covering per unit of time is not at all constant duringexecution, as can be seen in Figure 4, where more than 50% of the area is covered within 20%of the total covering time. In some applications (e.g. surveillance) it may be better to choosea \quick and dirty" algorithm that covers a signi�cant part of the area in a short time, ratherthan one with a shorter time of total covering.� Load balancing: Do all robots invest about the same e�ort ? We would clearly like to haveas fair work distribution as possible. 17



� Dependency on the shape: as shown in our analysis, the upper bound on covering timedepends not only on the area of the region but also on its shape, as represented by the cut-resistance parameter � (see Theorem 1). Calculating � analytically is possible only for simplecases; however our simulations show that as the shape becomes more complicated (and hence� grows) it takes a longer time to cover. But this point needs a more detailed quantitativeinvestigation; i.e. taking several shapes (with the same area) and comparing their coveringtime and �-values.The model we described in this paper is fairly simple but seems to yield interesting results andto pose intriguing challenges for both theoreticians and implementers of robotic systems.
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uvFigure 1: A system of rooms divided into square tiles, with a dynamic obstacle. Two cleaningrobots are shown with their directional smell traces. Note that the traces degrade with time.
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Figure 2: Four cycles of ANT-WALK-1 are needed to traverse a 
oor with 4 tiles. Also shown is thecorresponding directed graph with the smell-labels on its edges. Note that there are two labels oneach edge, to designate the trace intensity in each direction of the edge.
DFigure 3: A hard case for the ANT-WALK-1 rule. There are n vertices, and about 1:25n edges. Thediameter is about 0:8n, and the time needed to traverse it may be as long as O(n2). The dottedarrows show the worst case where each triangle of vertices is a \trap" that causes the ant to goback to its starting point. 20
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Covering by ANT-WALK-1, shape #3, on a 14 x 14 matrix

Num of Ants = 3; Total area = 161; Cleaned area =  161

Noise level = 0 units; Cover time = 550;

Rule: ANT_WALK_1 (no backtracking);

1%, time = 0 3%, time = 1 5%, time = 2

58%, time = 110 77%, time = 220 81%, time = 330

91%, time = 440 99%, time = 549 100%, time = 550

Figure 4: Simulated evolution of three agents, oriented by the ANT-WALK-1 rule. The gray-levelis proportional to the number of visits in each tile. Note that most (� 90%) of the area is cleanedwithin 50% of the time. 21
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Covering by ANT-WALK-1, shape #3, on a 14 x 14 matrix

Num of Ants = 3; Total area = 161; Cleaned area =  161

Noise level = 10 units; Cover time = 1341;

Rule: ANT_WALK_1 (no backtracking);

1%, time = 0 3%, time = 1 4%, time = 2

74%, time = 268 94%, time = 536 98%, time = 804

98%, time = 1072 99%, time = 1340 100%, time = 1341

Figure 5: Three agents, oriented by the ANT-WALK-1 rule, with random sensory-noise of 10 units.This noise does not avoid the agents from ful�lling their mission; however a signi�cant delay isintroduced. 22
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Covering by ANT-WALK-2, shape #3, on a 14 x 14 matrix

Num of Ants = 3; Total area = 161; Cleaned area =  161

Noise level = 0 units; Cover time = 691;

Rule: ANT_WALK_2 (backtracking);

1%, time = 0 3%, time = 1 5%, time = 2

60%, time = 138 60%, time = 276 77%, time = 414

77%, time = 552 99%, time = 690 100%, time = 691

Figure 6: Three agents, oriented by the ANT-WALK-2 rule, which is a generalization of the DFSalgorithm. Covering here is much more e�cient (27% of the time required by ANT-WALK-1 rule)due to its backtracking ability. 23
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Covering by ANT-WALK-2, shape #3, on a 14 x 14 matrix

Num of Ants = 3; Total area = 161; Cleaned area =  161

Noise level = 10 units; Cover time = 663;

Rule: ANT_WALK_2 (backtracking);

1%, time = 0 3%, time = 1 5%, time = 2

36%, time = 132 52%, time = 265 53%, time = 397

91%, time = 530 99%, time = 662 100%, time = 663

Figure 7: Three agents, oriented by the ANT-WALK-2 rule, with sensory-noise level of 10 units.Note that even with noise, this algorithm is much faster than ANT-WALK-1; it is also advantageousover the ordinary DFS which is extremely vulnerable to sensing errors.24



rule noise #robots: 1 2 3 4 5 6 7 8 9 10ANT- 0 1159 325 550 320 320 307 143 275 123 123WALK- 10 2721 836 1341 573 883 568 267 653 501 4841 20 13461 2707 2402 2375 1656 513 836 972 265 262ANT- 0 1038 1219 691 270 270 270 266 183 60 60WALK- 10 2472 517 663 836 546 576 652 581 211 2702 20 4105 1349 1079 951 840 734 613 383 370 165VERTEX- 0 445 252 172 140 118 125 88 123 69 69ANT- 10 6965 2478 2060 1474 1469 1212 1035 1010 863 734WALK 20 12839 6222 4320 3212 2768 1727 1681 1691 1671 1322Figure 8: Covering times for the three algorithms running on a 14� 14 maze-shape with a varyingamount of noise. Note that the time is not always monotonically decreasing; in some cases additionalrobots disturb the e�ciency of the whole group.
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(c) VERTEX_ANT_WALKFigure 9: Time of covering , tk , ver-sus k- the number of robots, withvarying amount of sensing-noise, forthe three ANT-WALK algorithms.Note the di�erent scales on the ver-tical axis. It can be seen that ANT-WALK-2 has best performance in thegiven test case.
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noise level = 20Figure 10: The same data of the pre-vious �gure is here sorted by noise-level. It clearly shows the VERTEX-ANT-WALK is best in the absenceof noise, while ANT-WALK-2 wins innoisy conditions.
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rule noise #robots: 1 2 3 4 5 6 7 8 9 10ANT- 0 456 166 135 105 84 88 55 52 43 36WALK- 10 2673 1254 955 636 555 507 457 324 317 2631 20 3802 1987 1230 963 856 771 531 473 413 419ANT- 0 884 480 356 185 150 127 108 118 77 66WALK- 10 3396 791 591 506 377 279 235 200 167 1942 20 3855 897 649 478 454 446 302 254 243 235VERTEX- 0 660 312 239 169 147 118 110 93 74 65ANT- 10 3710 1083 647 395 374 339 269 331 262 231WALK 20 4646 1991 1228 836 696 660 423 480 300 372Figure 11: Covering times for the three algorithms running on a 14�14 maze-shape with a varyingamount of noise, averaged on 10 coverings; The table shows that on the average, more robots bringa faster covering, with some exceptions caused by the random nature of the noise.
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(c) VERTEX_ANT_WALKFigure 12: Time of covering , tk , ver-sus k- the number of robots, withvarying amount of sensing-noise, forthe three ANT-WALK algorithms,averaging on 10 coverings.
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Covering by ANT-WALK, shape #5, on a 30 x 30 matrix

Num of Ants = 10; Total area = 338; Cleaned area =  338

Noise level = 0 units; Cover time = 1149;

Rule: ANT_WALK_2 (backtracking);

Region changed at time 1000;

2%, time = 1 22%, time = 38 39%, time = 57

68%, time = 229 68%, time = 459 68%, time = 689

68%, time = 919 68%, time = 1034 100%, time = 1149

Figure 14: Ten ants overcoming a change in the environment, by doing a multi-level DFS (ANT-WALK-2). It demonstrates the ability of the algorithm to cope with a dynamic environment.27
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Covering by VERTEX-ANT-WALK, shape #0, on a 8 x 8 matrix

Num of Ants = 1; Total area = 64; Cleaned area =  0

Noise level = 0 units; Cover time = 0;

Heuristic: (visits, time);

1%, time = 0 3%, time = 1 4%, time = 2

100%, time = 920 100%, time = 1840 100%, time = 2760

100%, time = 3680 100%, time = 4599 100%, time = 4600

Figure 15: The VERTEX-ANT-WALK dynamics has the interesting property that cycle covers ofthe graph are among the limit cycles. Here a Hamiltonian path (i.e., a special case of cycle-cover)was found as a limit cycle of the process. The black lines describe the edges traversed by the antin the most recent n units of time. 28
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Covering by VERTEX-ANT-WALK, shape #0, on a 8 x 8 matrix

Num of Ants = 2; Total area = 64; Cleaned area =  0

Noise level = 0 units; Cover time = 0;

Heuristic: (visits, time);

3%, time = 0 6%, time = 1 9%, time = 2

100%, time = 4600 100%, time = 9200 100%, time = 13800

100%, time = 18400 100%, time = 22999 100%, time = 23000

Figure 16: Here again a cycle-cover is found as a limit cycle of the VERTEX-ANT-WALK process;this time we get, in the limit, two cycles covering the graph of tiles.29
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Covering by VERTEX-ANT-WALK, shape #0, on a 8 x 8 matrix

Num of Ants = 4; Total area = 64; Cleaned area =  0

Noise level = 0 units; Cover time = 0;

Heuristic: (visits, time);

6%, time = 0 12%, time = 1 18%, time = 2

100%, time = 8800 100%, time = 17600 100%, time = 26400

100%, time = 35200 100%, time = 43999 100%, time = 44000

Figure 17: Same region as in the previous two �gures, but this time with 4 ants; a triple cycle-coverof G is achieved in the limit. An open question is whether or not the time of convergence to sucha limit-cycle can be reasonably bounded. 30
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AppendixUsing the ANT-WALK Covering Method to Maintain a self-Stabilizing SpanningTree in a Dynamic NetworkThe system of ants and smell-traces is adaptive and will change to comply with changes inthe environment, as demonstrated in Figure 14. A common notion of adaptivity in distributedalgorithms is self-stability. A distributed algorithm is self-stabilizing (as de�ned in [19]) if it can bestarted from any possible global state and once started, the algorithm regains consistency by itself.The study of such algorithms started with [22]. In [19], A self-stabilizing algorithm is describedthat maintains a DFS tree in a network of processors, and guarantees recovery from a topologicalchange in the graph within time O(nd�).Our system of k cleaning agents is self-stabilizing since it will recover from any change in thesmell levels on the edges, (e.g. if a wind-blow has scrambled the smell-traces) or even a change inthe topology of the graph, as long as the graph remains connected. This property does not existin traditional search algorithms like Depth-First-Search and Breadth-First-Search (see, e.g. [23]),since those methods rely on the absolute marking of the edges, while our method only uses themarks as relative quantities.Now let us assume that a network is given in which nodes and edges occasionally becomeine�ective, and we need to keep a distributed tree that spans the network, i.e. - each (e�ective)non-root node should know who his \father" node is in the tree. If our agents have distinct id's,say 1; 2; : : : ; k, then they can leave a signature at each vertex in the form of a pair (t; id), wheret is the last time an agent visited the vertex, and id is his unique identi�cation number. Clearly,after our agents have covered the graph, no two vertices will have the same signature. Hence aspanning tree can be established by having each node taking his greatest neighbor as a father; here\greatest" means under the lexicographic order of the pairs (t; id) among the neighbors. If a nodeor an edge is crashing, we are guaranteed (by Theorem 1, 2 or 3) that after no more than (therespective) tk units of time the tree will recover.The advantage of the above algorithm over existing methods for keeping cycle-free communica-tion graphs (e.g. [33], [19]) is that in our method only k of the n processors need to work at a time- the others can proceed in their regular jobs.
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