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Abstract 

We provide a computationally tractable model of how 
organisms can learn to add structures to the world to reduce 
the complexity of their tasks. This model is then implemented 
using two techniques: first using a genetic algorithm, and then 
using the Q-learning algorithm. The results clearly show that 
organisms with only reactive behavior can learn to 
systematically add structures to the world to reduce their 
cognitive load. We show that such learning can happen in 
both evolutionary time and within an agent’s lifetime. An 
extension of this model (currently being implemented) is then 
illustrated, where organisms with just reactive behavior learn 
to systematically generate and use internal structures akin to 
representations. 

 
Many organisms generate stable structures in the world to 
reduce their cognitive load.  Wood mice distribute small 
objects, such as leaves or twigs, as points of reference while 
foraging. Under laboratory conditions, they will 
spontaneously make use of plastic discs for this purpose.  
Stopka & MacDonald (2003) show that this ‘way-marking’ 
diminishes the likelihood of losing interesting locations 
during foraging. Red foxes use urine to mark food caches 
they have emptied. This marking acts as a memory aid and 
helps them avoid unnecessary search (Henry, 1977, reported 
in Stopka  & MacDonald, 2003). The male bower bird 
builds colorful bowers (nest-like structures), which are used 
by females to make mating decisions (Zahavi & Zahavi, 
1997). Ants drop pheromones to trace a path to a food 
source. Many mammals mark up their territories. 

At the most basic level, cells in the immune system use 
antibodies that bind to attacking microbes, thereby 
‘marking’ them. Macrophages use this ‘marking’ to identify 
and destroy invading microbes.  Bacterial colonies use a 
strategy called ‘quorum sensing’ to know that they have 
reached critical mass (to attack, to emit light, etc.). This 
strategy involves individual bacteria secreting molecules 
known as auto-inducers into the environment. These 
accumulate in the environment, and when it reaches a 
threshold, the colony moves into action (Silberman, 2003).  

Given that this ‘doping’ of the world is so common in 
these simpler creatures, it is somewhat surprising that there 
has been relatively little investigation into the use of this 
technique by homo sapiens.  More than any other species, 
humans generate these external structures to reduce the 
amount of physical and cognitive effort required to perform 
tasks in their daily lives.  Examples include markers, color-
codes, page numbers, credit-ratings, badges, shelf-talkers, 
speed bugs, road signs, post-it notes – an almost endless list. 

Epistemic Structures 
The pervasiveness of such structures across species 

indicates that adding structure to the world is a fundamental 
cognitive strategy (Kirsh, 1996). Note that these structures 
serve to make tasks easier for agents. Some of these 
structures have referential properties, but they do not exist 
for the purpose of reference.  We use the term epistemic 
structures to refer to these, in deference to Kirsh’s (1994) 
distinction between epistemic and pragmatic action. 

Kirsh's (1996) model of “changing the world instead of 
oneself”, postulates that such generation of structures 
involve task-external actions, and these structures work by 
deforming the state space, so that paths in a task 
environment are shortened. Such structures also allow new 
paths to be formed in the task environment. However, Kirsh 
only explicitly addresses the generation of tools, rather than 
the direct modification of the world to reduce cognitive 
load. 

Extending his idea to develop a full computational model 
of how organisms generate such structures, we make two 
reasonable assumptions. One, organisms sometimes 
randomly generate structures in the environment 
(pheromones, urine, leaf piles) as part of their everyday 
activity. Two, organisms can track their physical or 
cognitive effort (i.e. they get ‘tired’), and they have a bias to 
reduce tiredness.  

Given these assumptions, some of the randomly generated 
structures are encountered while executing tasks like 
foraging and cache retrieval. In some random cases, these 
structures make the task easier for the organisms (following 
pheromones reduces travel time, avoiding urine makes 
cache retrieval faster, avoiding leaf-piles reduce foraging 
effort).  In other words, they shorten paths in the task 
environment. Given the postulated bias to avoid tiredness, 
these paths get preference, and they are reinforced. Since 
more structure generation leads to more of these paths, 
structure generation behavior is also reinforced. 

The Simulation 
To test and investigate the above model of epistemic 
structure generation, we have developed a computational 
model, where simple agents in a simple world, given only 
feedback in terms of their ‘tiredness’ (i.e. the effort required 
to perform their task), learn to systematically add structures 
to their environment. 

The task we have chosen is analogous to foraging 
behavior, i.e. navigating from a home location to a distant 
target location and back again. Our environment consists of 



a 30x30 toroidal grid-world, with one 3x3 square patch 
representing the agent’s home, and another representing the 
target.  This ‘target’ can be thought of as a food source, to 
fit with our analogy to foraging behavior.   

Agent Actions 
At any given time, an agent can do one of five possible 
actions.  The first and most basic of these is ‘moving 
randomly’. This consists of going straight forward, or 
turning to the left or right by 45 degrees and then going 
forward. The agent does not pick which of these three 
possibilities occurs (there is a 1/3 chance of each). 

 In deciding the actions available to the agent, we needed 
to postulate some basic facilities within each agent.  In our 
case, we felt it was reasonable to assume that the agents 
could distinguish between their home and their target. To do 
this, we added two more actions to the agents’ repertoire. 
These are exactly like the first action, but instead of moving 
randomly, the agent would move to whichever square is 
sensed to be the most ‘home-like’ (or the most ‘target-like’).  
Initially, the only things in the environment that are ‘home-
like’ or ‘target-like’ are the home and the target themselves. 

One way to think about these actions is to consider the 
pheromone-following ability of ants.  Common models of 
ant foraging (e.g. Bonabeau et al, 1999) consist of the 
automatic release of two pheromones: a ‘home’ pheromone 
and a ‘food’ pheromone.  The ants go towards the ‘home’ 
pheromone when they are searching for their home, and 
they go towards the ‘food’ pheromone when foraging for 
food.  This exactly matches these two actions in our agents.  
The ‘home’ pheromone would be an example of a ‘home-
like’ structure in the ant environment. 

The fourth and fifth possible actions provide for the 
ability to generate these ‘home-like’ and ‘target-like’ 
structures.  In the standard ant models, this could be thought 
of as the releasing of pheromones. However, our simulation 
has an important and very key distinction.  Here, this ability 
to modify the environment is something the agents can do 
instead of moving around.  That is, this generation process 
requires time and effort. The best way to envisage this is to 
think of an action that a creature might do which 
inadvertently modifies its environment in some way.  
Examples include standing in one spot and perspiring, or 
urinating, or rubbing up against a tree.  These are all actions 
which modify the environment in ways that might have 
some future effect, but do not provide any sort of immediate 
reward for the agent.  Kirsh (1996) terms these ‘task-
external actions’.   

It must be stressed here that we are not presuming any 
sort of long-term planning on the part of the agents.  We are 
simply specifying a collection of actions available to them, 
and they will choose these actions in a purely reactive 
manner (i.e. based entirely on their current sensory state).  It 
may also be noted that our ‘actions’ are considered at a 
slightly higher level than is common in agent models.  Our 
agents are not reacting by ‘turning left’ or ‘going forward’; 
they are reacting by ‘following target-like things’ or 

‘moving randomly’. Furthermore, they do not initially have 
any sort of association between the action of making ‘home-
like’ structures and the action of moving towards ‘home-
like’ things.  Any such association must be learned (either 
via evolution, or via some other learning rule). 

Also, our agents are not designed to form structures 
automatically as they wander around (as is the case in 
standard ant models). In our simulation, a creature must 
expend extra effort to systematically generate these 
structures in the world.  An agent that does this will be 
efficient only if the effort spent in generating these 
structures is more than compensated for by the effort saved 
in having them. Moreover, these are not permanent 
structures. The agents’ world is dynamic and the structures 
do not persist forever.  The ‘home-likeness’ or ‘target-
likeness’ of the grid squares decrease exponentially over 
time. Furthermore, these structures also spread out over 
time.  A ‘home-like’ square will make its neighboring 
squares slightly more ‘home-like’.  This can be considered 
similar to ant pheromones dispersing and evaporating, or 
leaf/twig piles being knocked over and blown around by 
wind or other passing creatures.  

 
Table 1: The five actions available to the agent. 

 
Agent Actions 

Move randomly 
Move toward ‘home-like’ structures 
Move toward ‘target-like’ structures 
Make ‘home-like’ structure 
Make ‘target-like’ structure 

Agent Sensing 
Since our agents are reactive creatures and thus do no 

long-term planning, they require a reasonably rich set of 
sensors.  We have given them four sensors, two external and 
two internal, to detect their current situation.  The two 
external sensors sense how ‘home-like’ and how ‘target-
like’ the current location is (digitized to 4 different levels).  
The internal sensors are two simple bits of memory.  One 
indicates whether the agent has been to the target yet, and 
the other indicates how long it has been since the agent 
generated a structure in its environment (up to a maximum 
of 5 time units).  This is all that the agents can use to 
determine which action to perform. This configuration gives 
each agent 192 (4 x 4 x 6 x 2) different sensory states. 

 
Table 2: The four sensory values available to the agent. 

 
Agent Sensory State 

Similarity to ‘home’ of current location (0-3) 
Similarity to ‘target’ of current location (0-3) 
Amount of time since the agent last made a 
change to the environment (0-5) 
Currently carrying anything (0-1) 

 



Alternative State/Action Representations 
The particular choices we made for the set of actions and 
sensory states the agent has available to it (as shown in 
tables 1 and 2) may be a bit non-intuitive.  They are not the 
first representations that we tried.  Initially, instead of the 
‘move randomly’, ‘follow home-like’, and ‘follow target-
like’ actions, we used the more traditional actions of ‘move 
forward’, ‘turn left’, and ‘turn right’.  Using these actions 
requires a more complex sensory state; we would have had 
to add sensor values to detect how home-like and target-like 
the squares ahead of, to the left of, and to the right of the 
agent. 

However, when we used this approach of having a more 
complex sensory state and a less complex set of actions, the 
agents were unable to learn to create structures.  For this 
reason, we used the state/action representations shown in 
tables 1 and 2 for the results given in this paper.  We also 
found that the ‘time since a change was made’ sensor was 
also needed for the agents make use of their abilities to 
change the world. 

The Learning Rules 
Given our representations, we needed some way of 
determining which action the agent will perform in each of 
these 192 states.  Note that by having this sort of mapping, 
we are implying a purely reactive agent.  We investigated 
two different methods for matching sensory states to 
actions: a Genetic Algorithm, and Q-Learning. 

Stage 1: The Genetic Algorithm 
For our first model, we used a genetic algorithm to 
determine which action to take in each situation.  The 
genome consisted of a simple list of actions, one to perform 
in each state.  To evaluate a particular genome, we started 
10 agents in the home location and ran the simulation for 
1000 time steps.  The evolutionary fitness was the agents’ 
average tiredness (i.e. how long it took each agent to make 
it back home from the target).   
 

   
 
Figure 1: The computer model at 10, 100, and 300 time 
steps.  Black dots are the agents.  The shading is darker 
the more ‘home-like’ or ‘target-like’ a particular square 
is.  This run shows typical agent behavior after 300 
generations. 

 
Result: Initially, the agents behaved randomly.  Starting at 
the ‘home’, they would wander about and might, by chance, 
find the target and then, if they were very lucky, their home.  
Indeed, most agents did not find the target and make it back 

within the 1000 time steps.  On average, we found that each 
agent was completing 0.07 foraging trips every 100 time 
steps.  After a few hundred generations, the agents were 
soon completing an average of 1.9 trips in that same period 
of time.  In other words, the agents were able to, on an 
evolutionary time scale, learn to make use of their ability to 
sense and generate structures in the world.  Furthermore, 
this ability provided a very large advantage over completely 
random behavior.   

This result confirmed that it is possible for agents to learn 
to systematically generate and use structures in the world in 
an evolutionary time scale.  It also showed that we had not 
chosen an impossible task for the agents to learn.  However, 
for our purposes, we were much more interested in an 
individual agent learning to generate epistemic structures 
within that agent’s lifetime. To investigate this, we turned to 
the Q-Learning algorithm. 

Stage 2: Q-Learning 
The heart of our investigation was to determine whether a 
simple, general learning algorithm would allow our agents 
to discover and make use of the strategy of systematically 
adding structures to the world.  In keeping with our 
‘tiredness’ theory, the only feedback the learning 
mechanism had was an indication of the exertion or effort.  
The delayed-reinforcement learning rule known as Q-
Learning  (Watkins, 1989) seemed best suited for this task. 
(Sarsa and other TD-Learning algorithms would also be 
suitable). The Q-Learning algorithm1 develops an estimate 
of the eventual outcome of performing a given action in a 
given situation.  The agent then performs the action with the 
highest expected payoff. 

Using the Q-Learning algorithm, we again ran 10 agents 
for 1000 time steps.  To indicate ‘tiredness’, we gave them a 
reinforcement value of -1 all the time (indicating a constant 
‘punishment’ for expending any effort). When they returned 
home after finding the target, they were given a 
reinforcement of 0, and they were then sent back out again 
for another trip.  Each agent independently used the Q-
Learning algorithm, and there was no communication 
between the agents. 
  
Result: The dark line in figure 2 shows the results averaged 
over 100 separate trials.  We can clearly see that the agents 
are improving over time (i.e. they are spending less time to 
perform their foraging task). 

Stage 3: Confirmation 
Although we have observed improvement over time, we still 
need to show that it is the agents’ ability to systematically 
                                                        
1 The estimated reward for performing action a in state s is Q(s,a). 
This is increased by α(r+γmax(Q(s’,b))-Q(s,a)), where r is the 
immediate reward/punishment, s’ is the resulting state, γ is the 
future discounting rate (set to 0.5), and α in the learning rate (0.2).  
We used ε-greedy action selection with ε set to 0.1, so the agents 
choose the action with the highest expected reward 90% of the 
time, and the other 10% they perform an action at random. 



add structures to the world that is causing this effect. To 
prove this, we re-ran the experiment, this time removing the 
agents’ ability to generate structures in the world.  No other 
changes were made. 
 
Result: We found that when the agents were unable to 
generate structures in the world, Q-Learning did not provide 
as much improvement2. This result is shown in the lighter 
line in Figure 2. There is still a small improvement given by 
Q-Learning, but we can conclude that the significant 
improvement seen in the previous experiment (the dark line 
in Figure 2) is due to the agents’ ability to modify their 
environment. 
 

Foraging trips per 100 time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 300 400 500 600 700 800 900 1000

Simulation Time

Learning Without Structure Generation
Learning With Structure Generation

Figure 2: The effect of epistemic structure generation.  
The foraging rate is measured in trips per 100 time steps.  
A foraging rate of 0.5 means that trips require an average 

of 200 time steps to complete. 
 
We can also see from Figure 2 that having these extra 

actions available does incur some cost in the early stages.  
Initially, the agents perform slightly worse.  However, the 
advantage of being able to form epistemic structures quickly 
improves the agents’ performance.  By the end of the 
simulation, agents require only around 150 time steps to 
make a complete trip (a foraging rate of 0.66 trips in 100 
time steps).  This is twice as quick as agents without the 
structure-forming ability. 

When we analyzed the actions of the agents, we found 
that they actually spent 58% of their time generating 
structures.  This is striking, since time spent generating 
these structures means less time for wandering around 
trying to find the target or their home.  Table 3 gives the 
breakdown of how time was allocated to different actions.  
The data indicates that epistemic structure generation 
allowed the agents to go from spending 300 time steps down 

                                                        
2 Q-Learning also did not provide significant improvement if the 
agents were only able to generate one type of structure, or if any of 
the agent’s sensors were removed. 

to 150 time steps to complete their foraging task, even 
though over half of those 150 time steps are spent standing 
still.  There is clearly a large efficiency advantage to making 
use of these structures. 
 
Table 3:  Time spent performing various actions over 1000 

time steps. 
 

Action With 
Structure 

Generation 

Without 
Structure 

Generation 
Move randomly 10% 32% 
Toward ‘home-like’ 19% 36% 
Toward ‘target-like’ 13% 32% 
Make ‘home-like’ 35%  
Make ‘target-like’ 23%  

Model Capabilities 
The Q-Learning system is a concrete implementation of our 
model: a simple learning mechanism that allows agents with 
purely reactive behavior to systematically add structures to 
the world to lower search. 

The Q-Learning model implemented in this simulation 
can explain the generation of structure that is used both by 
the agent generating the structure, and by the other agents in 
the environment.  The agents ended up forming structures 
that were useful for everyone, even though they were just 
concerned about reducing their own tiredness.  This was 
only possible because the agents were similar to each other.  
This is similar to how paths are formed in fields: one person 
cuts across the field to reduce his physical effort, others, 
sharing the same system and wanting to reduce their effort, 
find the route optimal. As more people follow the route, a 
stable path is formed.   

Other Models 
It is worth noting that our model presents a novel simulation 
of ant behavior.  The closest existing models are those in 
(Bonabeau et al, 1999) which use the ‘home-pheromone’ 
and the ‘food-pheromone’.  This is in contrast to such 
models as (Nakamura & Kurumatani, 1996), where a land-
based and an airborne pheromone are used, or any models of 
the Cataglyphis species of ant, which uses a complex 
landmark-navigation scheme which allows it to return 
directly to the nest (Miller & Wehner, 1988). 

That said, all of these other models assume both that 
pheromones are continually being released while the ant 
forages, and that there is no learning happening during the 
foraging behavior.  Our model does not make either of these 
assumptions. 

We were unable to find references indicating that real ants 
might, in fact, learn to use pheromones, or any research that 
indicates that the effort required to produce these 
pheromones might interfere with the foraging behavior. This 
indicates our model may not be a good one for 
understanding ants.  However, the fact that our agents are 
able to learn to reflexively generate these cognitively 



beneficial structures in the absence of any immediate 
feedback to their benefit, indicates a simpler way to model 
more complex creatures that exhibit such behavior.  

Conclusions 
The model presented here shows that a simple agent using 
Q-Learning can learn to modify its environment in such a 
way as to reduce the amount of effort required to perform a 
task.  This ability to change the environment is one that is 
common in simple creatures, but has not been the focus of 
attention of computational modeling. This ability to change 
the world is known to be fundamental for a broad range of 
human activity.  This result indicates a new domain of 
investigation for more complex learning agents in more 
dynamic and realistic environments. 

Future Work 
Interestingly, this same model could explain generation and 
tracking of internal structures in organisms.  The actions 
which generated structure in our simulation were actions 
that affected the environment.  But this does not have to be 
the case.  Just as we had both internal and external sensors, 
we can have actions which affect either the state of the 
world or the state of the agent itself.  In other words, we can 
use this model to investigate the generation of internal 
structure (i.e. representations).   

As an example, consider foraging bees. Suppose that, just 
as our agents left traces in the world of their activity via 
their structure-generating actions, we have the bees leave a 
sequence of internal memory traces corresponding to 
landmarks (say a tall tree, a lake, a garden) as a result of 
their everyday foraging activity. In some foraging trips of 
some bees, the trace sequences match to some degree the 
external structures they perceive. Such trips involve less 
search, because they lead to food more directly, i.e. they 
form shorter paths in the task environment. Over time, using 
the exact same learning mechanisms that apply in the 
external case, the bias against tiredness leads to such paths 
being used more, and so they are reinforced. This could lead 
to landmark-based navigation, which does, in fact, exist in 
bees (Gould, 1990). As in the case of external structures, the 
generation of such memory traces is reinforced because 
more traces lead to more such shorter paths in the task 
environment. We are currently working on a computational 
model of this example. Interestingly, recent research shows 
a similar use of landmarks by homing pigeons, which follow 
highways, railways and rivers to reach their destination with 
less cognitive effort (Guilford, 2004). 

This idea presents a situated cognition model of how 
memory structures come to be used as task-specific 
structures, and why such internal structures are 
systematically generated. If such task-specific memory 
structures are considered to be representations (that is, they 
stand for something specific in the world), then the model 
explains, in a computationally tractable manner, how 
organisms with just reactive behavior can learn to generate 
and use representations.  

The model also explains what such ‘primitive’ 
representations are: they are internal traces of the world that 
allow the agent to shorten paths in a task environment. 
Roughly, they are computation-reducing structures (and 
equivalently, energy-saving structures). They are internal 
‘stepping stones’ that allow organisms to efficiently 
negotiate the ocean of stimuli they encounter. This means 
the traditional cognitive science view, that thinking is 
computations happening over representations, presents a 
secondary process. In the stepping stone view, 
representations are crucial for organisms, but they are just 
useful, incidental entities, not fundamental entities by 
themselves. 

All source code for the simulations can be found at: 
http://www.carleton.ca/iis/TechReports/code/2004-01/ 
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