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Abstract

We provide a computationally tractable model of how
organisms can learn to add structures to the world to reduce
the complexity of their tasks. This model is then implemented
using two techniques: first using a genetic algorithm, and then
using the Q-learning algorithm. The results clearly show that
organisms with only reactive behavior can learn to
systematically add structures to the world to reduce their
cognitive load. We show that such learning can happen in
both evolutionary time and within an agent’s lifetime. An
extension of this model (currently being implemented) is then
illustrated, where organisms with just reactive behavior learn
to systematically generate and use internal structures akin to
representations.

Many organisms generate stable structures in the world to
reduce their cognitive load. Wood mice distribute small
objects, such as leaves or twigs, as points of reference while
foraging. Under laboratory conditions, they will
spontaneously make use of plastic discs for this purpose.
Stopka & MacDonald (2003) show that this ‘way-marking’
diminishes the likelihood of losing interesting locations
during foraging. Red foxes use urine to mark food caches
they have emptied. This marking acts as a memory aid and
helps them avoid unnecessary search (Henry, 1977, reported
in Stopka & MacDonald, 2003). The male bower bird
builds colorful bowers (nest-like structures), which are used
by females to make mating decisions (Zahavi & Zahavi,
1997). Ants drop pheromones to trace a path to a food
source. Many mammals mark up their territories.

At the most basic level, cells in the immune system use
antibodies that bind to attacking microbes, thereby
‘marking’ them. Macrophages use this ‘marking’ to identify
and destroy invading microbes. Bacterial colonies use a
strategy called ‘quorum sensing’ to know that they have
reached critical mass (to attack, to emit light, etc.). This
strategy involves individual bacteria secreting molecules
known as auto-inducers into the environment. These
accumulate in the environment, and when it reaches a
threshold, the colony moves into action (Silberman, 2003).

Given that this ‘doping’ of the world is so common in
these simpler creatures, it is somewhat surprising that there
has been relatively little investigation into the use of this
technique by homo sapiens. More than any other species,
humans generate these external structures to reduce the
amount of physical and cognitive effort required to perform
tasks in their daily lives. Examples include markers, color-
codes, page numbers, credit-ratings, badges, shelf-talkers,
speed bugs, road signs, post-it notes — an almost endless list.

Epistemic Structures

The pervasiveness of such structures across species
indicates that adding structure to the world is a fundamental
cognitive strategy (Kirsh, 1996). Note that these structures
serve to make tasks easier for agents. Some of these
structures have referential properties, but they do not exist
for the purpose of reference. We use the term epistemic
structures to refer to these, in deference to Kirsh’s (1994)
distinction between epistemic and pragmatic action.

Kirsh's (1996) model of “changing the world instead of
oneself’, postulates that such generation of structures
involve task-external actions, and these structures work by
deforming the state space, so that paths in a task
environment are shortened. Such structures also allow new
paths to be formed in the task environment. However, Kirsh
only explicitly addresses the generation of fools, rather than
the direct modification of the world to reduce cognitive
load.

Extending his idea to develop a full computational model
of how organisms generate such structures, we make two
reasonable assumptions. One, organisms sometimes
randomly generate structures in the environment
(pheromones, urine, leaf piles) as part of their everyday
activity. Two, organisms can track their physical or
cognitive effort (i.e. they get ‘tired’), and they have a bias to
reduce tiredness.

Given these assumptions, some of the randomly generated
structures are encountered while executing tasks like
foraging and cache retrieval. In some random cases, these
structures make the task easier for the organisms (following
pheromones reduces travel time, avoiding urine makes
cache retrieval faster, avoiding leaf-piles reduce foraging
effort). In other words, they shorten paths in the task
environment. Given the postulated bias to avoid tiredness,
these paths get preference, and they are reinforced. Since
more structure generation leads to more of these paths,
structure generation behavior is also reinforced.

The Simulation

To test and investigate the above model of epistemic
structure generation, we have developed a computational
model, where simple agents in a simple world, given only
feedback in terms of their ‘tiredness’ (i.e. the effort required
to perform their task), learn to systematically add structures
to their environment.

The task we have chosen is analogous to foraging
behavior, i.e. navigating from a home location to a distant
target location and back again. Our environment consists of



a 30x30 toroidal grid-world, with one 3x3 square patch
representing the agent’s home, and another representing the
target. This ‘target’ can be thought of as a food source, to
fit with our analogy to foraging behavior.

Agent Actions

At any given time, an agent can do one of five possible
actions. The first and most basic of these is ‘moving
randomly’. This consists of going straight forward, or
turning to the left or right by 45 degrees and then going
forward. The agent does not pick which of these three
possibilities occurs (there is a 1/3 chance of each).

In deciding the actions available to the agent, we needed
to postulate some basic facilities within each agent. In our
case, we felt it was reasonable to assume that the agents
could distinguish between their home and their target. To do
this, we added two more actions to the agents’ repertoire.
These are exactly like the first action, but instead of moving
randomly, the agent would move to whichever square is
sensed to be the most ‘home-like’ (or the most ‘target-like’).
Initially, the only things in the environment that are ‘home-
like’ or ‘target-like’ are the home and the target themselves.

One way to think about these actions is to consider the
pheromone-following ability of ants. Common models of
ant foraging (e.g. Bonabeau et al, 1999) consist of the
automatic release of two pheromones: a ‘home’ pheromone
and a ‘food’ pheromone. The ants go towards the ‘home’
pheromone when they are searching for their home, and
they go towards the ‘food’ pheromone when foraging for
food. This exactly matches these two actions in our agents.
The ‘home’ pheromone would be an example of a ‘home-
like’ structure in the ant environment.

The fourth and fifth possible actions provide for the
ability to generate these ‘home-like’ and ‘target-like’
structures. In the standard ant models, this could be thought
of as the releasing of pheromones. However, our simulation
has an important and very key distinction. Here, this ability
to modify the environment is something the agents can do
instead of moving around. That is, this generation process
requires time and effort. The best way to envisage this is to
think of an action that a creature might do which
inadvertently modifies its environment in some way.
Examples include standing in one spot and perspiring, or
urinating, or rubbing up against a tree. These are all actions
which modify the environment in ways that might have
some future effect, but do not provide any sort of immediate
reward for the agent. Kirsh (1996) terms these ‘task-
external actions’.

It must be stressed here that we are not presuming any
sort of long-term planning on the part of the agents. We are
simply specifying a collection of actions available to them,
and they will choose these actions in a purely reactive
manner (i.e. based entirely on their current sensory state). It
may also be noted that our ‘actions’ are considered at a
slightly higher level than is common in agent models. Our
agents are not reacting by ‘turning left’ or ‘going forward’;
they are reacting by ‘following target-like things’ or

‘moving randomly’. Furthermore, they do not initially have
any sort of association between the action of making ‘home-
like’ structures and the action of moving towards ‘home-
like’ things. Any such association must be learned (either
via evolution, or via some other learning rule).

Also, our agents are not designed to form structures
automatically as they wander around (as is the case in
standard ant models). In our simulation, a creature must
expend extra effort to systematically generate these
structures in the world. An agent that does this will be
efficient only if the effort spent in generating these
structures is more than compensated for by the effort saved
in having them. Moreover, these are not permanent
structures. The agents’ world is dynamic and the structures
do not persist forever. The ‘home-likeness’ or ‘target-
likeness’ of the grid squares decrease exponentially over
time. Furthermore, these structures also spread out over
time. A ‘home-like’ square will make its neighboring
squares slightly more ‘home-like’. This can be considered
similar to ant pheromones dispersing and evaporating, or
leaf/twig piles being knocked over and blown around by
wind or other passing creatures.

Table 1: The five actions available to the agent.

Agent Actions
Move randomly
Move toward ‘home-like’ structures
Move toward ‘target-like’ structures
Make ‘home-like’ structure
Make ‘target-like’ structure

Agent Sensing

Since our agents are reactive creatures and thus do no
long-term planning, they require a reasonably rich set of
sensors. We have given them four sensors, two external and
two internal, to detect their current situation. The two
external sensors sense how ‘home-like’ and how ‘target-
like’ the current location is (digitized to 4 different levels).
The internal sensors are two simple bits of memory. One
indicates whether the agent has been to the target yet, and
the other indicates how long it has been since the agent
generated a structure in its environment (up to a maximum
of 5 time units). This is all that the agents can use to
determine which action to perform. This configuration gives
each agent 192 (4 x 4 x 6 x 2) different sensory states.

Table 2: The four sensory values available to the agent.

Agent Sensory State
Similarity to ‘home’ of current location (0-3)
Similarity to ‘target’ of current location (0-3)
Amount of time since the agent last made a
change to the environment (0-5)
Currently carrying anything (0-1)




Alternative State/Action Representations

The particular choices we made for the set of actions and
sensory states the agent has available to it (as shown in
tables 1 and 2) may be a bit non-intuitive. They are not the
first representations that we tried. Initially, instead of the
‘move randomly’, ‘follow home-like’, and ‘follow target-
like’ actions, we used the more traditional actions of ‘move
forward’, ‘turn left’, and ‘turn right’. Using these actions
requires a more complex sensory state; we would have had
to add sensor values to detect how home-like and target-like
the squares ahead of, to the left of, and to the right of the
agent.

However, when we used this approach of having a more
complex sensory state and a less complex set of actions, the
agents were unable to learn to create structures. For this
reason, we used the state/action representations shown in
tables 1 and 2 for the results given in this paper. We also
found that the ‘time since a change was made’ sensor was
also needed for the agents make use of their abilities to
change the world.

The Learning Rules

Given our representations, we needed some way of
determining which action the agent will perform in each of
these 192 states. Note that by having this sort of mapping,
we are implying a purely reactive agent. We investigated
two different methods for matching sensory states to
actions: a Genetic Algorithm, and Q-Learning.

Stage 1: The Genetic Algorithm

For our first model, we used a genetic algorithm to
determine which action to take in each situation. The
genome consisted of a simple list of actions, one to perform
in each state. To evaluate a particular genome, we started
10 agents in the home location and ran the simulation for
1000 time steps. The evolutionary fitness was the agents’
average tiredness (i.e. how long it took each agent to make
it back home from the target).
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Figure 1: The computer model at 10, 100, and 300 time
steps. Black dots are the agents. The shading is darker
the more ‘home-like’ or ‘target-like’ a particular square
is. This run shows typical agent behavior after 300
generations.

Result: Initially, the agents behaved randomly. Starting at
the ‘home’, they would wander about and might, by chance,
find the target and then, if they were very lucky, their home.
Indeed, most agents did not find the target and make it back

within the 1000 time steps. On average, we found that each
agent was completing 0.07 foraging trips every 100 time
steps. After a few hundred generations, the agents were
soon completing an average of 1.9 trips in that same period
of time. In other words, the agents were able to, on an
evolutionary time scale, learn to make use of their ability to
sense and generate structures in the world. Furthermore,
this ability provided a very large advantage over completely
random behavior.

This result confirmed that it is possible for agents to learn
to systematically generate and use structures in the world in
an evolutionary time scale. It also showed that we had not
chosen an impossible task for the agents to learn. However,
for our purposes, we were much more interested in an
individual agent learning to generate epistemic structures
within that agent’s lifetime. To investigate this, we turned to
the Q-Learning algorithm.

Stage 2: Q-Learning

The heart of our investigation was to determine whether a
simple, general learning algorithm would allow our agents
to discover and make use of the strategy of systematically
adding structures to the world. In keeping with our
‘tiredness’ theory, the only feedback the learning
mechanism had was an indication of the exertion or effort.
The delayed-reinforcement learning rule known as Q-
Learning (Watkins, 1989) seemed best suited for this task.
(Sarsa and other TD-Learning algorithms would also be
suitable). The Q-Learning algorithm' develops an estimate
of the eventual outcome of performing a given action in a
given situation. The agent then performs the action with the
highest expected payoff.

Using the Q-Learning algorithm, we again ran 10 agents
for 1000 time steps. To indicate ‘tiredness’, we gave them a
reinforcement value of -1 all the time (indicating a constant
‘punishment’ for expending any effort). When they returned
home after finding the target, they were given a
reinforcement of 0, and they were then sent back out again
for another trip. Each agent independently used the Q-
Learning algorithm, and there was no communication
between the agents.

Result: The dark line in figure 2 shows the results averaged
over 100 separate trials. We can clearly see that the agents
are improving over time (i.e. they are spending less time to
perform their foraging task).

Stage 3: Confirmation

Although we have observed improvement over time, we still
need to show that it is the agents’ ability to systematically

! The estimated reward for performing action  in state s is Q(s,a).
This is increased by o(r+ymax(Q(s’,0))-Q(s,a)), where r is the
immediate reward/punishment, s’ is the resulting state, y is the
future discounting rate (set to 0.5), and a in the learning rate (0.2).
We used e-greedy action selection with € set to 0.1, so the agents
choose the action with the highest expected reward 90% of the
time, and the other 10% they perform an action at random.



add structures to the world that is causing this effect. To
prove this, we re-ran the experiment, this time removing the
agents’ ability to generate structures in the world. No other
changes were made.

Result: We found that when the agents were unable to
generate structures in the world, Q-Learning did not provide
as much improvement®. This result is shown in the lighter
line in Figure 2. There is still a small improvement given by
Q-Learning, but we can conclude that the significant
improvement seen in the previous experiment (the dark line
in Figure 2) is due to the agents’ ability to modify their
environment.
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Figure 2: The effect of epistemic structure generation.
The foraging rate is measured in trips per 100 time steps.
A foraging rate of 0.5 means that trips require an average

of 200 time steps to complete.

We can also see from Figure 2 that having these extra
actions available does incur some cost in the early stages.
Initially, the agents perform slightly worse. However, the
advantage of being able to form epistemic structures quickly
improves the agents’ performance. By the end of the
simulation, agents require only around 150 time steps to
make a complete trip (a foraging rate of 0.66 trips in 100
time steps). This is twice as quick as agents without the
structure-forming ability.

When we analyzed the actions of the agents, we found
that they actually spent 58% of their time generating
structures. This is striking, since time spent generating
these structures means less time for wandering around
trying to find the target or their home. Table 3 gives the
breakdown of how time was allocated to different actions.
The data indicates that epistemic structure generation
allowed the agents to go from spending 300 time steps down

2 Q-Learning also did not provide significant improvement if the
agents were only able to generate one type of structure, or if any of
the agent’s sensors were removed.

to 150 time steps to complete their foraging task, even
though over half of those 150 time steps are spent standing
still. There is clearly a large efficiency advantage to making
use of these structures.

Table 3: Time spent performing various actions over 1000

time steps.
Action With Without
Structure Structure
Generation  Generation
Move randomly 10% 32%
Toward ‘home-like’ 19% 36%
Toward ‘target-like’ 13% 32%
Make ‘home-like’ 35%
Make ‘target-like’ 23%
Model Capabilities

The Q-Learning system is a concrete implementation of our
model: a simple learning mechanism that allows agents with
purely reactive behavior to systematically add structures to
the world to lower search.

The Q-Learning model implemented in this simulation
can explain the generation of structure that is used both by
the agent generating the structure, and by the other agents in
the environment. The agents ended up forming structures
that were useful for everyone, even though they were just
concerned about reducing their own tiredness. This was
only possible because the agents were similar to each other.
This is similar to how paths are formed in fields: one person
cuts across the field to reduce his physical effort, others,
sharing the same system and wanting to reduce their effort,
find the route optimal. As more people follow the route, a
stable path is formed.

Other Models

It is worth noting that our model presents a novel simulation
of ant behavior. The closest existing models are those in
(Bonabeau et al, 1999) which use the ‘home-pheromone’
and the ‘food-pheromone’. This is in contrast to such
models as (Nakamura & Kurumatani, 1996), where a land-
based and an airborne pheromone are used, or any models of
the Cataglyphis species of ant, which uses a complex
landmark-navigation scheme which allows it to return
directly to the nest (Miller & Wehner, 1988).

That said, all of these other models assume both that
pheromones are continually being released while the ant
forages, and that there is no learning happening during the
foraging behavior. Our model does not make either of these
assumptions.

We were unable to find references indicating that real ants
might, in fact, learn to use pheromones, or any research that
indicates that the effort required to produce these
pheromones might interfere with the foraging behavior. This
indicates our model may not be a good one for
understanding ants. However, the fact that our agents are
able to learn to reflexively generate these cognitively



beneficial structures in the absence of any immediate
feedback to their benefit, indicates a simpler way to model
more complex creatures that exhibit such behavior.

Conclusions

The model presented here shows that a simple agent using
Q-Learning can learn to modify its environment in such a
way as to reduce the amount of effort required to perform a
task. This ability to change the environment is one that is
common in simple creatures, but has not been the focus of
attention of computational modeling. This ability to change
the world is known to be fundamental for a broad range of
human activity. This result indicates a new domain of
investigation for more complex learning agents in more
dynamic and realistic environments.

Future Work

Interestingly, this same model could explain generation and
tracking of internal structures in organisms. The actions
which generated structure in our simulation were actions
that affected the environment. But this does not have to be
the case. Just as we had both internal and external sensors,
we can have actions which affect either the state of the
world or the state of the agent itself. In other words, we can
use this model to investigate the generation of internal
structure (i.e. representations).

As an example, consider foraging bees. Suppose that, just
as our agents left traces in the world of their activity via
their structure-generating actions, we have the bees leave a
sequence of internal memory traces corresponding to
landmarks (say a tall tree, a lake, a garden) as a result of
their everyday foraging activity. In some foraging trips of
some bees, the trace sequences match to some degree the
external structures they perceive. Such trips involve less
search, because they lead to food more directly, i.e. they
form shorter paths in the task environment. Over time, using
the exact same learning mechanisms that apply in the
external case, the bias against tiredness leads to such paths
being used more, and so they are reinforced. This could lead
to landmark-based navigation, which does, in fact, exist in
bees (Gould, 1990). As in the case of external structures, the
generation of such memory traces is reinforced because
more traces lead to more such shorter paths in the task
environment. We are currently working on a computational
model of this example. Interestingly, recent research shows
a similar use of landmarks by homing pigeons, which follow
highways, railways and rivers to reach their destination with
less cognitive effort (Guilford, 2004).

This idea presents a situated cognition model of how
memory structures come to be used as task-specific
structures, and why such internal structures are
systematically generated. If such task-specific memory
structures are considered to be representations (that is, they
stand for something specific in the world), then the model
explains, in a computationally tractable manner, how
organisms with just reactive behavior can learn to generate
and use representations.

The model also explains what such ‘primitive’
representations are: they are internal traces of the world that
allow the agent to shorten paths in a task environment.
Roughly, they are computation-reducing structures (and
equivalently, energy-saving structures). They are internal
‘stepping stones’ that allow organisms to efficiently
negotiate the ocean of stimuli they encounter. This means
the traditional cognitive science view, that thinking is
computations happening over representations, presents a
secondary process. In the stepping stone view,
representations are crucial for organisms, but they are just
useful, incidental entities, not fundamental entities by
themselves.

All source code for the simulations can be found at:

http://www.carleton.ca/iis/TechReports/code/2004-01/
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