ADAPTIVE RESOURCE CONTROL

Machine Learning Approaches to Resource Allocation
in Uncertain and Changing Environments

Ph.D. Thesis

Balazs Csanad Csaji

Supervisor: Lészlé Monostori, D.Sc.

Faculty of Informatics (IK),
Eotvos Lorand University (ELTE)

Doctoral School of Computer Science,
Foundations and Methods in Informatics Ph.D. Program,
Chairman: Prof. Janos Demetrovics, Member of HAS

Computer and Automation Research Institute (SZTAKI),
Hungarian Academy of Sciences (HAS, MTA)

Budapest, Hungary, 2008



[...] ol thv dxpifeoy un opoine év dnacwy emlntely, GAN v Exdotolc xatd THY
Onoxewwévny UAnv xol €nl tocoltov €9’ 8oov oixelov Tf] uedddw. xol ydp TéXTWV xal
YewUETENG Slapepdviwg Emlntolol Thy 6pUnv: 6 Uy yip E@” ooV yenoiun teoc to épyoy,
0 8¢ Tl ot 1) molov T Veotne yap tdAndolc. OV adtov 8 tpéTmoV Xal v Tolg dANoLC
TOMTEOY, STwe Ui T& thpepy o THY Epywy Theln yivitan. (Aristotle, Nicomachean Ethics,
1098a; based on: Ingram Bywater, editor, Oxford, Clarendon Press, 1894)

[...] we must not look for equal exactness in all departments of study, but only such
as belongs to the subject matter of each, and in such a degree as is appropriate to the
particular line of enquiry. A carpenter and a geometrician both try to find a right angle,
but in different ways; the former is content with that approximation to it which satisfies
the purpose of his work; the latter, being a student of truth, seeks to find its essence or
essential attributes. We should therefore proceed in the same manner in other subjects
also, and not allow side issues to outbalance the main task in hand. (Aristotle in 23
Volumes, Vol. 19, translated by Harris Rackham, Harvard University Press, 1934)



Declaration

Herewith I confirm that all of the research described in this dissertation is my own original
work and expressed in my own words. Any use made within it of works of other authors in
any form, e.g., ideas, figures, text, tables, are properly indicated through the application of
citations and references. I also declare that no part of the dissertation has been submitted
for any other degree — either from the E6tvos Lorand University or another institution.

Baldzs Csandd Csdyji
Budapest, April 2008



Acknowledgments

Though, the thesis is my own work, I received many support from my colleagues and family.
Without them, the dissertation would not be the same. I would like to take the opportunity
to express my gratitude here to all who helped and encouraged me during my studies.

First of all, I want to thank those people that had a direct influence on my thesis. These
include first and foremost my supportive supervisor, Laszlé6 Monostori, but also the people
whom I have collaborated with at the Engineering and Management Intelligence (EMI)
Laboratory of the Computer and Automation Research Institute (SZTAKI).

Furthermore, [ warmly thank Csaba Szepesvari for the many helpful discussions on
Markov decision processes. I am very grateful to Laszlé Gerencsér, as well, from whom I
learned a lot about stochastic models. I am also thankful for expanding my knowledge on
machine learning to Laszl6 Gyorfi. Finally, the first researcher who motivated my interest
in artificial intelligence research during my graduate studies was Andrés Lérincz.

I am also grateful for the Ph.D. scholarship that I received from the Faculty of Informatics
(IK) of the E6tvos Lorand University (ELTE) and, later, for the young researcher scholarship
of the Hungarian Academy of Sciences (HAS, MTA). I greatly acknowledge the contribution
of SZTAKI, as well, where I performed the research presented in the dissertation.

Last but not least, I am very thankful for the support and encouragement of my parents
and family, especially, for the continuous help and care of my wife, Hildegard Anna Stift.



Abstract

The dissertation aims at studying resource allocation problems (RAPs) in uncertain and
changing environments. In order to do this, first a brief introduction to the motivations and
classical RAPs is given in Chapter 1, followed by a section on Markov decision processes
(MDPs) which constitute the basis of the approach. The core of the thesis consists of two
parts, the first deals with wuncertainties, namely, with stochastic RAPs, while the second
studies the effects of changes in the environmental dynamics on learning algorithms.
Chapter 2, the first core part, investigates stochastic RAPs with scarce, reusable re-
sources and non-preemtive, interconnected tasks having temporal extensions. These RAPs
are natural generalizations of several standard resource management problems, such as
scheduling and transportation ones. First, reactive solutions are considered and defined
as policies of suitably reformulated MDPs. It is highlighted that this reformulation has
several favorable properties, such as it has finite state and action spaces, it is acyclic, hence
all policies are proper and the space of policies can be safely restricted. Proactive solutions
are also proposed and defined as policies of special partially observable MDPs. Next, rein-
forcement learning (RL) methods, such as fitted Q-learning, are suggested for computing a
policy. In order to compactly maintain the value function, two representations are studied:
hash tables and support vector regression (SVR), particularly, »-SVRs. Several additional
improvements, such as the application of rollout algorithms in the initial phases, action
space decomposition, task clustering and distributed sampling are investigated, as well.
Chapter 3, the second core part, studies the possibility of applying value function based
RL methods in cases when the environment may change over time. First, theorems are
presented which show that the optimal value function and the value function of a fixed control
policy Lipschitz continuously depend on the immediate-cost function and the transition-
probability function, assuming a discounted MDP. Dependence on the discount factor is
also analyzed and shown to be non-Lipschitz. Afterwards, the concept of (e,d)-MDPs is
introduced, which is a generalization of MDPs and e-MDPs. In this model the transition-
probability function and the immediate-cost function may vary over time, but the changes
must be asymptotically bounded. Then, learning in changing environments is investigated.
A general relaxed convergence theorem for stochastic iterative algorithms is presented and
illustrated through three classical examples: value iteration, Q-learning and TD-learning.
Finally, in Chapter 4, results of numerical experiments on both benchmark and industry-
related problems are shown. The effectiveness of the proposed adaptive resource allocation
approach as well as learning in presence of disturbances and changes are demonstrated.



Contents

Declaration
Acknowledgments
Abstract
Contents

1 Introduction

1.1 Resource Allocation . . . . . . . . .. .. ...
1.1.1  Industrial Motivations . . . . . . .. .. .. ... .o
1.1.2  Curse(s) of Dimensionality . . . . . .. .. ... ... ... .......
1.1.3 Related Literature . . . . . . ... ... .. ... ... ... ......
1.1.4 Classical Problems . . . . . . ... .. ... ... ... ... ......

» Job-Shop Scheduling . . . . ... ... ... .. L.
» Traveling Salesman . . . . . . .. ... ... ... ...
» Container Loading . . . . . . .. .. ... ... ... ... ...

1.2 Markov Decision Processes . . . . . . . . . . . . ...
1.2.1 Control Policies . . . . . . . . . . . ...
1.2.2 Value Functions . . . . . . .. .. .
1.2.3 Bellman Equations . . . . . . .. ... ... oo
1.2.4 Approximate Solutions . . . . . . ... ...
1.2.5 Partial Observability . . . . . .. ... ... ..

1.3 Main Contributions . . . . . . . . . . . . ..
1.3.1 Stochastic Resource Allocation . . . . . .. ... ... ... ......
1.3.2 Varying Environments . . . . . . .. ... o000

2 Stochastic Resource Allocation

2.1 Markovian Resource Control . . . . . . . . . . . . .. ... ... . ... ....
2.1.1 Deterministic Framework . . . . . ... ... ... ... ........

» Feasible Resource Allocation . . . . . . . . .. ... ... ......

» Performance Measures . . . . . . . . . . ... .. ... .....

» Demonstrative Examples



CONTENTS 5
» Computational Complexity . . . . . . . . .. ... ... ... .... 24

2.1.2  Stochastic Framework . . . . . .. .. .. ... ... ... ... ..., 24
» Stochastic Dominance . . . . .. ... ... ... ... ... 25

» Solution Classification . . . . . .. ... ... ... ... ... ... 25

2.1.3 Reactive Resource Control . . . . . . . . . ... ... ... ....... 26
» Problem Reformulation . . . . . ... .. .. ... ... ....... 27

» Favorable Features . . . . .. ... ... ... .. ... ....... 28

» Composable Measures . . . . . .. ... ... ... .. ....... 29

» Reactive Solutions . . . . . . . . ... ... 29

2.1.4  Proactive Resource Control . . . . . ... ... ... ... ... .... 30
» Proactive Solutions . . . . . . . . .. ... ... 31

2.2  Machine Learning Approaches . . . . . . . . ... ... ... ... .. ... . 31
2.2.1 Reinforcement Learning . . . . . . . . .. ... 31
» Fitted Value Iteration . . . . ... ... ... ... ... ... 32

» Fitted Policy Iteration . . . . . .. .. ... ... ... .. ... .. 32

» Fitted Q-learning . . . . . .. ... oL 33

» Evaluation by Simulation . . . . . . ... ... ... 34

» The Boltzmann Formula . . . . . . ... ... ... ... ...... 34

2.2.2  Cost-to-Go Representations . . . . . . .. .. ... ... ... .. .. 34
» Feature Vectors . . . . . . . . . .. .. . ... 35

» Hash Tables . . . . . . . . . . . ... . . 35

» Support Vector Regression . . . . . . .. ... ... ... ...... 36

2.2.3 Additional Improvements . . . . . ... ... ... L. 40
» Rollout Algorithms . . . . . . . . .. ... ... ... ... .. ... 40

» Action Space Decomposition . . . . . . . ... ... L. 41

» Clustering the Tasks . . . . . . . ... ... ... ... ... ... 42

2.2.4 Distributed Systems . . . . . ... 43
» Agent Based Approaches . . . . . . . .. ... 43

» Parallel Optimization . . . . . . . . . ... ... ... ... ..... 45

» Distributed Sampling . . . . . . . ... oL 46

3 Varying Environments 48
3.1 Changes in the Dynamics . . . . . . . .. .. .. ... . 49
3.1.1 Transition Changes . . . . . . . . . . ... ... 49
3.1.2 Cost Changes . . . . . . . . . . 50
3.1.3 Discount Changes . . . . . . . . . .. .. ... 51
3.1.4 Action-Value Changes . . . .. .. ... .. ... ... ... ..., 51
3.1.5  Optimal Cost-to-Go Changes . . . . .. . ... ... .. ... ..... 52
3.1.6 Further Remarks . . . . . .. .. ... .. ... ... .......... 53
» Average Cost Case . . . . . . . . . . ... 54

» Simulation Lemma . . . . . . . ... ... 54

» State and Action Changes . . . . . . ... ... ... ... .. ... 54



CONTENTS 6
» Counterexamples . . . . . . . . . .. ... 55

3.2 Learning in Varying Environments . . . . . .. .. ... ... ... . ... .. 56
3.2.1 Unified Learning Framework . . . . . . .. .. ... ... ... .. ... 56

» Generalized Value Functions . . . . . . ... ... ... ... .... 56

» Kappa Approximation . . . . .. ... ... ... ... ... ... 56

» Generalized Value Iteration . . . . . .. ... ... ... ...... 57

» Asymptotic Convergence Bounds . . . . . . ... .. ... ... .. 57

3.2.2  Varying Markov Decision Processes . . . . . . . .. ... .. ... ... 58

3.2.3 Stochastic Iterative Algorithms . . . . . . .. ... ... ... ... .. 60

» Time-Dependent Update . . . . . . . ... . . ... ... ... ... 60

» Main Assumptions . . . . . . . .. ... 60

» Approximate Convergence . . . . . . . . . . . . ... ... 61

» An Alternating Example . . . . . . .. .. ... ... .. .. .. .. 62

» A Pathological Example . . . .. ... ... ... ... .. ..... 62

3.24 Learning in Varying MDPs . . . . . .. . ... oo 64

» Asynchronous Value Iteration . . . . .. .. ... ... ... .... 64

» Q-learning . . . . . ... 65

» Temporal Difference Learning . . . . . . ... ... ... ... ... 65

4 Experimental Results 67
4.1 Stochastic Resource Allocation . . . . . ... .. ... ... ... .. .. ... 67
4.1.1 Testing Methodology . . . . . . . . . . .. ... Lo 67

4.1.2 Benchmark Datasets . . . . . . ... ... .. ... ... ... 68

4.1.3 Distributed Sampling . . . . . . . . ... Lo 70

4.1.4 Industry Related Tests . . . . . . . . .. ... L. 70

4.1.5 Clustering Experiments . . . . . . . .. .. ... ... 72

4.2 Varying Environments . . . . . . ... .00 73
4.2.1 Adaptation to Disturbances . . . . . . . .. ... ... L. 73

4.2.2 Varying Grid Worlds . . . . . . . . ... o 74

5 Conclusion 77
5.1 Managing Uncertainties . . . . . . . . . ... . L o 7
5.2 Dealing with Changes . . . . . . . . . .. ... . 78
5.3 Further Research Directions . . . . . . . . . .. ... ... ... ..., 79
Appendix: Proofs 81
Abbreviations 94
Notations 96
Bibliography 99



Chapter 1

Introduction

Information technology has been making an explosion-like progress since the middle of the
past century. However, as computer science broke out from laboratories and classrooms
and started to deal with “real world” problems, it had to face major difficulties. Namely,
in practise, we mostly have only incomplete and uncertain information on the system and
the environment that we must work with, additionally, they may even change dynamically,
the problem may be non-stationary. Moreover, we also have to face complexity issues, viz.,
even if we deal with static, highly simplified and abstract problems and it can be known
that the solution exists and can be attained in finitely many steps, the problem could still
be intractable, viz., we might not have enough computation power (or even enough storage
space) to achieve it in practise, as this is the case, e.g., with many NP-hard problems.

One way to overcome these difficulties is to apply machine learning techniques. It means
designing systems which can adapt their behavior to the current state of the environment,
extrapolate their knowledge to the unknown cases and learn how to optimize the system.
These approaches often use statistical methods and satisfy with approzimate, suboptimal
but tractable solutions concerning both computational demands and storage space.

The importance of learning was recognized even by the founders of computer science. It
is well known, e.g., that John von Neumann (1948) was keen on artificial life and, besides
many other things, designed self-organizing automata. Alan Turing (1950) can be another
example, who in his famous paper, which can be treated as one of the starting articles of
artificial intelligence research, wrote that instead of designing extremely complex and large
systems, we should design programs that can learn how to work efficiently by themselves.

In the dissertation we consider an important problem with many practical applications,
which has all the difficulties mentioned in the previous parts, namely: resource allocation.
In this chapter, first, a brief introduction to resource allocation is given followed by a sec-
tion on Markov decision processes (MDPs), since they constitute the basis of the presented
approach. At the end of Chapter 1 the main contributions of the dissertation are summa-
rized. Chapter 2 deals with uncertainties concerning resource allocation, namely, it defines a
generalized framework for stochastic problems, then, an MDP based reformulation is given
and efficient solution methods are suggested applying various machine learning techniques,
such as reinforcement learning, support vector regression and clustering. Chapter 3 studies



1.1. RESOURCE ALLOCATION 8

the effects of environmental changes on learning algorithms. First, different value function
bounds for environmental changes are presented followed by an analysis of stochastic iter-
ative algorithms in a special class of non-stationary environments. Finally, in Chapter 4
results of numerical experiments on benchmark and industry-related data are presented.

1.1 Resource Allocation

Resource allocation problems (RAPs) are of high practical importance, since they arise in
many diverse fields, such as manufacturing production control (e.g., production scheduling),
warehousing (e.g., storage allocation), fleet management (e.g., freight transportation), per-
sonnel management (e.g., in an office), scheduling of computer programs (e.g., in massively
parallel GRID systems), managing a construction project or controlling a cellular mobile
network. RAPs are also central to management science (Powell and Van Roy, 2004). In
the thesis we consider optimization problems that include the assignment of a finite set of
reusable resources to non-preemtive, interconnected tasks that have stochastic durations and
effects. Our main objective in the thesis is to investigate efficient decision-making processes
which can deal with the allocation of scarce resources over time with a goal of optimizing
the objectives. For ‘real world” applications, it is important that the solution should be able
to deal with large-scale problems and handle environmental changes, as well.

1.1.1 Industrial Motivations

One of our main motivations for investigating RAPs is to enhance manufacturing production
control. Regarding contemporary manufacturing systems, difficulties arise from unexpected
tasks and events, non-linearities, and a multitude of interactions while attempting to control
various activities in dynamic shop floors. Complexity and uncertainty seriously limit the
effectiveness of conventional production control approaches (e.g., deterministic scheduling).
In the thesis we apply mathematical programming and machine learning (ML) techniques to
achieve the suboptimal control of a generalized class of stochastic RAPs, which can be vital to
an intelligent manufacturing system (IMS). The term of IMS can be attributed to a tentative
forecast of Hatvany and Nemes (1978). In the early 80s IMSs were outlined as the next
generation of manufacturing systems that utilize the results of artificial intelligence research
and were expected to solve, within certain limits, unprecedented, unforeseen problems on
the basis of even incomplete and imprecise information. Naturally, the applicability of the
different proposed solutions to RAPs are not limited to industrial problems.

1.1.2 Curse(s) of Dimensionality

Different kinds of RAPs have a huge number of exact and approximate solution meth-
ods, e.g., (see Pinedo, 2002) in the case of scheduling problems. However, these methods
primarily deal with the static (and often strictly deterministic) variants of the various prob-
lems and, mostly, they are not aware of uncertainties and changes. Special (deterministic)
RAPs which appear in the field of combinatorial optimization, e.g., the traveling salesman
problem (TSP) or the job-shop scheduling problem (JSP), are strongly NP-hard and, more-



1.1. RESOURCE ALLOCATION 9

over, they do not have any good polynomial-time approximation, either (Lawler et al., 1993;
Lovasz and Gécs, 1999). In the stochastic case, RAPs can be often formulated as Markov
decision processes (MDPs) and by applying dynamic programming (DP) methods, in theory,
they can be solved optimally. However, due to the phenomenon that was named curse of
dimensionality by Bellman, these methods are highly intractable in practice. The “curse”
refers to the combinatorial explosion of the required computation as the size of the problem
increases. Some authors, e.g., Powell and Van Roy (2004), talk about even three types of
curses concerning DP algorithms. This has motivated approximate approaches that require
a more tractable computation, but often yield suboptimal solutions (Bertsekas, 2005).

1.1.3 Related Literature

It is beyond our scope to give a general overview on different solutions to RAPs, hence, we
only concentrate on the part of the literature that is closely related to our approach. Our
solution belongs to the class of approzimate dynamic programming (ADP) algorithms which
constitute a broad class of discrete-time control techniques. Note that ADP methods that
take an actor-critic point of view are often called reinforcement learning (RL).

Zhang and Dietterich (1995) were the first to apply an RL technique for a special RAP.
They used the T'D(\) method with iterative repair to solve a static scheduling problem,
namely, the NASA space shuttle payload processing problem. Since then, a number of pa-
pers have been published that suggested using RL for different RAPs. The first reactive
(closed-loop) solution to scheduling problems using ADP algorithms was briefly described
in (Schuneider et al., 1998). Riedmiller and Riedmiller (1999) used a multilayer perceptron
(MLP) based neural RL approach to learn local heuristics. Aydin and Oztemel (2000) ap-
plied a modified version of Q-learning to learn dispatching rules for production scheduling.
In (Csaji et al., 2003, 2004; Csaji and Monostori, 2005b,a, 2006a,b; Cs&ji et al., 2006) multi-
agent based versions of ADP techniques were used for solving dynamic scheduling problems.

Powell and Van Roy (2004) presented a formal framework for RAPs and they applied
ADP to give a general solution to their problem. Later, a parallelized solution to the pre-
viously defined problem was given by Topaloglu and Powell (2005). Note that our RAP
framework, presented in Chapter 2, differs from the one in (Powell and Van Roy, 2004),
since in our system the goal is to accomplish a set of tasks that can have widely differ-
ent stochastic durations and precedence constraints between them, while the approach of
Powell and Van Roy (2004) concerns with satisfying many similar demands arriving stochas-
tically over time with demands having unit durations but not precedence constraints.

Recently, support vector machines (SVMs) were applied by Gersmann and Hammer
(2005) to improve iterative repair (local search) strategies for resource constrained project
scheduling problems (RCPSPs). An agent-based resource allocation system with MDP-
induced preferences was presented in stepDolgov2006. Beck and Wilson (2007) gave proac-
tive solutions for job-shop scheduling problems based on the combination of Monte Carlo
simulation, solutions of the associated deterministic problem, and either constraint program-
ming or tabu-search. Finally, the effects of environmental changes on the convergence of
reinforcement learning algorithms was theoretically analyzed by Szita et al. (2002).



1.1. RESOURCE ALLOCATION 10

1.1.4 Classical Problems

In this section we give a brief introduction to RAPs through three classical problems: job-
shop scheduling, traveling salesman and container loading. All of these problems are known
to be NP-hard. Throughout the thesis we will apply them to demonstrate our ideas.

JOB-SHOP SCHEDULING

First, we consider the classical job-shop scheduling problem (JSP) which is a standard de-
terministic RAP (Pinedo, 2002). We have a set of jobs, J = {Ji,...,Jn}, to be processed
through a set of machines, M = {M;,..., My}. Each j € J consists of a sequence of n;
tasks, for each task tj; € 7, where i € {1,...,n;}, there is a machine mj; € M which can
process the task, and a processing time pj; € N. The aim of the optimization is to find a
feasible schedule which minimizes a given performance measure. A solution, i.e., a schedule,
is a suitable “task to starting time” assignment, Figure 1.1 presents an example schedule.
The concept of “feasibility” will be defined in Chapter 2. In the case of JSP a feasible
schedule can be associated with an ordering of the tasks, i.e., the order in which they will
be executed on the machines. There are many types of performance measures available for
JSP, but probably the most commonly applied one is the maximum completion time of the
tasks, also called “makespan”. In case of applying makespan, JSP can be interpreted as the
problem of finding a schedule which completes all tasks in every job as soon as possible.

machines
3
N
5

21 ta1 tys

time (tasks)

Figure 1.1: A possible solution to JSP, presented in a Gantt chart. Tasks having the same
color belong to the same job and should be processed in the given order. The
vertical gray dotted line indicates the maximum completion time of the tasks.

Later, we will study an extension of JSP, the flexible job-shop scheduling problem (FJSP).
In FJSP the machines may be interchangeable, i.e., there may be tasks that can be executed
on several machines. In this case the processing times are given by a partial function,
p: M x T — N. Recall that a partial function, denoted by “<—”, is a binary relation that
associates the elements of its domain set with at most one element of its range set.

An even more general version of JSP, which is often referred to as resource constrained
project scheduling problem (RCPSP), arises when the tasks may require several resources,
such as machines and workers, simultaneously, in order to be executed (Pinedo, 2002).



1.1. RESOURCE ALLOCATION 11

TRAVELING SALESMAN

One of the basic transportation problems is the famous traveling salesman problem (TSP)
that can be stated as follows. Given a number of cities and the costs of travelings between
them, which is the least-cost round-trip route that visits each city exactly once and then
returns to the starting city (Papadimitriou, 1994). Several variants of TSP are known, here
we present one of the standard versions. It can be formally characterized by a connected,
undirected, edge-weighted graph G = (V. E, w), where the components are as follows. The
vertex set, V = {1,...,n}, is corresponding to the set of “cities”, E C V x V is the set of
edges which represents the “roads” between the cities, and function w : £ — N defines the
weights of the edges: the durations of the trips. The aim of the optimization is to find a
Hamilton-circuit with the smallest possible weight. Note that a Hamilton-circuit is a graph
cycle that starts at a vertex, passes through every vertex exactly once and, finally, returns
to the starting vertex. Take a look at Figure 1.2 for an example Hamilton-circuit.

Figure 1.2: A possible solution to TSP, a path in the graph. The black edges constitute a
Hamilton-circuit in the given connected, undirected, edge-weighted graph.

CONTAINER LOADING

Our final classical example is the container loading problem (CLP) which is an inventory
management problem (Davies and Bischoff, 1999). CLP is related to the bin packing prob-
lem with the objective of high volumetric utilization. It involves the placement of a set of
items in a container. In practical applications there are a number of requirements concern-
ing container loading, such as stacking conditions, cargo stability, visibility and accessibility
considerations. Now, as a simplification, we concentrate only on the weight distribution of
the loaded container, focusing on the location of the center of gravity (CoG). The exact
requirements concerning CoG depend on the specific application, especially on the means of
transport. In aircraft loading or loading containers lifted by cranes, for example, the CoG
has to be located in the center of the container. In contrast, in road transport, it is often
preferred to have the CoG above the axles of the vehicle (Kovacs and Beck, 2007).



1.1. RESOURCE ALLOCATION 12

Now, we describe the problem of loading homogeneous, box-shaped items into a rectan-
gular container. We assume that the rotation of the items is disallowed. The location of the
CoG can be constrained to an arbitrary rectangular region of the container. For simplicity,
we present a two-dimensional variant of the problem, although it is straightforward to extend
the model to higher dimensions. We have a set of two-dimensional boxes, By, ..., By, to be
placed in a rectangular container of length L and width W. Each box B; is characterized by
its length a;, width b; and weight w;. The location of B; is represented by two parameters,
x; and y;, which describe the coordinate of the “south-west” corner of the box. Since the
boxes are homogeneous, the CoG of the cargo, (z*,y*), can be computed as follows

(2% ) = < Dima wiwi+ai/2) 3, wiyi +bi/2) >
’ > i1 Wi ’ D e Wi
The objective of CLP is to find a placement of the boxes in the container such that the CoG

of the cargo is located in a given rectangular area, more precisely, z; . < z* < zy .. and
Yrin < Y* < Ynae should hold. Take a look at Figure 1.3 for an example solution to CLP.

Container Xonin Xmax

Yimax

box: B;
weight: w;

Y min

width of the container: W

length: a;

x5 ) length of the container: L

Figure 1.3: A possible solution to CLP. The objective is to place the given boxes in the
container in a way that the constraints on the center of gravity are satisfied.

Assuming that all of the parameters are natural numbers, this problem could be trans-
formed into a scheduling problem which allows tasks with multiple resource requirements
(Kovacs and Beck, 2007). In order to illustrate this reformulation, consider the following
similarities between scheduling and container loading problems. The container, e.g., cor-
responds to the hull of the schedule, defined by the scheduling horizon (horizontal axis)
and the resource capacity (vertical axis). Boxes can be associated with tasks. Box length
corresponds to task duration and box width can be seen as the resource requirements of the
task. Finally, the physical weight of the box can be associated with the weight of the task.
Regarding our RAP framework, the weights can be included in the performance measure.



1.2. MARKOV DECISION PROCESSES 13

1.2 Markov Decision Processes

Stochastic control problems are often modeled by MDPs that constitute a fundamental
tool for computational learning theory. The theory of MDPs has grown extensively since
Bellman introduced the discrete stochastic variant of the optimal control problem in 1957.
These kinds of stochastic optimization problems have great importance in diverse fields,
such as engineering, manufacturing, medicine, finance or social sciences. Several solution
methods are known, e.g., from the field of [neuro-|dynamic programming (NDP) or reinforce-
ment learning (RL), which compute or approximate the optimal control policy of an MDP.
These methods succeeded in solving many different problems, such as transportation and
inventory control (Van Roy et al., 1996), channel allocation (Singh and Bertsekas, 1997),
robotic control (Kalmér et al., 1998), logical games and problems from financial mathemat-
ics. Many applications of RL and NDP methods are also considered by the textbooks of
Bertsekas and Tsitsiklis (1996), Sutton and Barto (1998) and Feinberg and Shwartz (2002).
This section contains the basic definitions, the applied notations and some preliminaries.
MDPs are of special interest for us, since they constitute the fundamental theory of our
approach. In Chapter 2, e.g., generalized stochastic RAPs are presented and, in order to
apply machine learning techniques to solve them, they are reformulated as MDPs. Later, in
Chapter 3, environmental changes are investigated within the concept of MDPs, as well.

Definition 1 By a (finite, discrete-time, stationary, fully observable) Markov decision pro-
cess (MDP) we mean a stochastic system characterized by a 6-tuple (X, A, A, p, g, a), where
the components are as follows: X is a finite set of discrete states and A is a finite set of con-
trol actions. Mapping A : X — P(A) is the availability function that renders each state a set
of actions available in that state where P denotes the power set. The transition-probability
function is given by p : X x A — A(X), where A(X) is the space of probability distribu-
tions over X. Let p(y|x,a) denote the probability of arrival at state y after executing action
a € A(x) in state z. The immediate-cost function is defined by g : X x A — R, where g(z,a)
is the cost of taking action a in state x. Finally, constant o € [0,1] denotes the discount
rate. If a« =1, then the MDP is called undiscounted, otherwise it is called discounted.

An interpretation of an MDP can be given, which viewpoint is often taken in RL, if we
consider an agent that acts in an uncertain environment. The agent receives information
about the state of the environment, x, at each state x the agent is allowed to choose an
action a € A(x). After the action is selected, the environment moves to the next state
according to the probability distribution p(x,a) and the decision-maker collects its one-step
cost, g(x,a). The aim of the agent is to find an optimal behavior (policy), such that applying
this strategy minimizes the expected cumulative costs over a finite or infinite horizon.

A stochastic shortest path (SSP) problem is a special MDP in which the aim is to find
a control policy such that reaches a pre-defined terminal state starting from a given initial
state, additionally, minimizes the expected total costs of the path, as well. A policy is
called proper if it reaches the terminal state with probability one. A usual assumption when
dealing with SSP problems is that all policies are proper, which is abbreviated as APP.



1.2. MARKOV DECISION PROCESSES 14

It is possible to extend the theory to more general state and action spaces, but at the
expense of increased mathematical complexity. Finite state and action sets are mostly
sufficient for digitally implemented controls and, therefore, we restrict ourselves to this case.

current state
of the system

available
control actions

state & cost
uoljo. |0J3U0d

potential
arrival states

environment

Figure 1.4: Markov decision processes - the interaction of the decision-maker and the un-

certain environment (left); the temporal progress of the system (right).

1.2.1 Control Policies

The behavior of the learning agent at a given time is defined by a policy. Roughly speaking,
a (stationary, Markovian) control policy determines the action to take in each state.

Definition 2 A deterministic policy, ™ : X — A, is simply a function from states to control
actions. A randomized policy, 7 : X — A(A), is a function from states to probability distri-
butions over actions. We denote the probability of executing action a in state x by w(x)(a)
or, for short, by w(x,a). Unless indicated otherwise, we consider randomized policies.

For any 7y € A(X) initial probability distribution of the states, the transition probabil-
ities p together with a control policy m completely determine the progress of the system in
a stochastic sense, namely, they define a homogeneous Markov chain on X,

ft+1 = P(w)it,

where 7, is the state probability distribution vector of the system at time ¢, and P(7) denotes
the probability transition matrix induced by control policy 7, defined as follows

[P(m)],, = D py|z,a)n(z,a).
acA

The Kolmogorov extension theorem guarantees that any initial state xg and any policy =
define a stochastic process (sequence) xg, ag, x1,a1,... (Feinberg and Shwartz, 2002).

1.2.2 Value Functions

The performance of a control policy in the long run is specified by its the value function.
The value of a state with respect to a given policy is, roughly, the total amount of cost an
agent can expect to incur starting from that state and following the policy thereafter.



1.2. MARKOV DECISION PROCESSES 15

Definition 3 The wvalue or cost-to-go function of a policy 7 is a function from states to
costs, J™ : X — R. Function J™(x) gives the expected value of the cumulative (discounted)
costs when the system is in state x and it follows policy © thereafter,

N
J(x) =E [Zatg(Xt,Af) ‘ Xo = x] , (1.1)
=0

where X; and AT are random variables, AT is selected according to control policy m and the
distribution of Xiy1 is p(Xy, AT). The horizon of the problem is denoted by N € NU {oo}.
Unless indicated otherwise, we will always assume that the horizon is infinite, N = oco.

Similarly to the definition of J™, one can define action-value functions of control polices,

9

N
O (r.0) = E [zatmxt,m 3= 45—
t=0

where the notations are the same as in equation (1.1). Action-value functions are especially
important for model-free approaches, such as the classical Q-learning algorithm.

1.2.3 Bellman Equations

We saw that the agent aims at finding an optimal policy which minimizes the expected costs.
In order to define optimal solutions, we also need a concept for comparing policies.

Definition 4 We say that m < my if and only if Vo € X : J™(z) < J™(x). A control
policy is (uniformly) optimal if it is less than or equal to all other control policies.

There always exists at least one optimal policy (Sutton and Barto, 1998). Although there
may be many optimal policies, they all share the same unique optimal cost-to-go function,
denoted by J*. This function must satisfy the Bellman optimality equation, T'J* = J*,
where T is the Bellman operator (Bertsekas and Tsitsiklis, 1996), defined for all x € X, as

(T7)@) = min |g(r.a) +aY_ply|w.a)T )] (1:2)
yeX

The Bellman equation for an arbitrary (stationary, Markovian, randomized) policy is

@ N)@) = Y w(@.0)|gl@,a)+ad plylz.0)I ().

a€A(x) yeX

where the notations are the same as in equation (1.2) and we also have T7J™ = J™.

Definition 5 We say that function f : X — Y, where X, Y are normed spaces, is Lipschitz
continuous if there evists a > 0 such that Vx1,29 € X : | f(21) — f(22)lly < B 71 — 22|,
where ||-|| y and ||-||, denote the norm of X and Y, respectively. The smallest such 3 is called
the Lipschitz constant of f. Henceforth, assume that X =Y. If the Lipschitz constant 3 < 1,
then the function is called a contraction. A mapping is called a pseudo-contraction if there
exists an x* € X and a B > 0 such that Vo € X, we have || f(x) — 2*|» < Bz — 2% 5.



1.2. MARKOV DECISION PROCESSES 16

Naturally, every contraction mapping is also a pseudo-contraction, however, the opposite
is not true. The pseudo-contraction condition implies that z* is the fixed point of function
f, namely, f(z*) = x*, moreover, z* is unique, thus, f cannot have other fixed points.

It is known that the Bellman operator is a supremum norm contraction with Lipschitz
constant . In case we consider stochastic shortest path (SSP) problems, which arise if
the MDP has an absorbing terminal (goal) state, then the Bellman operator becomes a
pseudo-contraction in the weighted supremum norm (Bertsekas and Tsitsiklis, 1996).

1.2.4 Approximate Solutions

From a given value function J, it is straightforward to get a policy, e.g., by applying a greedy
and deterministic policy (w.r.t. J) that always selects actions with minimal costs,

m(x) € argmin [g(x, a) + « Zp(y |z,a)J(y)].
ac€A(x) yex

MDPs have an extensively studied theory and there exist a lot of exact and approximate
solution methods, e.g., value iteration, policy iteration, the Gauss-Seidel method, Q-learning,
Q(A), SARSA and TD(\) - temporal difference learning (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998; Feinberg and Shwartz, 2002). Most of these reinforcement learning
algorithms work by iteratively approximating the optimal value function.

If J is “close” to J*, then the greedy policy with one-stage lookahead based on J will
also be “close” to an optimal policy, as it was proven by Bertsekas and Tsitsiklis (1996):

Theorem 6 Let M be a discounted MDP and J is an arbitrary value function. The value
function of the greedy policy based on J is denoted by J™. Then, we have

2«
-«

17 = Tl < 7= I = o
where |||, denotes the supremum norm, more precisely, || fl,, = sup{|f(z)|: x € dom(f)}.
Moreover, there exists an € > 0 such that if ||J — J*|| < €, then J* = J".

Consequently, if we could obtain a good approximation of the optimal value function,
then we immediately had a good control policy, as well, e.g., the greedy policy with respect
to our approximate value function. Therefore, the main question for most RL approaches is
that how a good approximation to the optimal value function could be achieved.

1.2.5 Partial Observability

In an MDP it is assumed that the agent is perfectly informed about the current state of
the environment, which presupposition is often unrealistic. In partially observable Markov
decision processes (POMDPs), which are well-known generalizations of MDPs, the decision-
maker does not necessarily know the precise state of the environment: some observations are
available to ground the decision upon, however, these information can be partial and noisy.
Formally, a POMDP has all components of a (fully observable) MDP and, additionally, it has
a finite observation set O and a function for the observation probabilities q : X x A — A(Q).



1.2. MARKOV DECISION PROCESSES 17

The notation p(z | z,a) shows the probability that the decision-maker receives observation z
after executing action a in state z. Note that in POMDPs the availability function depends
on the observations rather than the real states of the underlying MDP, 4 : O — P(A).

Control policies of POMDPs are also defined on observations. Thus, a (non-Markovian)
deterministic policy takes the form of 7 : O* — A, where O* denotes the set of all finite
sequences over Q. Respectively, randomized policies are defined as 7 : O* — A(A).

An important idea in the theory of POMDPs is the concept of belief states, which are
probability distributions over the states of the environment. They were suggested by Astrom
(1965) and they can be interpreted as the decision-maker’s ideas about the current state.
We denote the belief space by B = A(X). The belief state is a sufficient statistic in the
sense that the agent can perform as well based upon belief states as if it had access to
the whole history of observations (Smallwood and Sondik, 1973). Therefore, a Markovian
control policy based on belief states, 7, : B — A(A), as it was shown, can be as efficient as
a non-Markovian control policy that applies all past observations, 7, : 0* — A(A).

Given a belief state b, a control action a and an observation z, the successor belief state
7(b,a,z) € B can be calculated by the Bayes rule, more precisely, as follows

%{p(zay |z, a)b(x)
T(bv a, Z)(y) = p(Z ’ b, a) )

where p(z,y | z,a) = p(z | y,a) - p(y | x,a) and p(z | b,a) can be computed by

p(z | b,a) = Z p(z,y | z,a)b(x).

z,yeX

It is known (Aberdeen, 2003) that with the concept of belief states, a POMDP can be
transformed into a fully observable MDP. The resulting process is called the belief state
MDP. The state space of the belief state MDP is B, its action space is A, and the transition-
probabilities from any state b; to state by after executing action a can be determined by

p(z | b1,a) if by = 7(b1,a,z) for some z
ba | b =
p(bz [ b1,a) { 0 otherwise

The immediate-cost function of the belief state MDP for all b € B, a € A is given by

g(b.a) = 3 b(a) glx,a),

zeX

consequently, the optimal cost-to-go function of the belief state MDP, denoted by J*, is

T (b) = min [g(b, a) + ozzez@p(z | b,a) J*(r(b, a, z))].

Due to this reformulation, solving a POMDP, in theory, can be accomplished by solving the
corresponding belief state MDP. However, usually it is hard to translate this approach into
efficient solution methods. Some approximate solutions are considered by Aberdeen (2003).



1.3. MAIN CONTRIBUTIONS 18

1.3 Main Contributions

The main contributions and the new scientific results of the dissertation can be summarized
in six points which can be organized in two thesis groups. The first group concerns with
efficiently solving RAPs in presence of uncertainties, while the second contains results on
managing changes in the environmental dynamics. It is expected to formulate the contribu-
tions in first-person singular form, in order to express that they are my own results.

1.3.1 Stochastic Resource Allocation

In Chapter 2 I study RAPs in presence of uncertainties. I also suggest machine learning
based solution methods to handle them. My main contributions are as follows:

T 1.1 I propose a formal framework for studying stochastic resource allocation problems
with reusable resources and non-preemtive, interconnected tasks having temporal ex-
tensions. I provide a reformulation of it as a controlled Markov process and I show
that this system is capable of handling both reactive and proactive solutions.

I define a formal RAP which is a natural generalization of several standard resource
management problems, such as scheduling, transportation and inventory management
ones. I reformulate this general RAP as a stochastic shortest path (SSP) problem
(a special MDP) having favorable properties, such as, it is acyclic, its state and
action spaces are finite, all policies are proper and the space of control policies can
be safely restricted. I define reactive solutions of stochastic RAPs as control policies
of the reformulated problem. I also investigate proactive solutions and treat them
as policies of the non-observable MDP corresponding to the reformulated MDP. I
analyze the relation between the optimal cost-to-go of the reactive and the proactive
solutions, as well. These results can be found in Section 2.1 of the dissertation.

T 1.2 [ suggest methods based on the combination of approximate dynamic programming,
simulated annealing and either hash tables or kerner regression, in order to compute
and represent reactive solutions. I confirm the effectiveness of this approach with
results of numerical experiments on both benchmark and industry related problems.

In order to compute a good approximation of an optimal policy, I suggest ADP meth-
ods, particularly, fitted Q-learning. Regarding value function representation, I study
two approaches: hash tables and support vector regression (SVR), especially, v-SVRs.
In both cases, I define the inputs as numerical feature vectors. Since the problem to
be faced is an SSP, I apply off-line learning after each episode. An episode consists
of a state-action-cost trajectory, generated by simulation. Regarding controlling the
ratio of exploration and exploitation during the simulation I apply the Boltzmann
formula. These ideas are described in Sections 2.2.1 and 2.2.2 of the dissertation.
I also present results of numerical experiments on both benchmark and industry-
related data, in order to demonstrate the effectiveness of the approach. I measure
the performance on hard benchmark flexible job-shop scheduling problems and I also



1.3. MAIN CONTRIBUTIONS 19

T1.3

1.3.2

demonstrate the scaling properties by experiments on a simulated factory producing
mass-products. These experiments are presented in Sections 4.1.2 and 4.1.4.

I provide further improvements based on rollout algorithms, action space decomposi-
tion, clustering and distributed sampling, in order to speed up the computation of a
solution. I present results of numerical experiments to support their effectiveness.

The suggested improvements are: application of limited lookahead rollout algorithms
in the initial phases to guide the exploration and to provide the first samples to
the approximator; decomposing the action space to decrease the number of available
actions in the states; clustering the tasks to reduce the length of the trajectories and
so the variance of the cumulative costs; as well as two methods to distribute the
proposed algorithm among several processors having either a shared or a distributed
memory architecture. These approaches are contained in Sections 2.2.3 and 2.2.4.
I present results of numerical experiments concerning the improvements in Sections
4.1.3 and 4.1.5. These experiments illustrate the effects of clustering depending on
the size of the clusters and the speedup relative to the number of processors.

Varying Environments

In Chapter 3 I analyze the effects of changes in the environment. I also investigate value

function based RL methods in varying environments. My main contributions are as follows:

T2.1

T2.2

I deduce bounds in discounted MDPs concerning the dependence of the optimal value
function and value functions of (stationary, Markovian, randomized) control policies
on the transition-probabilities, the immediate-costs and the discount factor.

I prove that the value function of a (stationary, Markovian, randomized) control
policy in a discounted MDP Lipschitz continuously depends on the immediate-cost
function (Theorem 11). A similar result was already known for the case of transition-
probability functions, however, I present an improved bound for that case, as well
(Theorem 10). I also present value function bounds (Theorem 12) for the case of
changes in the discount factor and demonstrate through an example that this depen-
dence is not Lipschitz continuous. Then (with Lemma 14) I extend these results to
optimal value functions, too. These theorems can be found in Section 3.1.

I introduce a new MDP model, called (¢,0)-MDP, in order to study varying environ-
ments. It allows asymptotically bounded changes in the transition-probabilities and
the immediate-costs. I prove that changes in the discount factor can be incorporated
into the immediate-costs, thus, discount changes do not have to be modeled.

In order to study changing environments, I introduce (g,6)-MDPs (Definition 23)
that are generalizations of classical MDPs and e-MDPs. In this extended model
the transition-probability function and the immediate-cost function may change over
time, provided that the accumulated changes remain asymptotically bounded, viz.
bounded in the limit. I show (Lemma 24) that potential changes in the discount



1.3. MAIN CONTRIBUTIONS 20

T2.3

factor can be incorporated into the immediate-cost function, thus, discount changes
do not have to be considered. These contributions are presented in Section 3.2.2.

I prove a general convergence theorem for time-dependent stochastic iterative algo-
rithms. As a corollary, I deduce an approximation theorem for value function based
reinforcement learning (RL) methods working in (¢,0)-MDPs. I also illustrate these
results through three classical RL algorithms as well as numerical experiments.

I analyze stochastic iterative algorithms where the value function update operator
may change over time. I prove a relaxed convergence theorem for this kind of al-
gorithm (Theorem 26). As a corollary, I get an approximation theorem for value
function based RL methods working in (e, d)-MDPs (Corollary 27). Furthermore, I
illustrate my results through three classical RL algorithms. I deduce relaxed con-
vergence properties in (g,d)-MDPs for asynchronous value iteration, Q-learning and
TD(A) — temporal difference learning. In order to demonstrate the results, I present
two simple stochastic iterative algorithms, a “well-behaving” and a “pathological”
one. These contributions are described in Sections 3.2.3 and 3.2.4. I also present
results of numerical experiments which highlight some features of working in varying
environments. I show two experiments concerning adaptation in Section 4.2.



Chapter 2

Stochastic Resource Allocation

As we saw in Chapter 1, resource allocation problems (RAPs) have may important practical
applications and, usually, they are difficult to solve, even in deterministic cases. It is known,
for example, that both JSP and TSP are strongly NP-hard, moreover, they do not have
any good polynomial time approximation algorithm, either. Additionally, in “real world”
problems we often have to face uncertainties, e.g., in many cases the processing times of the
tasks or the durations of the trips are not known exactly in advance, only estimations are
available to work with, e.g., these values are given by suitable random variables.

Unfortunately, it is not trivial to extend classical approaches, such as branch and cut or
constraint satisfaction algorithms, to handle stochastic RAPs. Simply replacing the random
variables with their expected values and, then, applying standard deterministic algorithms,
usually, does not lead to efficient solutions. The issue of additional uncertainties in RAPs
makes them even more challenging and call for advanced techniques. In the dissertation we
suggest applying statistical machine learning (ML) methods to handle these problems.

In this chapter, first, we define a general resource allocation framework which is a natural
extension of several standard resource management problems, such as JSP and TSP. Then,
in order to apply ML methods, we reformulate it as an MDP. Both proactive (off-line) and
reactive (on-line) resource allocation are considered and their relation is analyzed. Con-
cerning efficient solution methods, we restrict ourselves to reactive solutions. We suggest
regression based RL methods to solve RAPs and, later, we extend the solution with several
additional improvements to speed up the computation of an efficient control policy.

2.1 Markovian Resource Control

This section aims at precisely defining RAPs and reformulating them in a way that they
could be effectively solved by machine learning methods presented in Section 2.2. First, a
general resource allocation framework is described. We start with deterministic variants and
then extend the definition to the stochastic case. Afterwards, we reformulate the reactive
problem as an MDP. Later, with the help of POMDPS, we study how this approach could be
extended to proactive solutions. Finally, we show that the solution of the proactive problem
can be lower and upper bounded with the help of the corresponding reactive solution.

21



2.1. MARKOVIAN RESOURCE CONTROL 22

2.1.1 Deterministic Framework

Now, we present a general formal framework to model diverse resource allocation problems.
As we will see, this framework is an extension of several classical combinatorial optimization
type RAPs, such as scheduling and transportation problems, e.g., JSP and TSP.

First, a deterministic resource allocation problem is considered: an instance of the prob-
lem can be characterized by an 8-tuple (R,S,0,7,C,d, e, ). In details the problem consists
of a set of reusable resources R together with S that corresponds to the set of possible re-
source states. A set of allowed operations O is also given with a subset 7 C O which denotes
the target operations or tasks. R, S and O are supposed to be finite and they are pairwise
disjoint. There can be precedence constrains between the tasks, which are represented by a
partial ordering C C 7 x 7. The durations of the operations depending on the state of the
executing resource are defined by a partial function d : § x O — N, where N is the set of
natural numbers, thus, we have a discrete-time model. Every operation can affect the state
of the executing resource, as well, that is described by e : & x O — § which is also a partial
function. It is assumed that dom(d) = dom(e), where dom(-) denotes the domain set of a
function. Finally, the initial states of the resources are given by i : R — S.

The state of a resource can contain all relevant information about it, for example, its type
and current setup (scheduling problems), its location and load (transportation problems) or
condition (maintenance and repair problems). Similarly, an operation can affect the state
in many ways, e.g., it can change the setup of the resource, its location or condition. The
system must allocate each task (target operation) to a resource, however, there may be cases
when first the state of a resource must be modified in order to be able to execute a certain
task (e.g., a transporter may need, first, to travel to its loading/source point, a machine
may require repair or setup). In these cases non-task operations may be applied. They can
modify the states of the resources without directly serving a demand (executing a task). It
is possible that during the resource allocation process a non-task operation is applied several
times, but other non-task operations are completely avoided (for example, because of their
high cost). Nevertheless, finally, all tasks must be completed.

FEASIBLE RESOURCE ALLOCATION

A solution for a deterministic RAP is a partial function, the resource allocator function,
0: R xN < O that assigns the starting times of the operations on the resources. Note that
the operations are supposed to be non-preemptive (they may not be interrupted).

A solution is called feasible if and only if the following four properties are satisfied:

1. All tasks are associated with exactly one (resource, time point) pair:
Vo e T : 3 (r,t)y € dom(p) : v = p(r,t).

2. Each resource executes, at most, one operation at a time:
—Ju,v € O :u=p(r,t1) N v=op(rta) At1 <to <ty+d(s(rt1),u).

3. The precedence constraints of the tasks are kept:
V{u,v) €C:u=o(ri,t1) A v=o(rate)] = [t1 +d(s(r1,t1),u) < to].



2.1. MARKOVIAN RESOURCE CONTROL 23

4. Every operation-to-resource assignment is valid:
V(r,t) € dom(o) : (s(r,1), o(r,t)) € dom(d),

where s : R x N — § describes the states of the resources at given times

i(r) if t=0
s(rit) =4q s(r,t—1) if (r,t) ¢ dom(o)
e(s(r,t —1),0(r,t)) otherwise

A RAP is called correctly specified if there exists at least one feasible solution. In what
follows it is assumed that the problems are correctly specified. Take a look at Figure 2.1.

A A

7}

(0]

= m tes m; ba

c

(&}

@© mj tq

S > >
time (tasks) time (tasks)

(1) a resource is associated with two tasks at a time (2) a task is executed twice
A A

»n

(]

c m . m;

o

(&) .

o M| (o to)eC My #1

S > >
time (tasks) time (tasks)

(3) a precedence constraint is violated (4) a task is associated with an improper machine

Figure 2.1: Feasibility - an illustration of the four forbidden properties, using JSP as an ex-
ample. The presented four cases are excluded from the set of feasible schedules.

PERFORMANCE MEASURES

The set of all feasible solutions is denoted by S. There is a performance (or cost) associated
with each solution, which is defined by a performance measure k : S — R that often depends
on the task completion times, only. Typical performance measures that appear in practice
include: maximum completion time or mean flow time. The aim of the resource allocator
system is to compute a feasible solution with maximal performance (or minimal cost).
Note that the performance measure can assign penalties for violating release and due
dates (if they are available) or can even reflect the priority of the tasks. A possible generaliza-
tion of the given problem is the case when the operations may require more resources simulta-

neously, which is important to model, e.g., resource constrained project scheduling problems.



2.1. MARKOVIAN RESOURCE CONTROL 24

However, it is straightforward to extend the framework to this case: the definition of d and
e should be changed to d : S® x ® — N and e : S* x 0 — S*) where S® = UleSi
and k£ < |R|. Naturally, we assume that for all (5,0) € dom(e) : dim(e(s,0)) = dim(8).
Although, managing tasks with multiple resource requirements may be important in some
cases, to keep the analysis as simple as possible, we do not include them in the model.
Nevertheless, the presented model could be easily generalized to this case and, moreover,
the solution methods presented in Section 2.2 are applicable to handle such tasks, as well.

DEMONSTRATIVE EXAMPLES

Now, as demonstrative examples, we reformulate (F)JSP and TSP in the given framework.

It is straightforward to formulate scheduling problems, such as JSP, in the presented
resource allocation framework: the tasks of JSP can be directly associated with the tasks
of the framework, machines can be associated with resources and processing times with
durations. The precedence constraints are determined by the linear ordering of the tasks
in each job. Note that there is only one possible resource state for every machine. Finally,
feasible schedules can be associated with feasible solutions. If there were setup-times in
the problem, as well, then there would be several states for each resource (according to its
current setup) and the “set-up” procedures could be associated with the non-task operations.

Regarding the RAP formulation of TSP, R = {r}, where r corresponds to the “salesman”.

S = {s1,...,8n}, if the state (of r) is s;, it indicates that the salesman is in city i. O =
T = {t1,...,tn}, where the execution of task ¢; symbolizes that the salesman goes to city
i from his current location. The constraints C = {(t2,t1), (t3,t1) ..., (tn,t1)} are used for

forcing the system to end the whole round-tour in city 1, which is also the starting city,
thus, i(r) = s1. For all s; € S and t; € T: (s;,t;) € dom(d) if and only if (i,j) € E. For all
(si,tj) € dom(d) : d(s;,t;) = w;; and e(s;,t;) = s;. Note that dom(e) = dom(d) and the first
feasibility requirement guarantees that each city is visited exactly once. The performance
measure £ is the latest arrival time, x(g) = max {t + d(s(r,t), o(r,t)) | (r,t) € dom(p)}.

COMPUTATIONAL COMPLEXITY

If we use a performance measure which has the property that a solution can be precisely
defined by a bounded sequence of operations (which includes all tasks) with their assignment
to the resources and, additionally, among the solutions generated this way an optimal one can
be found, then the RAP becomes a combinatorial optimization problem. Each performance
measure monotone in the completion times, these measures are called regular, has this
property. Because the above defined RAP is a generalization of, e.g., JSP and TSP, it is
strongly NP-hard and, furthermore, no good polynomial-time approximation of the optimal
resource allocating algorithm exists, either (Papadimitriou, 1994).

2.1.2 Stochastic Framework

So far our model has been deterministic, now we turn to stochastic RAPs. The stochastic
variant of the described general class of RAPs can be defined by randomizing functions d,



2.1. MARKOVIAN RESOURCE CONTROL 25

e and i. Consequently, the operation durations become random, d : § x O — A(N), where
A(N) is the space of probability distributions over N. Also the effects of the operations
are uncertain, e : S x O — A(S) and the initial states of the resources can be stochastic,
as well, i : R — A(S). Note that the ranges of functions d, e and i contain probability
distributions, we denote the corresponding random variables by D, E and I, respectively.
The notation X ~ f indicate that random variable X has probability distribution f. Thus,
D(s,0) ~ d(s,0), E(s,0) ~ e(s,0) and I(r) ~i(r) for all s € S, 0 € O and r € R. Take a
look at Figure 2.2 for an illustration of the stochastic variants of the JSP and TSP.

machines

\ 4

time (tasks)

Figure 2.2: Randomization in case of JSP (left) and in case of TSP (right). In the latter,
the initial state, the durations and the arrival vertex could be uncertain, as well.

STOCHASTIC DOMINANCE

In stochastic RAPs the performance of a solution is also a random variable. Therefore,
in order to compare the performance of different solutions, we have to compare random
variables. Many ways are known to make this comparison. We may say, for example, that a
random variable has stochastic dominance over another random variable “almost surely”, “in
likelihood ratio sense”, “stochastically”, “in the increasing convex sense” or “in expectation”.
In different applications different types of comparisons may be suitable, however, probably
the most natural one is based upon the expected values of the random variables. In the

dissertation we apply this kind of comparison for solutions of stochastic RAPs.

SOLUTION CLASSIFICATION

In this subsection we classify the basic types of resource allocation techniques. First, in
order to give a proper classification we need the concepts of “open-loop” and “closed-loop”
controllers. An open-loop controller, also called a non-feedback controller, computes its input
into a system by using only the current state and its model of the system. Therefore, an
open-loop controller does not use feedback to determine if its input has achieved the desired
goal, it does not observe the output of the processes being controlled. In contrast, a closed-
loop controller uses feedback to control the system (Sontag, 1998). Figure 2.3 demonstrates
the two control concepts. Closed-loop control has a clear advantage over open-loop solutions



2.1. MARKOVIAN RESOURCE CONTROL 26

in dealing with uncertainties. Hence, it also has improved reference tracking performance,
it can stabilize unstable processes and reduced sensitivity to parameter variations.

In deterministic RAPs there is no significant difference between open- and closed-loop
controls. In this case we can safely restrict ourselves to open-loop methods. If the solution
is aimed at generating the resource allocation off-line in advance, then it is called predictive.
Thus, predictive solutions perform open-loop control and assume a deterministic environ-
ment. In stochastic resource allocation there are some data (e.g., the actual durations) that
will be available only during the execution of the plan. Based on the usage of this informa-
tion, we identify two basic types of solution techniques. An open-loop solution that can deal
with the uncertainties of the environment is called proactive. A proactive solution allocates
the operations to resources and defines the orders of the operations, but, because the du-
rations are uncertain, it does not determine precise starting times. This kind of technique
can be applied only when the durations of the operations are stochastic, but, the states
of the resources are known perfectly (e.g., stochastic JSP). Finally, in the stochastic case
closed-loop solutions are called reactive. A reactive solution is allowed to make the decisions
on-line, as the process actually evolves providing more information. Naturally, a reactive
solution is not a simple sequence, but rather a resource allocation policy (to be defined later)
which controls the process. The thesis mainly focuses on reactive solutions, only. We will
formulate the reactive solution of a stochastic RAP as a control policy of a suitably defined
Markov decision process (specially, a stochastic shortest path problem). Even though we
focus on reactive solutions, we will briefly investigate how our approach could be extended
to handle proactive resource allocation problems, as well.

open-loop control closed-loop control
input D—» output input - output
~
Q
3
3
output ~ reference $
. . . X
z{qput ~ desired rejerence sensor
feedback  ~ actual reference

Figure 2.3: The concepts of open-loop (non-feedback) and closed-loop (feedback) controllers.
The latter observes the output of the controlled process with sensors.

2.1.3 Reactive Resource Control

In this section we formulate reactive solutions of stochastic RAPs as control policies of
suitably reformulated SSP problems. The current task durations and resource states will
only be incrementally available during the resource allocation control process.



2.1. MARKOVIAN RESOURCE CONTROL 27

PROBLEM REFORMULATION

In order to reformulate RAPs as SSPs (which are special MDPs), we have to define the
state space (including the initial and terminal states), the action space, the action constraint
function, the effects of actions (transition-probabilities) and the immediate-cost function.
A state x € X is defined as a 4-tuple, more precisely, x = (7, u, 0, ¢), where 7 € N is the
current time and the function p : R — S determines the current states of the resources. The
partial functions g and ¢ store the past of the process, namely, o : R x N;_1; — O contains
the resources and the times in which an operation was started and ¢ : R x N._; — N;
describes the stopping times of the already completed operations, where N = {0,...,7}.
Naturally, it is always true that dom(¢) C dom(p). By Zs(x) C T we denote the set of tasks
which have been started in state x (before the current time 7) and by 7p(x) C Zg(x) the set
of tasks that have been finished already in state x. It is easy to see that 7g(x) = rng(e)N7T
and Tr(z) = rng(0ldom(p)) N T, where rng(:) denotes the range set (also called image set)
of a function. The resource allocation process starts from an initial state x5 = (0, u, 0, 0),
which corresponds to the situation at time zero when none of the operations have been
started. The initial probability distribution of the problem, Zy, can be calculated as follows

To(xs) =P (u(r1) = 1(r1),...,u(ra) = 1(rn)),

where I(r) ~ i(r) denotes the random variable that determines the initial state of resource
r € R and n is the number of resources, thus, n = |R|. Therefore, T renders initial states
to resources according to probability distribution /. We introduce a set of terminal states,
as well. A state x is considered as a terminal state (x € T) if and only if 7p(z) = 7 and
it can be reached from a state &, where 7p(Z) # 7. If the system reaches a terminal state,
which means that all tasks are finished, then we treat the control process completed.

It is easy to see that, in theory, we can aggregate all terminal states to a global unique
terminal state and introduce a new unique initial state, xg, that has only one available
action which takes us randomly (with Zy distribution) to the real initial states. Then, the
problem becomes a stochastic shortest path problem and the aim can be described as finding
a routing having minimal expected cost from the new initial state to the goal state.

At every time 7 the system is informed on the finished operations, and it can decide
on the operations to apply (and by which resources). The control action space contains
operation-resource assignments a,, € A, where v € O and r € R, and a special aq,q;: control
that corresponds to the action when the system does not start a new operation at the current
time. In a non-terminal state = = (7, i, 0, ¢) the available actions are

Qyait € A(-T) g TS(x) \TF(x) 7é @
YVoeOQ:VreR ay € Alx) & (ve O\ Zg(z) N V(7 t) € dom(o) \ dom(p): 7 #1 A
A {u(r),v) €dom(d) N veT = (YueT:(uv) €C=ucTp(x)))

Thus, action aqe¢ is available in every state with an unfinished operation; action a,, is
available in states in which resource r is idle, it can process operation v, additionally, if v is
a task, then it was not executed earlier and its precedence constraints are satisfied.



2.1. MARKOVIAN RESOURCE CONTROL 28

If an action a,, € A(x) is executed in a state © = (7, i, 0, ), then the system moves
with probability one to a new state & = (7, u, 0, @), where g9 = o U {{{(r,t),v)}. Note that
we treat functions as sets of ordered pairs. The resulting & corresponds to the state where
operation v has started on resource r if the previous state of the environment was x.

The effect of the ayqi¢ action is that from x = (7, u, o, ) it takes toan & = (1 + 1, 1, 0, @),
where an unfinished operation o(r,t) that was started at ¢ on r finishes with probability

P(D(u(r), o(r,t)) +t=1)
P(D(u(r), o(r,t)) +t > 1)’

P((r,t) € dom(p) | z, (r,t) € dom(p) \ dom(p)) =

where D(s,v) ~ d(s,v) is a random variable that determines the duration of operation v
when it is executed by a resource which has state s. This quantity is called completion rate
in stochastic scheduling theory and hazard rate in reliability theory. We remark that for
operations with continuous durations, this quantity is defined by f(¢)/(1 — F(t)), where f
denotes the density function and F' the distribution of the random variable that determines
the duration of the operation. If operation v = g(r,t) has finished ((r,t) € dom(p)), then
o(r,t) =7 and fi(r) = E(r,v), where E(r,v) ~ e(r,v) is a random variable that determines
the new state of resource r after it has executed operation v. Except the extension of its
domain set, the other values of function ¢ do not change, consequently, V (r,t) € dom(y) :
o(r,t) = p(r,t). In other words, ¢ is a conservative extension of ¢, formally, ¢ C @.

The cost function g, for a given k performance measure (which depends only on the
operation-resource assignments and the completion times), is defined as follows. Let z =
(T, 1y 0, ) and & = (7, i, 0, ). Then, if the system arrives at state z after executing action a
in state x, it incurs the cost k(o, p)—k(0, ¢). Note that, though, in Section 2.1.1 performance
measures were defined on complete solutions, for most measures applied in practice (e.g.,
makespan, weighted total lateness) it is straightforward to generalize the measure to partial
solutions, as well. One may, for example, treat the partial solution of a problem as a complete
solution of a smaller (sub)problem, viz., a problem with fewer tasks.

FAVORABLE FEATURES

Let us call the introduced SSPs, which describe stochastic RAPs, RAP-MDPs. In this
section we overview some basic properties of RAP-MDPs. First, it is straightforward to see
that these MDPs have finite action spaces, since |A| < |R||O| + 1 always holds.

We may also observe that RAP-MDPs are acyclic, namely, none of the states can ap-
pear multiple times, because during the resource allocation process 7 and dom(p) are non-
decreasing and, additionally, each time the state changes, the quantity 7 + |dom(o)| strictly
increases. Therefore, the system cannot reach the same state twice. As an immediate con-
sequence, we can notice that all control policies eventually terminate and, therefore, proper.

Though, the state space of a RAP-MDP is denumerable in general, if the allowed num-
ber of non-task operations is bounded and the random variables describing the operation
durations are finite, the state space of the reformulated MDP becomes finite, as well.

For the effective computation of a good control policy, it is important to try to reduce
the number of states. We can do so by recognizing that if the performance measure x is



2.1. MARKOVIAN RESOURCE CONTROL 29

non-decreasing in the completion times, then an optimal control policy of the reformulated
RAP-MDP can be found among the policies which start new operations only at times when
another operation has been finished or in an initial state. This statement can be supported
by the fact that without increasing the cost (x is non-decreasing) every operation can be
shifted earlier on the resource which was assigned to it until it reaches another operation,
or until it reaches a time when one of its preceding tasks is finished (if the operation was
a task with precedence constrains), or, ultimately, until time zero. Note that most of the
performance measures used in practice (e.g., makespan, weighted completion time, average
tardiness) are non-decreasing. As a consequence, the states in which no operation has been
finished can be omitted, except the initial states. Therefore, each a4+ action may lead to
a state where an operation has been finished. We may consider it, as the system executes
automatically an a.q action in the omitted states. By this way, the state space can be
decreased and, therefore, a good control policy can be calculated more effectively.

COMPOSABLE MEASURES

For a large class of performance measures, the state representation can be simplified by
leaving out the past of the process. In order to do so, we must require that the performance
measure be composable with a suitable function. In general, a function f : P(X) — R is
called ~-composable if for any A, B C X, AN B = () it holds that v(f(A), f(B)) = f(AUB),
where v : R X R — R is called the composition function, and X is an arbitrary set. This
definition can be directly applied to performance measures. If a performance measure, e.g.,
is y-composable, it indicates that the value of any complete solution can be computed from
the values of its disjoint subsolutions (solutions to subproblems) with function . In practical
situations the composition function is often the max, the min or the “+” function.

If the performance measure k is y-composable, then the past can be omitted from the
state representation, because the performance can be calculated incrementally. Thus, a state
can be described as x = (7, &, 1, Ty), where T € N, as previously, is the current time, & € R
contains the performance of the current (partial) solution and 7y is the set of unfinished
tasks. The function i : R — S x (O U {¢}) x N determines the current states of the resources
together with the operations currently executed by them (or ¢ if a resource is idle) and the
starting times of the operations (needed to compute their completion rates).

In order to keep the analysis as simple as possible, we restrict ourselves to composable
functions, since almost all performance measures that appear in practice are y-composable
for a suitable v (e.g., makespan or total production time is max-composable).

REACTIVE SOLUTIONS

Now, we are in a position to define the concept of reactive solutions for stochastic RAPs.
A reactive solution is a (stationary, Markovian) control policy of the reformulated SSP
problem. It performs a closed-loop (on-line) control, since at each time step the controller
is informed about the current state of system and it can choose a control action based upon
this information. Section 2.2 deals with the computation of effective control policies.



2.1. MARKOVIAN RESOURCE CONTROL 30

2.1.4 Proactive Resource Control

In order to apply a reactive solution, which performs closed-loop control, sufficient feedback
should be available from the system, e.g., provided by sensors. In some situations, however,
we do not have such feedback and we must apply an open-loop controller, still, we should
also take uncertainties into account. In these cases one can design a proactive solution.
Here, we suggest a way of extending our approach to be able to handle proactive problems.
The problem of proactive resource allocation can be formulated as a non-observable
Markov decision process (NOMDP) that is a special POMDP, in which the observation set
contains only one element, |O] = 1. In this case the equations describing the progress of the
belief state MDP can be simplified, e.g., the successor belief state can be computed by

T(b7 a’)(y) = Zp(y ‘ x,a) b(l‘),
zeX
where the observation parameter z is omitted, for obvious reasons. The Bellman equation,
which describes the optimal cost-to-go function of the transformed MDP, is also simpler
J*(b) = min [g(b, a) + aJ*((b, a))} .
acA

We argue that the already calculated reactive solution, namely, the cost-to-go function
of the fully observable MDP (FOMDP), J*, can be used to accelerate the computation
of finding a good policy for the proactive problem, since the cost-to-go function J* of the
NOMDP can be lower and upper bounded by J*. Computing a reactive solution is a much
easier task than computing a proactive one, because, e.g., there are much fewer states to
count with, therefore, partially tracing back the problem of approximating the optimal cost-
to-go of a NOMDP to the case of a FOMDP can mean a remarkable speedup. Moreover,
the bounds are valid for arbitrary POMDPs, as well. Although, the first inequality of
the presented statement follows from the results of Astrom (1965), White (1976), or, more
recently, Hauskrecht (2000), we also present another direct proof of it in the appendix.

Theorem 7 Consider a POMDP and its fully observable MDP counterpart, which sys-
tem has the same state space, action space, transition-probabilities and costs as the original
POMDP, only the observability is different. The optimal cost-to-go functions of the POMDP
and the MDP are denoted by J* and J*, respectively. Then, for all belief state b, we have

D b)) JH(x) < JHb) < D blx) J(z) +

zeX zeX

C

1—a’
where ¢ = (Gmaz — Gmin); Gmaz = Max{g(z,a) | x € X ;a € A} and similarly for gmin. If the
immediate-cost function g is not constant (c # 0), then the second inequality is strict.

The bounds for the optimal cost-to-go function of the belief state MDP are sharp, as the
following lemma shows (applying the usual notations for POMDPs and FOMDPs):

Lemma 8 (1) There exists a POMDP and a corresponding fully observable MDP such that,
for a belief state b: J*(b) = (J*,b); as well as (2) for all ¢ > 0 there exists a POMDP and
a corresponding MDP such that for a belief state b: |J*(b) — (J*,b) — ¢/(1 — a)| < €.



2.2. MACHINE LEARNING APPROACHES 31

In this lemma (-,-) denoted inner product, namely, (f,g) = > . f(z)g(z). If take a closer
look at the proof, located in the appendix, we can notice that the bounds remain sharp even
if we restrict ourselves to NOMDPs. The lower bound can be a remarkable help, e.g., when
such an ADP method is applied that strictly requires non-underestimating initial values for
the approximated optimal cost-to-go function. An example of a learning method with such
assumption could be the real-time dynamic programming (RTDP) algorithm.

PROACTIVE SOLUTIONS

As a summary, we can conclude that a proactive solution of a stochastic RAP is a (station-
ary, Markovian) control policy of the corresponding NOMDP. It is known that POMDPs
can be transformed into belief state MDPs, however, it is usually hard to translate this
result into efficient practical solution algorithms. We have shown that the optimal solu-
tion of the reactive problem can be applied to accelerate the calculation of the proactive
solution. Furthermore, there exists several approximation methods to ensure efficient so-
lutions of POMDPs (Hauskrecht, 2000). In the thesis we present proactive solutions only
as a possibility and leave their theoretical and practical investigations to further research.
Henceforth, we will restrict ourselves to machine learning based reactive solutions.

2.2 Machine Learning Approaches

In this section we aim at giving an effective solution to large-scale RAPs in uncertain and
dynamic environments with the help of different machine learning approaches. First, we
overview some reinforcement learning (RL) methods to compute a “good” policy. After-
wards, we investigate two function approximation techniques to enhance the solution. Clus-
tering, rollout algorithm and action decomposition as well as distributed sampling are also
considered, as they can speedup the computation of a good control policy and, therefore,
are important additions if we face large-scale problems. Later, in Chapter 3, we will see that
this kind of approach can effectively work in changing environments, as well.

2.2.1 Reinforcement Learning

In the previous sections we have formulated RAPs as acyclic SSP problems. Now, we face
the challenge of finding a good policy. In theory, the optimal value function of a finite
MDP can be exactly computed by dynamic programming (DP) methods, such as value
iteration or the Gauss-Seidel method. Alternatively, an exact optimal policy can be directly
calculated by policy iteration. However, due to the “curse of dimensionality”, computing
an exact optimal solution by these methods is practically infeasible, e.g., typically both
the required amount of computation and the needed storage space, viz., memory, grows
combinatorially with the size of the problem. In order to handle the “curse”, we should apply
approzimate dynamic programming (ADP) techniques to achieve a good approximation of
an optimal policy. Here, we suggest using sampling-based fitted Q-learning (FQL). In each
trial a Monte-Carlo estimate of the value function is computed and projected onto a suitable
function space. The methods described in this section (FQL, MCMC and the Boltzmann



2.2. MACHINE LEARNING APPROACHES 32

formula) should be applied simultaneously, in order to achieve an efficient solution. First,
for the sake of better understandability, we overview two basic ADP methods which are
combined with function approximation: fitted value iteration and fitted policy iteration.

FITTED VALUE ITERATION

The value iteration algorithm is one of the basic dynamic programming methods. It is defined
by the iteration Jii1 = T'Jg, where Ji is a value function and T is the Bellman operator,
defined by equation (1.2). It is known that Jj converges in the supremum norm to J* for
any initial Jy, even if the updates of different states are performed asynchronously and also
for more general operators (Bertsekas and Tsitsiklis, 1996; Szepesvari and Littman, 1999).
The method of fitted value iteration (FVI) arises when the cost-to-go function is represented
by a (typically parametric) function from a suitable function space F C J(X), where J(X)
denotes the space of value functions over X. In the case of finite MDPs, J(X) contains all
J : X — R functions. Thus, after each iteration the resulted value function is projected back
onto F. Consequently, in general, the FVI algorithm proceeds as follows

Ji+1 € argmin || f — T,
feF

where |[|-|| is an appropriate norm. FVI is a special case of approximate value iteration (AVI),
where the updates follow the form Jy.1 = TJ + ;. Bertsekas and Tsitsiklis (1996) have
presented L bounds for the convergence of AVI. Szepesvari and Munos (2005) have shown
finite time bounds for the convergence of FVI in case of weighted LP norms.

FirTeED PoLicy ITERATION

There is an alternative to value iteration, called policy iteration, which always terminates
finitely, in case of finite MDPs. Moreover, value iteration can be seen as a special case of
asynchronous policy iteration. In policy iteration, first, the policy is evaluated by applying
the Bellman operator of policy , then its is improved. It is known (Bertsekas and Tsitsiklis,
1996) that iteration Jy4q1 = T™Jj converges to J™ for any initial Jp. Naturally, we do not
need to exactly compute J™. In asynchronous policy iteration, e.g., a subset of states X C X
is considered in iteration k and either value function Jj is updated according to

T Jp(z) if e Xy
J = 2.1
k(@) { Ji(z) otherwise (2.1)

while leaving the policy unchanged, mx4+1 = 7k, or else the policy is improved, while the
cost-to-go estimation remains the same, Ji11 = Ji. The policy is updated as follows

arg min [g(x,a) +a ) plyl|za) Jk(y)} if x e Xg
7Tk+1(:13) = acA(x) yeX

() otherwise

(2.2)

where 741 : X — A is a deterministic policy, which is defined as greedy with respect to
Ji on Xp. It is known, e.g., (Bertsekas and Tsitsiklis, 1996), that if the value update (2.1)



2.2. MACHINE LEARNING APPROACHES 33

and the policy update (2.2) are executed infinitely often for all states and Jy, mo satisfy
77 Jy < Jp then Ji converges in finitely many steps to the optimal cost-to-go, J*. The
technique of asynchronous policy iteration can be interpreted as an actor-critic method.
Similarly to FVI we can define fitted policy iteration by redefining the value update step as

Jp+1 € {f € F: Hf—TVWkaH 38},

where ﬁrk denotes the operator that only updates the estimates of X according to T7*,
viz., as defined by (2.1). Naturally, we should choose an e such that € > inffcr Hf — T JkH
or assume that F is dense in J(X). Note that if we assume that each value update step is
automatically followed by a policy update step (on the same states), then the actual control
policy does not need to be stored explicitly, it can be computed on-line, as needed.

FITTED Q-LEARNING

Watkins’ Q-learning is a very popular off-policy, model-free reinforcement learning algorithm
(Watkins, 1989; Watkins and Dayan, 1992; Even-Dar and Mansour, 2003). Q-learning is
model-free, since it does not require a model of the environment, more precisely, it does
not need the transition-probabilities and the immediate-costs, it satisfies with data coming
from simulation. Moreover, Q-learning is off-policy, since it approximates the optimal value
function independently of the applied policy, as long as it makes sufficient explorations.
Q-learning works with action-value functions and iteratively approximates the optimal
action-value function, Q*. The one-step (tabular) Q-learning rule is defined as follows

Qit1(z,a) = (1 — (2, a))Qi(, a) + vi(z, a)(T;Q:) (z, a),
(TiQi)(z,a) = g(z,a) + o min Q:i(Y,B),

where 7;(z,a) are the learning rates and Y is a random variable representing a state gen-
erated from the pair (x,a) by simulation, that is, according to the probability distribution
p(z,a). It is known (Bertsekas and Tsitsiklis, 1996) that if v;(x,a) € [0,1] and they satisfy

00 )
Z’W(ZC,G) =00 and Z’)/ZQ(I',G) < o0,
i=0 i=0

then the Q-learning algorithm converges with probability one to the optimal action-value
function, @*, in the case of lookup table representation when each state-action value is
stored independently. We speak about the method of fitted @Q-learning (FQL) when the
value function is represented by a (typically parametric) function from a suitable function
space, F, and after each iteration, the updated value function is projected back onto F.

A useful observation is that we need the “learning rate” parameters only to overcome the
effects of random disturbances. However, if we deal with deterministic problems, this part
of the method can be simplified. The resulting algorithm simply updates Q(z,a) with the
minimum of the previously stored estimation and the current outcome of the simulation,
which is also the core idea of the LRTA* algorithm (Bulitko and Lee, 2006). When we dealt
with deterministic resource allocation problems, we applied this simplification, as well.



2.2. MACHINE LEARNING APPROACHES 34

EVALUATION BY SIMULATION

Naturally, in large-scale problems we cannot update all states at once. Therefore, we perform
Markov chain Monte Carlo (MCMC) simulations (Hastings, 1970; Andrieu et al., 2003) to
generate samples (with the model or with a simulator), which are used for computing the new
approximation of the estimated value function. Therefore, the set of states to be updated
in episode 4, namely X;, is generated by simulation. Because RAP-MDPs are acyclic, we
apply prioritized sweeping, which means that after each iteration the cost-to-go estimations
are updated in the reverse order in which they appeared during the simulation. Assume, for
example, that X; = {x’l, zh, ... ,:):,%Z} is the set of states for the update of the value function
after iteration ¢, where j < k implies that x; appeared earlier during the simulation than
xy,. In this case the order in which the updates are performed is zj ,...,z7. Moreover, we
do not need a uniformly optimal value function, it is enough to have a good approximation
of the optimal cost-to-go function for the relevant states. A state is called relevant if it can
appear with positive probability during the application of an optimal policy. Therefore, it
is sufficient to consider the case when ¢ = x(, where z} is the first state in episode i and
xo is the (aggregated) initial state of the SSP problem.

THE BOLTZMANN FORMULA

In order to ensure the convergence of the FQL algorithm, one must guarantee that each
cost-to-go estimation be continuously updated. A technique used often to balance between
exploration and exploitation is the Boltzmann formula (also called softmin action selection):

exp(—Q;(x,a)/T;) ’
>~ exp(—Qi(z,b)/m)

beA(x)

mi(x,a) =

where 7; > 0 is the Boltzmann (or Gibbs) temperature and i is the episode number. It
is easy to see that high temperatures cause the actions to be (nearly) equiprobable, low
ones cause a greater difference in selection probability for actions that differ in their value
estimations. Thus, if 7, was close to zero, then m; was close to the greedy policy w.r.t.
Q;. Note that here we applied the Boltzmann formula for minimization, viz., small values
result in high probability. It is advised to extend this approach by a variant of simulated
annealing (Kirkpatrick et al., 1983) or Metropolis algorithm (Metropolis et al., 1953), which
means that 7; should be decreased over time, at a suitable rate (see Singh et al., 2000).

2.2.2 Cost-to-Go Representations

In Section 2.2.1 we suggested FQL for iteratively approximating the optimal value function.
However, the question of a suitable function space, onto which the resulted value functions
can be effectively projected, remained open. In order to deal with large-scale problems (or
problems with continuous state spaces) this question is crucial. In this section, first, we
suggest features for stochastic RAPs, then describe two methods that can be applied to
compactly represent value functions. The first and simpler one applies hash tables while the
second, more sophisticated one, builds upon the theory of support vector machines.



2.2. MACHINE LEARNING APPROACHES 35

FEATURE VECTORS

In order to efficiently apply a function approximator, first, the states and the actions of the
reformulated MDP should be associated with numerical vectors representing, e.g., typical
features of the system. In the case of stochastic RAPs, we suggest using features as follows:

e For each resource in R, the resource state id, the operation id of the operation being
currently processed by the resource (could be idle), as well as the starting time of the
last (and currently unfinished) operation can be a feature. If the model is available to
the system, the expected ready time of the resource should be stored instead.

e For each task in 7, the task state id could be treated as a feature that can assume
one of the following values: “not available” (e.g., some precedence constraints are not
satisfied), “ready for execution”, “being processed” or “finished”. It is also advised to
apply “l-out-of-n” coding, viz., each value should be associated with a separate bit.

e In case we use action-value functions, for each action (resource-operation assignment)
the resource id and the operation id could be stored. If the model is available, then
the expected finish time of the operation should also be taken into account.

In the case of a model-free approach which applies action-value functions, for example,
the feature vector would have 3-|R|+4|7|+2 components. Note that for features representing
temporal values, it is advised to use relative time values instead of absolute ones.

In theory, if the dimension of the feature vector was too large, it could be decreased
by statistical dimension reduction methods, such as principal component analysis (PCA,
also called Karhunen-Loéve transform), if Gaussian distribution is assumed, or independent

component analysis (ICA), in case of non-Gaussian distributions (Hyvérinen et al., 2001).

HasH TABLES

Suppose that we have a vector w = (wy, ws, ..., w), where each component w; corresponds
to a feature of a state or an action. Usually, the value estimations for all of these vectors
cannot be stored in the memory. In this case one of the simplest methods to be applied is
to represent the estimations in a hash table. A hash table is, basically, a dictionary in which
keys are mapped to array positions by hash functions. If all components can assume finite
values, e.g., in our finite-state, discrete-time case, then a key could be generated as follows.
Let us suppose that for all w; we have 0 < w; < m;, then w can be seen as a number in a
mized radix numeral system and, therefore, a unique key can be calculated as

k i—1
p(w) =Y wi [[my,
i=1 =1

where ¢(w) denotes the key of w, and the value of an empty product is treated as one.

The hash function, 1, maps feature vector keys to memory positions. More precisely, if
we have memory for storing only d value estimations, then the hash function takes the form
P :rng(p) — {0,...,d — 1}, where rng(-) denotes the range set of a function.



2.2. MACHINE LEARNING APPROACHES 36

It is advised to apply a d that is prime. In this case a usual hashing function choice is
Y(x) =y if and only if y = x (mod d), namely, if y is congruent to  modulo d.

Having the keys of more than one item map to the same position is called a collision.
There are many collision resolution schemes, they may be divided into open addressing,
chaining, and keeping one special overflow area. Here, we do not concern with hash collisions
in general, however, in the case of RAP-MDPs we suggest a method as follows. Suppose that
during a value update the feature vector of a state (or a state-action pair) maps to a position
that is already occupied by another estimation corresponding to another item (which can be
detected, e.g., by storing the keys). Then we have a collision and the estimation of the new
item should overwrite the old estimation if and only if the MDP state corresponding to the
new item appears with higher probability during execution starting from the (aggregated)
initial state than the one corresponding to the old item. In case of a model-free approach,
the item having a state with smaller current time component can be kept.

Despite its simplicity, the hash table representation has several disadvantages, e.g., it
still needs a lot of memory to work efficiently, it cannot easily handle continuous values and,
it only stores individual data, moreover, it does not generalize to “similar” items. In the
next section we present a statistical approach that can deal with these issues, as well.

SUPPORT VECTOR REGRESSION

A promising choice for compactly representing the cost-to-go function is to use support
vector regression (SVR) from statistical learning theory. In order to maintain the value
function estimations, we suggest applying v-SVRs which were proposed by Schélkopf et al.
(2000). They have an advantage over classical e-SVRs according to which, through the new
parameter v, the number of support vectors can be controlled. Additionally, parameter
can be eliminated. First, we briefly overview the core ideas of »-SVRs.

In general, SVR faces the problem as follows. We are given a sample, a set of data points
{{z1,91),...,{x;, )}, such that z; € X is an input, where X’ is a measurable space, and
y; € R is the target output. For simplicity, we shall assume that X C R*, where k € N. The
aim of the learning process is to find a function f: X — R with a small risk

RIf) = /X I(f.2,y)dP(x,y). (2.3)

where P is a probability measure, which is responsible for the generation of the observations
and [ is a loss function, such as I(f,z,y) = (f(x) — y)?. The learning algorithms usually
use other kinds of loss functions, since additional constrains are also maintained by this
function. A common error function used in SVRs is the so-called e-insensitive loss function,
|f(x) —y|l. = max{0,|f(x) —y| —e}. Unfortunately, we cannot minimize (2.3) directly,
since we do not know P, we are given the sample, only (which are generated by simulation
in our case). We try to obtain a small risk by minimizing the regularized risk functional in
which we replace the average over P(z,y) by an average over the training sample

1
5 ||’LUH2 +C'R2mp[f]7 (24)



2.2. MACHINE LEARNING APPROACHES 37

where, |lw||® is a term that characterizes the model complexity and C' > 0 a constant
responsible for a certain trade-off. They will be explained later. The function R, ,[f] is

L

It measures the e-insensitive average training error. The problem which arises when we try

N‘l—l

emp

to minimize (2.4) is called empirical risk minimization (ERM). In regression problems we
usually have a Hilbert space F, containing X — R type (typically non-linear) functions, and
our aim is to find a function f that is “close” to y; in each z; and takes the form

fla) =37 wibi(e) +b=w'o(x) + .

where ¢; € F, w; € R and b € R. Specially, the aim of the »-SVR is to minimize

l
§w6.6'0) = g ol +O(ve+ 7 36+ ).

subject to the constraints on w, b, &, £€* and ¢ as follows

yi —wgle;) —b<e+§ (2.6)
&,65>0ie{l,...,1},e>0

The parameters & and & are slack variables to cope with the otherwise often infeasible
problem. They measure the deviation of a sample point from its ideal condition; € > 0
defines the amount of deviation that we totally tolerate (viz., see the formulation of e-
insensitive loss functions). The constant C' > 0 determines the trade-off between the flatness
of the regression and the amount up to which deviations larger than ¢ are tolerated. The
particular data points (x;, ;) for which inequality (2.5) or inequality (2.6) is satisfied with
the equality sign, are called support vectors, hence the name support vector machines.

Using Lagrange multiplier techniques, we can rewrite the regression problem in its dual
form (Scholkopf et al., 2000) and arrive at the final »-SVR optimization problem. The aim
of the dual problem is to maximize for v > 0,C > 0 the function W («, a*) which is

l l l
1
W(a, o™ :E a; — i)y 52 E a; — ) a — o) K (4, 5),
i=1

i=1 j=1

subject to the constraints on the Lagrange multipliers o; and o

l l
C
i—af)=0 d i n<e- d i 0,—].
Z(a a;) an Z(a +af)<C-v an a ale[ l]

i=1 =1



2.2. MACHINE LEARNING APPROACHES 38

The resulting regression estimate then takes the form as follows

1
Z (of — o) K (x5, ) + b,
=1

where K is an inner product kernel defined by K(z,y) = (¢(z), ¢(y)), where (-,-) denotes
inner product. Note that a;,o # 0 holds usually only for a small subset of training
samples, furthermore, parameter b (and €) can be computed by taking into account that
inequations (2.5) and (2.6) become equalities with &;, £¥ = 0 for points with 0 < oy, of < C/1,
respectively, due to the Karush-Kuhn-Tucker (KKT) conditions. Additionally, it can be
proven that the hyperparameter v > 0 is an upper bound on the fraction of training errors
and a lower bound on fraction of support vectors Scholkopf et al. (2000).

Mercer’s theorem in functional analysis characterizes which functions correspond to an
inner product in some space F. Basic kernel types include linear, polynomial, Gaussian
and sigmoid functions. In our experiments with RAP-MDPs we have used Gaussian kernels
which are also called radial basis function (RBF) kernels. RBF kernels are defined by
K(x,y) = exp(— ||z — y||* /(20?)), where o > 0 is an adjustable kernel parameter.

A variant of the fitted Q-learning algorithm combined with regression and softmin action
selection is described in Table 2.1. Most of our RAP solutions are based on that algorithm.

The notations of the pseudocode shown in Table 2.1 are as follows. Variable ¢ contains
the episode number, t; is the length of episode ¢ and j is a parameter for time-steps inside
an episode. The Boltzmann temperature is denoted by 7, 7; is the control policy applied in

Regression Based Q-learning

1. Initialize Qg, Lo, 7 and let i = 1.

2. Repeat (for each episode)

3. Set 7; to a soft and semi-greedy policy w.r.t. Q;—1, e.g.,

i, 0) = exp(~Qi-1(2,0)/7)/ | et xP(~Qi-1(2,6)/7)]

4. Simulate a state-action trajectory from xq using policy ;.

5. For j =t; to 1 (for each state-action pair in the episode) do

6. Determine the features of the state-action pair, yJ = h( 5, J)

7. Compute the new action-value estimation for x] and aj, e.g.,

= (1 =7)Qi-1 (2] Ty J)+% [g( Ty J)+amlnb€A ) Qi- (e j+17 )]

8. End loop (end of state-action processing)

9. Update sample set £;_1 with {(y;'-, z;> i=1,... ,ti}, the result is £;.
10. Calculate @); by fitting a smooth regression function to the sample of L;.
11. Increase the episode number, i, and decrease the temperature, 7.

12.  Until some terminating conditions are met, e.g., ¢ reaches a limit
or the estimated approximation error to Q* gets sufficiently small.
Output: the action-value function @; (or 7(Q;), e.g., the greedy policy w.r.t. @Q;).

Table 2.1: Pseudocode for regression-based Q-learning with softmin action selection.



2.2. MACHINE LEARNING APPROACHES 39

input: state and action

Boltzmann formula

exp(—Q(z,a)/T)

m(x,a) =
> exp(—Q(,b)/7) 0@ -0
beA(x)
output: action-value estimation
control current . fOOVOIITOTY
bolicy 5 :I:Q state kernel regression
,T(Q.ﬁa //

» A

current >
action | & g A(z) £
?

set of available 2

successor control actions a

states R
control actions

A

o

3

©

[0

Qo

£

2

time
adaptive sampling based resource allocation simulated annealing

Figure 2.4: The combination of the applied machine learning techniques. The control policy
is defined by the Boltzmann formula; the policy is evaluated by adaptive sam-
pling; the value function is maintained by support vector (kernel) regression;
and the exploration-exploitation ratio is controlled by simulated annealing.

episode 7 and x is the (aggregated) initial state. State m; and action aé- correspond to step
7 in episode 7. Function h computes features for state-action pairs while +; denotes learning
rates. Finally, £; denotes the regression sample and @); is the fitted value function.

Take a look at Figure 2.4 for an illustration of combining the proposed machine learning
algorithms, such as reinforcement learning, kernel regression and simulated annealing.

Though, support vector regression offers an elegant and efficient solution to the value
function representation problem, we presented the hash table representation possibility not
only because it is much easier to implement, but also because it requires less computation,
thus, provides faster solutions. Moreover, the values of the hash table could be accessed
independently; this was one of the reasons why we applied hash tables when we dealt with
distributed solutions, e.g., on architectures with uniform memory access. Nevertheless, SVRs

have other advantages, most importantly, they can “generalize” to “similar” data.



2.2. MACHINE LEARNING APPROACHES 40

2.2.3 Additional Improvements

Computing a (close-to) optimal solution with RL methods, such as (fitted) Q-learning, could
be very inefficient in large-scale systems, even if we apply prioritized sweeping and a capable
representation. In this section we present some additional improvements in order to speed

up to optimization process, even at the expense of achieving only suboptimal solutions.

ROLLOUT ALGORITHMS

During our experiments, presented in Section 4.1.5, it turned out that using a suboptimal base
policy, such as a greedy policy with respect to the immediate costs, to guide the exploration,
speeds up the optimization considerably. Therefore, at the initial stage we suggest applying a
rollout policy, which is a limited lookahead policy, with the optimal cost-to-go approximated
by the cost-to-go of the base policy (Bertsekas, 2001). In order to introduce the concept
more precisely, let T be the greedy policy with respect to immediate-costs,

7(z) € argmin g(x, a).
acA(x)

The value function of 7 is denoted by J*. The one-step lookahead rollout policy 7 based on

policy @, which is an improvement of 7 (cf. policy iteration), can be calculated by

m(x) € argminE [G(m,a) + J5(Y)|,
acA(x)

where Y is a random variable representing a state generated from the pair (x,a) by simu-
lation, that is, according to probability distribution p(z,a). The expected value (viz., the
expected costs and the cost-to-go of the base policy) is approximated by Monte Carlo simu-
lation of several trajectories that start at the current state. If the problem is deterministic,
then a single simulation trajectory suffices, and the calculations are greatly simplified.

Take a look at Figure 2.5 for an illustration. In scheduling theory, a similar (but simpli-

fied) concept can be found and a rollout policy would be called a dispatching rule.

deterministic case stochastic case

J(x) =~ Q(x,a) ~

neighbors of x projections base policy projections

Figure 2.5: The evaluation of state x with rollout algorithms in the deterministic and the

stochastic case. Circles denote states and rectangles represent actions.



2.2. MACHINE LEARNING APPROACHES 41

The two main issues why we suggest the application of rollout algorithms are

1. We need several initial samples before the first application of approximation techniques
and these first samples can be generated by simulations guided by a rollout policy.

2. General reinforcement learning methods perform quite poorly in practice without any
initial guidance. However, the learning algorithm can start improving the rollout
policy 7, especially, in case we apply (fitted) Q-learning, it can learn directly from the
trajectories generated by a rollout policy, since it is an off-policy learning method.

ACTION SPACE DECOMPOSITION

In large-scale problems the set of available actions in a state may be very large, which can
slow down the system significantly. In the current formulation of the RAP the number of
available actions in a state is O(|7| |R|). Though, even in real world situations |R/| is, usually,
not very large, but 7 could contain thousands of tasks. Here, we suggest decomposing the
action space as shown in Figure 2.6. First, the system selects a task, only, and it moves to a
new state where this task is fixed and an executing resource should be selected. In this case
the state description can be extended by a new variable 7 € 7 U {0}, where () denotes the
case when no task has been selected yet. In every other case the system should select an
executing resource for the selected task. Consequently, the new action space is A = AjUAs,
where Ay = {a, | v € T }U{ay,} and Ay = {a, | r € R}. As aresult, we radically decreased
the number of available actions, however, the number of possible states was increased, as
well. Nevertheless, our numerical experiments showed that it was a reasonable trade-off.

original formulation 3

choose a
> resource and
an operation

J
action decomposition
N
choose an
operation
. choose a
resource
J

Figure 2.6: Action selection before (up) and after (down) action space decomposition.



2.2. MACHINE LEARNING APPROACHES 42

CLUSTERING THE TASKS

The idea of divide-and-conquer is widely used in artificial intelligence and recently it has
appeared in the theory of dealing with large-scale MDPs. Partitioning a problem into
several smaller subproblems is also often applied to decrease computational complexity in
combinatorial optimization problems, for example, in scheduling theory.

We propose a simple and still efficient partitioning method for a practically very im-
portant class of performance measures. In real world situations the tasks very often have
release dates and due dates, and the performance measure, e.g., total lateness and number
of tardy tasks, depends on meeting the deadlines. Note that these measures are regular.
We denote the (possibly randomized) functions defining the release and due dates of the
tasks by A: 7 — N and B : 7 — N, respectively. In this section we restrict ourselves to
performance measures that are regular and depend on due dates. In order to cluster the
tasks, we need the definition of weighted expected slack time which is given as follows

Su(v) = Y w(s) E[B(v) - Av) = D(s.v)].
sel(v)

where I'(v) = {s € § | (s,v) € dom(D) } denotes the set of resource states in which task v
can be processed, and w(s) are weights corresponding, for example, to the likelihood that

resource state s appears during execution, or they can be simply w(s) =1/ |'(v)|.

release date due date LTS .
N
A A feo © N
. ’ 1
slack time e © !
) o ° 7
» oY gg) \\ ° ,/
(] Soamae’ e
E § LTS AN o //O \\\
S x fo %o/ ®
g g |1 © A
1
S K7 ' o © ! \o o o /
v O o 4 \\ :'
~ e S -
> - >
Ll 7
time (tasks) precedence constraints

Figure 2.7: Clustering the tasks according to their slack times and precedence constraints.

In order to increase computational speed, we suggest clustering the tasks in 7 into suc-
cessive disjoint subsets 77, ..., 7; according to the precedence constraints and the expected
slack times; take a look at Figure 2.7 for an illustration. The basic idea behind our ap-
proach is that we should handle the most constrained tasks first. Therefore, ideally, if 7;
and 7; are two clusters and ¢ < j, then tasks in 7; had expected slack times smaller than
tasks in 7;. However, in most of the cases clustering is not so simple, since the precedence
constraints must also be taken into account and this clustering criterion has the priority.
Thus, if (u,v) € C, u € 7; and v € T}, i < j must hold. During learning, first, tasks in 7;
are allocated to resources, only. After some episodes, we fix the allocation policy concerning
tasks in 77 and we start sampling to achieve a good policy for tasks in 75, and so on.



2.2. MACHINE LEARNING APPROACHES 43

Naturally, clustering the tasks is a two-edged weapon, making too small clusters may
seriously decrease the performance of the best achievable policy, making too large clusters
may considerably slow down the system. This technique, however, has several advantages,
e.g., (1) it effectively decreases the search space; (2) further reduces the number of available
actions in the states; and, additionally (3) speeds up the learning, since the sample trajecto-
ries become smaller (only a small part of the tasks is allocated in a trial and, consequently,
the variance of the total costs is decreased). The effects of clustering relative to the size of
the clusters were analyzed experimentally and are presented in Section 4.1.5.

2.2.4 Distributed Systems

In this section we further improve the previously given solution by distributing the compu-
tation of a good control policy among several processor. Before we present our distributed
approach, first, we give an overview on a few widespread distributed optimization techniques
and compare some of their properties, such as the guarantees of finding an optimal (or a
near optimal) solution and their robustness against disturbances, such as breakdowns.

In the past decades considerable amount of research was done to enhance decision-
making, such as resource allocation, and several new paradigms appeared to distributed
optimization. Distributed decision-making is often favorable (Perkins et al., 1994), not only
because it can speed up the computation considerably, but also because it can result in more
robust and flexible solutions. For example, a multi-agent based point of view combined with
a heterarchical architecture can show up several advantages (Baker, 1998), such as self-
configuration, scalability, fault tolerance, massive parallelism, reduced complexity, increased
flexibility, reduced cost and, last but not least, emergent behavior (Ueda et al., 2001).

AGENT BASED APPROACHES

Multi-agent systems (MASs) constitute a popular approach to distributed computation in
artificial intelligence. A MAS is a special distributed system with localized decision-making
and, usually, localized storage. An agent is basically a self-directed entity with its own value
system and a means to communicate with other such objects (Baker, 1998).

Multi-agent based or holonic manufacturing with adaptive agents received a great deal
of recent attention (Baker, 1998; Monostori et al., 2006). They became a promising tool for
managing complexity in manufacturing. A MAS approach to production control is useful
for manufacturers who often need to change the configuration of their factories by adding or
removing machines, workers, product lines, manufacturers who cannot predict the possible
manufacturing scenarios according to which they will need to work in the future.

A complex adaptive system (CAS) can be considered as a MAS with highly adaptive
agents (Holland, 1992, 1995). Agents may represent any entity with self-orientation, such as
cells, species, individuals, firms or nations. Environmental conditions are changing, due to
the agents’ interactions as they compete and cooperate for the same resources or for achieving
a given goal. This, in turn, changes the behavior of the agents themselves. The most
remarkable phenomenon exhibited by a CAS is the emergence of highly structured collective



2.2. MACHINE LEARNING APPROACHES 44

behavior over time from the interactions of simple subsystems. The typical characteristics of
a CAS include dynamics involving interrelated spatial and temporal effects, correlations over
long length- and time-scales, strongly coupled degrees of freedom and non-interchangeable
system elements, to name only the most important ones. Adaptive agents become important
tools for managing complexity and optimizing diverse types of production control systems
(Monostori, 2003; Monostori et al., 2004; Monostori and Csaji, 2006; Schuh et al., 2008).

PROSA (Van Brussel et al., 1998) is a standard MAS based architecture for manufac-
turing systems. The general idea underlying this approach is to consider both the resources
(e.g., machines) and the jobs (interconnected tasks) as active entities. The basic architecture
of the PROSA approach consists of three types of agents: order agents (internal logistics),
product agents (process plans), and resource agents (resource handling). Resource agents
correspond to physical parts (production resources in the system, such as factories, shops,
machines, furnaces, conveyors, pipelines, material storages, personnel, etc.), and contain an
information processing part that controls the resource. Product agents hold the process and
product knowledge to assure the correct making of the product. They act like information
servers to other agents. Order agents represent a task or a job (an ordered set of tasks) in
the manufacturing system. They are responsible for performing the assigned work correctly,
effectively and on time. Though, the PROSA architecture is a production control approach,
it is only a framework, it does not offer any direct resource allocation solutions. It is only a
possible starting point for designing multi-agent based manufacturing systems.

A lot of distributed optimization techniques were inspired by various biological systems
(Kennedy and Eberhart, 1995), such as bird flocks, wolf packs, fish schools, termite hills or
ant-colonies. These approaches can show up strongly robust and parallel behavior. The ant-
colony optimization algorithm (Moyson and Manderick, 1988) is, in general, a distributed
and randomized algorithm to solve shortest path problems in graphs. RAPs can be formu-
lated as special stochastic shortest path problems, as well, as we saw in Section 2.1.3.

The PROSA architecture can also be extended by ant-colony type optimization methods
(Hadeli et al., 2004). In this case a new type of agent is introduced, called ant. Agents of this
type are mobile and they gather and distribute information in the manufacturing system.
The main assumption is that the agents are much faster than the ironware that they control,
and that makes the system capable to forecast. Agents are faster and, therefore, can emulate
the behavior of the system several times before the actual decision is taken. The resource
allocation in this system is made by local decisions. Each order agent sends ants (mobile-
agents), which are moving downstream in a virtual manner. They gather information about
the possible schedules from the resource agents and then they return to the order agent with
the information. The order agent chooses a schedule and then it sends ants to book the
needed resources. After that the order agent regularly sends booking ants to re-book the
previously found best schedule, because if the booking is not refreshed then it evaporates
after a while (like the pheromone in the analogy of food-foraging ants). From time to time
the order agent sends ants to survey the possible new (and better) schedules. If they find
a better solution, the order agent sends ants to book the resources that are needed for the
new schedule and the old booking information will simply evaporate, eventually.



2.2. MACHINE LEARNING APPROACHES 45

Swarm optimization methods are very robust, they can naturally adapt to disturbances
and environmental changes, since the ants continuously explore the current situation and the
obsolete data simply evaporates if not refreshed regularly. However, these techniques often
have the disadvantage that finding an optimal or even a relatively good solution cannot be
easily guaranteed, theoretically. The ant-colony based extension of PROSA, for example,
faces almost exclusively the routing problem in resource allocation and it mostly ignores
sequencing problems, namely, it does not concern with the efficient ordering of the tasks.

There are multi-agent systems which use some kinds of negotiation or market-based
mechanism (Markus et al., 1996). In this case, the tasks or the jobs are associated with order
agents, while the resources are controlled by resource agents, like in the case of PROSA.

Market-based resource allocation is a recursive, iterative process with announce-bid-
award cycles. During resource allocation the tasks are announced to the agents that control
the resources, and they can bid for the available works. The jobs or tasks are, usually,
announced one-by-one, which can lead to myopic behavior and, therefore, guaranteeing an
optimal or even an approximately good solution is often very hard. Regarding adaptive
behavior, market-based resource allocation is often less robust than swarm optimization
methods, such as ant-colony optimization, however, their performance is usually better.

PARALLEL OPTIMIZATION

It is known (Modi et al., 2001) that resource allocation problems (at least their deterministic
variants) can be often formulated as constraint satisfaction (CS) problems. In this case, they
aim at solving a multi-dimensional, constraint optimization problem, defined as

optimize flx1, @, ... xy),

subject to  gj(x1,x2,...,2n) < cj,

where z; € &;, i € {1,...,n} and j € {1,...,m}. Functions f and g; are real-valued and
¢; € R, as well. Moreover, most RAPs, for example, resource constrained project scheduling,
can be formulated as a linear programming (LP) problem, which can be written as follows

optimize (c,x),

subject to  Ax < b,

where A € R™™ ¢ € R", b € R™ and (-,-) denotes inner product. Then, distributed
variants of comstrained optimization approaches can be applied to compute a solution. In
this case, a close-to-optimal solution is often guaranteed, however, the computation time is
usually large. The main problems with these approaches are that they cannot easily take
uncertainties into account and, moreover, they are not robust against disturbances.

The idea of divide-and-conquer is often applied to decrease computational complexity
when dealing with combinatorial optimization problems. The main idea behind this ap-
proach is to decompose the problem and solve the resulted sub-problems independently. In
most cases calculating the sub-solutions can be done in a distributed way (Wu et al., 2005).

These approaches can be effectively applied in many cases, however, defining a decom-
position which guarantees both efficient computational speedup together with the property



2.2. MACHINE LEARNING APPROACHES 46

that combining the optimal solutions of the sub-problems results in a global optimal solution
is very demanding. Therefore, when we apply decomposition, we usually have to give-up
optimality and satisfy with fast but sometimes far-from-optimal solutions. Moreover, it is
hard to make these systems robust against disturbances. Tracking environmental changes
can be often accomplished by the complete recalculation of the whole solution, only.

DISTRIBUTED SAMPLING

Finally, we argue that the approach presented in Section 2.2 can be easily and efficiently
distributed among several processors with distributed sampling. We will consider extensions
of the algorithm using both shared memory and distributed memory architectures. Take a
look at Figure 2.8 for an illustration of these architectures. We suppose that we have k

processors, and let us denote the set of all processors by P = {p1,po, ..., pk}
(a) IS (b) . -
processors processors
global value function local value functions

Figure 2.8: Shared (a) and distributed (b) memory access.

In case we have a parallel system with a shared memory architecture, e.g., UMA (uniform
memory access), then it is straightforward to parallelize the computation of a control policy.
Namely, each processor p € P can sample the search space independently, while by using
the same, shared value function. The (joint) control policy can be calculated using this
common, global value function, e.g., the greedy policy w.r.t. this function can be applied.

Parallelizing the solution by using an architecture with distributed memory is more chal-
lenging. Probably the simplest way to parallelize our approach to several processors with
distributed memory is to let the processors search independently by letting them work-
ing with their own, local value functions. After a given time or number of iterations, we
may treat the best achieved solution as the joint policy. More precisely, if we denote the
aggregated initial state by g, then the joint control policy m can be defined as follows

7 € arg min J™ (z¢) or m € argmin min Q" (xzg,a),
mp (pEP) mp (pEP) A€A(0)

where J™ and Q™ are (approximate) state- and action-value functions calculated by proces-
sor p € P. Control policy m, is the solution of processor p after a given number of iterations.
During our numerical experiments we usually applied 10000 iterations per processor.

Naturally, there could be many (more sophisticated) ways to parallelize the computation
using several processors with distributed memory. From time to time, e.g., the processors
could exchange some of their best episodes (trajectories with the lowest costs) and learn from



2.2. MACHINE LEARNING APPROACHES 47

the experiments of the others. In this way, they could help improving the value functions
of each other. Our numerical experiments, presented in Section 4.1.3, showed that even
in the simplest case, distributing the calculation speeds up the optimization considerably.
Moreover, in case of applying a shared memory architecture, the speedup was almost linear.

As parallel computing represents a very promising way do deal with large-scale sys-
tems, their further theoretical and experimental investigation would be very important. For
example, by harmonizing the exploration of the processors, the speedup could be improved.



Chapter 3

Varying Environments

In Chapter 2 we investigated stochastic RAPs in which some of the components, e.g., the
executing times, were uncertain. We took the approach to associate the uncertain parameters
with random variables. So far, only the stationary case was studied, however, many problems
that appear in practise come from the sudden changes of the environment. In this chapter
we analyze how MDP based approaches could work in these circumstances.

The dynamics of stochastic RAPs presented in Chapter 2 can be modeled as MDPs,
but what happens when the model was wrong, e.g., if the real transition-probabilities were
different, or the dynamics had changed meanwhile? Naturally, the changing of the dynamics
can also be modeled as a (higher level) MDP, however, in this way the problem could very
easily become practically intractable. In “real word” problems computing an optimal or
even a relatively good policy is extremely time-consuming and the needed computation
grows rapidly with the number of states. Including environmental changes in the model is
very likely to lead to problems which do not have any practically efficient solution method.

In what follows, we argue that if the model was “close” to the environment, then the
performance of a control policy in the model would also be “close” to the performance of the
same policy applied in the real environment and, moreover, “slight” changes in the environ-
ment result only in “slight” changes in the wvalue functions. More precisely, we show that
the value function of a (stationary, Markovian, randomized) control policy in a discounted
MDP Lipschitz continuously depends on the immediate-cost and the transition-probability
functions. We also present value function bounds for the case of changes in the discount
factor and demonstrate through an example that this dependence is not Lipschitz contin-
uous. Even though optimal policies might also change if the environment has changed, we
will show that these results can be extended to optimal value functions, as well.

As a consequence, it is not unconditionally important to include small dynamics changes
in the model. If the dynamics have changed, then the old and obsolete cost-to-go values can
be effectively used as starting points for adapting, since they will not be very far from the
changed value function of the new environment, if the change was not radical. Therefore,
for slowly varying systems, we can safely avoid modeling the changes of the dynamics if we
use a method that iteratively approximates the optimal value function. This approach is
also supported by the results of our numerical experiments, presented in Chapter 4.

48



3.1. CHANGES IN THE DYNAMICS 49

Afterwards, in order to theoretically analyze learning in changing environments, the con-
cept of (g,d)-MDPs is introduced in which the transition-probability and the immediate-cost
functions are allowed to vary over time, as long as the cumulative changes remain asymptot-
tcally bounded. Then, we study learning algorithms in changing environments. In order to
do this, first, a general framework for analyzing stochastic iterative algorithms is presented.
A novelty of our approach is that we allow the value function update operator to be time-
dependent. Later, we apply this framework to deduce an approximate convergence theorem
for time-dependent stochastic iterative algorithms. With the help of this general convergence
theorem we also show relaxed convergence properties (more precisely, k-approximation) for
value function based reinforcement learning methods working in (e, §)-MDPs.

3.1 Changes in the Dynamics

In many control problems it is typically not possible to “practise” in the real environment,
only a dynamic model is available to the system and this model can be used for predicting
how the environment will respond to the control signals (model predictive control). MDP
based solutions usually work by simulating the environment with the model, through simula-
tion they produce simulated experience and by learning from these experience they improve
their value functions. Computing an approximately optimal value function is essential be-
cause, as we have seen (Theorem 6), close approximations to optimal value functions lead
directly to good control policies. Though, there are alternative approaches which directly
approximate optimal control policies (see Sutton et al., 2000). However, what happens if
the model was inaccurate or the environment had changed slightly? In what follows we
investigate the effects of inaccurate models and environmental changes. For continuous
Markov processes questions like these were already analyzed (Gordienko and Salem, 2000;
Favero and Runggaldier, 2002; Montes de Oca et al., 2003), hence, we focus on finite MDPs.

3.1.1 Transition Changes

First, we will see that the value function of a Markovian control policy in discounted MDP

Lipschitz continuously depends on the applied transition-probability function.

Theorem 9 Assume that two discounted MDPs, M1 and Ms, differ only in their transition-
probability functions, and let these two functions be denoted by py for M1 and ps for Ma.
Let the value functions of a (stationary, Markovian, randomized) control policy m be denoted
by JT related to My and J5 related to My. Then, the following inequality holds

a X9/l

HJT—JérHooS (1—0&)2 ”pl_p2||oo'

The proof of Theorem 9 can be found in the appendix. The same estimation was derived
by Kalmar et al. (1998), but only for the case of optimal value functions. The dependence
of the optimal value function of an MDP on the transition-probabilities was analyzed by
Miiller (1996), as well. Later, we will see that our theorems on the changes of the value
function of a fixed policy can also be extended to the case of optimal value functions.



3.1. CHANGES IN THE DYNAMICS 50

A disadvantage of this theorem is that the estimation heavily depends on the size of the
state space, n = |X|. However, this bound can be improved if we consider an induced matrix
norm for transition-probabilities instead of the supremum norm. The following theorem
presents our improved estimation, its proof can also be found in the appendix.

Theorem 10 With the assumptions and notations of Theorem 9, we have

allgll
[T = J3 o < A—a)2 lp1 = pally

where ||-||; is a norm on f: X x A x X — R type functions, e.g., f(x,a,y) =p(y|z,a),

I1£1ly ZIQ%XZ | f(z,a,y)]. (3.1)

yeX

If we consider f as a matrix which has a column for each state-action pair (z,a) € X x A
and a row for each state y € X, then the above definition gives us the usual “maximum
absolute column sum norm” definition for matrices, which is conventionally denoted by ||-|;.

It is easy to see that for all f, we have ||f|; < n|/f||,, where n is size of the state
space. Therefore, the estimation of Theorem 10 is at least as good as the estimation of
Theorem 9. In order to see that it is a real improvement consider, e.g., the case when we
choose a particular state-action pair, (Z,a), and take a p; and po that only differ in (Z,a).
For example, pi(z,4) = (1,0,0,...,0) and pa(z,a) = (0,1,0,...,0), and they are equal
for all other (z,a) # (&,a). Then, by definition, |p1 —p2|l; = 2, but n|p1 — p2|l, = n.
Consequently, in this case, we have improved the bound of Theorem 9 by a factor of 2/n.

3.1.2 Cost Changes

In some situations changes in the cost function should also be taken into account. This
problem could be important for resource allocation, since, e.g., a resource might go wrong
and it should be replaced by another one (e.g., an external resource) which has much higher
operational cost. Another example could be the changing of task priorities (e.g., a task
becomes urgent, its due date becomes much tighter) which can also be modeled through
the changing of the immediate-cost function. The following theorem shows that a similar
Lipschitz continuity type dependence can be proven for the case of changes in the immediate-
cost function as for the case of changes in the transition-probability function.

Theorem 11 Assume that two discounted MDPs, My and Moy, differ in their immediate-
cost functions only, and let these two functions be denoted by g1 for My and go for Ma,
respectively. Let the value functions of a (stationary, Markovian, randomized) policy m be
denoted by JT related to My and JJ related to My. Then, the following inequality holds

1
1T = I3l < 7= 91 =~ 92l -

Our proof of Theorem 11, together with all of the proofs, can be found in the appendix.



3.1. CHANGES IN THE DYNAMICS 51

3.1.3 Discount Changes

The following theorem shows that the change of the value function can also be estimated in
case there were changes in the discount rate (all proofs can be found in the appendix).

Theorem 12 Assume that two discounted MDPs, M1 and Mo, differ only in the discount
factors, denoted by oy, € [0,1). Let the value functions of a (stationary, Markovian,
randomized) policy m be denoted by JT related to My and J5 related to My. Then, we have

|1 — agf

JT —J7 < .
H 1 2 Hoo — (1 _ 041)(1 —042) HgHoo

The next example demonstrates, however, that this dependence is not Lipschitz contin-
uous. Consider, e.g., an MDP that has only one state z and one action a. Taking action
a loops back deterministically to state & with cost g(z,a) = 1. Therefore, the only avail-
able control policy takes the form of m(z,a) = 1. Suppose that the MDP has discount
factor a; = 0, thus, JI'(z) = 1. Now, if we change the discount rate to ag € (0, 1), then
|ar — ag| < 1 but || JT — JJ||, could be arbitrarily large, since JJ (z) — oo as ap — 1.

At the same time, we can notice that if we fix a constant ay < 1 and only allow discount
factors from the interval [0, cg], then this dependence became Lipschitz continuous, as well.

3.1.4 Action-Value Changes

Many reinforcement learning algorithms, such as Q-learning and SARSA, work with action-
value functions which are important, e.g., for model-free approaches. Now, we investigate
how the previously presented theorems apply to this type of value functions. The action-
value function of policy 7, denoted by Q™, can be rewritten with the help of J™ as follows

Q" (z,a) = g(z,a) + a Y _ply|z,a)J" (y),

yeX

where J™ is the (state-) value function of policy w. Note that in the case of action-value
functions, first, we take a given action (which can have very high immediate-cost) and, only
after the action was taken, follow we the actual policy. Thus, we can estimate ||Q|| by

1@ o < llglloe + a1l -

Nevertheless, the next lemma shows that the same estimations can be derived for envi-
ronmental changes in the case of action-value functions as in the case of value functions.

Lemma 13 Assume that we have two discounted MDPs, My and Mo, which differ only

in the transition-probability functions or only in the immediate-cost functions or only in the

discount factors. Let m denote an arbitrary (stationary, Markovian, randomized) control

policy. The (state-) value and action-value functions of control policy © are denoted by JT,
Y

T and J5, Q5 for My and Ma, respectively. Then, the previously given value function
bounds for ||JT — J3|| ., of Theorems 9, 10, 11 and 12 are also bounds for ||QT — QF|| .-



3.1. CHANGES IN THE DYNAMICS 52

3.1.5 Optimal Cost-to-Go Changes

Another interesting question is the effects of environmental changes on the optimal value
function. Theorems 9, 10, 11 and 12 cannot be directly applied to deduce estimations for
the case of optimal value functions, since they presuppose that the policy is fized, however,
optimal policies might also change if the environment had changed. Nevertheless, with the
help of the following lemma, the case of optimal value functions becomes a consequence of
the previous theorems. The proof of Lemma 14 can be found in the appendix, as well.

Lemma 14 For all fi1, fo : X — R bounded functions such that min, fi(x) < min, fo(x)
and & = argmin,, fi(x), we have the inequality |min, f1(z) — min, fo(z)| < |f1(2) — f2(2)].

Assume that we have two discounted MDPs, M; and Ms, which may differ in their
transition-probability functions, immediate-cost functions and discount factors. In order to
deduce bounds for the distance of their optimal value functions, first, let us introduce an
auxiliary (stationary, Markovian) deterministic control policy, defined as follows

mi(x) i Ji(z) < J5(x),

my(x) if J3(x) < Ji(x),

where 7} denotes an optimal control policy in M; and J is the optimal value function of
M, 1 € {1,2}. Policy 7} can be, e.g., a greedy policy w.r.t. J (cf. Theorem 6). Then, by
using the Bellman equation in the first step and Lemma 14 in the second, we have

Ve e X |J{(z) — J5(x)| =
— . , , J* i
min [o1(ra) +a1y§€;§p1<y EXOPHO

IA

— min [gg(x,a) + ao sz(y | z,a) J5(y)
acA(x) yex

< | g1z, 7 (2)) +arY_pily | @, 7 (x)) i (y) -
yeX

— g2(a, 7 (2)) —az Yy paly | @, 7(2)) J3(y) | =

yeX
Ji(@) - T ().

Therefore, with the help of Lemma 14, we reduced the case of changes in the optimal value

function to the case of changes in the value function of a fized policy, namely «. This result
is precisely stated in Corollary 15. It allows us to extend Theorems 9, 10, 11 and 12 to the
case of optimal value functions, as well, which consequence is summarized by Corollary 16.



3.1. CHANGES IN THE DYNAMICS 53

Corollary 15 Assume that we have two discounted MDPs, M1 and Mo, which may differ
in their transition functions, cost functions and discount factors. Let us denote the optimal
value functions of My and Ma by Ji and J5, respectively. Then, there exists a (stationary,
Markovian, deterministic) control policy m such that || J{ — J5|| o < [[JT — I3 || o -

Since deterministic control policies are special cases of randomized ones, we also have:

Corollary 16 Assume that we have two discounted MDPs which differ only in the transition-
probability functions or only in the immediate-cost functions or only in the discount factors.
Let the corresponding optimal value functions be denoted by Ji and J3, respectively. Then,
the bounds for ||JT — J3 ||, of Theorems 9, 10, 11 and 12 are also bounds for ||J} — J5|| -

It is straightforward to see that these results can be extended to optimal action-value
functions, as well. One should apply the same “trick” as before and introduce an auxiliary
control policy by which the difference of the optimal action-value functions can be estimated
from above. In fact, the same control policy, namely 7, can be applied to achieve this.

Corollary 17 Assume that we have two discounted MDPs which differ only in the transition-
probability functions or only in the immediate-cost functions or only in the discount factors.
The corresponding optimal action-value functions are denoted by Q7 and @3, respectively.
Then, the value function bounds for ||JT — J3|| . are also bounds for ||Q7 — Q3| .-

3.1.6 Further Remarks

In the previous parts of the section we saw that value functions of discounted MDPs de-
pend smoothly on the transition-probability function, the immediate-cost function and the
discount rate. This dependence is of Lipschitz type in the first two cases and non-Lipschitz
for discount rates. Later, we will see that changes in the discount factor can be traced back
to changes in the immediate-cost function (Lemma 24), therefore, it is sufficient to consider
transition and cost changes. The following corollary summarizes some of the results.

Corollary 18 Assume that two discounted MDPs, £ and M, differ only in their transition-
probability functions and their immediate-cost functions. The corresponding transition and
cost functions are denoted by pe, ppm and ge, gam. Let the value functions of a (stationary,
Markovian, randomized) control policy m be denoted by JE and J},, respectively. Then,

lge — gmlle | callpe — pmlly
11—« (1-—a)2

where ¢ = min{||ge|| ., lgmllo} and o € [0,1) is, as usually, the discount factor.

The proof simply follows from Theorems 10 and 11 and from the triangle inequality. If
we treat one of the MDPs in the previous theorems as a system which describes the “real”
behavior of the environment and the other MDP as our model relatedly, then these results
show that even if the model used is slightly inaccurate or there were changes in the envi-
ronment, the optimal value function based on the model cannot be arbitrarily wrong from



3.1. CHANGES IN THE DYNAMICS 54

the viewpoint of the environment. These theorems are of special interest because in “real
world” problems the transitions and the costs are mostly estimated only, e.g., by statistical
methods from historical data, the exact values are unknown and may even change over time.
Now, we investigate few supplementary results of the presented statements, e.g., some
connections with other results as well as two counterexamples for the undiscounted case.

AVERAGE CoST CASE

Though, the largest part of the MDP related research studies the expected total discounted
cost optimality criterion, in some cases discounting is inappropriate and, therefore, there are
alternative optimality approaches, as well. A popular alternative approach is to optimize
the expected average cost (Bertsekas, 2001). In this case the value function is defined as

N-1
1
J"(z) = li]IVIlSU.pNE E g( X4, AT) ‘ Xo = 33] )
—0 t=0

where the notations are the same as previously, e.g., as applied in equation (1.1).
Regarding the validity of Corollary 16 concerning MDPs with the average cost mini-
mization objective, we can recall the well-known result that, in the case of finite MDPs,
discounted cost offers a good approximation to the other optimality criterion. More pre-
cisely, it can be shown that there exists a large enough a9 < 1 such that Va € (ap, 1)
optimal control policies for the discounted cost problem are also optimal for the average
cost problem (Feinberg and Shwartz, 2002). These policies are called Blackwell optimal.

SIMULATION LEMMA

The results presented in this section have some similarities with the “Simulation Lemma”
of Kearns and Singh (2002). They apply that lemma to deduce polynomial time bounds
to achieve near-optimal return in MDPs. The Simulation Lemma states that if two MDPs
differ only in their transition functions and their cost functions and we want to approximate
(w.r.t. supremum norm) the value function of a fixed control policy concerning one of the
MDPs in the other MDP, then how close should we choose the transition-probabilities and
the immediate-costs to the original MDP relative to the mixing time (in the undiscounted
case) or the horizon time (in the discounted case). Nonetheless, they arrive at a different
kind of bound than we did and, additionally, they only consider the case when the distances
of both the transition and the cost functions are determined by the same parameter.

STATE AND ACTION CHANGES

In theory, changes in the state space can be traced back to changes in the control action
space, because, for example, the deletion of a state can be treated as the deletion of all
actions which lead to it, and moreover, adding a new state can be treated as adding some
new actions that lead to a state that was previously unreachable. Additionally, changes in
the control space can be traced back to changes in the cost function or in the transition-
probability function. We can treat, e.g., the costs of all controls which are unavailable as



3.1. CHANGES IN THE DYNAMICS 55

very-high (quasi-infinity) or actions could have the same transition-probability but, after
changes, they could become different mimicking the effect of appearing new control actions.
However, in these cases the presented theorems do not provide efficient estimations for
measuring the changes in the value function of a policy. It is easy to construct examples
(analogously to the examples presented in Section 3.1.6) which show that inserting a single
new state or action may change the optimal cost-to-go function radically, e.g., if the cost of
the new action is much less than the costs of the actions already in the system. We do not
concern with these cases in the thesis and leave their investigation for further work.

COUNTEREXAMPLES

The previously presented theorems, lemmas and corollaries are only valid in case we consider
discounted MDPs, when « € [0,1). On the other hand, it is easy to construct examples which
demonstrate that in case of using undiscounted MDPs, an arbitrarily small change either in
the transition-probabilities or in the immediate-costs may lead to arbitrarily large changes
in the optimal cost-to-go function. Now, we demonstrate this phenomenon by two examples.

(a) (©) (d)

(1,¢)

Figure 3.1: Demonstrative examples. The notation (p,g) on the arrows shows that the
control action takes to the pointed state with probability p and cost g.

First, let X = {x1}, A = {a1}, A(z1) = {a1}, p(x1 | 1,a1) = 1 and ¢1(x1,a1) = 0. In
this case Ji(x1) = 0. If we define ga(z1,a1) = € for an € > 0, then ||g1 — g2/, < €, but it
is easy to see that Jj(z1) = 4+00. Take a look at parts (a) and (b) of Figure 3.1.

Now, for the case of probability transition functions, let X = {z1,22}; A = {a1,a2};
A(z1) = {ar}, A(x2) = {az}; pi(z1 | z1,a1) = 1, pi(z2 | 22,a2) = 1; g(x1,a1) = 0,
g(x2,a2) = 1. In this case Jj(z1) = 0. If we define the other transition-probability function
as pa(z1 | £1,a1) =1 — € and pa(z2 | 1,a1) = € for an € € (0, 1], then [|p; — pa|,, <€, but
J3(z1) = 4+o0. Take a look at parts (c¢) and (d) of Figure 3.1 for an illustration.

This undesirable feature of undiscounted MDPs is an effect of the infinite cost cycles
appearing in the system. Nevertheless, if the transition graph of an undiscounted MDP is
acyclic (viz., for each state the probability of returning to that state is zero), it is straight-



3.2. LEARNING IN VARYING ENVIRONMENTS 56

forward to prove that the optimal value function of the MDP also depends Lipschitz contin-
uously on the transition-probability function and the immediate-cost function. Additionally,
the same statement is valid even if an undiscounted MDP has cycles but it has finite horizon,
since any change can be propagated only in finite number of steps.

3.2 Learning in Varying Environments

Now, we turn our attention to learning algorithms acting in changing environments. First,
a unified framework to analyze value function based methods is presented followed by the
description of (e,d)-MDPs, which is a class of non-stationary MDPs. Finally, we present a
relaxed convergence theorem for time-dependent stochastic iterative algorithms.

3.2.1 Unified Learning Framework

In this section we will briefly overview a unified framework to analyze value function based
reinforcement learning algorithms. We will use this approach later when we prove conver-
gence properties in changing environments. The theory presented in this section (3.2.1) was
developed by Szepesvari and Littman (1999) and was extended by Szita et al. (2002).

GENERALIZED VALUE FUNCTIONS

Throughout the thesis we denote the set of value functions by V which contains, in general,
all bounded real-valued functions over an arbitrary set X, e.g., X = X, in the case of state-
value functions, or X = X x A, in the case of action-value functions. Note that the set of
value functions, V = B(X), where B(X') denotes the set of all bounded real-valued functions
over set X, is a normed space, for example, with the supremum norm. Naturally, bounded
functions constitute no real restriction in case of analyzing finite MDPs.

KAPPA APPROXIMATION

In order to study convergence properties in changing, non-stationary environments, we will
apply a relaxed form of the classical almost sure or probability one converge. This relaxed
convergence concept is called k-approzimation and defined as follows (Szita et al., 2002).

Definition 19 We say that a sequence of random variables, denoted by Xy, k-approrimates
random variable X with £ > 0 if for all € > 0, there exits an index ty such that

P (sup(HXt - X|I < H)) >1—e. (3.2)
t>to

An equivalent definition of k-approximation can be given as limsup, . || X; — X|| < &
with probability one. Hence, the “meaning” of this definition is that sequence X; converges
almost surely to an environment of X and the radius of this environment is less than or
equal to a given k. Note that this definition is weaker (more general) than the probability
one convergence, because parameter k is fixed. If we required inequality (3.2) for all K > 0,
then we would get back to the classical probability one (almost sure) convergence.



3.2. LEARNING IN VARYING ENVIRONMENTS 57

GENERALIZED VALUE ITERATION

A general form of value iteration type algorithms can be given as follows,
Vie1 = Hy(Vi, Vi),

where H, is a random operator on V X V — V (Szepesvari and Littman, 1999). Consider,
e.g., the SARSA (State-Action-Reward-State-Action) algorithm which is a model-free policy
evaluation method. It aims at finding Q™ for a given policy 7 and it is defined as

Qrr1(z,a) = (1 —1(2, a)) Q2 a) + ve(x, a)(g(x, a) + a Q(Y, B)),

where v;(x, a) denotes the stepsize associated with state x and action a at time ¢; Y and B
are random variables, Y is generated from the pair (z,a) by simulation, that is, according
to the distribution p(z,a), and the distribution of B is 7(Y"). In this case, H; is defined as

Hi(Qa, Qp)(2,a) = (1 = %(x,0)) Qa(x, a) + n(z,a)(g9(z,a) + a Qp(Y, B)), (3.3)
for all  and a. Therefore, the SARSA algorithm takes the form Qi+1 = H¢(Q¢, Q¢).

Definition 20 We say that the operator sequence Hy k-approximates operator H : V — 'V
at V€V if for any initial Vo € V the sequence Vi1 = Hy(Vy, V') k-approzimates HV .

AsyMPTOTIC CONVERGENCE BOUNDS

The next theorem (Szita et al., 2002) will be an important tool for proving convergence
results for value function based RL algorithms working in varying environments.

Theorem 21 Let H be an arbitrary mapping with fized point V*, and let H; k-approximate
H at V* over set X. Additionally, assume that there exist random functions 0 < Fy(z) <1
and 0 < G¢(x) < 1 satisfying the four conditions below with probability one

1. For all V1,Vo €V and for all x € X,

[H(V1, V) (@) — Hi(Va, V7)(2)] < Gi(a) [Vi() — Va(a)] -

2. For allV1,Vo €V and for all x € X,
[Hi(Vi, V) () = Hi(Vi, Vo) (2)] < Fy(2) [[V* = Vall -
3. For all k > 0, [}, Gi(x) converges to zero uniformly in x as n increases.
4. There exist 0 < & < 1 such that for all x € X and sufficiently large t,
Fi(z) < £(1 — G(x)).

Then, Vip1 = Hy(Vi, Vi) K -approzimates V* over X for any Vy € V, where k' = 2k/(1—&).



3.2. LEARNING IN VARYING ENVIRONMENTS 58

Usually, functions F; and Gy can be interpreted as the ratio of mixing the two arguments
of operator Hy. In the case of the SARSA algorithm, described above by (3.3), X = X x A,
Gi(z,a) = (1 — %(z,a)) and Fi(z,a) = ay(z,a) would be a suitable choice.

One of the most important aspects of this theorem is that it shows how to reduce
the problem of approximating V* with V; = H(V;, V}) type operators to the problem of
approximating it with a V' = Hy(V/,V*) sequence, which is, in many cases, much easier to
be dealt with. This makes, e.g., the convergence of Watkins’ Q-learning a consequence of
the classical Robbins-Monro theory (Szepesvari and Littman, 1999; Szita et al., 2002).

3.2.2 Varying Markov Decision Processes

Section 3.2 aims at analyzing how learning algorithms can act in environments which may
change over time, namely, in the transition-probability function and the immediate-cost
function. However, without any restrictions, this approach would be too general to establish
convergence results. Therefore, we restrict ourselves to the case when the cumulative changes
remain bounded over time. In order to precisely define this concept, the idea of (g, 0)-MDPs
is introduced, which is a generalization of classical MDPs and e-MDPs.

First, we recall the definition of e-MDPs (Kalmar et al., 1998; Szita et al., 2002).

Definition 22 A sequence of MDPs (My)2, is called an e-MDP with € > 0 if the MDPs
differ only in their transition-probability functions, denoted by p; for My, and there exists
an MDP with transition function p, called the base MDP, such that sup, ||[p — pt|| < €.

Now, we extend the idea described above. The following definition of (e, d)-MDPs gen-
eralizes the concept of e-MDPs in two ways. First, we also allow the cost function to change
over time and, additionally, we require the changes to remain bounded by parameters € and
0 only asymptotically, in the limit. A finite number of large deviations is tolerated.

Definition 23 A tuple (X, A, A, {p+}52,,{9:}21, @) is an (¢,0)-MDP with £,5 > 0, if there
exists an MDP (X, A, A, p, g,«), called the base MDP (take a look at Figure 3.2), such that

1. limsup [lp — pef| < &
t—o0

2. limsup|[|g — gf| < 6
t—o0

The optimal value function of the base MDP and of the current MDP at time t (which MDP
has transition function p; and cost function g;) are denoted by J* and J;, respectively.

In order to keep the analysis as simple as possible, we do not allow the discount rate
parameter « to change over time; not only because, e.g., with Theorem 12 at hand, it would
be straightforward to extend the results to the case of changing discount factors, but even
more because, as Lemma 24 demonstrates, the effects of changes in the discount rate can be
incorporated into the immediate-cost function, which is allowed to change in (g, )-MDPs.



3.2. LEARNING IN VARYING ENVIRONMENTS 59

Lemma 24 Assume that two discounted MDPs, My and Ma, differ only in the discount
factors, denoted by a and . Let the value function of a (stationary, Markovian, random-
ized) control policy m be denoted by JT related to M;. The optimal value function of M; is
denoted by J;. We will treat both cases simultaneously, thus, let us fix hyper-parameter p to
either w or x. Then, there exists an MDP, denoted by Ms, such that it differs only in the
immediate-cost function from My and J§ = J§'. The immediate-cost function of Mg is

gz, a) = g(z,a) + (a2 — 1) Y ply| z, a) I (y),
yeX

where p is the transition-probability function of My, Ma and Ms3; g is the immediate-cost
function of My and My; and J§ (y) denotes a value function of Ma, where p € {m,*}.

On the other hand, we can notice that changes in the cost function cannot be traced
back to changes in the transition function. Consider, e.g., an MDP with a constant zero cost
function. Then, no matter what the transition-probabilities are, the optimal value function
remains zero. However, we may achieve non-zero optimal value function values if we change
the immediate-cost function. Therefore, (g, )-MDPs cannot be traced back to e-MDPs.

A °
(o]
°
(o] (o} (o]
© 9] [S) °© ° ° bound
0 . ~ o) o o o© o o
€ o ~ o) o) o ©
o base
(o]
c o o ° o e:@
o (o] o [0} o Q (o} o o Q °
o o o ° bound
(o] (o}
S
>
t Lt .. .
1725 time

Figure 3.2: The transition-probabilities and the costs of an (g, d)-MDP may vary arbitrarily,
as long as their distances from the base values remain asymptotically bounded.

Now, we briefly investigate the applicability of (e,)-MDPs and a possible motivation
behind them. When we model a “real world” problem as an MDP, then we typically take
only the major characteristics of the system into account, but there could be many hidden
parameters, as well, which may affect the transition-probabilities and the immediate-costs,
however, which are not explicitly included in the model. For example, if we model a pro-
duction control system as an MDP (Cs4ji and Monostori, 2006b), then the workers’ fatigue,
mood or the quality of the materials may affect the durations of the tasks, but these char-
acteristics are usually not included in the model. Additionally, the values of these hidden
parameters may change over time. In these cases, we could either try to incorporate as many
aspects of the system as possible into the model, which approach would most likely lead to
computationally intractable results, or we could model the system as an (g,§)-MDP instead,
which would result in a simplified model and, presumably, in a more tractable system.



3.2. LEARNING IN VARYING ENVIRONMENTS 60

3.2.3 Stochastic Iterative Algorithms

In this section we present a general relaxed convergence theorem for a large class of stochas-
tic iterative algorithms. Later, we will apply this theorem to investigate the convergence
properties of value function based reinforcement learning methods in (e, §)-MDPs.

Many learning and optimization methods can be written in a general form as a stochastic
iterative algorithm (Bertsekas and Tsitsiklis, 1996). In general, these algorithms are defined
by the iteration rry1 = (1 — Y¢)r¢ + s, where the updates are performed on 7y, v is a
nonnegative stepsize parameter and s; is usually a function of r¢, for example, sy = Hyry.

One of the simplest such algorithm is the Robbins-Monro stochastic approzimation algo-
rithm, defined as follows. Let ¢ be a sequence of independent identically-distributed (i.i.d.)
random variables with unknown mean p and finite variance. Let us define sequence r; with
the iteration ry; = (1 — v¢)r¢ + Y2q:. Then, sequence r; converges almost surely to u if
suitable assumptions on the stepsizes are made, cf. with Assumption 2 of this section.

Another classical example of a stochastic iterative algorithm is the stochastic gradient
descent algorithm which aims at minimizing cost function f and is described by

repr = (L =78)re + ve(re — V(1) +wy),

where w; is a noise parameter, cf. Assumption 1, and V f denotes the gradient of f.

TIME-DEPENDENT UPDATE

During Section 3.2.3 we study time-dependent stochastic iterative algorithms of the form

Vira () = (1 = 7(2))Vi(@) 4+ () (K: Vi) () + Wi(2)), (3-4)

where V; € V, operator K; : V — V acts on value functions, each () is a random variable
which determines the stepsize and W;(x) is also a random variable, a noise parameter.
Regarding reinforcement learning algorithms, for example, (asynchronous) value itera-
tion, Gauss-Seidel methods, Q-learning, SARSA and TD()\) can be formulated this way.
We will show that under suitable conditions these algorithms work in (e,d)-MDPs, more
precisely, k-approximation to the optimal value function of the base MDP will be proven.

MAIN ASSUMPTIONS

Now, in order to provide our relaxed convergence result, we introduce three assumptions on
the noise parameters, the stepsize parameters and the value function operator.

Definition 25 We denote the history of the algorithm until time t by F;, defined as
ft = {Vb,...,‘/t,WO,...,Wt_l,’)/o,...,’yt}.

The sequence Fy € F; € Fo C ... can be seen as a filtration, viz., as an increasing
sequence of o-fields. The set F; represents the information available at each time t.



3.2. LEARNING IN VARYING ENVIRONMENTS 61

Assumption 1 There exits a constant C' > 0 such that for all state x and time t, we have
EWy(z)|F]=0 and E[WZ(z)|F] <C <oo.

Regarding the stepsize parameters, v, we make the “usual’ stochastic approximation
assumptions. Note that there is a separate stepsize parameter for each possible state.

Assumption 2 For all x and t, 0 < v(x) < 1, and we have with probability one
oo (0.)
Z%(:U) =00 and Z%Q(x) < 00.
t=0 t=0

Assumption 3 For all t, operator K; : V — V is a supremum norm contraction mapping
with Lipschitz constant B < 1 and with fized point V;*. Formally, for all V1,Vo €V,

| KV — KiVall oo < B ||V — Vel -

Let us introduce a common Lipschitz constant By = limsup B¢, and assume that By < 1.
t—o0
Because our aim is to analyze changing environments, each K; operator can have dif-
ferent fixed points and different Lipschitz constants. However, to avoid the progress of the
algorithm to “slow down” infinitely, we should require that limsup, .., 6; < 1. In the next
section, when we apply this theory to the case of (g,d)-MDPs, each value function operator
can depend on the current MDP at time ¢ and, thus, can have different fixed points.

APPROXIMATE CONVERGENCE

Now, we present a theorem (its proof can be found in the appendix) that shows how the
function sequence generated by iteration (3.4) can converge to an environment of a function.
Theorem 26 Suppose that Assumptions 1-8 hold and let V; be the sequence generated by
iteration (8.4). Then, for any V*,Viy € V, the sequence Vi k-approximates function V* with

_ 4o
1 —fo

This theorem is very general, it is valid even in the case of non-finite MDPs. Notice that

K where o = limsup ||V — V¥ .
t—o0

V* can be an arbitrary function but, naturally, the radius of the environment of V*, which
the sequence V; almost surely converges to, depends on limsup; . [|V;* — V¥ .

If we take a closer look at the proof, we can notice that the theorem is still valid if each
K, is only a pseudo-contraction but, additionally, it also attracts points to V*. Formally, it
is enough if we assume that for all V' € V, we have |[K;V — K, V/*|| o < B¢ [V — V¥|| o, and
| KV — K V*|| < Be||[V — V¥ for a suitable §; < 1. This remark could be important
in case we want to apply Theorem 26 to changing stochastic shortest path (SSP) problems.



3.2. LEARNING IN VARYING ENVIRONMENTS 62

AN ALTERNATING EXAMPLE
Consider a one dimensional stochastic process characterized by the iteration
Vi1 = (1 = ye)vr + e (Ki(vr) + wy), (3.5)

where 7, is the learning rate and w; is a noise term. Let us suppose we have n alternating
operators k; with Lipschitz constants b; < 1 and fixed points v} where i € {0,...,n — 1},

ki(v) = v+ (1 —b;)(vy —v).

The current operator at time ¢ is K; = k; (thus, V;* = v} and B, = b;) if i =t (mod n). Fig-
ure 3.3 shows that the trajectories remained close to the fixed points. The figure illustrates
the case of two (—1 and 1) and six (—3,—2,—1,1,2,3) alternating fixed points.

10 10

S\ v 1 T\ 1

6 6l .

4 4t fixed points

2 2| N 4

0 of 1
2[ fixed points 2 8
-4 ! |

0 500 1000 1500 0 500 1000 1500
t ~ iterations t ~ iterations

Figure 3.3: Trajectories generated by (3.5) with two (left) and six (right) fixed points.

A PATHOLOGICAL EXAMPLE

During this example we will restrict ourselves to deterministic functions. According to the
Banach fized point theorem, if we have a contraction mapping f over a complete metric space
with fixed point v* = f(v*), then, for any initial vy the sequence vy11 = f(v;) converges to
v*. It could be thought that this result can be easily generalized to the case of alternating
operators. For example, suppose we have n alternating contraction mappings k; with Lip-
schitz constants b; < 1 and fixed points v, respectively, where ¢ € {0,...,n — 1}, and we
apply them iteratively starting from an arbitrary vy, viz., v.41 = Ki(vy), where Ky = k; if
i =t (mod n). One may think that since each k; attracts the point towards its fixed point,
the sequence v; converges to the conver hull of the fixed points. However, as the following
example demonstrates, this is not the case, since it is possible that the point moves away
from the convex hull and, in fact, it gets farther and farther after each iteration.

Now, let us consider two one-dimensional functions, k; : R — R, where i € {a, b}, defined
below by equation (3.6). It can be easily proven that these functions are contractions with



3.2. LEARNING IN VARYING ENVIRONMENTS 63

fixed points v} and Lipschitz constants b; (in Figure 3.4, v; =1, v = —1 and b; = 0.9).

v+ (1—b;) (v —v) if sgn(v}) = sgn(v — ),
ki(v) = (3.6)
vf 4+ (vf —v) 4+ (1 —b;)(v—vf) otherwise,

where sgn(-) denotes the signum function. Figure 3.4 demonstrates that even if the iteration
starts from the middle of the convex hull (from the center of mass), vg = 0, it starts getting
farther and farther from the fixed points in each step when we apply k, and k; after each
other. Nevertheless, the following argument shows that sequence v; cannot get arbitrarily far

v(0)
5 -4 3 -2 1 0 1 2 3 4 5
< f f f f = L4 =2 f f f f >

v v V"

%(_J
1 0.9

v(1) —
S5 -4 -3 -2 -1 0 1 2 3 4 5 -
< 1 1 1 1 i & H—eH 1 1 1 >

v v Vo' v = k() ;

— 0 5 10 15 20 25 30 35 40

261 29 20 t~zteratlr?n.v i
V(Z) — 15 vt
S5 -4 -3 -2 -1 0 1 2 3 4 5 10
< f —&— f = f == f f f f >
v, = ky(v)) v, * v,E oy 5 ”
L n—r———"
4.61 4.149 -5 ‘ ‘\ ‘
v3) -10
-5 -4 -3 -2 -1 0 1 2 3 4 5 s
< f f f f £ f == f f f +Ho—>
v, v, * v, * vy=k,(v,) 2040 20 30 40 50 60 70 80 90 100

1 ~ iterations

Figure 3.4: A deterministic pathological example, generated by the iterative application of
equation (3.6). The left part demonstrates the first steps, while the two images
on the right-hand side show the behavior of the trajectory in the long run.

from the fixed points. Let us denote the diameter of the convex hull of the fixed points by o.
Since this convex hull is a polygon (where the vertices are fixed points) ¢ = max; ; [|[v; — v}
Furthermore, let By be defined as Sy = max; b; and d; as dy = min; ||v] — v¢||. Then, it can
be proven that for all ¢, we have di+1 < (y(20 + d¢). If we assume that di41 > dy, then it
follows that d; < diy1 < Bo(20 + d;). After rearrangement, we get the following inequality

= ¢(5o, 0)-

Therefore, d; > ¢(fo, 0) implies that dy11 < di. Consequently, if vy somehow got farther
than ¢(5p, ), in the next step it would inevitably be attracted towards the fixed points. It
is easy to see that this argument is valid in an arbitrary normed space, as well.



3.2. LEARNING IN VARYING ENVIRONMENTS 64

3.2.4 Learning in Varying MDPs

In case we consider finite (e¢,6)-MDPs, we can formulate a relaxed convergence theorem
for value function based reinforcement learning algorithms, as a corollary of Theorem 26.
Suppose that V consists of state-value functions, namely, X = X. Then, we have

limsup ||J* — J/|| . < d(e,9),
t—o0

where J is the optimal value function of the MDP at time ¢ and J* is the optimal value
function of the base MDP. In order to calculate d(e,d), Theorems 10 (or 9), 11 and the
triangle inequality could be applied. Assume, e.g., that we use the supremum norm, |||,
for cost functions and ||-||;, defined by equation (3.1), for transition functions. Then,

ealglle , 9

where ¢ is the immediate-cost function of the base MDP. Now, as an immediate consequence
of Theorem 26, we can formulate the following relaxed convergence theorem.

Corollary 27 Suppose that we have an (£,0)-MDP and Assumptions 1-3 hold. Let V; be
the sequence generated by iteration (3.4). Furthermore, assume that the fized point of each
operator Ky is Jf. Then, for any initial Vo € V, the sequence V; k-approzimates J* with

_ 4d(e,9)
R = 1_7@)

Notice that as parameters € and J go to zero, we get back to a classical convergence
theorem for this kind of stochastic iterative algorithm (still in a little bit generalized form,
since B; might still change over time). Now, with the help of these results, we will investigate
the convergence of some classical reinforcement learning algorithms in (g, §)-MDPs.

ASYNCHRONOUS VALUE ITERATION

The method of value iteration is one of the simplest reinforcement learning algorithms. In
ordinary MDPs it is defined by the iteration J;11 = T'J;, where T is the Bellman operator.
It is known that the sequence J; converges in the supremum norm to J* for any initial Jy
(Bertsekas and Tsitsiklis, 1996). The asynchronous variant of value iteration arises when
the states are updated asynchronously, e.g., only one state in each iteration. In the case of
(€,6)-MDPs a small stepsize variant of asynchronous value iteration can be defined as

Jep1 (@) = (1= (2)) Je(2) + 7 (@) (TiJe) (2),

where T; is the Bellman operator of the current MDP at time ¢. Since there is no noise
term in the iteration, Assumption 1 is trivially satisfied. Assumption 3 follows from the fact
that each T} operator is an « contraction where « is the discount factor. Therefore, if the
stepsizes satisfy Assumption 2 then, by applying Corollary 27, we have that the sequence J;
k-approximates J* for any initial value function Jy with k = (4d(e,9))/(1 — ).



3.2. LEARNING IN VARYING ENVIRONMENTS 65

Q-LEARNING

The Q-learning method of Watkins (1989) is a very popular off-policy, model-free reinforce-
ment learning algorithm (Even-Dar and Mansour, 2003). Its generalized version in e-MDPs
was studied by Szita et al. (2002). Q-learning works with action-value functions, therefore,
X =X x A, and the one-step Q-learning rule in (g,d)-MDPs can be defined as follows

Qt-i—l(x’ CL) = (1 - ’Yt(x’ a))Qt(x’a) + 'Yt(xv a)(ftQt)(xv CL), (37)
(,ftQt)('xa a) = gt(xv a’) + aBg}i?Y) Qt(Y7 B)’

where g; is the immediate-cost function of the current MDP at time ¢ and Y is a random
variable generated from the pair (z,a) by simulation, that is, according to the probability
distribution p;(x, a), where p; is the transition function of the current MDP at time t.

Operator T is randomized, but as it was shown by Bertsekas and Tsitsiklis (1996) in
their convergence theorem for Q-learning, it can be rewritten in a form as follows

(L,Q)(z,a) = (KQ)(z,a) + Wy(z, a),

where Wy (z,a) is a noise term with zero mean and finite variance, and K; is defined as

(I?tQ)(-T, a) = gt(fE, a) + O‘yzé;gpt(y ‘ :E,CL) bénAl(rglJ) Q(yv b)

Let us denote the optimal action-value function of the current MDP at time ¢ and the base
MDP by Q; and Q*, respectively. By using the fact that J*(z) = min, Q*(z,a), it is easy
to see that for all ¢, Qf is the fixed point of operator INQ and, moreover, each [?t is an «
contraction. Therefore, if the stepsizes satisfy Assuption 2, then the ); sequence generated
by iteration (3.7) k-approximates Q* for any initial Qo with k = (4d(,90))/(1 — ).

In some situations the immediate costs are randomized, however, even in this case the
relaxed convergence of Q-learning would follow as long as the random immediate costs had
finite expected value and variance, which is required for satisfying Assumption 1.

TEMPORAL DIFFERENCE LEARNING

Temporal difference learning, or for short TD-learning, is a policy evaluation algorithm. It
aims at finding the corresponding value function J™ for a given policy 7. It can also be used
for approximating the optimal value function, e.g., if we apply it together with the policy
iteration algorithm (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998).

First, we briefly overview the off-line first-visit variant of TD(A) in case of ordinary
MDPs. It can be shown that the value function of a policy m can be rewritten in a form as

o0

> (aN"DE,, ‘ Xo==

m=0

JT(x) =K +J"(x),

where A € [0,1) and D7 ,, denotes the “temporal difference” coefficient at time m,

Dg,m = 9(Xm, A7) + ™ (Ximp1) — J™(Xm),



3.2. LEARNING IN VARYING ENVIRONMENTS 66

where X,,,, X;4+1 and AT, are random variables, X,,+1 has p(X,,, AT)) distribution and AT,
is a random variable for actions, it is selected according to the distribution 7(X,,).

Based on this observation, we can define a stochastic approximation algorithm as follows.
Let us suppose that we have a generative model of the environment, e.g., we can perform
simulations in it. Each simulation produces a state-action-reward trajectory. We can assume
that all simulations eventually end, e.g., there is an absorbing termination state or we can
stop the simulation after a given number of steps. Note that even in this case we can treat
each trajectory as infinitely long, viz., we can define all costs after the termination as zero.
The off-line first-visit TD(A) algorithm updates the value function after each simulation,

Jeer(zh) = Je(xh) + 7e(2h) D (@)™ *domys (3.8)

m=k

where 2! is the state at step k in trajectory ¢ and dg, ¢ is the temporal difference coefficient,
_ ot ot t t
da,m,t - g(‘rm’ am) + a‘]t(xm—i-l) - Jt(xm)

For the case of ordinary MDPs it is known that TD(XA) converges almost surely to J™
for any initial Jy provided that each state is visited by infinitely many trajectories and the
stepsizes satisfy Assumption 2. The proof (Bertsekas and Tsitsiklis, 1996) is based on the
observation that iteration (3.8) can be seen as a Robbins-Monro type stochastic iterative
algorithm for finding the fixed point of J™ = HJ™, where H is a contraction mapping with
Lipschitz constant a.. The only difference in the case of (¢, §)-MDPs is that the environment
may change over time and, therefore, operator H becomes time-dependent. However, each
H, is still an « contraction, but they potentially have different fixed points. Therefore, we
can apply Theorem 26 to achieve a relaxed convergence result for off-line first-visit TD())
in changing environments under the same conditions as in the case of ordinary MDPs.

The convergence of the on-line every-visit variant can be proven in the same way as in
the case of ordinary MDPs, viz., by showing that the difference between the two variants is
of second order in the size of 44 and hence inconsequential as ; diminishes to zero.



Chapter 4

Experimental Results

In the previous chapters we investigated machine learning based resource allocation tech-
niques. We argued that the suggested approach was not only capable of computing good
solutions in reasonable amount of time, but it could also deal with uncertainties and changes.
We presented a few theorems to support our claims, e.g., in Chapter 3 we theoretically stud-
ied changing environments. However, several parts of the solution were not supported by
formal results. In order to confirm these parts and to wverify the others, a simulation envi-
ronment was developed in C++. This chapter aims at presenting our experimental results
concerning stochastic resource allocation and adaptation to environmental changes. The
performed simulation experiments highlight some typical characteristics of our approach.

4.1 Stochastic Resource Allocation

In this section some experimental results concerning machine learning based stochastic re-
source allocation on both benchmark and industry-related problems are presented.

4.1.1 Testing Methodology

During our experiments, we applied FQL and, in most of the cases, SVRs which were realized
by the LIBSVM free library for support vector machines (Chang and Lin, 2001). After
centering and scaling the data into interval [0, 1], we used Gaussian kernels and shrinking
techniques. We always applied rollout algorithms and action decomposition, but clustering
was only used in tests presented in Section 4.1.5, furthermore, distributed sampling was only
applied in test shown in Section 4.1.3. In both of the latter cases (tests for clustering and
distributed sampling) we used hash tables with approximately 256 Mb hash memory.

The performance of the algorithm was measured as follows. Testing took place in two
main fields: the first one was a benchmark scheduling dataset of hard problems, the other
one was a simulation of a “real world” production control problem. In the first case the best
solution, viz., the optimal value of the (aggregated) initial state, J*(xg) = min, Q*(zo,a),
was known for most of the test instances. Some “very hard” instances occurred for which
only lower and upper bounds were known, e.g., Jj(zo) < J*(z09) < J5(x0). In these cases
we assumed that J*(zo) ~ (J;(x0) + J5(x0))/2. Since these estimations were “good” (viz.,

67



4.1. STOCHASTIC RESOURCE ALLOCATION 68

the length of the intervals were short), this simplification might not introduce considerable
error to our performance estimations. In the latter test case we have generated the problems
with a generator in a way that J*(xg) was known concerning the constructed problems.
The performance presented in the tables of the section, more precisely the average, E;,
and the standard deviation, o(FEj;), of the error in iteration i were computed as follows

N 1 & _ 12
Z —J*(xo)], and o(E;) = N Z [ — J*(zo) — Ei|
j=1 Jj=1

where G]’f denotes the cumulative incurred costs in iteration ¢ of sample j and N is the
sample size. Unless indicated otherwise, the sample contained the results of 100 simulation
trials for each parameter configuration (which is associated with the rows of the tables).

As it was shown RAP-MDPs are acyclic, moreover, they have the APP property, there-
fore, discounting is not necessary to achieve a well-defined problem. However, in order to
enhance learning, it is still advised to apply discounting, therefore, to give less credit to
events which are farther from the current decision point. Heuristically, we suggest apply-
ing a = 0.95 for middle-sized RAPs, such as the problems of the benchmark dataset, and
a = 0.99 for large-scale RAPs, such as the problems of the industry-related experiments.

4.1.2 Benchmark Datasets

The ADP based resource control approach was tested on Hurink’s benchmark dataset
(Hurink et al., 1994). It contains flexible job-shop scheduling problems (FJSPs) with 6-30
jobs (30225 tasks) and 5-15 machines. The applied performance measure is the maximum
completion time of the tasks (makespan). These problems are “hard”, which means, e.g.,
that standard dispatching rules or heuristics perform poorly on them. This dataset consists
of four subsets, each subset contains about 60 problems. The subsets (sdata, edata, rdata,
vdata) differ in the ratio of machine interchangeability (flexibility), which is shown in the
“flex(ib)” columns in Tables 4.1 and 4.2. The columns with label “n iters” (and “avg err”)
show the average error after carrying out altogether “n” iterations. The “std dev” columns
in all of the tables of this chapter contain the standard deviation of the sample.

benchmark 1000 iterations 5000 iterations 10000 iterations
dataset flexib | avg err std dev avgerr std dev avgerr std dev
sdata 1.0 8.54 % 5.02 % 5.69 % 4.61 % 3.57 % 4.43 %

edata 1.2 12.37 % 8.26 % 8.03 % 6.12 % 5.26 % 4.92 %
rdata 2.0 16.14 % 7.98 % 1141 % 7.37 % 7.14 % 5.38 %
vdata 5.0 10.18 % 591 % 773 % 4.73 % 3.49 % 3.56 %
average 2.3 11.81 %  6.79 % 821 %  5.70 % 486 % 457 %

Table 4.1: Summarized performance (average error and deviation) on benchmark datasets.



4.1. STOCHASTIC RESOURCE ALLOCATION

69

In Table 4.1 the summarized performance on the benchmark datasets is shown. Table

4.2 illustrates the performance on some typical dataset instances and also gives some details

on them, e.g., the number of machines and jobs (columns with labels “mcs” and “jbs”).

benchmark configuration average error (standard deviation)
dataset inst mcs jbs flex 1000 iters 5000 iters 10000 iters
sdata  mt06 6 6 1 1.79 (1.01) %  0.00 (0.00) %  0.00 (0.00) %
sdata  mtl0 10 10 1 9.63 (4.59) %  8.83 (4.37) % 7.92 (4.05) %
sdata 1a09 5 15 1 5.67 (2.41) %  3.87 (1.97) % 3.05 (1.69) %
sdata lal9 10 10 1] 11.65(5.21) %  6.44 (3.41) % 3.11 (1.74) %
sdata la39 15 15 1] 14.61 (7.61) % 12.74 (5.92) % 11.92 (5.63) %
sdata la40 15 15 1| 10.98 (5.04) %  8.87 (4.75) %  8.39 (4.33) %
edata  mt06 6 6 1.15 0.00 (0.00) %  0.00 (0.00) %  0.00 (0.00) %
edata  mtl10 10 10 1.15 | 18.14 (8.15) % 12.51 (6.12) %  9.61 (4.67) %
edata 1a09 5 15 1.15 7.51 (3.33) %  5.23 (2.65) %  2.73 (1.89) %
edata lal9 10 10 1.15 8.04 (4.64) %  4.14 (2.81) %  1.38 (1.02) %
edata la39 15 15 1.15 | 22.80 (9.67) % 17.32 (8.29) % 12.41 (6.54) %
edata la40 15 15 1.15| 14.78 (7.14) %  8.08 (4.16) %  6.68 (4.01) %
rdata  mt06 6 6 2 6.03 (3.11) %  0.00 (0.00) %  0.00 (0.00) %
rdata  mtl0 10 10 2| 1721 (8.21) % 12.68 (6.81) %  7.87 (4.21) %
rdata 1a09 5 15 2 7.08 (3.23) %  6.15(2.92) % 3.80 (2.17) %
rdata lal9 10 10 2| 18.03 (8.78) % 11.71 (5.78) %  8.87 (4.38) %
rdata 1a39 15 15 2| 24.55(9.59) % 18.90 (8.05) % 13.06 (7.14) %
rdata 1a40 15 15 2| 23.90 (7.21) % 18.91 (6.92) % 14.08 (6.68) %
vdata  mt06 6 6 3 0.00 (0.00) %  0.00 (0.00) %  0.00 (0.00) %
vdata  mtl0 10 10 5 8.76 (4.65) %  4.73 (2.23) %  0.45 (0.34) %
vdata 1a09 5 15 25 9.92 (5.32) % 7.97 (3.54) % 4.92 (2.60) %
vdata lal9 10 10 5| 1442 (7.12) % 11.61 (5.76) %  6.54 (3.14) %
vdata 1a39 15 15 75| 16.16 (7.72) % 12.25 (6.08) %  9.02 (4.48) %
vdata la40 15 15 75 5.86 (3.11) %  4.08 (2.12) % 2.43 (1.83) %

Table 4.2: Performance (average error and deviation) on some typical benchmark problems.

The best performance was achieved by (Mastrolilli and Gambardella, 2000) on these

benchmark FJSP datasets.

Though, their algorithm performs slightly better than ours,

their solution exploits the (unrealistic) specialties of the dataset, e.g., the durations do not

depend on the resources; the tasks are linearly ordered in the jobs; each job consists of

the same number of tasks. Moreover, it cannot be easily generalized to stochastic resource

control problem our algorithm faces. Therefore, the comparison of the two solutions is hard.



4.1. STOCHASTIC RESOURCE ALLOCATION 70

4.1.3 Distributed Sampling

The possible parallelizations of the presented method was also investigated, i.e., the speedup
of the system relative to the number of processors (in practise, the multiprocessor envi-
ronment was emulated on a single processor, only). The average number of iterations was
studied, until the system could reach a solution with less than 5% error on Hurink’s dataset.
The average speed of a single processor was treated as a unit, for comparison.

In Figure 4.1 two cases are shown: in the first case (rear dark bars) each processor could
access a common global value function. It means that each processor could read and write
the same global value function, but otherwise, they searched (sampled the search space)
independently. Figure 4.1 demonstrates that in this case the speedup was almost linear.

10 [] Global Value Function

Speedup

D Local Value Functions

il
1.2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

Number of Processors

Figure 4.1: Average speedup relative to the number of processors.

In the second case (front light bars) each processor had its own (local) value function
(which is more realistic in a strongly distributed system, such as a GRID) and, after the
search had been finished, these individual value functions were compared. Therefore, all of
the processors had estimations of their own, and after the search, the local solution of the
best performing processor was selected. Figure 4.1 shows the achieved speedup in case we
stopped the simulation if any of the processors achieved a solution with less than 5% error.

The experiments show that the computation of the resource allocator function can be
effectively distributed, even if there is not a commonly accessible value function available.

4.1.4 Industry Related Tests

We also initiated numerical experiments on a simulated factory by modeling the structure of
a real plant producing customized mass-products, especially, light bulbs. These industrial
data came from a huge national industry-academia project for research and development
of solutions which support manufacturing enterprises in coping with the requirements of
adaptiveness, realtimeness and cooperativeness (Monostori et al., 2008).

Since, we did not have access to historical data concerning past orders, we used randomly
generated orders (jobs) with random due dates. The tasks and the process-plans of the jobs,
however, covered real products; as well as, the resources covered real machine types. In
this plant the machines require product-type dependent setup times, and there are some



4.1. STOCHASTIC RESOURCE ALLOCATION 71

special tasks that have durations but that do not require any resources to be processed, for
example, cooling down. Another feature of the plant is that at some previously given time
points preemptions are allowed, e.g., at the end of a work shift. The applied performance
measure was to minimize the number of late jobs, viz., jobs that are finished after their due
dates, and an additional secondary measure was to minimize the total cumulative lateness,

which can be applied to compare two schedules having the same number of late jobs.

optimal 1000 iterations 5000 iterations 10000 iterations
slack ratio avg err std dev avg err std dev avg err std dev
50 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

40 % 0.12 % 0.10 % 0.00 % 0.00 % 0.00 % 0.00 %

30 % 0.52 % 0.71 % 0.24 % 0.52 % 0.13 % 0.47 %

20 % 1.43 % 1.67 % 1.11 % 1.58 % 1.05 % 1.49 %

10 % 5.28 % 3.81 % 4.13 % 3.53 % 3.91 % 3.48 %
0% 8.89 % 517 % 7.56 % 5.04 % 6.74 % 4.83 %

Table 4.3: Summarized performance relative to the optimal slack ratio of the system.

During these experiments the jobs and their due dates were generated by a special
parameterizable generator in a way that optimally none of the jobs were late. Therefore, it
was known that J*(z¢) = 0 and the error of the algorithm was computed accordingly.

In the first case, shown in Table 4.3, we applied 16 machines and 100 random jobs, which
altogether contained more than 200 tasks. The convergence properties were studied relative
to the optimal slack ratio. In the deterministic case, e.g., the slack ratio of a solution is

1= B(L) - F(J%)
PO = 2 By - A

where n is the number of jobs; A(J) and B(J) denote the release and due date of job J,
respectively; F'(J) is the finish time of job J relative to solution g, namely, the latest finish
time of the tasks in the job. Roughly, the slack ratio measures the tightness of the solution,
for example, if ®(p) > 0, then it shows that the jobs were, on the average, finished before
their due dates and if ®(p) < 0, then it indicates that, approximately, many jobs were late.
If ®(p) = 0, then it shows that if all the jobs meet their due dates, each job was finished
just in time, there were no spare (residual) times. Under the optimal slack ratio we mean
the maximal achievable slack ratio (by an optimal solution). During the experiments these
values were known because of the special construction of the test problem instances. We
applied the optimal slack ratio to measure how “hard” a problem is. The first column of
Table 4.3 shows the optimal slack ratio in percentage, e.g., 30 % means a 0.3 slack ratio.

In the second case, shown in Table 4.4, we have fixed the optimal slack ratio of the
system to 10 % and investigated the convergence speed relative to the plant size (number
of machines) and the number of tasks. In the last two experiments (configuration having



4.1. STOCHASTIC RESOURCE ALLOCATION 72

2000 and 10000 tasks) only 10 samples were generated, because of the long runtime. The
computation of 10 000 iterations took approximately 30 minutes for the 50 machines & 2000
tasks configuration and 3 hours for the 100 machines & 10000 tasks configuration!.

The results demonstrate that the ADP and adaptive sampling based solution scales well
with both the slack ratio and the size (the number of machines and task) of the problem.

configuration 1000 iterations 5000 iterations 10000 iterations
machs tasks avg err std dev avg err std dev avg err std dev
6 30 4.01 % 2.24 % 3.03 % 1.92 % 2.12 % 1.85 %

16 140 4.26 % 2.32 % 3.28% 2.12 % 2.45 % 1.98 %

25 280 7.05 % 2.55 % 4.14 % 2.16 % 3.61 % 2.06 %

30 560 7.56 % 3.56 % 5.96 % 2.47 % 4.57 % 2.12 %

50 2000 8.69 % 7.11 % 7.24 % 5.08 % 6.04 % 4.53 %

100 10000 15.07 % 11.89 % 10.31% 797 % 9.11 % 7.58 %

Table 4.4: Summarized performance relative to the number of machines and tasks.

4.1.5 Clustering Experiments

The effectiveness of clustering on industry-related data was also studied. We considered
a system with 60 resources and 1000 random tasks distributed among 400-500 jobs (there
were approximately 1000-2000 precedence constraints). The tasks were generated in a way
that, in the optimal case, none of them are late and the slack ratio is about 20 %.

First, the tasks were ordered according to their slack times and then they were clustered.
We applied 10? iterations on each cluster. The computational time in case of using only one
cluster was treated as a unit. In Table 4.5 the average and the standard deviation of the
error and the computational speedup are shown relative to the number tasks in a cluster.

configuration performance after 10000 iterations per cluster

clusters tasks late jobs avg error std dev speed speedup
1 1000 28.1 6.88 % 2.38 % 423 s 1.00 x

5 200 22.7 5.95 % 2.05 % 275 s 1.54 x

10 100 20.3 4.13 % 1.61 % 189 s 2.24 x

20 50 13.9 3.02 % 1.54 % 104 s 3.28 x

30 33 14.4 3.15 % 1.51 % 67 s 6.31 x

40 25 16.2 3.61 % 1.45 % 49 s 8.63 x

50 20 18.7 4.03 % 1.43 % 36 s 11.65 x

Table 4.5: Speedup and performance relative to the number of tasks in a cluster.

1. The tests were performed on a Centrino (Core-Duo) 1660Mhz CPU (= P4 3GHz) with 1Gb RAM.



4.2. VARYING ENVIRONMENTS 73

The results demonstrate that partitioning the search space not only results in a greater
speed, but it is often accompanied by better solutions. The latter phenomenon can be ex-
plained by the fact that using smaller sample trajectories generates smaller variance that is
preferable for learning. On the other hand, making too small clusters may decrease the per-
formance (e.g., making 50 clusters with 20 tasks in the current case). In our particular case
applying 20 clusters with approximately 50 tasks in each cluster balances good performance
(3.02% error on the average) with remarkable speedup (approximately 3.28 x).

As clustering the tasks represents a considerable help in dealing with large-scale RAPs,
their further theoretical and experimental investigation would be very promising.

4.2 Varying Environments

In this section we present two numerical experiments. The first one demonstrates the effects
of environmental changes during Q-learning based scheduling. The second one presents a
parameter analysis concerning the effectiveness of SARSA in (e, §)-type grid world domains.

4.2.1 Adaptation to Disturbances

In order to verify the algorithm in changing environments, experiments were carried out
on random JSPs with the aim of minimizing the makespan. The adaptive features of the
system were tested by confronting it with unexpected events, such as: resource breakdowns,
new resource availability (Figure 4.2), new job arrivals or job cancellations (Figure 4.3). In
Figures 4.2 and 4.3 the horizontal axis represents time, while the vertical one, the achieved
performance measure. The figures were made by averaging hundred random samples. In
these tests 20 machines were used with few dozens of jobs. In each case there was an unex-
pected event at time ¢ = 100. After the change took place, we considered two possibilities:
we either restarted the iterative scheduling process from scratch or continued the learning,
using the current (obsolete) value function. We experienced that the latter approach is much
more efficient. This was one of the reasons why we started to study how the value function
of a control policy depends on the dynamics of the underlying Markov process.

The results, black curves, show the case when the obsolete value function approximation
was applied after the change took place. The performance which would arise if the system
recomputed the whole schedule from scratch is drawn in gray in part (a) of Figure 4.2.

One can notice that even if the problem became “easier” after the change in the environ-
ment (at time ¢ = 100), for example, a new resource was available (part (b) of Figure 4.2)
or a job was cancelled (part (b) of Figure 4.3), the performance started to slightly decrease
(k started to slightly increase) after the event. This phenomena can be explained by the
fact that even in these special cases the system had to “explore” the new configuration.

Recall that Theorems 9 and 11 measure the amount of the possible change in the value
function of a control policy in case there were changes in the MDP, but since they apply
supremum norm, they only provide bounds for worst case situations. However, the results of
our numerical experiments, shown in Figures 4.2 and 4.3, are indicative of the phenomenon



4.2. VARYING ENVIRONMENTS 74

that in an average case the change is much less. Therefore, applying the obsolete value
function after a change took place is preferable over restarting the optimization from scratch.

330 330
(a) (b)
310 310
K(t) K(t) K(t)

290 1 2901
270 270+
250 1 250
230 1 230+
2101 210
190 1904
170 +———7—"—rr—r—rr—"T"T—"TTrrTrrr T TrT T T T T T T T T T T 170

1 20 40 60 80 100 120 140 160 180 200 1 20 40 60 80 100 120 140 160 180 200

t ~ time t~time

Figure 4.2: The black curves, k(t), show the performance measure in case there was a re-
source breakdown (a) or a new resource availability (b) at ¢ = 100; the gray
curve, k’(t), illustrates the case the policy would be recomputed from scratch.

360 360
(a) (b)
340 340
(1) K(t)
320 320
300 300
280 280
260 260
240 240 A
220 220
200 200
1 20 40 60 80 100 120 140 160 180 200 1 20 40 60 80 100 120 140 160 180 200
t~ time t~ time

Figure 4.3: The black curves, x(t), show the performance measure during resource control
in case there was a new job arrival (a) or a job cancellation (b) at time ¢ = 100.

4.2.2 Varying Grid Worlds

We also performed numerical experiments on a variant of the classical grid world problem
(Sutton and Barto, 1998). The original version of this problem can be briefly described as
follows: an agent wanders in a rectangular world starting from a random initial state with
the aim of finding the goal state. In each state the agent is allowed to choose from four
possible actions: “north”, “south”, “east” and “west”. After an action was selected, the agent
moves one step in that direction. There are some mines on the field, as well, that the agent
should avoid. An episode ends if the agent finds the goal state or hits a mine. During
our experiments, we have applied randomly generated 10 x 10 grid worlds (therefore, these
MDPs had 100 states) with 10 mines. The (immediate) cost of taking a (non-terminating)
step was b, a cost of hitting a mine was 100 and the cost of finding the goal state was —100.



4.2. VARYING ENVIRONMENTS 75

In order to perform the experiment described by Table 4.6, we applied the “RL-Glue”
framework? which consists of open source softwares and aims at being a standard protocol
for benchmarking and interconnecting reinforcement learning agents and environments.

We have analyzed an (e, d)-type version of grid world, where the problem formed an
(e,9)-MDP. More precisely, we have investigated the case when for all time ¢, the transition-
probabilities could vary by at most € > 0 around the base transition-probability values and
the immediate-costs could vary by at most § > 0 around the base cost values.

During our numerical experiments, the environment changed at each time-step. These
changes were generated as follows. First, changes concerning the transition-probabilities are
described. In our randomized grid worlds the agent was taken to a random surrounding
state (no matter what action it chose) with probability 7 and this probability changed after
each step. The new 7 was computed according to the uniform distribution, but its possible
values were bounded by the values described in the first row of Table 4.6.

Similarly, the immediate-costs of the base MDP (cf. the first paragraph) were perturbed
with a uniform random variable that changed at each time-step. Again, its (absolute) value
was bounded by §, which is presented in the first column of the table. The values shown
were divided by 100 to achieve the same scale as the transition-probabilities have.

Allgll | the bounds for the varying probability of arriving at random states ~ ¢
0/100 0.0 0.1 0.2 0.3 04 0.5 06 07 08 09 1.0

0.0 |-55.5 -488 -41.4 -36.7 -26.7 -16.7 -85 2.1 142 31.7 46.0
0.1 |-541 -46.1 -41.2 -345 -25.8 -158 -6.0 3.7 16.5 323 46.3
0.2 |-525 -448 -40.1 -344 -253 -154 -5.8 4.0 176 33.1 481
0.3 |-49.7 -421 -36.3 -31.3 -239 -142 -53 80 181 372 516
0.4 |-474 -415 -347 -30.7 -222 -122 -23 88 202 383 52.0
0.5 | -42.7 -41.0 -345 -248 -21.1 -10.1 -1.3 11.2 25.7 39.2 521
0.6 |-36.1 -36.5 -29.7 -240 -16.8 -79 1.1 17.0 31.3 439 54.1
0.7 |-30.2 -293 -293 -19.1 -134 -6.0 74 189 269 472 60.9
0.8 |-231 -270 -214 -188 -109 -26 89 225 313 50.0 64.2
0.9 |-141 -195 -21.0 -124 -75 0.7 132 232 389 522 681
1.0 -6.8 -10.7 -145 -7.1  -5.3 6.6 15.7 264 39.8 57.3 68.7

Table 4.6: The (average) cumulative costs gathered by SARSA in varying grid worlds.

Table 4.6 was generated using an (optimistic) SARSA algorithm, namely, the actual pol-
icy was evaluated by SARSA, then the policy was (optimistically) improved, more precisely,
the greedy policy with respect to the achieved evaluation was calculated. That policy was
also soft, namely, it made random ezplorations with probability 0.05. We have generated
1000 random grid worlds for each parameter pairs and performed 10000 episodes in each of

2. http://rlai.cs.ualberta.ca/RLBB /top.html



4.2. VARYING ENVIRONMENTS 76

these generated worlds. The results presented in the table were calculated by averaging the
cumulative costs over all episodes and over all generated sample worlds.

The parameter analysis shown in Table 4.6 is indicative of the phenomenon that changes
in the transition-probabilities have a much higher impact on the performance. Even large
perturbations in the costs were tolerated by SARSA, but large variations in the transition-
probabilities caused a high decrease in the performance. An explanation could be that large
changes in the transitions cause the agent to loose control over the events, since it becomes
very hard to predict the effects of the actions and, hence, to estimate the expected costs.



Chapter 5

Conclusion

Efficient allocation of scarce, reusable resources over time to interconnected tasks is an
important problem that arises in many “real world” domains. Though, in the past decades
much effort was spent on designing efficient resource allocation algorithms, most of these
approaches investigated deterministic and static problems. However, in practise there is a
significant amount of uncertainty concerning resource allocation, for example, the execution
times of the tasks are usually not known exactly. Moreover, there could be disturbances
and changes in the environment, as well. These issues seriously limit the applicability of
classical solution methods. Unfortunately, it is not trivial the extend these algorithms, such
as branch and cut or constraint satisfaction, to handle stochastic problems. Instead of this
direction, the thesis took a machine learning (ML) approach to resource allocation to face
these additional challenges. In this concluding chapter we briefly summarize the solution
concerning both managing uncertainties during resource allocation and dealing with the
changes of the environment. We also take the opportunity to highlight a few advantages of
the approach and, finally, we present some possible further research directions, as well.

5.1 Managing Uncertainties

In order to define an efficient reactive solution, first, a general resource allocation framework
was presented and it was reformulated as a stochastic shortest path problem, a special
Markov decision process (MDP). It was shown that this reformulation has several favorable
properties, such as it has finite state and action spaces, it is acyclic, hence all policies are
proper and the space of control policies can be safely restricted. The possibility of achieving
proactive solutions with this approach was also investigated and proactive solutions were
formulated as control policies of suitably defined partially observable MDPs (POMDPs).
The core idea of the proposed solution was the application of simulation based rein-
forcement learning (RL) techniques together with other machine learning methods. The
exploration and exploitation ratio of the system was controlled by a Boltzmann formula,
combined with a Metropolis algorithm. Regarding value function representations, two ap-
proaches were studied: hash table and support vector regression (SVR). Afterwards, several
additional improvements, such as the application of rollout algorithms, action space de-

7



5.2. DEALING WITH CHANGES 78

composition, task clustering and distributed sampling, were suggested for speeding up the
computation of a good policy. Finally, the effectiveness of the approach was demonstrated
by results of simulation experiments on both benchmark and industry-related data.

There are several advantages why ML based resource allocation is preferable to other
kinds of RAP solutions, e.g., classical approaches. These favorable features are as follows:

1. The presented RAP framework is very general, it can model several resource manage-
ment problems that appear in practise, such as scheduling problems, transportation
problems, inventory management problems or maintenance and repair problems.

2. RL based methods essentially face the problem under the presence of uncertainties,
since their theoretical foundation is provided by MDPs. Moreover, they can adapt to
unexpected changes in the environmental dynamics, such as breakdowns.

3. Additionally, for most algorithms theoretical guarantees of finding (approximately)
optimal solutions, at least in the limit, are known. As demonstrated by our experi-
ments, the actual convergence speed for RAPs is usually high, especially in the case of
applying the described improvements, such as clustering or distributed sampling.

4. The simulation experiments on industrial data also demonstrate that RL based solu-
tions scale well with the workload and the size of the problem and, therefore, they can
be effectively applied to handle real world problems, such as production control.

5. Domain specific knowledge can also be incorporated into the solution. The base policy
of the rollout algorithm, for example, can reflect a priori knowledge about the structure
of the problem; later this knowledge may appear in the exploration strategy.

6. Finally, the proposed method constitutes an any-time solution, since the sampling can
be stopped after any number of iterations. By this way, the amount of computational
time can be controlled, which is also an important practical advantage.

Consequently, ML approaches have great potentials in dealing with real world RAPs, since
they can handle large-scale problems even in dynamic and uncertain environments.

5.2 Dealing with Changes

The theory of MDPs provide a general framework for modeling decision making in stochastic
dynamic systems, if we know a function that describes the dynamics or we can simulate it,
for example, with a suitable program. In some situations, however, the dynamics of the
system may change, too. In theory, this change can be modeled with another (higher level)
MDP, as well, but doing so would lead to models which are practically intractable.

In the dissertation we have argued that the value function of a (stationary, Marko-
vian, randomized) control policy in a (discounted or acyclic undiscounted) MDP Lipschitz
continuously depends on the transition-probability function and the immediate-cost func-
tion, therefore, small changes in the environment result only in small changes in the value



5.3. FURTHER RESEARCH DIRECTIONS 79

function. A similar result was already known for optimal value functions in the case of
transition-probabilities, but we have presented an improved estimation for that case, as
well. A bound for changes in the discount factor was also proven, and it was demonstrated
that this dependence was not Lipschitz continuous. Additionally, it was proven that changes
in the discount rate could be traced back to changes in the cost function. Though, optimal
policies may also change if the environment had changed, we showed that the previous re-
sults can be extended to optimal value functions, as well. The application of the Lipschitz
property helps the theoretical treatment of changing environments or inaccurate models,
e.g., if the transition-probabilities or the immediate-costs are estimated statistically, only.

In order to theoretically analyze environmental changes, the framework of (e, d)-MDPs
was introduced as a generalization of classical MDPs and e-MDPs. In this quasi-stationary
model the transition-probability function and the immediate-cost function may change over
time, but the cumulative changes must remain bounded by € and §, asymptotically.

Afterwards, we have investigated how RL methods could work in this kind of changing
environment. We have presented a general theorem that estimated the asymptotic distance
of a value function sequence from a fixed value function. This result was applied to deduce
a convergence theorem for value function based algorithms that work in (g, §)-MDPs.

In order to demonstrate our approach, we have presented some numerical experiments,
too. First, two simple iterative processes were shown, a “well-behaving” stochastic process
and a “pathological”, oscillating deterministic process. Later, the effects of environmental
changes on Q-learning based flexible job-shop scheduling was experimentally studied. Fi-
nally, we have analyzed how SARSA could work in varying (e, §)-type grid world domains.

We can conclude that value function based RL algorithms can work in varying envi-
ronments, at least if the changes remain bounded in the limit. The asymptotic distance of
the generated value function sequence from the optimal value function of base MDP of the
changing environment is bounded for a large class of stochastic iterative algorithms. More-
over, this bound is proportional to the diameter of this set, e.g., to parameters € and J in
the case of (g,0)-MDPs. These results were illustrated through three classical RL methods:
asynchronous value iteration, Q-learning and temporal difference learning policy evaluation.

5.3 Further Research Directions

Several further research directions are possible to enhance the proposed ML based resource
allocation approach. Now, as a conclusion to the thesis, we highlight some of them.

The suggested improvements, such as clustering and distributed sampling, should be fur-
ther investigated, both theoretically and experimentally, since they resulted in considerable
speedup. The guidance of reinforcement learning with rollout algorithms might be effectively
applied in other applications, as well. Regarding proactive solutions, efficient algorithms to
handle partially observable MDPs (POMDPs) should also be studied. The theoretical anal-
ysis of the average effects of environmental changes on the value functions of a policy could
result in new approaches to handle disturbances. Another promising direction would be to
extend the solution in a way which also takes risk into account and, for example, minimizes



5.3. FURTHER RESEARCH DIRECTIONS 80

not only the expected value of the total costs but also the deviation, as a secondary opti-
mization criterion. Finally, trying to apply the solution in a pilot project to control a real
plant would be interesting and could motivate many more further research directions.

Concerning changes in the dynamics, a promising direction could be to investigate en-
vironments with non-bounded changes, e.g., when the environment might drift over time.
Naturally, this drift should also be sufficiently slow in order to give the opportunity to the
learning algorithm to track the changes. Another possible direction could be the analysis of
the convergence results in case of applying value function approximation. The classical prob-
lem of exploration and exploitation should also be reinvestigated in changing environments.
Finally, finding finite time bounds for the convergence of stochastic iterative algorithms for
(a potentially restricted class of) non-stationary environments would also be important.



Appendix: Proofs

In this appendix we present the proofs of all theorems and lemmas we gave. Naturally, we
do not prove those statements which were taken from other sources. In the latter cases
adequate references are given in the text concerning the locations of the proofs.

Theorem 7 Consider a POMDP and its fully observable MDP counterpart, which system has
the same state space, action space, transition-probabilities and costs as the original POMDP,
only the observability is different. The optimal cost-to-go functions of the POMDP and the
MDP are denoted by J* and J*, respectively. Then, for all belief state b, we have

C

D b(w) () < THb) < Y b(x) JH(x) +

zeX zeX

)

l—«o

where ¢ = (Gmaz — Gmin); Gmaz = Max{g(z,a) | x € X ;a € A} and similarly for gmin. If the
immediate-cost function g is not constant (c # 0), then the second inequality is strict.

Proof We will prove the theorem in two steps. First, we will show that for all belief states,
Y ozex b(x) J (z) < J*(b), then we will prove that J*(b) < Y oex b(@) J (z) +¢/(1 - a),
where ¢ = (¢maz — gmin). The first part of the theorem will be proven by induction. We can
treat our infinite horizon problem as the limit of the finite horizon problems and, thus, we
can apply induction on the horizon. The Bellman equation for the N-stage problem is

Jin(@) = min |g(z,a) +a > plylza) i), (5.1)
yeX

for all £ € {0,...,N — 1} and = € X. Note that J; = 0 by definition (we do not have to
consider terminal cost). It is known, (see Bertsekas and Tsitsiklis, 1996), that for all x € X

J (x) = T (x) = A}im Iy (z) (5.2)
It is obvious that ) __x Jx(z)b(z) < J%(b) holds if N = 0, since Ji = J§ = 0 (they are

both constant zero functions). Now, we assume that it holds for N and prove it for N + 1:

Ji41(b) =min | g(b,a) + ;}) p(z | b,a) J3(r(b,a,2)) | >

81



APPENDIX: PROOFS 82

>min |g(b,a) +a > p(z|ba) > 7(ba,2)(y) Jx(y)| =

ach 2€0 yex
% o=y | 7.a) b(z)
=min | 3 b(@) glaa) £ a Yo plz|ba) Y I i) | =

rzeX z€e0 yeX

=min | ¥ b(x)g(z,a)+ad Y pzy|wa)b) Ji)| =

zeX z€ QO yeXzeX

= min Zb(:c) 9(z,a) +GZZPZ\Z~/, p(y |z a) Iy || =

a€A
reX ze 0 yeX

= min Z b(z) |g(x,a) + aZp(y | 2z,a) In() | | =

ach
zeX yeX

now, we apply Jensen’s inequality with the remark that min is a concave function

>
Zb mlﬁ g(z,a —|—a2py|fcaJN Zb ) N1 (x
zeX yeX zeX

for all b € B. Now, we turn to the second part of the theorem and show that for all
beB: JO) < Y orex b(@) J*(x) + (9maz — Ymin)/(1 — ). In possession of the knowl-
edge that the first part of the theorem holds, the second part can be proven as follows.
We can notice that at each step the maximum difference of the incurred cost between the
convex combination of the optimal cost-to-go functions of the fully observable and the non-
observable (belief state) MDPs (that also uses a convex combination for cost) iS gmaz — Gmin,
which is denoted by ¢ and it is discounted by «. This simply builds a geometric series:
ctac+a?c+---=c/(1—a). Toshow that this inequality is strict, suppose (indirectly) that
JH(b) =32, b(z) J*(x) +¢/(1 — ). It means that, at each step the difference is gmaz — gmin,
even at the first step. Thus, it must be the case that ) Ji () b(x) = gmin, therefore, for all
state x such that b(z) # 0 there must be an action a such that g(z,a) = gmin. Additionally,
in order to satisfy the equality, j{‘(b) = Gmae Must hold. It means that the best action
a in b has the cost g(b,a) = > b(z) g(x,a) = gmax, which cannot be the best action (if
¢ # 0), since for each state z (such that b(x) # 0) there is an action a that has minimal
cost, g(z,a) = gmin. We have reached a contradiction, therefore, the inequality is strict. W

Lemma 8 (1) There exists a POMDP and a corresponding fully observable MDP such that,
for a belief state b: J*(b) = (J*,b); (2) for all € > 0 there exists a POMDP and a corre-
sponding MDP such that for a belief state b: | J*(b) — (J*,b) — ¢/(1 — a)| < e.

Proof The lemma is trivial if constant immediate-cost functions are allowed. Let us
now assume that we have a non-constant cost function. We can also assume, without loss



APPENDIX: PROOFS 83

of generality, that ¢;in = 0 and gmer = 1. Then, the first statement of the lemma is
still straightforward to prove, since any POMDP which is deterministic or which is fully
observable (e.g., the observations are the real states) can do with a b € B such that b(x) = 1
for an z € X. If the system is deterministic, then this result is valid for NOMDPs, as well.

The second part of the lemma can be shown through an example, moreover, the applied
POMDP will be a NOMDP (viz., its observation space contains only one element). Consider
a NOMDP with X = {z1,...,zn}, A ={a1,...,a,}, for all z; : A(x;) = {a1,...,a,}. For
all z; and a; the immediate-cost g(z;,a;) = 0 if i = j and g(z;,a;) = 1 otherwise. The
transition-probabilities for all z,y € X and a € A: p(y | #,a) = 1/n. Then, if the system
was fully observable, the optimal cost-to-go function would be J*(z) = 0 for all z € X,
because in each state x; one could choose an action (a;) that did not have any cost. How-
ever, consider a belief state b such that b(x) = 1/n for all x € X. In this case for each
action a € A its immediate-cost is g(b,a) = > b(z)g(x,a) = (n — 1)/n, therefore, the
optimal control policy in b also incur (n — 1)/n cost before it arrives back to belief state
b. In the long run, J*(b) = (1/(1 — a)) - ((n — 1)/n). Because ¢ = (gmaz — gmin) = 1 and
for any £ > 0 we can choose a large enough n such that 1 — (n — 1)/n < &, consequently,
J*(b) can be arbitrary close to (J*,b)+¢/(1—a) = 1/(1—a). Thus, we proved both parts. B

Theorem 9 Assume that two discounted MDPs, My and Mo, differ only in their transition-
probability functions, and let these two functions be denoted by p1 for M1 and ps for Ms.
Let the value functions of a (stationary, Markovian, randomized) control policy  be denoted
by JI* related to My and J3 related to May. Then, the following inequality holds

alX] gl

[T = I3l < (1_705)200 Ip1 — P2llo -

Proof Using the Bellman equation in the first step, the absolute value of the difference of
the two cost-to-go functions in any state can be estimated as follows

Vo e X |J] (x) — J5(x)] =

| 3 rwa) g a) +a Y pily | 2.0) W) -

ac€A(x) yeX
= Y w@a)|glwa) +aY py | va) )| <
ac€A(x) yeX
SQZW(QS,CL) Zpl | z,a) JT (y ZPQ | x,a) J3(y) | =
a€A(x) yeX yeX

—a Y w(z,a) | Y (my|za) —paly | 2,0)) JT(y) + > pa(y | z,0) (T (y) = I3 (1) |,

acA(x) yeX yeX



APPENDIX: PROOFS 84

where we have rewritten p1(y |z, a)JT (y) — p2(y |z, a)JJZ (y) as
piy |z, a)J7 (y) — p2(y | 2,a)J3 (y) =

=p1(y|z,a)J7 (y) —p2(y| 2, a)JT(y) + p2(y | z,a)J7 (y) — p2(y |2, 0)J5 (y) =
= (myl|z,a) —pa(y |z, a))JT (y) + p2(y |z, a)(JT (y) — I3 (y))-

Now, we can continue the estimation using the fact that Vy : JT(y) < |9l /(1 — @).

a Y w(xa)| > iy z,a) = pa(y | 2,0) T () + > paly | @,0) (ST (y) = J5 () | <
a€A(x) yeX yeX
19lo n
<a )y w(wa)| D (1] za) = pa(y|@,0) 772+ pa(y [ 2.0) [1T] = Il | <
a€A(z) yeX yeX
Il T
<a ) ma)| ) lp -l 1‘_‘ +ITT = Il | <
a€A(z) yex
HgH r
SO‘Z m(z,a) | [X]lp1 — p2llo +HJ1 I3l | <
a€A(x)
HgH "
o [T = I3l | =
X lps - pol % rallJf - 3|
Since we have this estimation for all x, we also have
|7 3o < a@X]p1 = P2/l +a|J] 2 lloo
after rearrangement, we get
r g o |X]lglls
T = Il < il = 2l
|

Theorem 10 Assume that two discounted MDPs, M1y and Mo, differ only in their transition-
probability functions, and let these two functions be denoted by py for M1 and ps for Ma.
Let the value functions of a (stationary, Markovian, randomized) control policy 7 be denoted
by JT related to My and J5 related to My. Then, the following inequality holds

o a9l
[T = I3 [lo < ﬁ\\pl pally,



APPENDIX: PROOFS 85

where ||-||; ts a norm on f: X x A x X — R type functions, e.g., f(z,a,y) =p(y|z,a),

£ = max 3 [ fwap) .

yeX

Proof Using the Bellman equation in the first step, ||J{ — JJ|| ., can be estimated as

Ve € X |J(z) — J3 (x)] =

= Z m(x,a) [g(ﬂs, a) + aZPl(y | z,a) J{r(y)]_

acA(z) yeX

> wl@.0)|gl@.a)+a Y pay | 2.0) F )| <

a€A(x) yeX

<a Y w(,a) > py|za)J(y) —ply | z,0)J5 ()| =
a€A(x) yeX

=a Y w(z,a) Y (my|za) —pay | 2,0)JT(v) + > _paly | w,0)(JT(y) = J5 (v))| <

acA(x) yeX yeX

<a ) wza) | Y ey ea) = paly | 2,a) TG+ ) Ip2(y | 2,a) (T (y) = JFW)I|

acA(z) yeX yeX

where we also applied the reformulation of p;(y |z, a)J7 (y) — p2(y |z, a)J5 (y) as
pi(y |z, a)JT (y) — p2(y |z, a)J5 (y) =
=pi(ylz,a)J(y) —pa(y |z, 0)J7 (y) + pa(y [ 2, 0) T (y) — pa(y |7, 0) I3 (y) =

= (my|z,a) —pa(y |z, a)JT(y) + p2(y |z, a)(JT (y) — I3 (y))-

Now, let us recall (a special form of) Holder’s inequality: let vy,vy be two vectors and
1 < gq,r < oo with 1/¢g+1/r = 1. Then, we have [lv va[[(3) < vl [lv2ll(), where |||,
denotes vector norm, e.g., [|[v,y = (32; lv;]1)1/ and [0[(ooy = max; |v;| = [[v]|. Here, we
applied the unusual “(q)” notation to avoid confusion with the applied matrix norm. Notice
that the first sum in the rectangular brackets can be treated as the (1)-norm of vj vy, where

vi(y) =pi(y [z,a) —p2(y | z,0))  and  va(y) = J7(y),

after which Hoélder’s inequality can be applied with ¢ = 1 and r = oo to estimate the sum.
A similar argument can be repeated in the case of the second sum in the brackets with

vi(y) =p2(y | z,a)  and  ua(y) = Ji(y) — J5(y)-



APPENDIX: PROOFS 86

Then, after the two applications of Holder’s inequality, we have the following estimation
Ve € X |JT(z) — J3(2)] <

<a 3" w@a) (I 2,0) = pa(- 12,0l ) 1T g + 192 | 2,0) 3y 1T = JE L ) <

acA(x)
llgllo r
<a Y w(@.a)(Ipi(- | @.0) = pa(- | a,a)l oy ;222 + 17 = 5 ),
acA(x)
where in the last step we applied that ||JT||_ < [|g]lo /(1 — @) and |[pa(- | m,a)H(l) =1

The last formula can be overestimated by taking the maximum over all states and actions,

Vo € X: | (2) — Jf(@)] <

<a ) W(xaa)<zglggm 3 Ipily]8) ~ poly] =0y | 19 a||Jf—J§Hoo> <
ac€A(x)

g v g
<a ¥ nte.a) (1 1y — ), a7 - 71 ) -

acA(x)

allgll
=T ol =p2l +allJT =I5l

since we have this estimation for all state x, we also have the following inequality

a gl
1T = J2lloe = 47— % Py = p2lly + [ JT =I5l

from which the statement of the theorem immediately follows after rearrangement,

o |9l
||J1 J2”oo (1 )HP P2||1

|
Theorem 11 Assume that two discounted MDPs, M1 and Moy, differ only in their immediate-
cost functions, and let these two functions be denoted by g1 for M1 and go for Ms, respec-

tively. Let the value functions of a (stationary, Markovian, randomized) policy m be denoted
by JT related to My and J3 related to My. Then, the following inequality holds

1
||<]1 J3 Hoo ~1_a ||91 92Hoo

Proof Using the Bellman equation in the first step, the absolute value of the difference of
the two cost-to-go functions in any state can be estimated as follows

Vo € X: |JT(x) — J5(x)| =



APPENDIX: PROOFS 87

=| 3 o) |anlma) +a Yy v 7)) -

acA(x) yeX

= w(@.0) g2l ) + 0 ply | w,0) B ()| <

ac€A(x) yeX
< Y wlw,a)(lon(@,0) ~ ga @) + Y ply | @,a) [T () — FFW)]) <
a€A(z) yex
< Y w@a)(lg - gl +ad ply ] z0) 17— Il ) =
acA(x) yex
= 3wl a)(llgr - gellg + a7 = 5| ) =
acA(x)

= llg1 = g2llce + I = I3 |l

It is easy to see that if
Ve e X |Ji(z) = J3 (@)] < llgr — g2lloe + @ 1T = I3l »
then
1T = I3l < llg1 = 92lloe + 1T — IF [l »
after rearrangement
1
1T = I3 lloe < 7= llor = 92l
[

Theorem 12 Assume that two discounted MDPs, M1 and Ma, differ only in the discount
factors, denoted by ay,c € [0,1). Let the value functions of a (stationary, Markovian,
randomized) policy m be denoted by JT related to My and J5 related to My. Then, we have

a1 — agf

©= T a(l— o)

lJT = J3 | 19100

Proof For any state x the difference of the two value functions can be estimated as follows,

[T (2) = J3 (2)] =

= Z m(x,a) |g(x,a) + ay ZP(?J | z,a) JT (y) | —

aEA(x) yex

=S w(@a) | gl a) + a2 S ply | 2, a) ()

acA(x) yeX

IN




APPENDIX: PROOFS 88

< D w@a)| Y ey |z a) (i (y) — a3 (y))| <

acA(x) yeX

< o1 — ag| 19]loo + 2 ||JT — J5 || 5

1—0&1

where in the last step we used the following estimation of |a1J] (y) — a2 J5 ()|,
1 JT(y) = a2d5(y)] = len T (y) — a2 7 (y) + a2 J7 (y) — a2J5(y)] <

< len = aof [JT (y)] + a2 [JT(y) = J3 (y)] < |ar — a2

9]l + a2 1T = I3 »

1-— aq
where we applied the fact that for any state y we have,
- 1
TE W) <> ot llglle = o 19l
t=0

Because the estimation of |JT(x) — JJ (x)| is valid for all z, we have the following result

[T = I3 || oo < o — a2 9lloe + 2 [|J1 — Jal| o

1—&1

from which the statement of the theorem immediately follows after rearrangement,

[T = J3 ]l <

o1 —oz]
= o) —ag) 19l

Lemma 13 Assume that we have two discounted MDPs, My and Ms, which differ only
in the transition-probability functions or only in the tmmediate-cost functions or only in
the discount factors. Let w denote an arbitrary (stationary, Markovian, randomized) con-
trol policy. The (state-) value and action-value functions of control policy © are denoted by
JT, QT and JT, QF for My and Ma, respectively. Then, the previously given value func-
tion bounds for ||JT — J3|| ., of Theorems 9, 10, 11 and 12 are also bounds for ||QT — Q5| -

Proof We will prove the theorem in three parts, depending on the changing components.
Since Theorem 9 follows from Theorem 10 we will only prove the latter statement.

Case 1: Assume that the MDPs differ only in the transition functions, denoted by p; and
p2. We will prove the same estimation as in the case of Theorem 10, more precisely, that

allgll
QT — Q3 |l < ﬁ Ip1 — p2ll; -

For all state-action pair (x,a) we can estimate the absolute difference of QT and Q7 as

Q1 (z,a) — Q3(z,a)| =



APPENDIX: PROOFS 89

= |g(z,a) +a ) pi(y|z,a)JT(y) — g(z,a) —a) pa(y|w,a)J3(y)| <
yeX yeX

<l (mylza)J](y) = p2(y |z, a)J5 (y))],
yeX

from which the proof continues in the same way as the proof of Theorem 10.

Case 2: Assume that the MDPs differ only in the immediate-cost functions, denoted by g;
and go. We will prove the same estimation as in the case of Theorem 11, more precisely,

T T 1
l1—«a

For all state-action pair (x,a) we can estimate the absolute difference of QT and Q) as

QT (2,0) — Q5 (2, a)| =

= |g1(z,a) +a ) _p(y|z,a)J7(y) — ga(w,a) —a D> _p(y|z,a)J5 (y)| <
yex yeX

< g1 = galloo + [0 Y _py |2, a)(JT () = J5 ()| < g1 — g2lloo + @ 1T = J5 |l -
yeX

The statement immediately follows after we apply Theorem 11 to estimate ||JT — JJ|| .
Case 3: Assume that the MDPs differ only in the discount rates, denoted by a1 and as. We
will prove the same estimation as in the case of Theorem 12, more precisely, that

o1 =0zl o
(I—a1)(l—ag) 77

1QT — Q3| <
For all state-action pair (x,a) we can estimate the absolute difference of QT and Q7 as

|Q71r(x7a) - Qg('rv (I)| =

= |g(z,a) + a1 Y _p(y|=,a)JT(y) — g(z,a) — a2y ply|z,a)J3 (y)| <
yex yeX

<l plylz,a)Jf(y) — a2 Y plylx,a)J5(y)| < o1 — azl
yeX yeX

1 _ a1 ||g||oo+a2 ||J{T - Jg”ooa

where in the last step we applied the same estimation as in the proof of Theorem 12. The
statement immediately follows after we apply Theorem 12 to estimate ||J] — JF|| . |



APPENDIX: PROOFS 920

Lemma 14 For all fi1, fo : X — R bounded functions such that min, fi(x) < min, fo(x)
and & = argmin,, fi(z), we have the inequality |min, fi(x) — min, fo(x)| < |f1(2) — f2(2)].

Proof First, we may assume w.l.o.g. that Vz € X : fi(x), fo(x) > 0, e.g., we can
shift them in order to achieve this (since they are bounded and a parallel translation does
not change the distance between them). Now, assume that min, fi(z) < ming fo(x) and
& = argmin,, f1(z). Applying the above assumptions, we have |min, fi(x) — min, fa(z)| =
min, fo(z) — min, fi(z) and since we have assumed that min, f1(z) < min, fo(x) < fo(2),
we also have that |min, fi(z) — f2(2)| = fo(&) — ming fi1(x).

Now, we can assume indirectly that |min, fi(x) — ming fo(x)| > |f1(2) — f2(Z)|. Then:

min fi(2) — min fo(2)| > [/1(2) — (@)
mxinfg(x) - mzinfl(fﬂ) > [f1(2) — f2(2)]

min fo(w) — min fi(2) > |min fi(2) - f2(7)
min fo(x) — min f1 () > f>(2) — min f1(z)
min fo(z) > f2(2)

We have reached a contradiction, therefore, the original statement was true. |

Lemma 24 Assume that two discounted MDPs, My and My, differ only in the discount
factors, denoted by a1 and ay. Let the value function of a (stationary, Markovian, random-
ized) control policy m be denoted by JT related to M;. The optimal value function of M; is
denoted by J. We will treat both cases simultaneously, thus, let us fix hyper-parameter p to
either w or x. Then, there exists an MDP, denoted by Ms, such that it differs only in the
immediate-cost function from My and J§ = J§'. The immediate-cost function of Mg is

Gz, 0) = g(z,a) + (a2 — a1) Y_ p(y| =, a) T (1),
yeX
where p is the transition-probability function of M1, Mo and Ms; g is the immediate-cost
function of My and My; and J4(y) denotes a value function of Ma, where p € {m, *}.

Proof First of all, let us overview some general statements that will be used in the proof.

Recall (Bertsekas and Tsitsiklis, 1996) that we can treat the optimal value function or
the value function of a control policy regarding the infinite horizon problem as the limit of
finite horizon value functions. The Bellman equations for the n-stage problems are

Ji@)= min |g(,a)+a Y ply|2.0) ()],
ac€A(x) vex

@)= Y wla,a)|gle,a) +a D ply | w,a) L),

a€A(x) yeX



APPENDIX: PROOFS 91

for all k € {1,...,n} and = € X. Note that J§(z) = 0 and JJ(z) = 0. Moreover,

Ve € X JH(z) = Ji (z) = lim JH(z),

n—~o0

where p is a hyper-parameter fixed to either x or m. The application of y allows us to treat
both cases simultaneously. Also recall that the n-stage action-value function is defined as

Qp(x,a) = g(w,a) + Y _ply|z,a)J} | (y),
yeX

for all z, a and k € {1,...,n} and we also have Qf(z,a) = 0. We introduce a new operator
M, as well, that transforms action-value functions to state-value functions as follows

> we,a)Qiw,a) it p=mn
acA(x)

(MQ})(z) =
. ‘u/ . o
min x,a if p==x
A (n) Qk( , @) H
During the proof we apply the solutions of suitable finite horizon problems, thus, in order
to avoid notational confusions, let us denote the state and action value functions of My and
Ms by JE, Q" and J*, QM, respectively. The corresponding finite horizon value functions
are denoted by J¥, Qf and JH , Qh, respectively, where n is the length of the horizon. We
will show that for all state 2 and action a we have Q(z,a) = Q*(x, a), from which J# = J#

follows. Let us define the new immediate-cost function g, for all n > 0 by

Gn(z,0) = g(w,a) + (a2 — 1) Y _p(y|z,a) ] (y).
yeX

We will apply induction on n. For the case of n = 0 we trivially have Qf = @’0‘ , since both
of them are constant zero functions. Now, assume that ’,; = Q’,: for k < n, then

Qb i (@,0) = Gosr (m,0) + o1 > ply|z,a) Tt (y) =

yeX
= g(x,a) + (e — 1) Y _ply|x,a) T (y) + o1 Y p(y|z,a)Jh(y) =
yex yexX
= glw,a) + a2 > plylw,0) T () +n S ply | w,a) (Jhy) - Ti(y)) =
yex yeX
= g(x,0) + 02 3 ply |7, @) T () + o1 Y ply |, a) (MQE)(w) — (MQ)() ) =
yexX yeX
=g(z,a) + a2 Y p(y|z,a)Jt(y) = Qh,(x,a).
yeX

We have proved that for all n: Q4 = QF. Consequently, Q*(z,a) = limy_oo Q1 (z,a) =
limy, oo Qh(z,a) = Q"(x,a) and, thus, J*(z) = ming, Q*(z,a) = min, Q*(z,a) = J*(z

).
Finally, note that for the case of the infinite horizon problem g(x,a) = lim, oo gn(z,a). W



APPENDIX: PROOFS 92

Theorem 26 Suppose that Assumptions 1-8 hold and let V; be the sequence generated by

Vg (@) = (1= ye(2) Vi) + 7 (2) (K Vi) () + Wi (),

then, for any V*,Vy € V, the sequence Vi k-approzimates function V* with
40
kK =
1 — fo

The applied three main assumptions are as follows

where o = limsup ||V — V¥ .
t—o0

Assumption 1 There exits a constant C' > 0 such that for all state x and time t, we have
EWy(z)|F]=0 and E[WZ(z)|F]<C <oo.

Assumption 2 For all x and t, 0 < vy(z) < 1, and we have with probability one

Z%(w) =00 and Z'yf(x) < 0.
t=0 =0

Assumption 3 For all t, operator Ky : V — V is a supremum norm contraction mapping
with Lipschitz constant By < 1 and with fized point V;*. Formally, for all V1,Vo €V,

|KeVi — KiVall oo < Be[[Vi— Vall o -

Let us introduce a common Lipschitz constant By = limsup B¢, and assume that Gy < 1.
t—o00

Proof During the proof, our main aim will be to apply Theorem 21, thus, we have to show
that the assumptions of the theorem hold. Let us define operator Hy for all V,,V;, € V by

Hi(Va, Vo) () = (1 = 7e(2))Va(@) + 7 (2) (K: Vo) () + Wi ().

Applying this definition, first, we will show that V/ ; = Hy(V/,V*) k-approximates V* for
all V. Because (; < 1 for all ¢ and limsup,_,., B; = o < 1, it follows that sup, 5; = E <1
and each K; is § contraction. We know that limsup, . ||[V* — V|l o = o, therefore, for all
d > 0, there is an index to such that for all ¢ > to, we have that [|V* — V;*|| < o+9. Using
these observations, we can estimate || K;V*| for all ¢t > ¢y, as follows

KV | = 1KV = VE+ V| S KV =V o+ IV <
SNEVS =V +VE =V o+ 1V o SNEVT = Vil IV = Vo IVl <
<NV = KV o+ o+ + [Vl BNV = Vi +o+d+ ][V, <
<A+ B)o+ 1 +B)+ V] < 1+ Bo+20+ [V -

If we apply 6 = (1 — 3)o/2, then for sufficiently large ¢ (¢t > ty) we have that

KV oo < 20+ IVl -



APPENDIX: PROOFS 93

Now, we can upper estimate V/ | = H,(V/,V*), for all x € X, Vj € V and t > to by
Vi (@) = Hi(V/, V) () = (1 = ye(2)V{ (2) + (@) (K V) (2) + We(z)) <

< (1= @)V (@) + (@) ([ KV | o + Wil2)) <
< (L=n@)V/ (@) + 7(@) (V"] + 20+ Wi(2))

Let us define a new sequence for all x € X by

N (1 = n(@)Vi(@) + (@) (V¥ ]l + 20+ Wel)) if >t
Viri(z) =
V/(z) if t <ty

It is easy to see (for example, by induction from tp) that for all time ¢ and state x we
have that V/(z) < Vi(z) with probability one, more precisely, for almost all w € €, where
w = (w1, ws, ... ) drives the noise parameter Wy () = wy(z,w;) in both V/ and V;. Note that
Q is the sample space of the underlying probability measure space (2, F,P).

Applying the “Conditional Averaging Lemma” of Szepesvari and Littman (1999), which
is a variant of the Robbins-Monro Theorem and requires Assumptions 1 and 2, we get that
\Z(:r) converges with probability one to 2o + ||[V*||, for all Vo €V and z € X. Therefore,
because V{ () < V;(x) for all 2 and ¢ with probability one, we have that the sequence V{ ()
k-approximates V*(x) with k = 2p for all Vj € V and = € X.

Now, let us turn to Conditions 1-4 of Theorem 21. For all 2 and ¢, we define functions
Fy(z) and Gi(x) as Fy(z) = Bye(z) and Gi(x) = (1 — y(z)). By Assumption 2, functions
Fy(z),Gi(x) € [0,1] for all x and ¢. Condition 1 trivially follows from the definitions of Gy
and Hy. For the proof of Condition 2, we need Assumption 3, namely that each operator
K, is a contraction with respect to 3;. Condition 3 is a consequence of Assumption 2 and
the definition of Gy. Finally, we have Condition 4 for any € > 0 and sufficiently large t by
defining £ = By + &. Applying Theorem 21 with xk = 2p, we get that V; x’-approximates V*
with k" = 49/(1 — By — €). In the end, letting € go to zero proves our statement. |



Abbreviations

Acronym  Meaning

ADP approximate dynamic programming

Al artificial intelligence

APP all policies (are) proper

AVI approximate value iteration

CAS complex adaptive system

CLP container loading problem

CoG center of gravity

CS constraint satisfaction

DP dynamic programming

ERM empirical risk minimization

FJSP flexible job-shop scheduling problem
FOMDP fully observable Markov decision process
FPI fitted policy iteration

FQL fitted Q-learning

FVI fitted value iteration

ICA independent component analysis

IMS intelligent manufacturing system

JSP job-shop scheduling problem

KKT Karush-Kuhn-Tucker

LP linear programming

MAS multi-agent system

MCMC Markov chain Monte Carlo

MDP Markov decision process

ML machine learning

MLP multi-layer perceptron

NOMDP non-observable Markov decision process
PCA principal component analysis

POMDP partially observable Markov decision process
RAP resource allocation problem

RBF radial basis function

RCPSP resource constrained project scheduling problem

94



ABBREVIATIONS

95

Acronym

RL
RTDP
SARSA
SSP
SVM
SVR
TD
TSP
UMA

Meaning

reinforcement learning

real-time dynamic programming
state-action-reward-state-action
stochastic shortest path
support vector machine

support vector regression
temporal difference learning
traveling salesman problem
uniform memory access



Notations

General Notations

dim(-)
|
Il
-1l

set of natural numbers

set of real numbers

matrix over field F with n rows and m columns
probability of event A

expected value of random variable X

conditional probability; the probability of A, given B
conditional expectation; the conditional expected value
of random variable X given the occurrence of event A
set of all probability distributions over set S

random variable X is of distribution F

argument of the minimum

exponential function

function f takes one argument

function f with domain set restriction to set S
domain set (of a binary relation)

range set (of a binary relation)

(total) function

partial function

direct or Descartes product

tuple, ordered list

dimension of a vector (or tuple)

cardinality of a set

p-norm (supremum norm, if p = 00)

norm of normed space X

Markov Decision Processes

state space

action space

observation space

belief space
action-constraint function

96



NOTATIONS

97

NN K«z%uQ*

=

transition-probability function
observation-probability function
immediate-cost function

discount factor

successor belief state function
randomized control policy
deterministic control policy

initial probability distribution

state of the system at time ¢

action taken at time ¢ according to w
state at time ¢ in episode @

length of the horizon

value function of policy =
action-value function of policy 7
optimal value function

optimal action-value function

value function of policy m on belief states
optimal value function on belief states
Bellman operator for policy 7
Bellman optimality operator

hyper-parameter (“x” or “7”)

Formal Logic

< >

Wow <<y

logical “and”

logical “or”

logical “not”

(material) “implication”
universal quantifier
existential quantifier
unique existence

Resource Allocation

set of resources

set of resource states

set of operations

set of tasks

precedence constraints
duration function
stochastic duration function
operation effect function



NOTATIONS

98

stochastic effect function
initial state function
stochastic initial state function
resource state function
resource allocator function
slack ratio function
performance measure
composition function

Stochastic Iterative Algorithms

Vi()

generalized value function (at time t)
set of generalized value functions
history of the algorithm (until time t)
value function update operator
generalized value iteration operator
learning rate

noise parameter

Boltzmann temperature

Support Vector Regression

l
R[]

57475:
K(’)
<','>

sample size

risk function

empirical risk function
loss function

e-insensitive loss function
insensitivity parameter
support vector control parameter
flatness trade-off constant
regression weight

bias parameter

basis function

Lagrange multiplier

slack variables

kernel function

inner product



Bibliography

Aberdeen, D. (2003). A (revised) survey of approximate methods for solving partially ob-
servable Markov decision processes. Technical report, National ICT Australia, Canberra.

Andrieu, C., Freitas, N. D., Doucet, A., and Jordan, M. I. (2003). An introduction to
MCMC (Markov Chain Monte Carlo) for machine learning. Machine Learning, 50:5-43.

Astrom, K. (1965). Optimal control of Markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications (JMAA), 10:174-205.

Aydin, M. E. and Oztemel, E. (2000). Dynamic job-shop scheduling using reinforcement
learning agents. Robotics and Autonomous Systems, 33:169-178.

Baker, A. D. (1998). A survey of factory control algorithms that can be implemented in
a multi-agent heterarchy: dispatching, scheduling, and pull. Journal of Manufacturing
Systems, 17(4):297-320.

Beck, J. C. and Wilson, N. (2007). Proactive algorithms for job shop scheduling with
probabilistic durations. Journal of Artificial Intelligence Research, 28:183-232.

Bertsekas, D. P. (2001). Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts, 2nd edition.

Bertsekas, D. P. (2005). Dynamic programming and suboptimal control: A survey from
ADP to MPC. European Journal of Control, 11(4-5):310-334.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scien-
tific, Belmont, Massachusetts.

Bulitko, V. and Lee, G. (2006). Learning in real-time search: A unifying framework. Journal
of Artificial Intelligence Research, 25:119-157.

Chang, C. C. and Lin, C. J. (2001). LIBSVM: A library for support vector machines.
Software available on-line at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Csaji, B. Cs., Kadar, B., and Monostori, L. (2003). Improving multi-agent based scheduling
by neurodynamic programming. In Proceedings of the 1st International Conference on
Holonic and Mult-Agent Systems for Manufacturing (HoloMAS), September 1-3, Prague,
Czech Republic, volume 2744 of Lecture Notes in Artificial Intelligence, pages 110-123.

99



BIBLIOGRAPHY 100

Csaji, B. Cs. and Monostori, L. (2005a). Stochastic approximate scheduling by neurody-
namic learning. In Proceedings of the 16th IFAC (International Federation of Automatic
Control) World Congress, July 3-8, Prague, Czech Republic.

Csaji, B. Cs. and Monostori, L. (2005b). Stochastic reactive production scheduling by
multi-agent based asynchronous approximate dynamic programming. In Proceedings of
the 4th International Central and Fastern European Conference on Multi-Agent Systems
(CEEMAS 2005), volume 3690 of Lecture Notes in Artificial Intelligence, pages 388-397.

Csaji, B. Cs. and Monostori, L. (2006a). Adaptive algorithms in distributed resource alloca-
tion. In Proceedings of the 6th International Workshop on Emergent Synthesis (IWES-06),
August 18-19, The University of Tokyo, Japan, pages 69-75.

Csaji, B. Cs. and Monostori, L. (2006b). Adaptive sampling based large-scale stochastic
resource control. In Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI 2006), July 16-20, Boston, USA, pages 815-820.

Csaji, B. Cs., Monostori, L., and Kadar, B. (2004). Learning and cooperation in a distributed
market-based production control system. In Proceedings of the 5th International Workshop
on Emergent Synthesis (IWES 2004), May 24-25, Budapest, Hungary, pages 109-116.

Csaji, B. Cs., Monostori, L., and Kadar, B. (2006). Reinforcement learning in a distributed
market-based production control system. Advanced Engineering Informatics, 20:279-288.

Davies, A. and Bischoff, E. (1999). Weight distribution considerations in container loading.
FEuropean Journal of Operational Research, 114:509-527.

Dolgov, D. A. and Durfee, E. H. (2006). Resource allocation among agents with MDP-
induced preferences. Journal of Artificial Intelligence Research, 27:505-549.

Even-Dar, E. and Mansour, Y. (2003). Learning rates for Q-learning. Journal of Machine
Learning Research (JMLR), 5:1-25.

Favero, G. and Runggaldier, W. J. (2002). A robustness result for stochastic control. Systems
and Control Letters, 46:91-66.

Feinberg, E. A. and Shwartz, A., editors (2002). Handbook of Markov Decision Processes:
Methods and Applications. Kluwer Academic Publishers.

Gersmann, K. and Hammer, B. (2005). Improving iterative repair strategies for scheduling
with the SVM. Neurocomputing, 63:271-292.

Gordienko, E. and Salem, F. S. (2000). Estimates of stability of Markov control processes
with unbounded cost. Kybernetika, 36:195-210.

Hadeli, Valckenaers, P., Kollingbaum, M., and Brussel, H. V. (2004). Multi-agent coordina-
tion and control using stigmergy. Computers in Industry, 53:75-96.



BIBLIOGRAPHY 101

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
application. Biometrika, 57:97-109.

Hatvany, J. and Nemes, L. (1978). Intelligent manufacturing systems - a tentative forecast. In
Niemi, A., editor, A link between science and applications of automatic control; Proceedings
of the Tth IFAC World Congress, volume 2, pages 895-899.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov de-
cision processes. Journal of Artificial Intelligence Research (JAIR), 13:33-91.

Holland, J. (1992). Complex adaptive systems. Daedalus, 121:17-30.

Holland, J. (1995). Hidden Order: How Adaptation Builds Complexity. Helix Books,
Addison-Wesley, New York.

Hurink, E., Jurisch, B., and Thole, M. (1994). Tabu search for the job shop scheduling
problem with multi-purpose machines. Operations Research Spektrum, 15:205-215.

Hyvérinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Wiley.

Kalmér, Zs., Szepesvari, Cs., and Lorincz, A. (1998). Module-based reinforcement learning:
Experiments with a real robot. Machine Learning, 31:55-85.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49:209-232.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceeding of the
IEEE International Conference on Neural Networks, volume 4, pages 1942—-1948.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated anneal-
ing. Science, 220(4598):671-680.

Kovacs, A. and Beck, J. C. (2007). A global constraint for total weighted completion time. In
Proceeding of the 4th International Conference on the Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems (CPAIOR), volume
4510 of Lecture Notes in Computer Science, pages 112-126.

Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., and Shmoys, D. B. (1993). Sequenc-
ing and scheduling: algorithms and complexity. Handbooks in Operations Research and

Management Science.

Lovész, L. and Gacs, P. (1999). Complezity of Algorithms. Lecture Notes, Boston University,
Yale University.

Markus, A., Kis, T., Vancza, J., and Monostori, L. (1996). A market approach to holonic
manufacturing. Annals of the CIRP — Manufacturing Technology, 45(1):433-436.

Mastrolilli, M. and Gambardella, L. M. (2000). Effective neighborhood functions for the
flexible job shop problem. Journal of Scheduling, 3(1):3-20.



BIBLIOGRAPHY 102

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation
of state calculations by fast computing machines. Journal of Chem. Physics, 21:1087-1092.

Modi, P. J., Hyuckchul, J., Tambe, M., Shen, W., and Kulkarni, S. (2001). Dynamic
distributed resource allocation: Distributed constraint satis-faction approach. In Pre-
proceedings of the 8th In-ternational Workshop on Agent Theories, Archi-tectures, and
Languages, pages 181-193.

Monostori, L. (2003). Al and machine learning techniques for managing complexity, changes
and uncertainties in manufacturing. FEngineering Applications of Artificial Intelligence,

16(4):277-291.

Monostori, L. and Cs4ji, B. Cs. (2006). Stochastic dynamic production control by neurody-
namic programming. Annals of the CIRP — Manufacturing Technology, 55(1):473-478.

Monostori, L., Csaji, B. Cs., and Kadar, B. (2004). Adaptation and learning in distributed
production control. Annals of the CIRP — Manufacturing Technology, 53(1):349-352.

Monostori, L., Kis, T., Kadar, B., Vancza, J., and Erdés, G. (2008). Real-time cooperative
enterprises for mass-customized production. International Journal of Computer Integrated
Manufacturing, pages (to appear).

Monostori, L., Vancza, J., and Kumara, S. R. T. (2006). Agent-based systems for manufac-
turing. Annals of the CIRP — Manufacturing Technology, 55(2):697-720.

Montes de Oca, R., Sakhanenko, A., and Salem, F. (2003). Estimates for perturbations of
general discounted Markov control chains. Applied Mathematics, 30:287-304.

Moyson, F. and Manderick, B. (1988). The collective behaviour of ants : an example of
self-organization in massive parallelism. In Proceedings of AAAI Spring Symposium on
Parallel Models of Intelligence, Stanford, California.

Miiller, A. (1996). How does the solution of a Markov decision process depend on the
transition probabilities? Technical report, Institute for Economic Theory and Operations
Research, University of Karlsruhe.

Neumann, J. (1948). Papers of John von Neumann on Computing and Computer Theory
(1987), chapter The general and logical theory of automata, pages 391-431. The MIT
Press, Cambridge. (Originally presented at the “Hixon Symposium” on September 20,
1948, at the California Institute of Technology).

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Perkins, J. R., Humes, C., and Kumar, P. R. (1994). Distributed scheduling of flexible
manufacturing systems: Stability and performance. IEEE Transactions on Robotics and
Automation, 10:133-141.

Pinedo, M. (2002). Scheduling: Theory, Algorithms, and Systems. Prentice-Hall.



BIBLIOGRAPHY 103

Powell, W. B. and Van Roy, B. (2004). Handbook of Learning and Approzimate Dynamic
Programming, chapter Approximate Dynamic Programming for High-Dimensional Re-
source Allocation Problems, pages 261-283. IEEE Press, Wiley-Interscience.

Riedmiller, S. and Riedmiller, M. (1999). A neural reinforcement learning approach to learn
local dispatching policies in production scheduling. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, pages 764U-771.

Schneider, J. G., Boyan, J. A., and Moore, A. W. (1998). Value function based production
scheduling. In Proceedings of the 15th International Conference on Machine Learning,
pages 522-530. Morgan Kaufmann, San Francisco, California.

Scholkopf, B., Smola, A., Williamson, R. C., and Bartlett, P. L. (2000). New support vector
algorithms. Neural Computation, 12:1207-1245.

Schuh, G., Monostori, L., Csaji, B. Cs., and Déring, S. (2008). Complexity-based modeling of
reconfigurable collaborations in production industry. Annals of the CIRP — Manufacturing
Technology, 57(1): (to appear).

Singh, S. and Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation
in cellular telephone systems. In Advances in Neural Information Processing Systems,
volume 9, pages 974-980. The MIT Press.

Singh, S., Jaakkola, T., Littman, M., and Szepesvari, Cs. (2000). Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine Learning, 38:287-308.

Smallwood, R. D. and Sondik, E. J. (1973). The optimal control of partially observable
Markov decision processes over a finite horizon. Operations Research, 21:1071-1088.

Sontag, E. D. (1998). Mathematical Control Theory: Deterministic Finite Dimensional
Systems. Springer, New York.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning. The MIT Press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods
for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12:1057-1063.

Szepesvari, Cs. and Littman, M. L. (1999). A unified analysis of value-function-based rein-
forcement learning algorithms. Neural Computation, 11(8):2017-2060.

Szepesvari, Cs. and Munos, R. (2005). Finite time bounds for sampling based fitted value
iteration. In 22nd International Conference on Machine Learning, pages 881-886.

Szita, 1., Takacs, B., and Lérincz, A. (2002). e-MDPs: Learning in varying environments.
Journal of Machine Learning Research (JMLR), 3:145-174.



BIBLIOGRAPHY 104

Topaloglu, H. and Powell, W. B. (2005). A distributed decision-making structure for dy-
namic resource allocation using nonlinear function approximators. Operations Research,
53(2):281-297.

Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236):4-30.

Ueda, K., Markus, A., Monostori, L., Kals, H. J. J., and Arai, T. (2001). Emergent synthe-
sis methodologies for manufacturing. Annals of the CIRP — Manufacturing Technology,
50(2):535-551.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters, P. (1998). Refer-
ence architecture for holonic manufacturing systems: PROSA. Computers in Industry,
37(3):255-274.

Van Roy, B., Bertsekas, D., Lee, Y., and Tsitsiklis, J. (1996). A neuro-dynamic programming
approach to retailer inventory management. Technical report, Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge University, United Kingdom.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279-292.

White, C. (1976). Application of two inequality results for concave functions to a stochastic
optimization problem. Journal of Mathematical Analysis and Applications, 55:347-350.

Wu, T., Ye, N., and Zhang, D. (2005). Comparison of distributed methods for resource
allocation. International Journal of Production Research, 43:515-536.

Zhang, W. and Dietterich, T. (1995). A reinforcement learning approach to job-shop schedul-
ing. In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI), pages 1114-1120. Morgan Kauffman.



	Declaration
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Resource Allocation
	1.1.1 Industrial Motivations
	1.1.2 Curse(s) of Dimensionality
	1.1.3 Related Literature
	1.1.4 Classical Problems
	 » Job-Shop Scheduling
	 » Traveling Salesman
	 » Container Loading


	1.2 Markov Decision Processes
	1.2.1 Control Policies
	1.2.2 Value Functions
	1.2.3 Bellman Equations
	1.2.4 Approximate Solutions
	1.2.5 Partial Observability

	1.3 Main Contributions
	1.3.1 Stochastic Resource Allocation
	1.3.2 Varying Environments


	2 Stochastic Resource Allocation
	2.1 Markovian Resource Control
	2.1.1 Deterministic Framework
	 » Feasible Resource Allocation
	 » Performance Measures
	 » Demonstrative Examples
	 » Computational Complexity

	2.1.2 Stochastic Framework
	 » Stochastic Dominance
	 » Solution Classification

	2.1.3 Reactive Resource Control
	 » Problem Reformulation
	 » Favorable Features
	 » Composable Measures
	 » Reactive Solutions

	2.1.4 Proactive Resource Control
	 » Proactive Solutions


	2.2 Machine Learning Approaches
	2.2.1 Reinforcement Learning
	 » Fitted Value Iteration
	 » Fitted Policy Iteration
	 » Fitted Q-learning
	 » Evaluation by Simulation
	 » The Boltzmann Formula

	2.2.2 Cost-to-Go Representations
	 » Feature Vectors
	 » Hash Tables
	 » Support Vector Regression

	2.2.3 Additional Improvements
	 » Rollout Algorithms
	 » Action Space Decomposition
	 » Clustering the Tasks

	2.2.4 Distributed Systems
	 » Agent Based Approaches
	 » Parallel Optimization
	 » Distributed Sampling



	3 Varying Environments
	3.1 Changes in the Dynamics
	3.1.1 Transition Changes
	3.1.2 Cost Changes
	3.1.3 Discount Changes
	3.1.4 Action-Value Changes
	3.1.5 Optimal Cost-to-Go Changes
	3.1.6 Further Remarks
	 » Average Cost Case
	 » Simulation Lemma
	 » State and Action Changes
	 » Counterexamples


	3.2 Learning in Varying Environments
	3.2.1 Unified Learning Framework
	 » Generalized Value Functions
	 » Kappa Approximation
	 » Generalized Value Iteration
	 » Asymptotic Convergence Bounds

	3.2.2 Varying Markov Decision Processes
	3.2.3 Stochastic Iterative Algorithms
	 » Time-Dependent Update
	 » Main Assumptions
	 » Approximate Convergence
	 » An Alternating Example
	 » A Pathological Example

	3.2.4 Learning in Varying MDPs
	 » Asynchronous Value Iteration
	 » Q-learning
	 » Temporal Difference Learning



	4 Experimental Results
	4.1 Stochastic Resource Allocation
	4.1.1 Testing Methodology
	4.1.2 Benchmark Datasets
	4.1.3 Distributed Sampling
	4.1.4 Industry Related Tests
	4.1.5 Clustering Experiments

	4.2 Varying Environments
	4.2.1 Adaptation to Disturbances
	4.2.2 Varying Grid Worlds


	5 Conclusion
	5.1 Managing Uncertainties
	5.2 Dealing with Changes
	5.3 Further Research Directions

	Appendix: Proofs
	Abbreviations
	Notations
	Bibliography

