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Abstract

An adaptive Exponential Integrate-and-Fire (aEIF) model was used to predict the activity of layer-V-pyramidal
neurons of rat neocortex under random current injection. A new protocol has been developed to extract the parameters
of the aEIF model using an optimal filtering technique combined with a black-box numerical optimization. We found
that the aEIF model is able to accurately predict both subthreshold fluctuations and the exact timing of spikes,
reasonably close to the limits imposed by the intrinsic reliability of pyramidal neurons.
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1. Introduction

Electrophysiological data can be described by
detailed conductance-based models (Hodgkin-
Huxley-type models). However, those models are
rather complex, which implies that they are diffi-
cult to analyze and costly to implement numeri-
cally. Moreover, it is unclear how many details of
conductance-based models are really necessary for
the reproduction of experimental spike patterns
[5,13]. For those reasons, simple phenomenological
spiking neurons such as Integrate-and-Fire models
are highly popular.

The adaptive Exponential Integrate-and-Fire
(aEIF) model used in this paper generalizes the
standard leaky Integrate-and-Fire model in sev-
eral directions: The strict threshold is replaced by
a more realistic smooth threshold zone as in the
Exponential Integrate-and-Fire neuron [4]. Fur-

thermore, addition of a second variable captures
subthreshold resonance or adaptation [8,15]. The
aEIF model showed convincing performances when
compared to more detailed models [3], but sofar,
has never been tested on recordings of real neuron .

In this report, we will test the performances of
the aEIF model on layer-V neocortical pyramidal
neurons under random current injection.

2. Model

The adaptive Exponential Integrate-and-Fire
(aEIF) is defined by [3]

C
du(t)

dt
= −gL(u(t)− EL)

+ gL∆T exp
(

u(t)− VT

∆T

)
− w + I (1)
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Fig. 1. Spike function f(u) = Cdu/dt− I of the aEIF model
in the nonadapted state (w = 0; black line). The left inter-
section of the spike function with the horizontal axis is the
resting potential EL, the right intersection gives the poten-
tial Vs above which the spike is generated. The minimum
of f(u), VT , gives the maximum subthreshold potential that
can be reached by constant current injection. In the adapted
state (w > 0), the spike function f(u) = Cdu/dt−I is shifted
vertically downward (dotted line).

τw
dw(t)

dt
= a(u(t)− EL)− w(t) (2)

where C is the membrane capacitance, gL the leak
conductance, EL the resting potential, ∆T the slope
factor and VT the threshold potential (Fig. 1). Note
that formally, EL is not exactly the resting poten-
tial because of the exponential term. The variable w
describes the level of adaptation of the neuron and a
represents the relevance of subthreshold adaptation.
The exponential term describes the early activation
of voltage-gated sodium channels.

Formally the model is said to generate a spike if
the potential u grows rapidly to infinity. In practice,
a spike event is recorded when the voltage reaches
a threshold Vpeak = 20 mV. The exact value is not
critical because Vpeak only shifts spike times by a
fraction of millisecond. After the spike has been trig-
gered, u is reset to the resting potential EL and the
variable w is increased by an amount b, which ac-
counts for spike-triggered adaptation.

The original aEIF model is a point neuron model
i.e. without spatial structure. However, in this
study, we decided to take into account the coupling
of the soma with the dendrites. Therefore, we used
a two-compartment model (one somatic compart-
ment coupled to a passive dendritic compartment)
defined by

C
dus

dt
= −gL(us − EL)− gc

p
(us − ud)

+ gL∆T exp
(

us − VT

∆T

)
− w + I (3)

C
dud

dt
= −gL(ud − EL)− gc

1− p
(ud − us) (4)

τw
dw

dt
= a(us − EL)− w (5)

where us is the membrane voltage in the so-
matic compartment, ud the membrane voltage in
the dentritic compartment, gc the coupling conduc-
tance and p= somatic area/total area. The two-
compartment model is motivated by experimental
results. Indeed, the linear response kernel is best
fitted by a double exponential (see below point 3.i),
suggesting a coupling between soma and a passive
dendrite acting as current sink [9].

3. Parameter fitting

Recordings of layer-V pyramidal neurons of rat
neocortex were used to determine parameters of
the model. The neurons were recorded intracel-
lularly in vitro while stimulated at the soma by
a randomly fluctuating current generated by an
Ornstein-Uhlenbeck (OU) process (autocorrela-
tion time 1ms). Both mean and variance of the
OU process were varied in order to sample the re-
sponse of the neurons to various levels of tonic and
time-dependent inputs. Details of the experimental
procedure can be found in [14].

Our method to extract the parameters of the
aEIF model is based on the following steps:

(i) Passive membrane properties (C, gL, gc, p,
EL):
In subthreshold regime (where the exponen-
tial term can be neglected), Eqs. (3) and (4)
can be integrated [1]

u(t) =
∫ +∞

0

κ∞(s) I(t− s)ds (6)

In the non-adapted state w = 0, we find

κ∞(s) =
1
C

[p e−s/τs +(1− p) e−s/τc ] (7)

where τs = C/gL is the somatic membrane
time constant and τc = [p(p − 1)C]/[p(p −
1)gL − gc] is the coupling time constant.The
kernel κ∞ is extracted by the Wiener-Hopf
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Fig. 2. Raw data of the kernel κexp extracted by optimal
filtering technique (symbols) have been fitted by the double
exponential κ∞ (solid line).

optimal filtering technique [9]. This step in-
volves a comparison of the subthreshold fluc-
tuations with the corresponding input current.
This yields a “raw” filter κexp (Fig. 2). The
filter κexp is well fitted by the double expo-
nential κ∞ derived from our two-compartment
model. C, gL, gc, p were extracted from the
double exponential fit κ∞ (Eq. 7) of κexp, EL

from the resting value at the beginning of the
recording.

(ii) Slope factor:
The slope factor determines the sharpness of
the threshold. In the limit ∆T → 0, the model
becomes a standard leaky Integrate-and-Fire
model. As the threshold has a region of fuzzi-
ness, we decided to fix the slope factor at
∆T = 2 mV so as to restrict the number of
parameters to be optimzed. This value seems
reasonable and is close to the value found for
the Wang-Buszaki model [4].

(iii) Subthreshold adaptation:
According to systems theory, it is not possi-
ble to extract the subthreshold adaptation a
from our dataset. Therefore, we set a to zero.
Indeed, the Laplace transformed system has
one pole and one zero that masque each other
(i.e. the determinant of the identificability
matrix is close to zero), preventing the system
to be fully characterizable [2].

(iv) Voltage reset:
After a spike has been triggered, the voltage

is simply reset to the resting potential EL.

(v) Optimization:
Finally, the remaining parameters, VT , τw, b
were optimized using the simulated annealing
technique optimizing the firing rate and maxi-
mizing the coincidence factor Γn→m. We min-
imized the following expression

2
∣∣∣∣
νdata − νsim

νdata

∣∣∣∣− Γn→m

where νdata is the firing rate of the neuron data
and νsim is the firing rate of the simulated
data. Γn→m is defined by [10]

Γn→m =
Ncoinc− < Ncoinc >

1
2 (Ndata + NaEIF)

1
N

(8)

where Ndata is the number of spikes in the
reference spike train (recordings of pyramidal
cells), NaEIF is the number of spikes in the pre-
dicted spike train (generated with the aEIF
model with the same driving current). Ncoinc

is the number of coincident spikes with preci-
sion ∆ = 2ms and < Ncoinc > is the number
of coincidences generated by a homogenous
Poisson process with the same rate νsim as the
spike train generated with the aEIF model. Fi-
nally, the normalization N = 1 − 2νsim∆ al-
lows Γn→m to reach 1 only if the spike train of
the aEIF model reproduces exactly the spike
train of the cell. Γn→m will be 0 if the simi-
larity between the two spike trains is not bet-
ter than between that two random spike trains
generated by homogeneous Poisson processes
at the same rate. In order to test the robust-
ness of the method, we picked one cell and re-
peated the parameter optimization by simu-
lated annealing 10 times. We found that the
VT is very robust within errors less than 3%.
The parameters b and τw are strongly corre-
lated. While individual variance is high their
product bτw is stable.

4. Results

The dataset consists of 4 different neurons. For
each cell, a set of 10 different input currents with
different means and variances are injected. Each in-
put trace is repeated 4 times. Fig. 3 shows a direct
comparison between predicted and recorded spike
trains for a typical neuron. Both spike trains are al-
most indistinguishable (Fig. 3A; for clarity reasons,
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Fig. 3. Performances of the aEIF model. A. Predictions of the model (grey line) are compared to the spike train of the
corresponding neuron (black line). For this graph only, the simulated trace has been shifted by 40 mV upward for reasons of
visual clarity. B. Zoom on the subthreshold regime. C. Zoom on four correctly predicted spikes.

the predicted spike train has been shifted upward).
Even when zooming in the subthreshold regime, dif-
ferences are in the range of a few millivolts only (Fig.
3B). The spike dynamics is correctly predicted apart
from a short period of time just after the spike is
emitted (Fig. 3C). This is due to the reset value of
the voltage which is set to the resting potential.

The model performances were evaluated using
the coincidence factor Γn→m (Eq. 8). Our model is
facing natural limits of prediction because cortical
pyramidal neurons respond with very different re-
liability depending on the type of stimulation they
receive [11]. As we cannot expect our model to yield
better predictions than the intrinsic reliability of
the neuron, we consider the intrinsic reliability of
the neuron as an upper bound. The intrinsic relia-
bility can be easily measured since the same input
has been injected 4 times in the same cell. The relia-
bility of neurons doesn’t vary significantly with the
mean of the injected current. However, it strongly
depends on the variance of the current [9,11]. In

the case of low variance, the spike timing is not
controlled by the stimulus anymore. Therefore, we
abandon the data with low variance (σ < 150 pA).
Intrinsic reliability is characterized by the factor
Γn→n in analogy to Eq. 8. The subscript n → n
means that the neuron is compared to itself across
two different trials with the same realization of the
input. We remark that data with high variance in-
put are more likely to resemble an in vivo situation
than low variance input data. For data used below,
the intrinsic reliability varies from Γn→n = 75% to
as low as Γn→n = 20%.

We found that the aEIF model predicts up to
Γeff = 96% of the spikes that can be predicted
(Γeff = Γn→m/Γn→n, m → n means model com-
pared to neuron) and on average Γeff = 60% (Fig.
4).

Fig. 5 shows the experimental spike trains during
4 repetitions with the same driving current (bot-
tom traces) as well as the simulated spike train (top
trace) for different reliability and performance cases.
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Fig. 4. The performance of the aEIF (Γm→n) is plotted
versus the intrinsic reliability (Γn→n) for each dataset. The
diagonal yields the upper bound of the model. The average
prediction is shown by the dashed line (Γeff = Γn→m/Γn→n

= 0.6). More details on the specific cases A, B, C are shown
in Fig. 5.

5. Discussion and Conclusion

We tested the aEIF model on experimental elec-
trophysiology recordings and found a prediction of
the spike times Γeff up to 96% (average of 60%).
With the same dataset, a Spike Response Model
with dynamic threshold has been evaluated and the
performances were Γeff up to 75% (average 65%)[9].

We remark that the protocol used for the record-
ings is not the most suitable for characterizing our
model: In our extraction method, we had to set the
subthreshold adaptation a to 0. In addition, data
generated purely by simulation of the aEIF model
were characterized very badly with our method (av-
erage of Γ = 85%). A completely different protocol
to extract the parameters of the aEIF model has
been proposed recently by Brette and Gestner [3].
This protocol contains a series of standard electro-
physiological paradigms (injection of current pulses,
slow current ramps and random conductance injec-
tions). It has been tested with data generated by a
detailed model and yielded excellent performances
(Γ = 96%). In addition, this protocol allows to re-
duce noise (averaging over several recordings), so
that the subthreshold adaption a could, in principal,
be extracted from pyramidal cell recordings. The
latter protocol is under study at the moment using
a new dataset recorded following the methodology
proposed by Brette and Gerstner [3].

In the aEIF model, adaptation is a useful com-
ponent since it allows the model to account for dif-
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Fig. 5. The lower 4 spike trains of each graph are experimen-
tal voltage traces recorded in response to the same driving
current. The top trace is the simulated spike train with this
driving current. The traces shown in A have a high intrinsic
reliability and high prediction, i.e. the model is good. B has
high reliability but a bad prediction, i.e. the model is insuf-
ficient. In C the reliability is low and the prediction is low,
but the model is good since Γeff > 0.65. See Fig. 4 for the
Γ values of the different cases A, B, C.

ferent driving regimes. We found as well that it is
relatively easy to correctly predict the subthresh-
old dynamics even with a simple leaky integrator
but it is difficult to find an efficient threshold crite-
rion for spike initiation. This problem is solved by
the aEIF model which includes an additional expo-
nential term to describe early activation of voltage-
gated sodium channels. This last addition allows to
model specific behaviors like delayed spike initia-
tion and offers flexibility at the level of the thresh-
old mechanism. It was recently suggested by Naun-
dorf and colleagues that the rapid dynamics of ac-
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tion potential initiation in cortical neurons are out-
side the range of behaviors described by the classi-
cal Hodgkin-Huxley theory [12]. In the aEIF model,
the exponential term allows a fast activation of the
action potential. Thus, on a phenomenological level,
the aEIF model could possibly account for rapid
spike initiation in real neurons.
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Hans-Rudolf Lüscher is Director of the
Department of Physiology, University of
Bern, Switzerland. He has a Medical De-
gree from the University of Zürich, Switzer-
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