Machine learning. Finit state machine

Vladimir Demin

Brest State Technical University
spas.work@gmail.com

Abstract

In this project, we test some machine learning tech-
niques by observing how an agent explores a grid-
world with a cliff. Starting with a random walk we
compare it with an agent behaviors learned with Ge-
netic Algorithm (GA), Renforcement learning and
Finit State Machine (FSM).

1 INTRODUCTION

Borrowing the idea from biological evolution, we can
be solved certain types of problems by an algorithm
which we call GA. In this case we express the prob-
lem we want to solve by a vector which we call
chromosome. Chromosome is made up a number
of genes. At the beginning we create a population
of, say 100, chromosomes at random. They are not
good solutions at all because they are randomly cre-
ated. But some are a little better than others. So we
pick up two chromosomes such that better chromo-
somes are more likely to be chosen. Here, lets choose
them at random from better half of the population.
This is called truncate selection. Also, we used se-
lection, called uniform-crossover. Where we choose
genes one by one either from parents at random.

Then by repeating this procedure, we create the next
generation. The population of the nextgeneration
includes same number of chromosomes in the previ-
ous population. Thus we can evolve the first ran-
dom population of chromosomes generation by gen-
eration. We can expect those chromosomes’ perfo-
mance become better and better.

We also give a mutation to introduce new genes.
This is avoid for individuals in the population to
be trapped into a local minimum. The probability
for mutation to occur is small - typically 1/number-
of-genes.

For the exploration of the our gridworld we use FSM.

FSM have some states. The number of state should
be 21, that is, like 2, 4, 8, 16, or 32 for the rea-
son, that we might guess from below. Machine have
input and output vectors. After we take input for
machine, it take to us output, and may change it
state.

2 EXPERIMENT

For our gridworld input are fourfold, that are, empty,
cliff, sausage or border.

Output is fivefold, that is, either of go forward, turn
left, turn right, turn back, or stop (when the agent
reaches the goal.)

Assuming 2 state FSM, one example of the transi-
tion table will be like:

State Input output next state
1 10
11
01
00
10
11
01

00

[l e el ol e]
W NN R D WN
Or OO r kr OO

The first 2 column is fixed (automatic depending
on the number of state & input)The 3rd and 4th
columns are given at random at the beginning.

Our input have states:

input
1 - empty cell
2 - border
3 - cliff
4 - sausage

Our output have next instructions:

state optput

0 11 - go forward
0 10 - turn left

0 01 - turn right
0 00 - turn back

1 11 - go forward
1 10 - turn right
1 01 - turn left

1 00 - stop

Thus we create 100 stupid FSM’s at the beginning.
Then express them with a chromosome. Our exam-
ple can be (100110011100110011). Then we using
GA and after lots of generations it converges one
clever FSM.

For our problem we use uniform-crossover selection.
We make 100x100 gridworld with cliff. We make
100 vectors with 28 genes. We randomly create this
100 vectors by random walking algorithm. After we
evaluate quality of vectors and take 50 only 'good’
vectors (it means that that agent didn’t die). After
we make 100 childs by randomly trancate of good
vectors. Repeate this actions until one of the vector
will success.

3 RESULT

We take input vector on this

state optput

0 11 - go forward
0 10 - turn left
0 01 - turn right
0 00 - turn back
1 11 - go forward
1 10 - turn right
1 01 - turn left
1 00 - stop

and study our ”stupid” FSMs with genetic algo-
rithm. One of results of our studing is:

State Input output next state
1 11
10
01
11
00
00
00

00

[l i ol el ol e)
B W NN R D WN
P P, PP PR OO0

We study our FSMs on the standart 100x100 cliff
world, with one cliff with coordinate (2,1) to (99,1).
When study is end, we use our ”clever” FSM on our
"big” world:

L

Figure 1: length of our vectors vs. quantity genera-
tions.

We make graphic for our aducational proccess:

120

T T T T
Success of our FSMs on iteration s

Length for success

. .
0 100 200 300 400 500 600 700 800 900
Iteration

Figure 2: Success of better FSMs

3.1 CONSULTION

In our reseach we find, that if we want to study FSM
with GA, we must study it on ”simple” world. After
study we have good FSM, that we must adapt to owr
new ”"big” world.

0~ O U W N

—_
o ©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

4 APPENDIX: C implementation of the FSM algorithm

Listing 1: main.c

#F#include <stdio.h>
#include <stdlib .h>
#include <time.h>
#include ”FSM.h”
#include "GA.h”

#define LEN 400

int whats_happens(int x, int
[

}

y, struct gridworld xworld) {
switch (world—>world [x][y]) {
case BORDER:
return BORDER;
break;
case EMPTY:
return EMPTY;
break;
case SAUSAGE:
return SAUSAGE;
break;
case CLIFF:
return CLIFF;
break;
default:
break;
}

return —1;

void Go(struct FSM xagent, struct gridworld sworld) {

}

int age = 0;
int type;

do {
FSM_step (agent , world);
type = whats_happens(agent—>roboX, agent—>roboY, world);
if (type = CLIFF || type — BORDER)
agent—>die = TRUE;
else if (type = SAUSAGE)
agent—>success = TRUE;
age+-+;
} while (agent—>success = FALSE && agent—>die = FALSE && age < 200);

agent—>age = age;

int main()

{

int i,j;
char tmp;

53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

/x
*/

int tt = 10000;

int epoch = 0, epochl = 0;
int startX , startY;
struct gridworld world;
struct FSM agent [100];
struct FSM childs [50];
FILE xlearning;

Initialization of the gridworld

srand (time (NULL)) ;

FILE xwld;

learning = fopen(”learning.txt”, 7w’);
wld = fopen (”world. txt”, 7r”);

if (wld = NULL) {
printf(”Input._file _not_open!”);
return 1;
}
fscanf(wld, "%d %d\n” , &world .M, &world .N);
if (world M > 1000 || world .M > 1000) {

printf(”YouM_or N_input._data_out_of_range!\n”);

return 1;
}
for (i = 0; i < world.M; i++) {
for (j = 0; j < world.N; j++) {
do {
fscanf (wld, ”"%c”, &tmp);

} while (tmp != %’ && tmp != 7.7 && tmp != ’'Q’ && tmp !=

switch (tmp) {
case ’'x’:
world . world [j | [world M — i
break;
world . world [j] [world M — i
break;
case 'Q’:
world . world [j][world M — i
break;
case '0’:
startX = j;
startY = world M — i — 1;
world . world [j | [world M — i
break;
world . world [j][world M — i
break;
default:

case

case

1] = BORDER;

1] = EMPTY;

1] = SAUSAGE;

1] = EMPTY;

1] = CLIFF;

07 && tmp =

printf(”Reading_error!_You_must_check_input._data!\n”);

break;
}
}

fscanf(wld, ”\n”);

)

108 fclose (wld);

109 /x

110 End of initialization of the gridworld

111 x/

112

113 for (i = 0; i < 100; i++) {

114 init_FSM(&agent [i]);

115 agent [i].roboX = startX;

116 agent [i].roboY = startY;

117 }

118

119 for (i = 0; i < 100; i++) {

120 Go(&agent [1], &world);

121 value[i] = evalute(&agent[i]);

122 }

123 sort ();

124 do {

125 make_childs (agent, childs);

126 generate_parents (childs , agent);

127 reset_parents (agent, startX , startY);
128 for (i = 0; i < 100; i++) {

129 Go(&agent [i], &world);

130 value[i] = evalute(&agent[i]);
131

132 sort ();

133 epoch++;

134 fprintf(learning , "%d, %d\n”, epoch, value[0]);
135 fflush (learning);

136 } while (value[0] != 0);

137

138 printf(”Count_.of_iterations: %d\n”, epoch);
139

140 printf(” Clever .FSM:\n\n”);

141 printf(”state__input.__output__next._state\n”);
142 for (i = 0; i < 8; i++) {

143 printf ("%d.. %d. . %d%d .. Jd\n”

144 agent—>input[i * 2],

145 agent—>input[i * 2 + 1],
146 agent—>output[i * 3 + 1],
147 agent—>output [i * 3 + 2],
148 agent—>output [i * 3 + 3]);
149 }

150 fflush (stdout);

151

152 fclose (learning);

153

154 return 0;

155 }

Listing 2: FSM.h

1 #ifndef FSM_HINCLUDED
2 #define FSM_H INCLUDED
3

4 #include <stdio.h>

5 #include <stdlib.h>

o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

#define TRUE 1
#define FALSE 0

#define TOP 0
#define BOTTOM 1
#define RIGHT 2
#define LEFT 3

#define EMPTY 1
#define BORDER 2
#define CLIFF 3
#define SAUSAGE 4

struct gridworld {

int M;
int N;
int world[102][102];
}s
struct FSM {
Ve
State Input output next state
0 1 10 0
0 2 11 0
0 3 01 1
0 4 00 1
1 1 10 0
1 2 11 0
1 3 01 1
1 4 00 0
input
1 — empty cell
2 — border
3 — cliff
4 — sausage
state optput
0 11 — go forward
0 10 — turn left
0 01 — turn right
0 00 — turn back
1 11 — go forward
1 10 — turn right
1 01 — turn left
1 00 — stop
*/

int input[16];

int output[24];

int roboX, roboY;

int out[501];

int die, success, state, what_input,

age;

61
62
63
64
65
66
67

0O Ui Wi+

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

}s

void init_.FSM (struct FSM x);
void FSM step(struct FSMx, struct gridworld x);

#endif // GA_HINCLUDED

Listing 3: FSM.c

#include <stdio.h>
#include <stdlib.h>
#F#include <time.h>
#include ”"FSM.h”

#define BACK 1

void init_.FSM (struct FSM xagent) {
int i, j;
int mass[] = {0, 1, 0, 2, 0, 3, 0, 4, 1, 1, 1, 2, 1, 3, 1, 4};
srand (time (NULL)) ;

for (i =0; i < 8; i++)
for (j = 0; j < 3; j++)
agent—>output[i * 3 + j] = rand() % 2;
for (i = 0; i < 8; i++)
for (j = 0; j < 2; j++)
agent—>input[i * 2 + j] = mass[i * 2 4+ j];
agent—>what_input = rand() % 4
agent—>state = 0;
agent—>success = FALSE;
agent—>die = FALSE;

)

}

void walk(struct FSM xagent) {
switch (agent—>what_input) {

case TOP:
agent—>roboY++;
break;

case BOTTOM:
agent—>roboY ——;
break;

case RIGHT:
agent—>roboX++;
break;

case LEFT:
agent—>roboX——;
break;

default:
break;

}

void turn(int direction , struct FSM xagent) {
int tmp = agent—>what_input;

47
48
49
50
o1
52
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

switch (tmp) {
case TOP:
agent—>what_input = direction;
break;
case BOTTOM:
if (direction = LEFT)
agent—>what_input = RIGHT;
else if (direction = RIGHT)
agent—>what_input = LEFT;
else
agent—>what_input = TOP;
break;
case RIGHT:
if (direction = LEFT)
agent—>what_input = TOP;
else if (direction == RIGHT)
agent—>what_input = BOTTOM;
else
agent—>what_input = LEFT;
break;
case LEFT:
if (direction = LEFT)
agent—>what_input = BOTTOM;
else if (direction = RIGHT)
agent—>what_input = TOP;
else
agent—>what_input = RIGHT;
break;
default:
break;
}
}
void FSM_step(struct FSMx agent, struct gridworldx world) {

int input, output;
int k;

switch (agent—>what_input) {
case TOP:
input = world—>world [agent—>roboX | [agent—>roboY + 1];
break;
case BOTTOM:
input = world—>world [agent—>roboX | [agent—>roboY — 1];
break;
case LEFT:
input = world—>world [agent—>roboX — 1][agent—>roboY |;
break;
case RIGHT:
input = world—>world [agent—>roboX + 1][agent—>roboY |;
break;
default:
break;
}
k = (input — 1) % 3;
output = agent—>output [k + agent—>state * 12] x 10 4+ agent—>output [k + agent—>state :

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

0~ O U W N

e e
B w N = OO

— O © 00O Ui Wi+

—_

agent—>state = agent—>output [k + agent—>state *x 12 4+ 2];

switch (output) {

case 11:
walk (agent);
break;
case 10:
if (agent—>state =— 0)
turn (LEFT, agent);
else
turn (RIGHT, agent);
break;
case 01:
if (agent—>state = 0)
turn (RIGHT, agent);
else
turn (LEFT, agent);
break;
case 00:
if (agent—>state =— 0)
turn (BACK, agent);
break;
default:
break;

Listing 4: GA.h
#ifndef GA_HINCLUDED
#define GA_HINCLUDED
#include ”"FSM.h”

int ind[100];
int value[100];

int evalute (struct FSM x);

void sort(void);

void make_childs (struct FSM agent [], struct FSM childs []);

void generate_parents(struct FSM childs [], struct FSM agent []);
void reset_parents(struct FSM agent[], int x, int y);

#endif // GA_H.INCLUDED

Listing 5: GA.c
#include <stdio.h>
#include <stdlib.h>

#include "GA.h”

int evalute (struct FSM xagent) {
if (agent—>die == TRUE)
return 10000;
else if (agent—>success =— TRUE)
return 0;
else {

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66

return (100 — agent—>roboX) + (agent—>roboY — 1);

}

void sort (void) {
int i, j, tmp;

for (i =
ind [1i

0; i < 100; i+4)
| =13
for (i =

0; i < 100; i++)
for (]
if

— i+ 1§ < 100; j++)
(value[ind [i]] > value[ind[j]]) {
tmp = ind[i];

ind[i] = ind[j];

ind[j] = tmp;

}

void make_childs (struct FSM agent [], struct FSM childs[]) {
int i;
for (i = 0;

i < 50; i++)
childs [i] =

agent [ind [i]];

}

void generate_parents(struct FSM childs [], struct FSM agent[]) {
int i, j;
int mam, dad, koef;

for (i = 0; i < 100; i++) {
// do {
mam = rand () % 50;
// } while (value [mam] > 200);
// do {
dad = rand () % 50;
// } while (value [dad] > 200);

for (j = 0; j < 18; j++) {
koef = rand () % 2;
agent [i].output[j] = childs—output [mam * (koef) + dad = (koef)];

agent [i].output[rand () % 18] = rand() % 2;

}

void reset_parents(struct FSM agent[], int x, int y) {
int i;

i< 100; i++) {

i].what_input = rand() % 4;

i].state = 0;

i].success = FALSE;

i].die = FALSE;

i].roboX = x;

i].roboY = y;

67
68 }

}

