
Machine learning. Finit state machine

Vladimir Demin

Brest State Technical University
spas.work@gmail.com

Abstract

In this project, we test some machine learning tech-
niques by observing how an agent explores a grid-
world with a cliff. Starting with a random walk we
compare it with an agent behaviors learned with Ge-
netic Algorithm (GA), Renforcement learning and
Finit State Machine (FSM).

1 INTRODUCTION

Borrowing the idea from biological evolution, we can
be solved certain types of problems by an algorithm
which we call GA. In this case we express the prob-
lem we want to solve by a vector which we call
chromosome. Chromosome is made up a number
of genes. At the beginning we create a population
of, say 100, chromosomes at random. They are not
good solutions at all because they are randomly cre-
ated. But some are a little better than others. So we
pick up two chromosomes such that better chromo-
somes are more likely to be chosen. Here, lets choose
them at random from better half of the population.
This is called truncate selection. Also, we used se-
lection, called uniform-crossover. Where we choose
genes one by one either from parents at random.

Then by repeating this procedure, we create the next
generation. The population of the nextgeneration
includes same number of chromosomes in the previ-
ous population. Thus we can evolve the first ran-
dom population of chromosomes generation by gen-
eration. We can expect those chromosomes’ perfo-
mance become better and better.

We also give a mutation to introduce new genes.
This is avoid for individuals in the population to
be trapped into a local minimum. The probability
for mutation to occur is small - typically 1/number-
of-genes.

For the exploration of the our gridworld we use FSM.

FSM have some states. The number of state should
be 2n̂, that is, like 2, 4, 8, 16, or 32 for the rea-
son, that we might guess from below. Machine have
input and output vectors. After we take input for
machine, it take to us output, and may change it
state.

2 EXPERIMENT

For our gridworld input are fourfold, that are, empty,
cliff, sausage or border.

Output is fivefold, that is, either of go forward, turn
left, turn right, turn back, or stop (when the agent
reaches the goal.)

Assuming 2 state FSM, one example of the transi-
tion table will be like:

State Input output next state

0 1 10 0

0 2 11 0

0 3 01 1

0 4 00 1

1 1 10 0

1 2 11 0

1 3 01 1

1 4 00 0

The first 2 column is fixed (automatic depending
on the number of state & input)The 3rd and 4th
columns are given at random at the beginning.

Our input have states:

input

1 - empty cell

2 - border

3 - cliff

4 - sausage

1

Our output have next instructions:

state optput

0 11 - go forward

0 10 - turn left

0 01 - turn right

0 00 - turn back

1 11 - go forward

1 10 - turn right

1 01 - turn left

1 00 - stop

Thus we create 100 stupid FSM’s at the beginning.
Then express them with a chromosome. Our exam-
ple can be (100110011100110011). Then we using
GA and after lots of generations it converges one
clever FSM.

For our problem we use uniform-crossover selection.
We make 100x100 gridworld with cliff. We make
100 vectors with 28 genes. We randomly create this
100 vectors by random walking algorithm. After we
evaluate quality of vectors and take 50 only ’good’
vectors (it means that that agent didn’t die). After
we make 100 childs by randomly trancate of good
vectors. Repeate this actions until one of the vector
will success.

3 RESULT

We take input vector on this

state optput

0 11 - go forward

0 10 - turn left

0 01 - turn right

0 00 - turn back

1 11 - go forward

1 10 - turn right

1 01 - turn left

1 00 - stop

and study our ”stupid” FSMs with genetic algo-
rithm. One of results of our studing is:

State Input output next state

0 1 11 0

0 2 10 0

0 3 01 0

0 4 11 1

1 1 00 1

1 2 00 1

1 3 00 1

1 4 00 1

We study our FSMs on the standart 100x100 cliff
world, with one cliff with coordinate (2,1) to (99,1).
When study is end, we use our ”clever” FSM on our
”big” world:

Cliff

Figure 1: length of our vectors vs. quantity genera-
tions.

We make graphic for our aducational proccess:

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900

L
e

n
g

th
 f

o
r

s
u

c
c
e

s
s

Iteration

Success of our FSMs on iteration

Figure 2: Success of better FSMs

3.1 CONSULTION

In our reseach we find, that if we want to study FSM
with GA, we must study it on ”simple” world. After
study we have good FSM, that we must adapt to owr
new ”big” world.

4 APPENDIX: C implementation of the FSM algorithm

Listing 1: main.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <time . h>
4 #include ”FSM. h”
5 #include ”GA. h”
6
7 #define LEN 400
8
9

10
11 int whats happens (int x , int y , struct gr idwor ld ∗world) {
12 switch (world−>world [x] [y]) {
13 case BORDER:
14 return BORDER;
15 break ;
16 case EMPTY:
17 return EMPTY;
18 break ;
19 case SAUSAGE:
20 return SAUSAGE;
21 break ;
22 case CLIFF :
23 return CLIFF ;
24 break ;
25 default :
26 break ;
27 }
28 return −1;
29 }
30
31 void Go(struct FSM ∗agent , struct gr idwor ld ∗world) {
32 int age = 0 ;
33 int type ;
34
35 do {
36 FSM step (agent , world) ;
37 type = whats happens (agent−>roboX , agent−>roboY , world) ;
38 i f (type == CLIFF | | type == BORDER)
39 agent−>d i e = TRUE;
40 else i f (type == SAUSAGE)
41 agent−>s u c c e s s = TRUE;
42 age++;
43 } while (agent−>s u c c e s s == FALSE && agent−>d i e == FALSE && age < 2 0 0) ;
44
45
46 agent−>age = age ;
47 }
48
49 int main ()
50 {
51 int i , j ;
52 char tmp ;

53 int t t = 10000 ;
54 int epoch = 0 , epoch1 = 0 ;
55 int startX , startY ;
56 struct gr idwor ld world ;
57 struct FSM agent [1 0 0] ;
58 struct FSM c h i l d s [5 0] ;
59 FILE ∗ l e a r n i n g ;
60 /∗
61 I n i t i a l i z a t i o n o f the g r i dwor l d
62 ∗/
63
64 srand (time (NULL)) ;
65
66 FILE ∗wld ;
67 l e a r n i n g = fopen (” l e a r n i n g . txt ” , ”w”) ;
68 wld = fopen (” world . txt ” , ” r ”) ;
69 i f (wld == NULL) {
70 p r i n t f (” Input f i l e not open ! ”) ;
71 return 1 ;
72 }
73 f s c a n f (wld , ”%d %d\n” , &world .M, &world .N) ;
74 i f (world .M > 1000 | | world .M > 1000) {
75 p r i n t f (”You M or N input data out o f range !\n”) ;
76 return 1 ;
77 }
78 for (i = 0 ; i < world .M; i++) {
79 for (j = 0 ; j < world .N; j++) {
80 do {
81 f s c a n f (wld , ”%c” , &tmp) ;
82 } while (tmp != ’ ∗ ’ && tmp != ’ . ’ && tmp != ’@’ && tmp != ’ 0 ’ && tmp != ’ ˆ ’) ;
83 switch (tmp) {
84 case ’ ∗ ’ :
85 world . world [j] [world .M − i − 1] = BORDER;
86 break ;
87 case ’ . ’ :
88 world . world [j] [world .M − i − 1] = EMPTY;
89 break ;
90 case ’@ ’ :
91 world . world [j] [world .M − i − 1] = SAUSAGE;
92 break ;
93 case ’ 0 ’ :
94 startX = j ;
95 startY = world .M − i − 1 ;
96 world . world [j] [world .M − i − 1] = EMPTY;
97 break ;
98 case ’ ˆ ’ :
99 world . world [j] [world .M − i − 1] = CLIFF ;

100 break ;
101 default :
102 p r i n t f (”Reading e r r o r ! You must check input data !\n”) ;
103 break ;
104 }
105 }
106 f s c a n f (wld , ”\n”) ;
107 }

108 f c l o s e (wld) ;
109 /∗
110 End o f i n i t i a l i z a t i o n o f the g r i dwor l d
111 ∗/
112
113 for (i = 0 ; i < 100 ; i++) {
114 init FSM(&agent [i]) ;
115 agent [i] . roboX = startX ;
116 agent [i] . roboY = startY ;
117 }
118
119 for (i = 0 ; i < 100 ; i++) {
120 Go(&agent [i] , &world) ;
121 value [i] = eva lu t e (&agent [i]) ;
122 }
123 s o r t () ;
124 do {
125 make ch i lds (agent , c h i l d s) ;
126 gene ra t e pa r en t s (ch i l d s , agent) ;
127 r e s e t p a r e n t s (agent , startX , startY) ;
128 for (i = 0 ; i < 100 ; i++) {
129 Go(&agent [i] , &world) ;
130 value [i] = eva lu t e (&agent [i]) ;
131 }
132 s o r t () ;
133 epoch++;
134 f p r i n t f (l ea rn ing , ”%d , %d\n” , epoch , va lue [0]) ;
135 f f l u s h (l e a r n i n g) ;
136 } while (va lue [0] != 0) ;
137
138 p r i n t f (”Count o f i t e r a t i o n s : %d\n” , epoch) ;
139
140 p r i n t f (” Clever FSM:\n\n”) ;
141 p r i n t f (” s t a t e input output next s t a t e \n”) ;
142 for (i = 0 ; i < 8 ; i++) {
143 p r i n t f (”%d %d %d%d %d\n” ,
144 agent−>input [i ∗ 2] ,
145 agent−>input [i ∗ 2 + 1] ,
146 agent−>output [i ∗ 3 + 1] ,
147 agent−>output [i ∗ 3 + 2] ,
148 agent−>output [i ∗ 3 + 3]) ;
149 }
150 f f l u s h (stdout) ;
151
152 f c l o s e (l e a r n i n g) ;
153
154 return 0 ;
155 }

Listing 2: FSM.h

1 #ifndef FSM H INCLUDED
2 #define FSM H INCLUDED
3
4 #include <s t d i o . h>
5 #include <s t d l i b . h>

6
7 #define TRUE 1
8 #define FALSE 0
9

10 #define TOP 0
11 #define BOTTOM 1
12 #define RIGHT 2
13 #define LEFT 3
14
15 #define EMPTY 1
16 #define BORDER 2
17 #define CLIFF 3
18 #define SAUSAGE 4
19
20 struct gr idwor ld {
21 int M;
22 int N;
23 int world [1 0 2] [1 0 2] ;
24 } ;
25
26 struct FSM {
27 /∗
28 Sta t e Input output next s t a t e
29 0 1 10 0
30 0 2 11 0
31 0 3 01 1
32 0 4 00 1
33 1 1 10 0
34 1 2 11 0
35 1 3 01 1
36 1 4 00 0
37
38 input
39 1 − empty c e l l
40 2 − border
41 3 − c l i f f
42 4 − sausage
43
44 s t a t e optput
45 0 11 − go forward
46 0 10 − turn l e f t
47 0 01 − turn r i g h t
48 0 00 − turn back
49 1 11 − go forward
50 1 10 − turn r i g h t
51 1 01 − turn l e f t
52 1 00 − s top
53 ∗/
54
55 int input [1 6] ;
56 int output [2 4] ;
57 int roboX , roboY ;
58 int out [5 0 1] ;
59 int die , succes s , s ta te , what input , age ;
60

61
62 } ;
63
64 void init FSM (struct FSM ∗) ;
65 void FSM step (struct FSM∗ , struct gr idwor ld ∗) ;
66
67 #endif // GA H INCLUDED

Listing 3: FSM.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <time . h>
4 #include ”FSM. h”
5
6 #define BACK 1
7
8 void init FSM (struct FSM ∗ agent) {
9 int i , j ;

10 int mass [] = {0 , 1 , 0 , 2 , 0 , 3 , 0 , 4 , 1 , 1 , 1 , 2 , 1 , 3 , 1 , 4} ;
11 srand (time (NULL)) ;
12
13 for (i = 0 ; i < 8 ; i++)
14 for (j = 0 ; j < 3 ; j++)
15 agent−>output [i ∗ 3 + j] = rand () % 2 ;
16 for (i = 0 ; i < 8 ; i++)
17 for (j = 0 ; j < 2 ; j++)
18 agent−>input [i ∗ 2 + j] = mass [i ∗ 2 + j] ;
19 agent−>what input = rand () % 4 ;
20 agent−>s t a t e = 0 ;
21 agent−>s u c c e s s = FALSE;
22 agent−>d i e = FALSE;
23 }
24
25 void walk (struct FSM ∗ agent) {
26 switch (agent−>what input) {
27 case TOP:
28 agent−>roboY++;
29 break ;
30 case BOTTOM:
31 agent−>roboY−−;
32 break ;
33 case RIGHT:
34 agent−>roboX++;
35 break ;
36 case LEFT:
37 agent−>roboX−−;
38 break ;
39 default :
40 break ;
41 }
42 }
43
44 void turn (int d i r e c t i o n , struct FSM ∗ agent) {
45 int tmp = agent−>what input ;
46

47 switch (tmp) {
48 case TOP:
49 agent−>what input = d i r e c t i o n ;
50 break ;
51 case BOTTOM:
52 i f (d i r e c t i o n == LEFT)
53 agent−>what input = RIGHT;
54 else i f (d i r e c t i o n == RIGHT)
55 agent−>what input = LEFT;
56 else
57 agent−>what input = TOP;
58 break ;
59 case RIGHT:
60 i f (d i r e c t i o n == LEFT)
61 agent−>what input = TOP;
62 else i f (d i r e c t i o n == RIGHT)
63 agent−>what input = BOTTOM;
64 else
65 agent−>what input = LEFT;
66 break ;
67 case LEFT:
68 i f (d i r e c t i o n == LEFT)
69 agent−>what input = BOTTOM;
70 else i f (d i r e c t i o n == RIGHT)
71 agent−>what input = TOP;
72 else
73 agent−>what input = RIGHT;
74 break ;
75 default :
76 break ;
77 }
78 }
79
80 void FSM step (struct FSM∗ agent , struct gr idwor ld ∗ world) {
81 int input , output ;
82 int k ;
83
84 switch (agent−>what input) {
85 case TOP:
86 input = world−>world [agent−>roboX] [agent−>roboY + 1] ;
87 break ;
88 case BOTTOM:
89 input = world−>world [agent−>roboX] [agent−>roboY − 1] ;
90 break ;
91 case LEFT:
92 input = world−>world [agent−>roboX − 1] [agent−>roboY] ;
93 break ;
94 case RIGHT:
95 input = world−>world [agent−>roboX + 1] [agent−>roboY] ;
96 break ;
97 default :
98 break ;
99 }

100 k = (input − 1) ∗ 3 ;
101 output = agent−>output [k + agent−>s t a t e ∗ 12] ∗ 10 + agent−>output [k + agent−>s t a t e ∗ 12 + 1] ;

102 agent−>s t a t e = agent−>output [k + agent−>s t a t e ∗ 12 + 2] ;
103
104 switch (output) {
105 case 11 :
106 walk (agent) ;
107 break ;
108 case 10 :
109 i f (agent−>s t a t e == 0)
110 turn (LEFT, agent) ;
111 else
112 turn (RIGHT, agent) ;
113 break ;
114 case 01 :
115 i f (agent−>s t a t e == 0)
116 turn (RIGHT, agent) ;
117 else
118 turn (LEFT, agent) ;
119 break ;
120 case 00 :
121 i f (agent−>s t a t e == 0)
122 turn (BACK, agent) ;
123 break ;
124 default :
125 break ;
126 }
127 }

Listing 4: GA.h

1 #ifndef GA H INCLUDED
2 #define GA H INCLUDED
3 #include ”FSM. h”
4
5 int ind [1 0 0] ;
6 int value [1 0 0] ;
7
8 int eva lu t e (struct FSM ∗) ;
9 void s o r t (void) ;

10 void make chi lds (struct FSM agent [] , struct FSM c h i l d s []) ;
11 void gene ra t e pa r en t s (struct FSM c h i l d s [] , struct FSM agent []) ;
12 void r e s e t p a r e n t s (struct FSM agent [] , int x , int y) ;
13
14 #endif // GA H INCLUDED

Listing 5: GA.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3
4 #include ”GA. h”
5
6 int eva lu t e (struct FSM ∗ agent) {
7 i f (agent−>d i e == TRUE)
8 return 10000 ;
9 else i f (agent−>s u c c e s s == TRUE)

10 return 0 ;
11 else {

12 return (100 − agent−>roboX) + (agent−>roboY − 1) ;
13 }
14 }
15
16 void s o r t (void) {
17 int i , j , tmp ;
18
19 for (i = 0 ; i < 100 ; i++)
20 ind [i] = i ;
21
22 for (i = 0 ; i < 100 ; i++)
23 for (j = i + 1 ; j < 100 ; j++)
24 i f (va lue [ind [i]] > value [ind [j]]) {
25 tmp = ind [i] ;
26 ind [i] = ind [j] ;
27 ind [j] = tmp ;
28 }
29 }
30
31 void make chi lds (struct FSM agent [] , struct FSM c h i l d s []) {
32 int i ;
33 for (i = 0 ; i < 50 ; i++)
34 c h i l d s [i] = agent [ind [i]] ;
35 }
36
37 void gene ra t e pa r en t s (struct FSM c h i l d s [] , struct FSM agent []) {
38 int i , j ;
39 int mam, dad , koe f ;
40
41 for (i = 0 ; i < 100 ; i++) {
42 // do {
43 mam = rand () % 50 ;
44 // } whi l e (va lue [mam] > 200) ;
45 // do {
46 dad = rand () % 50 ;
47 // } whi l e (va lue [dad] > 200) ;
48
49 for (j = 0 ; j < 18 ; j++) {
50 koe f = rand () % 2 ;
51 agent [i] . output [j] = ch i l d s−>output [mam ∗ (koe f) + dad ∗ (koe f)] ;
52 }
53 agent [i] . output [rand () % 18] = rand () % 2 ;
54 }
55 }
56
57 void r e s e t p a r e n t s (struct FSM agent [] , int x , int y) {
58 int i ;
59
60 for (i = 0 ; i < 100 ; i++) {
61 agent [i] . what input = rand () % 4 ;
62 agent [i] . s t a t e = 0 ;
63 agent [i] . s u c c e s s = FALSE;
64 agent [i] . d i e = FALSE;
65 agent [i] . roboX = x ;
66 agent [i] . roboY = y ;

67 }
68 }

