
Machine learning. Genetic Algorithm

Vladimir Demin

Brest State Technical University
spas.work@gmail.com

Abstract

In this project, we test some machine learning tech-
niques by observing how an agent explores a grid-
world with a cliff. Starting with a random walk we
compare it with an agent behaviors learned with Ge-
netic Algorithm (GA) and Renforcement learning.

1 INTRODUCTION

Borrowing the idea from biological evolution, we can
be solved certain types of problems by an algorithm
which we call GA. In this case we express the prob-
lem we want to solve by a vector which we call
chromosome. Chromosome is made up a number
of genes. At the beginning we create a population
of, say 100, chromosomes at random. They are not
good solutions at all because they are randomly cre-
ated. But some are a little better than others. So we
pick up two chromosomes such that better chromo-
somes are more likely to be chosen. Here, lets choose
them at random from better half of the population.
This is called truncate selection. Also, we used se-
lection, called uniform-crossover. Where we choose
genes one by one either from parents at random.

Then by repeating this procedure, we create the next
generation. The population of the nextgeneration
includes same number of chromosomes in the previ-
ous population. Thus we can evolve the first ran-
dom population of chromosomes generation by gen-
eration. We can expect those chromosomes’ perfo-
mance become better and better.

We also give a mutation to introduce new genes.
This is avoid for individuals in the population to
be trapped into a local minimum. The probability
for mutation to occur is small - typically 1/number-
of-genes.

2 EXPERIMENT

For our problem we use uniform-crossover selection.
We make 100x100 gridworld with cliff. We make
100 vectors with 500 genes. We randomly create
this 100 vectors by random walking algorithm. Af-
ter we evaluate quality of vectors and take 50 only
’good’ vectors (it means that that agent didn’t die).
After we make 100 childs by randomly trancate of
good vectors. Repeate this actions until one of the
vector will success.

We change length of our vectors from 500 downto
102 and take good result for all of them. We descibe
dependence between length of our vectors and quan-
tity generations.

3 RESULT

We submit our result on next diagram:

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300 350 400 450 500

G
e

n
e

ra
ti
o

n

Length of vector

Length of vectors vs. steps

Figure 1: length of our vectors vs. quantity genera-
tions.

1

Also we have two success way. Next diagram
show good way with 102 length vector:

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

y
 r

a
n

g
e

x range

100x30 gridworld

Figure 2: Success way where vector length is 102

And way where length of vectors is 500:

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

y
 r

a
n

g
e

x range

100x100 gridworld

Figure 3: Success way where vector length is 500

3.1 CONSULTION

In our experiments we seen that GA have good re-
sult on machine learning and may odapt to resolv
problem of walkin real robot. It may used to solve
some problems like labyrinth walking.

4 APPENDIX: C implementation of the GA algorithm

Listing 1: main.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <time . h>
4 #include ”main . h”
5
6 #define LIFES 100
7
8 #define TRUE 1
9 #define FALSE 0

10
11 #define TOP 0
12 #define BOTTOM 1
13 #define LEFT 2
14 #define RIGHT 3
15
16 int l enn ;
17 int parent vec t [1 0 0] [LEN] ;
18 int c h i l d s v e c t [5 0] [LEN] ;
19 int value [1 0 0] , ind [1 0 0] ;
20 int succecc , die , roboX , roboY ;
21
22 int main () {
23 int va l = −100;
24 int i , step , out ;
25 FILE ∗ f ;
26 FILE ∗ rep ;
27 f = fopen (”way . txt ” , ”w”) ;
28 rep = fopen (” rep . txt ” , ”w”) ;
29 srand (time (NULL)) ;
30
31
32
33 for (i = 500 ; i >= 102 ; i−−) { /∗ here you may choose what l e n g t h o f v e c t o r s you need ∗/
34 lenn = i ;
35
36 do {
37 step = 0 ;
38 va l = 2 ∗ l enn ;
39 out = FALSE;
40 c l ean () ;
41 i n i t i a l g e n e r a t i o n () ;
42 s o r t () ;
43 while (va l != 0 && out != TRUE) {
44 i f (nex t gene ra t i on ())
45 out = TRUE;
46 e v a l u t e v a l u e () ;
47 va l = s o r t () ;
48 f f l u s h (stdout) ;
49 s tep++;
50 // p r i n t f (”%d\n” , v a l) ;
51 i f (s tep > 10000)
52 out = TRUE;

53 }
54 } while (out != FALSE && val != 0) ;
55
56 f p r i n t f (rep , ”%d , %d\n” , lenn , s tep) ;
57 p r i n t f (”%d , %d\n” , lenn , s tep) ;
58 f f l u s h (stdout) ;
59 }
60
61 roboX = 1 ; roboY = 1 ;
62 d i e = FALSE; succecc = FALSE;
63 for (i = 0 ; i < LEN; i ++){
64 do shag (c h i l d s v e c t [ind [0]] [i]) ;
65 f p r i n t f (f , ”%d , %d\n” , roboX , roboY) ;
66 }
67 f c l o s e (f) ;
68
69 return 0 ;
70 }

Listing 2: main.h

1 #ifndef MAIN H INCLUDED
2 #define MAIN H INCLUDED
3
4 #define POINTS 500
5 #define LIFES 100
6
7 #define TRUE 1
8 #define FALSE 0
9

10 #define TOP 0
11 #define BOTTOM 1
12 #define LEFT 2
13 #define RIGHT 3
14
15 #define LEN 500
16
17 extern int l enn ;
18 extern int parent vec t [1 0 0] [LEN] ;
19 extern int c h i l d s v e c t [5 0] [LEN] ;
20 extern int value [1 0 0] , ind [1 0 0] ;
21 extern int succecc , die , roboX , roboY ;
22
23 int move () {
24 return rand () % 4 ;
25 }
26
27 int t ake va lue (int x , int y) {
28 return (100 − x) + (y − 1) ;
29 }
30
31 void c l ean () {
32 int i , j ;
33
34 for (j = 0 ; j < l enn ; j++) {
35 for (i = 0 ; i < 100 ; i++) {

36 parent vec t [i] [j] = 0 ;
37 value [i] = 0 ;
38 ind [i] = 0 ;
39 }
40 for (i = 0 ; i < 50 ; i++)
41 c h i l d s v e c t [i] [j] = 0 ;
42 }
43 }
44
45 void do shag (int shag) {
46 int k = 100 ;
47 switch (shag) {
48 case TOP:
49 i f (roboY < k)
50 roboY++;
51 break ;
52
53 case BOTTOM:
54 i f (roboY > 1) {
55 roboY−−;
56 i f (roboY == 1) {
57 i f (roboX > 1 && roboX < k) {
58 d i e = TRUE;
59 } else i f (roboX == k)
60 succecc = TRUE;
61 }
62 }
63 break ;
64
65 case LEFT:
66 i f (roboX > 1)
67 roboX−−;
68 break ;
69
70 case RIGHT:
71 i f (roboX < k) {
72 roboX++;
73 i f (roboY == 1)
74 d i e = TRUE;
75 }
76 break ;
77
78 default :
79 break ;
80 }
81 }
82
83
84 void i n i t i a l g e n e r a t i o n () {
85 int i , age , shag ;
86
87 for (i = 0 ; i < 100 ; i++) {
88
89 age = 0 ; d i e = FALSE; succecc = FALSE;
90 roboX = 1 ; roboY = 1 ;

91 while (age <= lenn && die == FALSE && succecc == FALSE) {
92 shag = move () ;
93 parent vec t [i] [age] = shag ;
94 do shag (shag) ;
95 age++;
96 }
97
98 i f (d i e == FALSE && succecc == FALSE)
99 value [i] = take va lue (roboX , roboY) ;

100 else i f (d i e == TRUE)
101 value [i] = 10000 ;
102 else
103 value [i] = 0 ;
104 }
105 }
106
107 int s o r t () {
108 int i , j , tmp ;
109
110 for (i = 0 ; i < 100 ; i++)
111 ind [i] = i ;
112
113 for (i = 0 ; i < 100 ; i++)
114 for (j = i + 1 ; j < 100 ; j++)
115 i f (va lue [ind [i]] > value [ind [j]]) {
116 tmp = ind [i] ;
117 ind [i] = ind [j] ;
118 ind [j] = tmp ;
119 }
120 return value [0] ;
121 }
122
123 void mutate (int i) {
124 int mutate gene ;
125
126 mutate gene = rand () % lenn ;
127 parent vec t [i] [mutate gene] = rand () % 4 ;
128 }
129
130 int next gene ra t i on () {
131 int i , j ;
132 int mam, dad , koe f ;
133 int k , ko l ;
134
135 for (i = 0 ; i < 50 ; i++)
136 for (j = 0 ; j < l enn ; j++)
137 c h i l d s v e c t [i] [j] = parent vec t [ind [i]] [j] ;
138
139 ko l = 0 ;
140 for (k = 0 ; k < 50 ; k++) {
141 i f (va lue [k] < 201)
142 ko l++;
143 }
144 i f (ko l < 3)
145 return 1 ;

146
147 for (i = 0 ; i < 100 ; i++) {
148 do {
149 mam = rand () % 50 ;
150 } while (va lue [mam] > 2 0 1) ;
151
152 do {
153 dad = rand () % 50 ;
154 } while (va lue [dad] > 2 0 1) ;
155
156 for (j = 0 ; j < l enn ; j++) {
157 koe f = rand () % 2 ;
158 parent vec t [i] [j] = c h i l d s v e c t [mam ∗ (koe f) + dad ∗ (1 − koe f)] [j] ;
159 }
160
161 mutate (i) ;
162 }
163 return 0 ;
164 }
165
166 void e v a l u t e v a l u e () {
167 int i , age , shag ;
168
169 for (i = 0 ; i < 100 ; i++) {
170
171 d i e = FALSE; succecc = FALSE; age = 0 ;
172 roboX = 1 ; roboY = 1 ;
173 while (age <= lenn && die == FALSE && succecc == FALSE) {
174 shag = parent vec t [i] [age] ;
175 do shag (shag) ;
176 age++;
177 }
178
179 i f (d i e == FALSE && succecc == FALSE)
180 value [i] = take va lue (roboX , roboY) ;
181 else i f (d i e == TRUE)
182 value [i] = 10000 ;
183 else
184 value [i] = 0 ;
185 }
186 }
187
188 #endif // MAIN H INCLUDED

