Machine learning. Genetic Algorithm

Vladimir Demin

Brest State Technical University
spas.work@gmail.com

Abstract

In this project, we test some machine learning tech-
niques by observing how an agent explores a grid-
world with a cliff. Starting with a random walk we
compare it with an agent behaviors learned with Ge-
netic Algorithm (GA) and Renforcement learning.

1 INTRODUCTION

Borrowing the idea from biological evolution, we can
be solved certain types of problems by an algorithm
which we call GA. In this case we express the prob-
lem we want to solve by a vector which we call
chromosome. Chromosome is made up a number
of genes. At the beginning we create a population
of, say 100, chromosomes at random. They are not
good solutions at all because they are randomly cre-
ated. But some are a little better than others. So we
pick up two chromosomes such that better chromo-
somes are more likely to be chosen. Here, lets choose
them at random from better half of the population.
This is called truncate selection. Also, we used se-
lection, called uniform-crossover. Where we choose
genes one by one either from parents at random.

Then by repeating this procedure, we create the next
generation. The population of the nextgeneration
includes same number of chromosomes in the previ-
ous population. Thus we can evolve the first ran-
dom population of chromosomes generation by gen-
eration. We can expect those chromosomes’ perfo-
mance become better and better.

We also give a mutation to introduce new genes.
This is avoid for individuals in the population to
be trapped into a local minimum. The probability
for mutation to occur is small - typically 1/number-
of-genes.

2 EXPERIMENT

For our problem we use uniform-crossover selection.
We make 100x100 gridworld with cliff. We make
100 vectors with 500 genes. We randomly create
this 100 vectors by random walking algorithm. Af-
ter we evaluate quality of vectors and take 50 only
"good’ vectors (it means that that agent didn’t die).
After we make 100 childs by randomly trancate of
good vectors. Repeate this actions until one of the
vector will success.

We change length of our vectors from 500 downto
102 and take good result for all of them. We descibe

dependence between length of our vectors and quan-
tity generations.

3 RESULT

We submit our result on next diagram:

I‘_ength of ve‘ctors vs. stéps

400 H

Generation

300 [{ \ M

600 [1 h | w” |
Wl

ur
N uﬁ"JU‘W\HM, ik w wv

sl

w
0
100 150 200 250 300 350 400 450 500
Length of vector

20

3

=)
3

Figure 1: length of our vectors vs. quantity genera-
tions.

Also we have two success way. Next diagram
show good way with 102 length vector:

30

106x30 gndw‘or\d —_—

25 | 1

20 - Bl

y range

10 20 30 40 50 60 70 80 90 100
x range

Figure 2: Success way where vector length is 102

And way where length of vectors is 500:

100

100x100 gridworld ——
90 B

80 - Bl
70 | 1
60 [1

50 [1

y range

40 —

30 - Bl

20 -

10 20 30 40 50 60 70 80 90 100
X range

Figure 3: Success way where vector length is 500

3.1 CONSULTION

In our experiments we seen that GA have good re-
sult on machine learning and may odapt to resolv
problem of walkin real robot. It may used to solve
some problems like labyrinth walking.

0O Uik Wi

U O O i B B B B B B B R R W W W W W W W W wWNhNDNDNDDNDDDDDNDN DN = e = s s s s
N — OO0 T Uk WNFE OO Il WP OO IDDUtlk W OO Uk W~ OOo

4 APPENDIX: C implementation of the GA algorithm

Listing 1: main.c

#F#include <stdio.h>
#include <stdlib .h>
#include <time.h>
#include "main.h”
#define LIFES 100
#define TRUE 1
#define FALSE 0
#define TOP 0
#define BOTTOM 1
#define LEFT 2
#define RIGHT 3
int lenn;

int parent_vect[100][LEN];
int childs_vect [50][LEN];
int value[100], ind[100];

int succ

ecc ,

int main() {

die, roboX, roboY;

int val = —100;

int i, step, out;

FILE xf;

FILE =xrep;

f = fopen("way.txt”, 7w’);

rep = fopen(”rep.txt”,

srand (time (NULL)) ;

for

(i =

lenn

do {

500; i >= 102; i—) { /* here you may

step = 0;
val = 2 % lenn;
out = FALSE;
clean ();
initial_generation ();
sort ();
while (val != 0 && out != TRUE) {
if (next_generation ())
out = TRUE;
evalute_value ();
val = sort ();
fflush (stdout);
step++;
J/printf("%d\n”, wval);
if (step > 10000)
out = TRUE;

choose what length of wvectors you nee

53 }

54 } while(out != FALSE && val != 0);
55

56 fprintf(rep, "%d, %d\n”, lenn, step);
57 printf ("%d, %d\n”, lenn, step);

58 fflush (stdout);

59 }

60

61 roboX = 1; roboY = 1;

62 die = FALSE; succecc = FALSE;

63 for (i = 0; i < LEN; i++4){

64 do_shag(childs_vect [ind [0]][i]);

65 fprintf(f, "%, %d\n”, roboX, roboY);
66 }

67 fclose (f);

68

69 return 0;

70}

Listing 2: main.h
#ifndef MAIN_HINCLUDED
#define MAIN_H INCLUDED

#define POINTS 500
#define LIFES 100

#define TRUE 1
#define FALSE 0

0O Ui Wi+

[t
o ©

#define TOP 0
#define BOTTOM 1
#define LEFT 2
#define RIGHT 3

— e e
U W N

#define LEN 500

— =
N

extern int lenn;

extern int parent_vect [100][LEN];
extern int childs_vect [50][LEN];
extern int value[100], ind[100];
extern int succecc, die, roboX, roboY;

NN NN =
W RO O

int move() {
return rand () % 4;
}

int take_value(int x, int y) {
return (100 — x) + (y — 1);
}

void clean () {
int i, j;

O W W W NDNDNDDNDN
WN OO0 U

34 for (j = 0; j < lenn; j++) {
for (i = 0; i < 100; i++) {

w
ot

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

parent_vect [1][j] = 0;
value[i] = 0;
ind[i] = 0;

for (i = 0; i < 50; i++)
childs_vect [i][j] = 0;

}

void do_shag(int shag) {
int k = 100;
switch (shag) {
case TOP:
if (roboY < k)
roboY++;
break;

case BOTTOM:
if (roboY > 1) {

roboY ——;

if (roboY = 1) {
if (roboX > 1 && roboX < k) {

die = TRUE;

telse if (roboX = k)

succecc = TRUE;

}

}
break;

case LEFT:
if (roboX > 1)
roboX ——;
break;

case RIGHT:
if (roboX < k) {
roboX++;
if (roboY = 1)
die = TRUE;

break;

default:
break;

void initial_generation () {
int i, age, shag;

for (i = 0; i < 100; i++) {

age = 0; die = FALSE; succecc = FALSE;
roboX = 1; roboY = 1;

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

}

int

}

while (age <= lenn && die == FALSE && succecc == FALSE)

shag = move();
parent_vect[i][age] = shag;
do_shag(shag);
age—+-+;

}

if (die = FALSE && succecc =— FALSE)
value[i] = take_value(roboX, roboY);

else if (die = TRUE)
value[i] = 10000;

else
value[i] = 0;
}
sort () {
int i, j, tmp;
for (i = 0; i < 100; i++)
ind[i] = 1;
for (i = 0; i < 100; i++)
for (j =i+ 1; j < 100; j++)
if (value[ind[i]] > value[ind[j]]) {
tmp = ind[i];
ind[i] = ind[j];
ind[j] = tmp;
}

return value [0];

void mutate(int i) {

int

int mutate_gene;

mutate_gene = rand () % lenn;
parent_vect[i][mutate_gene] = rand() % 4;

next_generation () {

int i, j;
int mam, dad, koef;
int k, kol;

for (i = 0; i < 50; i++4)
for (j = 0; j < lenn; j++)
childs_vect[i][j] = parent_vect [ind[i]][j];

kol = 0;
for (k = 0; k < 50; k++) {
if (valuelk] < 201)
kol++;

if (kol < 3)
return 1;

146

147 for (i = 0; i < 100; i++) {

148 do {

149 mam = rand () % 50;

150 } while(value [mam] > 201);

151

152 do {

153 dad = rand () % 50;

154 } while(value[dad] > 201);

155

156 for (j = 0; j < lenn; j++) {

157 koef = rand () % 2;

158 parent_vect[i][j] = childs_vect [mam * (koef) + dad % (1 — koef)][j];
159 }

160

161 mutate(1i);

162 }

163 return 0;

164 }

165

166 void evalute_value () {

167 int i, age, shag;

168

169 for (i = 0; i < 100; i++) {

170

171 die = FALSE; succecc = FALSE; age = 0;
172 roboX = 1; roboY = 1;

173 while (age <= lenn && die = FALSE && succecc = FALSE) {
174 shag = parent_vect[i][age];

175 do_shag(shag);

176 age++;

177 }

178

179 if (die = FALSE && succecc =— FALSE)
180 value[i] = take_value(roboX, roboY);
181 else if (die = TRUE)

182 value[i] = 10000;

183 else

184 value[i] = 0;

185 }

186}

187

188 #endif // MAIN_.H INCLUDED

