
Random walking

Vladimir Demin

October 27, 2009



1. Random walking

1.1 My program

Listing 1: My program code

1 #include <s t d i o . h>
2 #include <time . h>
3 #include <s t d l i b . h>
4
5 #define POINTS 10000
6 #define LIFES 1000000
7
8 #define TRUE 1
9 #define FALSE 0

10
11 #define TOP 1
12 #define BOTTOM 2
13 #define LEFT 3
14 #define RIGHT 4
15
16 int move ( ) {
17 return ( rand ( ) % 4 + 1 ) ;
18 }
19
20 int main ( ) {
21
22 int roboX , roboY ;
23 int i , k ;
24 int shag , d i e = 0 , succecc = 0 , age ;
25 int number o f succecc ;
26 FILE ∗out , ∗ a l l o u t , ∗ s t a t ;
27
28 srand ( time (NULL) ) ;
29
30
31 out = fopen (”results . txt” , ”w” ) ;
32 a l l o u t = fopen (”a l l resu l t . txt” , ”w” ) ;
33 s t a t = fopen (”stat i s t i c . txt” , ”w” ) ;
34
35 for ( k = 3 ; k < 101 ; k++){
36
37 f p r i n t f ( out , ”===================================\n” ) ;
38 f p r i n t f ( out , ”M= %d; N = %d\n” , k , k ) ;
39 number o f succecc = 0 ;
40
41 for ( i = 0 ; i < LIFES ; i++) {
42
43 age = 0 ;
44 d i e = FALSE;
45 succecc = FALSE;
46 roboX = 1 ;
47 roboY = 1 ;
48
49 do {
50 shag = move ( ) ;
51 f p r i n t f ( out , ”%d, ” , shag ) ;
52
53 switch ( shag ) {

1



54 case TOP:
55 i f ( roboY < k )
56 roboY++;
57 break ;
58
59 case BOTTOM:
60 i f ( roboY > 1) {
61 roboY−−;
62 i f ( roboY == 1) {
63 i f ( roboX > 1 && roboX < k ) {
64 d i e = TRUE;
65 } else i f ( roboX == k )
66 succecc = TRUE;
67 }
68 }
69 break ;
70
71 case LEFT:
72 i f ( roboX > 1)
73 roboX−−;
74 break ;
75
76 case RIGHT:
77 i f ( roboX < k ) {
78 roboX++;
79 i f ( roboY == 1)
80 d i e = TRUE;
81 }
82 break ;
83
84 default :
85 break ;
86 }
87
88 age++;
89 i f ( age > POINTS)
90 d i e = TRUE;
91 } while ( d i e == FALSE && succecc == FALSE) ;
92
93 i f ( succecc == TRUE && die == FALSE) {
94 number o f succecc++;
95 f p r i n t f ( out , ” − succecc\n” ) ;
96 }
97 else
98 f p r i n t f ( out , ”\n” ) ;
99 }

100
101 f p r i n t f ( out , ”\n” ) ;
102 f p r i n t f ( out , ”succecced : %d\n” , number o f succecc ) ;
103 f p r i n t f ( out , ”\n” ) ;
104 f p r i n t f ( a l l o u t , ”%d, ” , k ) ;
105 f p r i n t f ( a l l o u t , ”%d\n” , number o f succecc ) ;
106 f p r i n t f ( s tat , ”%d %d\n” , k , number o f succecc ) ;
107 }
108
109 f c l o s e ( a l l o u t ) ;
110 f c l o s e ( out ) ;
111

2



112 return 0 ;
113 }

With this program I make some tests. Results of this tests may intresting number of succed lifes. Some of this
results I put on this report with graphics.

For the first test number of the POINTS have 1001 and number of the LIFES take 10000 (picture 1.1):
N - number of length of the gridworld (N x N) S - number of success lifes
For 51 to 100 lifes number of success was zero. I make graphic with this data:

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60  70  80  90  100

Figure 1: Capture 1.1

On second test I change number of the LIFES to 100000. For this situation I take same graphic (Capture 1.2).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  10  20  30  40  50  60  70  80  90  100

Figure 2: Capture 1.2

Becouse I need 1 successful life for gridworld 100x100 to print it, I change number of the LIFES to 1000000 and
number of the POINTS to 10000. Graphic for this test on Capture 1.3.

3



 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  10  20  30  40  50  60  70  80  90  100

Figure 3: Capture 1.3

Now, I want to show my result for gridworld 30x30.
Next picture is succecc life of robot. He start at (1, 1) and come to (1, 30) (capture 1.7).

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

Figure 4: Capture 1.4

In next picture I show way, where robot die on the cliff (capture 1.5):
At last picture robot die, becouse number of steps was more then 150 (capture 1.6):

4



 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

Figure 5: Capture 1.5

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

Figure 6: Capture 1.6

5


