
CHAPTER 1

EMBEDDED SPIKING NEURAL NETWORK

1.1 INTRODUCTION

NEURAL networks are computational models of the brain. These networks are 

good at solving problems for which a solutions seems easy to obtain for the brain, 

but requires a lot of efforts using standard algorithmic techniques. Examples of 

such problems are pattern recognition, perception,  generalization and non-linear 

control.  In  the  brain,  all  communication between neurons occurs  using action 

potentials  or  spikes.  In  classical  neural  models  these  individual  spikes  are 

averaged out in time and all interaction is identified by the mean firing rate of the 

neurons. 

Recently  there  has  been  an  increasing  interest  in  more  complex 

models,  which take the individual  spikes into account.  This sudden interest  is 

catalyzed by the fact that these more realistic  models are very well  suited for 

hardware  implementations.  In  addition  they  are  computationally  stronger  than 

classic neural networks. 

Spiking  neural  networks  are  better  suited  for  hardware 

implementations due to two facts: inter-neuron communication consists of single 

bits  and  the  neurons  themselves  are  actually  only  weighed  leaky  integrators. 

Because only single bits of information need to be transmitted, a single wire is 

sufficient for   connection between two neurons. Thereby the routing of neural 

interconnection  on a 2D chip is implied. The neural model that is 

used is  the ‘integrate-and-fire’  model.  Neurons here are leaky 

integrators, which fire and reset the neuron when a threshold is 

reached (fig.1).
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                                     Fig. 1. An integrate-and-fire neuron.

Our research will primarily concentrate on digital implementations 

of  these  integrate-and-fire  neurons.  They  can  be    implemented  on  standard 

reconfigurable hardware like Field Programmable Gate Arrays (FPGAs).

Now we will focus on the embedded side of the story. A current trend 

is  to  equip  lots  of  devices  with  extra  logic  to  make  them  interact  more 

intelligently  with their  environment (ambient intelligence).  This Intelligence is 

provided by an embedded system. Such an embedded system normally consists of 

a general purpose processor, some memory, interface hardware and some custom 

hardware executing very time critical tasks.

Recently  the  hardwired  custom  hardware  gets  replaced  by  a 

reconfigurable hardware component (fig. 2). 
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                       Fig. 2. An embedded architecture with an FPGA closely linked 
to
                                    the memory and CPU.

 This  way  the  function  of  that  component  can  be  redefined  after  design and 

manufacturing.

1.2 GOALS

This research will investigate if it is possible to implement spiking 

neural  networks  on  re  configurable  hardware.  More  specifically  it  will 

concentrate  on  embedded  devices  because they have the advantage 

that a  processor is closely linked to the neural module, which can coordinate 

learning,  reconfiguration,  etc.  Furthermore it  will  research data representation, 

suitable  spiking  neural  models,  training,  architecture  and  space/time-

considerations. 

Different spiking neural models will be investigated to see which are 

best  suited  for  hardware  implementation  and  is  computationally  the  most 

interesting. Here both speed and area are important aspects. 
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To this date only very limited learning algorithms for spiking neural 

networks  are  available.  This  is  mainly  because  this  field  of  neural  network 

research is pretty young. This research will address this problem. 

Through the use of runtime re configurable hardware it is possible to 

split  large  networks  into  smaller  sub  modules,  which  can  be  implemented 

separately  in  hardware.  Folding  them  out  in  time  can  thus  run  very  large 

networks.  This  splitting  of  neural  networks  is  actually  a  space  versus  time 

consideration.

 Due to the fact that a processor is coupled with the neural hardware, 

it is possible to implement the additional learning phases (which only need to be 

performed  sporadically  during  the  lifetime  of  the  neural  module)  on  this 

processor. This way training can be done on a model in memory, and afterwards 

this model is translated to the actual hardware implementation.

1.3 PLANNING

The research will  start  by simulating many of the  spiking neuron 

models  present  in  the  literature  in  software.  This  way  it  can  compare  the 

computational power, learning ability and complexity of these different models. 

During this stage research needs to be done on neural coding and training of these 

models because a comprehensive theory has not yet been formed.

 In  a  second  stage  the  best  of  these  neuron  models  will  be 

implemented  in  digital  hardware  (no  complex  connectivity  will  yet  be 

implemented). In this stage we can evaluate speed and area requirements of these 

neuron  models.  We  will  use  FPGAs  to  speed  up  simulation  and  evaluation 

significantly.
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Then we will look at the interconnection of these neurons. Several 

different approaches are possible: 

-Hardwired interconnections, 

-Reconfigurable hardware connections, 

-Message passing on a bus-structure, etc. 

We will research how it is possible to implement a group of topologies as 

large as possible on the re configurable hardware without asking much resources, 

or introducing a big delay.

In the last step the best hardware neuron model and interconnection 

strategy  are  combined  to  form  a  neural  hardware  module.  Research  on 

reconfiguration bandwidth, memory architecture, pipelining, on-chip learning and 

space/time-considerations is needed. There will also

be special care in making the neural module as reusable as possible and therefore 

testability and the use of standard System-on-a-Chip busses will be considered . 

As a result of this research, it will have a hardware neural network, 

implemental  in  digital  re  configurable  hardware  and  suitable  for  embedded 

applications. It will be space/time-scalable, so that it can be easily adapted to the 

user requirements.

1.4 APPLICATIONS

All areas  where embedded devices are used in complex changing 

environments, the neural network approach could amount for the adaptive and 

intelligent behavior. Due to the fact that the neural network is implemented in re 

configurable hardware it is possible to load the network only when it is needed. 

It  is  now  possible  to  solve  complex  problems  in  a  hybrid  way: 

partially by a neural network and partially by classic algorithmic techniques. Both 
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techniques can thus be used on the sub problems where they are best.  Neural 

networks can for example be used to do pure pattern recognition on data, which is 

already  preprocessed  using  classic  techniques  (for  example  Fourier 

transformation).  The  results  of  the  neural  network  can  then  be  fed  to  the 

processor, which can perform further computations. 

A classic  problem where  we are  faced with  a  complex,  changing 

environment is biometrics.  This term identifies all techniques used to measure 

human (or animal) features, for example voice, handwriting or iris recognition. 

All these human properties evolve during their lives and are very noisy. Hybrid 

techniques  use  neural  networks  to  do low level  pattern  recognition  (detecting 

single  syllables)  while  algorithmic  techniques  are  used  in  the  higher  levels 

(forming words and sentences with the syllables using dictionaries and statistical 

techniques) . 

Another application is adaptive non-linear control. Most, if not all, 

machines are subject to significant wear and tear. Complex non-linear machines 

are  locally  linearised  (in  a  working  point)  to  enable  control  with  standard 

techniques (like PID). Due to wear, the working point of the machine tends to 

shift  so that an incorrect  linear  approximation is  used and decent  control  gets 

impossible. Neural networks have proven to be very good at controlling highly 

non-linear systems. 

Because these neural networks can be trained during operation, they 

can be adapted to changing situations like wear.  Because this neural model can 

be  implemented  on  an  embedded  device  it  is  possible  to  place  the  control 

hardware very close to the detectors and actuators. This way delay (dead-time) is 

minimized, which normally is a big nuisance. 
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CHAPTER 2

SPIKES THAT COUNT: RETHINKING SPIKINESS IN 

NEURALLY EMBEDDED NETWORKS

2.1 INTRODUCTION

Models  of  spiking  neurons  have  been  extensively  studied  in  the 

neuroscience  literature,  in  recent  years.  Spiky  networks  have  a  greater 

computational power and are able to model the ability of biological neurons to 

convey information by the exact timing of an individual pulse, and not only by 

the frequency of the pulses.

This  research  will  investigate  the  usage  of  spiking  dynamics  in 

embedded  neurocontrollers  that  serve  as  the  control  mechanism  for  Evolved 

Autonomous  Agents  (EAAs)  performing  a  delayed-response  task.  The  spiky 

neural networks are developed by a genetic algorithm to maximize a behavioral 

performance measure, and their resulting networks and dynamics are subjected to 

further study.

EAAs are a  very promising model  for studying neural  processing 

due to their simplicity, and their emergent architecture. Investigating spiky neural 

networks in this framework raises new questions that were not raised using pre-

designed  spiky  models.  For  Example,  evolutionary  robotics  studies  have 

previously analyzed whether the spiking dynamics result in a time-dependent or a
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rate-dependent computation, and investigated the effect of noise on the emerging 

networks.

It rigorously addresses the questions of what is a spiky network, and 

how to define and measure the spikiness level of each neuron, for the first time. 

We observe that a network with spiking neurons is not necessarily “spiky”, in 

terms of integration of inputs over time. Following this observation, we present 

two new fundamental ways by which we define and quantify the spikiness level 

of a neuron. 

The study of spiking neural networks is performed within a delayed-

response task, as memory is needed to solve such tasks and spiking dynamics 

may hence be useful. Delayed response tasks are characterized by a significant 

delay between the stimulus and the corresponding appropriate response, which 

make them impossible to solve by a simple sensory-motor mapping. 

The rest of this is organized as follows: 

Section 2 describes  the  network architecture  and the evolutionary 

procedure. Section 3 we present two basic properties of spikiness in embedded 

agents.  Section  4  analyzes  the  evolved  neurocontrollers  and  their  dynamics. 

These results and their implications are discussed in section 5.

2.2 THE MODEL 

2.2.1 THE EAA ENVIRONMENT

The EAA environment is described in figure.  The agents live in a discrete 2D 

grid world surrounded by walls. Poison items are scattered all around the world, 

while food items are scattered only in a food zone in one corner. The agent's goal 

is to find and eat as many food items as possible during its life, while avoiding 

the poison items. The fitness of the agent is proportional to the number of food 
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items minus the number of poison items it consumes. The agent is equipped with 

a set of sensors, motors, and a fully recurrent neurocontroller of binary neurons.

Figure 1: The EAA environment. An outline of the grid world and the agent's 
neurocontroller. A small arrow on the grid, whose direction indicates its 

orientation, marks the agent. The curved lines indicate where in the arena 
each of the sensory inputs comes from.

Four sensors encode the presence of a resource (food or poison, without 

distinction between the two), a wall, or a vacancy in the cell the agent occupies 

and in the three cells directly in front of it (Figure 1A). A fifth sensor is a smell 

sensor, which can differentiate between food and poison.
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Underneath the agent, but gives a random reading if the agent is in 

an empty cell. The four motor neurons dictate movement forward (neuron 1), a 

turn left (neuron 2) or right (neuron 3), and control the state of the mouth (open or 

closed, neuron 4). 

In previous studies, eating occurs if the agent stands on a grid cell 

containing a resource for one step. Here, we have modified this task to include a 

delayed-response challenge: In order to eat food, the agent has to stand on a grid-

cell containing a resource for a precise number of steps K, without moving or 

turning, and then consume it, by closing its mouth on the last waiting step. Eating 

after standing on a food item for more or less than K steps does not increase its 

fitness. 

Hence, in essence, the agent has to learn to count to K precisely. The 

agent's lifespan, defined by the number of sensor motor steps available to it, is 

limited.  Waiting  steps  are  not  counted  as  part  of  lifespan  steps  in  order  to 

facilitate the evolution of the delayed-response task.

2.2.2 THE NEUROCONTROLLER 

All  neurocontrollers  are  fully  recurrent  with  self-connections,  containing  10 

binary neurons (out of which 4 are motor neurons), and 5 sensor neurons that are 

connected to all  network neurons.  We compare  between neurocontrollers  with 

McCulloch-Pitts (MP) neurons, employed conventionally in most EAA studies, 

and ones with spiky Integrate-And-Fire neurons. In both types of networks,

a neuron fires if  its  voltage exceeds a threshold.  The spiking dynamics of  an 

Integrate-And-Fire neuron i are defined by,
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where Vi(t) is the voltage of neuron i at time t, ¸i is a memory factor of neuron i 

(which stands for its membrane time-constant), Aj(t) is the activation (firing) of 

neuron j at time t, W(j; i) is the synaptic weight from neuron j to neuron i, N is the 

number of neurons including the input sensory neurons, and Vrest stands for the 

resting voltage (set to zero in all simulations). After ¯ring, the voltage of a spiky 

neuron is reset to the resting voltage, with no refractory period.

Evolution is conducted over a population of 100 agents for 30000 

generations, starting from random neurocontrollers, using a mutation rate of 0.2 

and uniform point-crossover with rate of 0.35. 

2.3 PERFORMANCE EVALUATION

Successful agents that solve the delayed-response task were evolved 

with both MP and spiky networks. The evolution of the delayed-response task is 

fairly  difficult,  and  many  evolutionary  runs  ended  (i.e.  the  performance  has 

converged) without yielding successful agents. We measure the difficulty of each 

task as the fraction of runs that ended successfully. Evidently, the task is harder as 

the agent has to wait for a longer delay period. More important, successful spiky 

neurocontrollers evolve more easily than MP networks.
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      CONCLUSION

The study of spiky neural networks in the context of embedded 

evolutionary  agents  brings  forward  basic  questions  regarding 

spiking dynamics that have not yet been raised. The simplicity 

and concreteness of EAA models makes them a promising model 

for  computational  neuroscience  research,  and  specifically  to 

study the spikiness  properties  of  neurocontrollers.  Here it  has 

shown that the presence of evolved spiking dynamics does not 

necessarily  transcribe  to  actual  spikiness  in  the  network,  and 

that the spikiness level can be defined and quantified in several 

functionally different ways. On a behavioral level it has shown 

that in tasks possessing memory-dependent dynamics network 

solutions that involve spiking neurons can be less complex and 

easier to evolve, compared with MP networks.
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