Random recurrent neural networks for autonomous system design

Emmanuel Daucé*

*DTIM, ONERA - Centre de Toulouse
2,avenue Edouard Belin
31055 Toulouse Cedex, France

dauce@cert.fr

Abstract

In this article, we stress the need for using dy-
namical systems properties in autonomous archi-
tecture design. We first study the dynamics of
random recurrent neural networks (RRNN). Such
systems are known to spontaneously exhibits var-
ious dynamical regimes; as they always tries to
remain on an attractor, thus achieving stable dy-
namical behaviors. Second, we try to character-
1ze the adaptive properties of such a system in
an open environment, i.e. in a system which al-
ways interacts with external signals.Under these
conditions, a change in the behavior corresponds
to the switch from one attractor to another one.
Such bifurcation occur for very little changes in
the environment signal; our system is thus un-
stable on its inputs. We propose a local Hebbian
learning rule which tends to stabilize the response
of the system for given inputs. After training, the
system is able to perform recognition, i.e to pro-
duce a specific regular cyclic attractor while the
learned input is present (or even a noisy version
of this learned input). Moreover, our system can
make associations while learning process takes
place under two “sensory” influences. The sys-
tem can indeed perform recognition, even when
one sensory signal is missing. Our RRNN is then
implemented on a robotic system, under visual
and sensori-motor influences. After learning pe-
riodic motor sequences in association with visual
inputs, our system can now discriminate between
matching and unknown visual sequences. When
visual sequence matches inner sequence, the sys-
tem produces regular periodic movements. On
the contrary, when there is a conflict between vi-
sual inputs and inner dynamics, the system tends
to produce chaotic aperiodic movements. Our
work finally illustrate a very general paradigm on
cognitive aspects of perception : what the system
perceives depends both on input signal and inner
expectations on such input.
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1. Introduction

Autonomous systems have to adapt and react to a
rapidly changing environment. Moreover the environ-
ment may be unknown and unpredictable. So the design
of such systems may not stand alone on prewired reac-
tions. However, some regular patterns may be found in
the environment dynamics. These patterns may be the
basis for sensory-motor learning and temporal sequence
learning. So an autonomous system dealing with such
an environment has to achieve the following properties:

¢ stable behaviors, though the inputs are changing
o if necessary, rapid change in behaviors
e learning new appropriate behaviors

Animals are particularly well adapted autonomous
systems.  So one of our source of inspiration is
to capture the relevant necessary informations that
make animals behave autonomously.  Neurobiolog-
ical research can become a source of inspiration
for people who work in the conception of intelli-
gent and autonomous systems (“animat” approach
(Meyer and Wilson, 1991)). Our first source of biolog-
ical inspiration comes from the pioneer “dynamical” ap-
proach to cognition performed by Freeman on the ol-
factory bulb of the rabbit (Skarda and Freeman, 1987,
Yao and Freeman, 1990). He has shown that natural at-
tentive waiting states correspond to chaotic dynamics,
and that presentation of a known odor leads through a
bifurcation to almost cyclic dynamics. Even local and
specific to the olfactory bulb, these results may indicate
relevance of taking inspiration from dynamical systems
theory for the analysis of brain processing. Indeed, re-
cently important progress has been made in the preci-
sion of brain signal capture, and new phenomenons are
observed which stress the role of global distant corre-
lations in brain computation. As the subject or ani-
mal carries out a cognitive act (recognition, action selec-
tion ...), one can observe global spatio-temporal patterns
of activation emerging from background activity. Such
patterns have a very short life (of the order of tenths
of milliseconds) and their extinction leads to the emer-
gence of new patterns (Mac Leod and Laurent, 1996,



Neuenschwander et al.; 1996, Jirsa et al., 1998). These
transitions from one stable behavior to another can be
seen as bifurcations, which can either occur through in-
teractions with the environment or through inner dy-
namical constraints.

So we use artificial neural networks in order to design
our control architectures. The main stream of connec-
tionnist methods, derived from Hopfield networks, feed-
forward networks and Kohonen maps, produce static sig-
nals as their input values remain constant. Such static
behaviors never occur in real brain activity. A more ”bi-
ologically inspired” approach which take into account a
more precise modeling of a neuron (latencies of discharge
and discrete pulses for instance) may lead to more com-
plex dynamics. In this article, we do not claim such a
local biological precision. Indeed, we are mainly con-
cerned with simplifying the biological complexity in or-
der to exhibit the simple control variables of the system.
So, we start with a model of very simple analog neurons,
and study some dynamical properties of such networks.
Then, with the help of a learning rule, we deal with in-
ner and outer dynamics in order to produce dynamically
relevant acts of perception and recognition. The idea 1s
to show that systems that spontaneously exhibit several
dynamical regimes with different stimulations can be of
good help for the conception of agents that have to in-
teract with the real world, and can also give clues for the
comprehension of brain computation. Then, the system
that has to be taken into account is the inner dynamics
plus the environment inputs (open systems). Hence the
emerging attractor does not only correspond to the in-
ner state of the system, but is a combination of the inner
dynamics and the inputs. So, in our system, a “cognitive
act” should both depend on the input (command) and
on inner dynamical constraints.

Spontaneous  dynamical behaviors occur un-
der certain conditions in recurrent mneural net-
works (RNN). Lots of recurrent models ex-
hibit cyclic sequential behaviors when properly
configurated (Hertz and Prugel-Bennett, 1996)
and can learn from observation some char-
acteristics of a  given  dynamical  system

(Williams and Zipser, 1989, Tani and Fukumura, 1995).
Some works have yet applied RNN to robotic con-
trol.  Tani (Tani and Nolfi, 1998) used a hierarchy
of RNN for categorizing different sensory-motor
situation. With a different approach, Schoner
(Schoner et al., 1995, Bicho and Schoner, 1997) uses the
Neural Field formalism (Amari, 1977) for controlling
a mobile robot. In its system, the attractor is always
a fixed point. The system goes continuously from one
attractor to the other through bifurcations depending
on the change of external inputs.

In this article, we first present the RRNN model used,
in particular, the various dynamical regimes it may

exhibit, and how they may be related to external
inputs. Then we propose a local Hebbian learning
rule stabilizing stimulus-associated dynamical patterns.
Finally, we apply our model to a simple control task on
a mobile robot.

2. Basic properties of the model

2.1 A random recurrent model

Our dynamical system (1) is defined as a pool of N inter-
acting units, whose state is described with an activation
vector x(t). The external world is represented by the
input vector signal I(¢). This system is a discrete-time
neural network, with random recurrent connections and
analog neurons. Random neural networks have been in-
troduced by Amari (Amari, 1972) in a study of their
large size properties. Our model keeps the global recur-
rent architecture of Hopfield networks (Hopfield, 1982);
the main difference stands on the fact that the initial
weights are randomly chosen.

ni(t) = fy | =0+ L)+ Jyrt—=1) | (1)

The J;;’s are the synaptic weights, and ¢ is the acti-
vation threshold. The J;;’s values are randomly de-
fined at the creation of the system, with Gaussian laws
N(0,1/N). This means in particular that our con-
nection pattern is nof symmetric , which is a neces-
sary condition for developing complex dynamics. We
take a monotonic non-linear sigmoidal transfer function
Jy(u) = (1 + tanh(gu))/2, whose gain is g/2. This func-
tion takes its values in ]0, 1[. Notice that our system is
deterministic as soon as the input signal does not include
noise.
The dynamics can be characterized by the observable
mpy(t) defined as the mean signal of x(¢):
| N
() =+ Y wi(t) )
i=1
2.2 Autonomous dynamics and attractors

If the external signal I(¢) is static (does not change with
time), the system is called autonomous and its dynamical
activity only stands on inner interactions. Our system
is dissipative, so that any trajectory tends to converge
towards a small invariant structure whose volume is null:
the attractor of the system. The characteristics of this at-
tractor determine the dynamical regime of the system. In
one given system (defined by its weights and thresholds
values), the transitions from one dynamical regime to
the other occurs through bifurcations while continuously
increasing the gain parameter g. We typically find four
different dynamical regimes: fixed point, limit cycle, T2-
torus and chaos (see Figure 1). This generic process of



Figure 1: Quasi-periodicity route to chaos. Four return
maps are represented, on the basis of mean signal m y(¢), for in-
creasing values of gain parameter g (i.e g = 6.62 — fixed point —,
g = 6.78 — limit cycle —, g = 6.94 — T2-torus — and g = 7.02
— chaos —). Principle of return map : my(t) is on the x-axis,
mpy(t+1) is on the y-axis. Transients have been discarded. Other
parameters are N = 200, § = 0.1.

the dynamics becoming more complex is called a quasi-
periodicity route to chaos (Bergé et al., 1992). More de-
tails on such quasi-periodicity route in our systems can
be found in (Doyon et al., 1993, Cessac et al., 1994).

2.3 Cluster formation

We still consider here that our system is autonomous.
We thus take I(t) = 0. An accurate study of the in-
dividual signals is necessary in order to characterize
the spontaneous dynamical organization taking place in
our system. As soon as the gain parameter ¢ is high
enough, every random network tends to produce a com-
plex spatio-temporal pattern of activation. We will see
here that the non-linear transfer function f, has a very
important structuring role.

Theoretical results on the statistical repartition of ac-
tivation in our model when the size tends towards infin-
ity (thermodynamic limit) have been previously studied
(Cessac, 1995). There are two possible regimes at the
thermodynamic limit: fixed point and chaos. Consid-
ering potential signals w;(t) = —f + Zj»v:l Jijz;i(t = 1),
the chaotic regime is analog to a Gaussian process at the
thermodynamic limit:

u(t) =u” +b(?)

Where u* is a Gaussian static vector and b(t) a white
noise.

We will now consider a finite-size system in a cyclic
regime, near destabilization, with a real' positive period
7. Even if such cyclic regimes are not described at the

1Even if our system is discrete time, the value of 7 depends
on the spectrum of the linearized system near the fixed point at
destabilization value g.. This implies that 7 takes its value in

(2,400

thermodynamic limit, they however imitate the charac-
teristics of a Gaussian process, in particular:

1. Mean potentials u; repartition tends to obey to a
Gaussian law.

2. Individual potential signals tend to be desynchro-
nized. This means that individual phases are uni-
formly distributed in [0,7].

We now consider activation signals z;(t) = fy(ui(t)).
Due to nonlinearity of f,, we see that

1. Neurons whose mean potential u} is strongly posi-
tive or negative have almost constant output signals.
Such neurons are called inactive or quiescent. Only
neurons whose potentials oscillate around zero have
their signal amplified by the transfer function. Such
neurons are called active neurons. They are respon-
sible for the propagation of the inner signal (coming
from the interactions within the RRNN) throughout
the system. For usual parameter values, active neu-
rons represent about 30% of the whole population.

2. Activation signal z;(t) tends to be sharpened, with
peaks (or gaps) of activation corresponding to max-
ima (minima) of the potential signal u;(t). This
leads to increase the correlation between neurons
whose potential signals have neighbour phases. Such
neurons have their activation signal almost phased-
locked on discrete instants. We thus have the emer-
gence of clusters of neurons which produce closely
correlated activation signals. If we consider two clus-
ters whose phase shift 1s 1, it seems that the first
cluster propagates its signal towards the second clus-
ter. From one cluster to another, we finally have a
circular dynamical organization. This organization,
which strongly depends on the value of 7, can not
be deduced from the synaptic weights, but emerges
from global interactions.

These two points help us figure out the dynamical or-
ganization of our networks. We have a majority of in-
active neurons, and a minority of active neurons which
tend to clusterize and propagate the inner signal in an
activation loop. Moreover, for one given system, this cir-
cular dynamical organization remains stable in different
regimes. Figure 2 shows that two neural clusters whose
phase 1s opposite in cyclic regime keep this phase oppo-
sition in a chaotic regime.

2.4 Constraint dynamics

We now consider that the input signal I(¢) is non-
constant with time, so that there is a competition be-
tween inner influences and outer influences (the signal
coming from the external world). The important point



Figure 2: Mean signals from two phase-opposite clusters
in chaotic regime. Parameters: g = 5.5, N = 100, § = 0.1.

is that any change in spatial or temporal input char-
acteristics modifies the nature of the dynamical system
itself.

In simulations, input signals can be static or dynamic.
A static input is a Gaussian random vector (of law
N(0,¢7)) which is maintained during a period of time T
(T is of the order of 100 time steps). A dynamic periodic
input is a looping sequence of k random vectors so that
the period of input signal is 77 = k.

Static inputs When a static input is presented during
a period of time T, strong changes occur in dynamical
organization. There is a change in the level of activity
of neurons, a change in periodicity, etc... The important
point is that two very close static inputs can produce
very different patterns of activation. Figure 3 shows the
evolution of the mean signal my (¢) when the system is
submitted to 3 different static inputs I, Iz and I3, for
periods of 200 time steps. The three random vectors are
strongly correlated (mean correlation: 0.95). However,
dynamical regimes, periodicity and repartition of activ-
ity are very different in the three cases. It finally appears
that our system is extremely sensitive to small changes
on inputs values. The dynamical organization is thus
unstable relatively to the system’s inputs.

Periodic inputs When the system is submitted to a
periodic input I(¢), there is a competition between inner
and outer periodicity (even in a chaotic regime where
one can find residual periodicity). The system reveals
to be very sensitive to external periodicity. This means
that once again, the system reconfigures its dynamical
organization in order to adapt to the external constraint.

3. Learning

So, in a constantly changing environment, any dynami-
cal organization that emerges in the system is necessarily
transient. In that sense, the system organization spon-
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Figure 3: Evolution of the dynamics while the system is
successively submitted to 3 strongly correlated random
static inputs. Mean signal my(¢) and return maps are repre-
sented. We find two cyclic regimes and one chaotic regime. Para-
meters g =5, N = 200,60 =04, 07 = 0.3.

taneously adapts to its environment. However, because
of 1ts instability on the inputs, one can not say that the
response of the system is specific to the input. Indeed,
if one given static input Iy induces one given attractor,
neighbour or noisy versions of Iy will not necessarily pro-
duce the same attractor. However, we want to build a
system which can generalize, i.e which can react specifi-
cally to a neighbourhood of Iy. We thus need to stabilize
the dynamical response associated to I;. We will now
implement a learning rule reinforcing dynamical regular-
ities and activation loops in our system.
The learning rule obeys the following properties:

e Unsupervised learning: the dynamical response may
not come from an outer command. The system de-
termines its own response.

e On-line learning: there is no a priori knowledge on
the nature of the inputs to learn.

e Local learning rule: the change in the synaptic
weights only stands on the activity of afferent and
efferent neurons.

A simple Hebbian learning rule was proposed on our
model in (Daucé et al., 1998). However, this first rule
induced severe limitations in terms of storage capacity.

We use in our present implementation a second rule
based on an habituation principle. This choice relies on
the idea that a neuron will favor afferent signals that of-
ten change with time, and ignore static signals. Our rule
thus reinforces the effective covariance between afferent
and efferent neurons. In particular, the constant compo-
nents of afferent activation signals are substracted. Us-
ing a sliding window, we estimate the mean activation
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Figure 4: A learning experiment. Evolution of the mean
signal m y (¢) during the learning process, when the system is sub-
mitted to a static input Iy. Upper left: return map of my(¢)
before learning. Upper right: return map of my(t) after learn-
ing (dots linked by lines). Main signal: time evolution of m x(¢)
during the whole experiment. Learning process is activated for
500 < t < 1100. Parameters: N = 200, g = 6.3, a = 0.1, § = 0.4,
o7y = 0.3.

Z; (we only take into account the most recent values
of activation). The covariance rule was first introduced
by Sejnowski (Sejnowski, 1977), and has been adapted
to our problem (capture of dynamical regularities) by
taking into account the temporal shift induced by the
transmission delay (in our case, the delay is 1). The rule
is:

Tig(t) = Tyt = 1) 4 5 @it) = 23) (2t = 1) = )

We have seen that a majority of neurons in our system
have an almost constant activation value (silent or sat-
urated). Such neurons are not involved in the learning
process. If two active neurons belong to clusters whose
phase shift equals one, then the link from one to the
other is systematically reinforced by the learning rule.
Indeed, even when the dynamics is chaotic with a resid-
ual periodicity, the learning process tends to simplify it
towards cyclic dynamics. It thus reinforces the activa-
tion loop structure, and increases both amplitude and
periodicity of the inner dynamics.

Recognition and generalization Figure 4 shows a
typical learning process on a system submitted to a static
input I;. Before learning, the dynamics is chaotic, with
a residual periodicity close to period 3. After learning,
the dynamics is strictly periodic of period 3. When the
learning process is stopped, the new system is now able
to recognize I, 1.e. the system systematically switches
its dynamics towards this specific 3-periodic dynamical
organization when Iy is presented.
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Figure 5: stabilization of dynamical response in the neigh-
bouhood of the learned input. Six return maps on the basis
of my(t) signal after learning input I;. The first return map cor-
responds to the dynamics associated with I;. The next 5 return
maps correpond to 5 different inputs, whose correlation to I is
decreasing from left to right. Dots are linked by lines in order to
see 3-periodic attractors. Parameters: N = 200, g = 6.3, a = 0.1,
8 =04,0; =0.3.

An important point is that after learning, the dynam-
ical response associated to Iy is stabilized. This means
that in the neighbourhood of I, the system tends to
produce a dynamical response which is very close to the
one associated to Iy (see Figure 5).

So, learning displays two new properties in our system:

¢ Recognition: Our system is now able to discrimi-
nate between learned inputs and non-learned inputs.
Recognition occurs with a change in dynamical regime
(bifurcation) leading to periodic attractors associated
to every learned input.

e Generalization: Our system produces almost simi-
lar dynamical organization in a neighbourhood of the
learned input. This relies on the ability to produce
the same actions in closely related situations.

Assoclativity The property of associativity can be
shown when learning occurs with inputs composed of two
different independent signals, i.e. I(t) = I1(t) + I2(¢).
I, (1) is called the main stimulus and Iz(¢) associate stim-
ulus.

We will first take a simple example, which illustrates
that this kind of system may:

e associate static and periodic inputs
e learn several associations

The learned signals are made of two components:
Ly(t) = Ix(t) + Dy, where Ix(t) is a periodic input
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Figure 6: Dynamical signals obtained with full stimula-
tion (upper figure) and associate static stimulation (lower
figure) Five combined signals Ly (t) = I (¢) + Dy, for k in 1..5,
have been learned on the same system. Time is on the x-axis,
mean signal my(t) on the y-axis. Every stimulus is presented for
300 time steps. Parameters: N = 200, g = 8, o = 0.1, § = 0.4,
ar :0.2,0‘]’) =0.3.

of period 7, made of centered gaussian vectors issued
of (N(0,0%)) and Dy a static gaussian vector issued of
(N(0,0%)). Figure 6 shows the dynamical behavior of
a network which has learned five such associations. Af-
ter learning, signals associated to the full input Ly(¢)
are in cyclic regime, and signals associated to static in-
puts Dy alone remain in chaotic regime. However, the
same period and a correlation of the order of 0.4 between
individual activation signals can be found in associated
dynamics, while periods are different and correlations
equal to zero in non-associated dynamics.

This property of associativity is very important in real
world applications, as one want to see whether the sys-
tem can produce a learned action in presence of an asso-
clate stimulus. The point now is to see how our system

can produce a motor command on the basis of inner
dynamics. For that, we need to build a system with
interfaces that can interpret inner dynamical response.

4. Multi-layer models

The recognition and associativity properties denoted in
our single population model can be usefully adapted
in real applications such as robot navigation. The
idea is to build interfaces which both display exter-
nal signals to the RRNN and receive a signal from it.
A nearly similar neural architecture can be found in
(Williams and Zipser, 1989), but the back-propagating
learning rule used by these authors prevents them from
reaching “unstable” dynamics. Our purpose here is to
start from such unstable dynamics in order to regularize
it according to the input signal.

The learning rule is then extended to every link be-
tween the interface and the RRNN. This means in partic-
ular that when no external signal is displayed on the in-
terface, the links from the RRNN produce a signal which
shows what should be present on the interface, according
to what has previously been learned.

In case we have two interfaces, one corresponding to
visual perception and the other corresponding to motor
movements, we build a system which should be able to
produce movements according to both visual entries and
learning-induced representations.

5. Global control architecture

The basis of the global
1s the PerAc block developed 1in our
(Gaussier and Zrehen, 1995).  The robotic platform
1s a Koala robot provided by the K-Team. The main
information source is obtained through a CCD camera.
The pictures are not processed as a whole, but are
split into several 32x32 subimages. These subimages
are taken around some feature points which may vary
depending on the application, but which mainly are
high curvature points (corners ...) extracted from the
gradient of the image. Then a log-polar transformation
is applied to the subimages giving some invariance
with respect to shift and distance. The subimages are
afterwards learned on a Probabilistic Topological Map
(PTM) (Gaussier and Zrehen, 1994). In a navigation
context, the correspondence between a subimage (called
now “landmark”) with its angular position (azimuth)
in respect with an absolute direction (north given
by a compass for instance) gives the position of that
landmark in the environment. The set of (landmark,
azimuth) gives the position of the robot in the environ-
ment. Merging landmark and azimuth information is
performed on an associative map. These configurations
are learned on an other map (fig. 7). The neurons of
this map may be linked to a particular movement. Thus,

control architecture

team



in association with each position in the environment, it
1s possible to learn a movement. This process enables
to reach a goal by successively going from one learned
position to the other (Gaussier et al., 2000).

Azimuth  Landmark - azimuth

Place recognition

*

[ele] Fie]e)

Landmark

0000000

Motor command
—— One to one links - No learning
—+—One to all links - Learning

Figure 7: Global architecture for merging landmark and
azimuth informations, and learning a location. The corre-
spondence between a landmark and its azimuth is learned in the
(landmark-azimuth) map. Each set of landmarks and azimuths
(thus corresponding to one location) is learned by one neuron in
the “Place Recognition” map. Then this neuron may be linked
with one neuron in the “Motor Command” map. This gives the
movement to perform at the learned location.

6. Robotic experiment

With the robotic experiment, we demonstrate that a
RRNN may be used in real world applications. Our
RRNN has the property to learn both spatial and tem-
poral informations. So, it may learn the association be-
tween a position and a movement, and simultaneously
a sequence of movements. Hence, we have replaced the
map learning the set of landmark and azimuth informa-
tion with a RRNN, and we have added a motor input to
this RRNN in order to learn the sequence of movements
(which was not possible in the architecture described in
the previous section) (fig. 8).

In the experiments, the robot is limited to rotative
movements corresponding to 7 possible rotations from
—90° to 90°, with 30° steps. The choice between these
actions 1s made according to the activation states of the
motor interface. The interface is made of seven neurons,
each associated to one motor command, so that the neu-
ron with maximal activation determines the movement.
At each position, what is learned i1s the movement to
perform and the set of (landmark, azimuth) taken from
the robot camera. In the experiments, the RRNN has
N = 100 interconnected neurons.

Together with the image, we force a signal on the mo-
tor interface. This signal is periodic, and correspond
to the sequence (430°,+60°,+90°), so that after one
sequence the robot has made a half-turn. A different
image is seen at each position. After two sequences the
robot goes back to a previously learned position. So an
image 1s only associated to one movement, but the same
movement is associated to two different images (front
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X Motor interface
Motor input
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Motor command
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Figure 8: Global architecture of the core of the system.
The previous “Place recognition” map has been replaced by the
RRNN and two interface modules. In addition, in order to learn
a motor sequence, a “Motor Input” map codes the movement to
learn.

and back images after one sequence) (fig. 9).

a) Initial facing

bos

b) after 30° rotation

¢) after 60° rotation
—

d) after 90° rotation

Figure 9: Successive positions of the robot after the 3
rotation commands. After these commands, the robot is facing
backwards. Issuing these commands again let the robot go back
to its initial position.

There are two stages in the training process. First,
we iterate the dynamics without changing the weights,
until the system reaches its stationary dynamics.
Second, we iterate the learning rule while the ro-
bot is moving. Due to friction between wheels and
ground, the real rotation performed is different from
the command issued. So during the training process,
the robot is moved back to a learned position when
the shift is too big. The learning process is lasting 20
time steps (one time step corresponds to one movement).

After this learning process, the resulting system is
tested. The forcing motor signal is removed, so that the
robot determines its movement from the information is-
sued by the RRNN. After a transient time of around 10
time steps, the robot performs the succession of learned
rotations. As stated before, due to friction, there is a
progressive shift of the robot orientation so that after a
while the image in front of it is associated to a movement
which is different from the movement it would perform



if following the sequence. So there is a conflict between
the movement associated with the perceived image and
the movement proposed by the learned sequence. What
happens is not a take over of one movement over the
other. For some time steps the movements performed
are not following the sequence anymore, nor correspond
to the ones associated with the image (fig. 10). But
eventually, the robot goes back to a learned position,
triggers the associated movement and now resumes the
good sequence (which now matches the good pictures).
So the robot is able to recalibrate its position based on
a recognized image.
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Figure 10: Example of recalibration after a shift. Rotation
angle versus time when the robot is gradually shifting. The first
two steps are transients. Then the rotations show the learned
periodic sequence (+30°, +60°,490°) corresponding to the visual
inputs. The real robot angle shifts and suddenly the robot looses
the correspondence between the image in front of him and the
associated movement. Finally the robots finds a good matching
and resumes the periodic sequence.

The second experiment we have conducted is mask-
ing the camera once the robot is performing the good
sequence. The movement sequence is not the good one
anymore, though there are some patterns of it. This
shows that what has been learned i1s no the movement,
sequence alone. When the robot can see again, it is able
to go back to the learned sequence based on a recognized

image (fig. 11).
7. Conclusion

We can make several comments on this work. First,
the RRNN we have presented has both properties of
learning input-output correlation (sensory-motor asso-
ciations) and temporal sequences. Hence it may act as
a working memory where representations of a combina-
tion of the external perception and the internal state are
coded. The complexity of the coding is not an obsta-
cle for using such a system in real world applications
as demonstrated on the robot experiment. However,
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Figure 11: Example of visual input masking. Rotation angle
versus time when the camera is suddenly masked. The first twelve
steps are transients. When the camera is hidden, the robot looses
the periodic sequence.

these working representations have to be transfered to
another part of the system for long time storage. More-
over, this storage may not necessary be of the same
nature as the one in the working memory. In biolog-
ical terms, what we have constructed plays the same
role as an hippocampus, our RRNN playing the role of
the CA3 structure. This architecture is linked with a
planning structure enabling action selection and motor
control (Quoy et al., 1999b, Quoy et al., 1999a). Tt re-
mains now to be seen how the RRNN may be linked
with such a planning system. It is already possible to
link an 1mage and a movement with an internal motiva-
tion (searching for a particular object, or going to the
power station ...). Another kind of hippocampal model
has been implemented in our group for learning tempo-
ral sequences (Gaussier et al., 1999) and sensory-motor
associations (Gaussier et al., 2000).

Second, the learning rule increase the coherency be-
tween the inner chaotic dynamics of the RRNN and the
evolving values of visual and motor inputs. This higher
coherency corresponds to a regularization of the dynam-
ics (it becomes less chaotic), and the possibility to use
such regularity to produce a motor command. When
the visual input matches the previously learned visual
sequence, the dynamics remains regular and the motor
commands correspond to the learned sequence. When
the visual information tends to misfit the learned vi-
sual sequence, the dynamics qualitatively changes and
gets more chaotic, so that the system is able to perform
an exploration of its visual environment in order to find
the matching visual sequence. When there is no pos-
sible match (for instance when the scene is hidden, or
when the robot is moved to another place), the dynam-
ics remains chaotic, and the robot stands searching for



a matching sequence in its environment.

Third, our system has still to be improved. For the
moment, the RRNN is working with discrete time steps.
But the real stimuli are continuous by nature. So we
need first to develop the same kind of RRNN under a
continuous time formalism. Next, the main drawback 1s
the need to tell the system when to stop learning. We
have chosen to stop after a fixed number of iterations.
If learning reduces the dynamics on a limit cycle, it is
easy to recognize such a regular signal and stop learn-
ing. However, it is still unclear about an optimal learning
stopping criterion when the system is still chaotic. More-
over, we believe there is no such optimal criterion ...

In conclusion, both aspects of association and se-
quence learning may be found in our system, but the
most interesting point stands in its ability to dynam-
ically adapt its behavior to external changes. This
adaptability is not dependent on an ad hoc parameter
tuning, nor a set of specific rules, but emerges from
the interactions between the robot and its environment.
These interactions are taken into account by a learning
rule. Not only biologically founded, these new results
emphasize the role of RRNN for designing adaptive
systems.
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