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Neuromodulation of Reactive Sensorimotor 

Mappings as a Short-Term Memory Mechanism in 

Delayed Response Tasks

Tom Ziemke, Mikael Thieme
Department of Computer Science, University of Skövde

This article addresses the relation between memory, representation, and adaptive behavior. More spe-
cifically, it demonstrates and discusses the use of synaptic plasticity, realized through neuromodula-

tion of sensorimotor mappings, as a short-term memory mechanism in delayed response tasks. A
number of experiments with extended sequential cascaded networks, that is, higher-order recurrent
neural nets, controlling simple robotic agents in six different delayed response tasks are presented.

The focus of the analysis is on how short-term memory is realized in such control networks through
the dynamic modulation of sensorimotor mappings (rather than through feedback of neuronal activa-
tion, as in conventional recurrent nets), and how these internal dynamics interact with environmental/

behavioral dynamics. In particular, it is demonstrated in the analysis of the last experimental scenario
how this type of network can make very selective use of feedback/memory, while as far as possible
limiting itself to the use of reactive sensorimotor mechanisms and occasional switches between them. 

Keywords delayed response tasks · short-term memory · neuromodulation · synaptic plasticity ·
higher-order recurrent neural nets · nonrepresentational memory

1 Introduction

Delayed response tasks, which are common in experi-
mental psychology research, have recently also re-
ceived much attention in the adaptive behavior and
artificial neural network (ANN) research community
(e.g. Ulbricht, 1996; Jakobi, 1997; Rylatt & Czarnecki,
1998, 2000; Linåker & Jacobsson, 2001, 2002;
Bergfeldt & Linåker, 2002; Thieme & Ziemke, 2002).
A simple example of a delayed response task is the one
illustrated in Figure 1, which has also been referred to
as the “road sign problem” (Rylatt & Czarnecki, 2000).
Here an agent starts off at the bottom/root of a simple
T-shaped maze, encounters an instruction stimulus

(e.g., a light) while moving along a corridor, and after
some further delay, reaches a T-junction at which the
correct turning direction depends on where, that is, on
which side, the stimulus was encountered (typically the
agent is expected to turn toward the same side).

Delayed response tasks are a standard way of
investigating short-term memory (STM). The agent is
typically assumed to “remember” in some way the
necessary information about the stimulus (in the
above case the side on which it appeared) during the
delay period. None of the synthetic studies mentioned
above, all of them using simple simulated or physical
robotic agents, was aimed at providing a specific
model of how animals solve delayed response tasks,
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and neither is the work presented here. Nevertheless,
this type of study can shed light on some of the issues
involved, such as the nature and the role of the assumed
STM mechanism. For example, from an observer’s
point of view it is relatively easy to attribute some kind
of “representation” to an animal or robot exhibiting
the correct behavior, but the detailed analysis of syn-
thetic studies can help to illuminate the actual mecha-
nisms underlying that behavior. 

Most of the above synthetic studies used standard
recurrent ANNs in which certain neuron activation
values are fed back and used as extra inputs to some of
the neurons in a later time step (typically the next
one). In this type of network the synaptic connection
weights are usually considered long-term memory
since they are changed only by the training process,
whereas the feedback of activation values, which can
change from moment to moment, is commonly con-
sidered to constitute short-term memory. Accordingly,
most of these studies conceive of STM, as is common
in much ANN research, as realized through the feed-
back of more or less stable patterns of neuronal activa-
tion. In delayed response tasks such patterns can be
triggered or “created” when the stimulus is encoun-
tered and sustained during the delay period at the end
of which they guide the robot’s behavior as some kind
of “stand-in” for the original stimulus. 

This focus on neural activity as the basis of STM
is largely consistent with neuroscientific findings. As
Durstewitz, Seamans, and Sejnowski (2000) pointed
out in a recent review of neurocomputational models
of working memory, memory-related delay activity
has been observed in several brain areas, in particular

the prefrontal cortex (PFC), “the brain structure most
closely linked to working memory” (cf., for example,
Fuster, 1973; Goldman-Rakic, 1987; Guigon &
Burnod, 1995). This has been found in both single-
neuron recordings in nonhuman primates and in
human brain imaging studies (cf., for example, Bad-
deley, 1998; Wang, 2001). Durstewitz et al. (2000)
further elaborate:

PFC neurons show elevated persistent activity dur-
ing delayed reaction tasks, when information
derived from a briefly presented cue must be held in
memory during a delay period to guide a forthcom-
ing response … Thus, this type of short-term mem-
ory relies on the maintenance of elevated firing rates
in specific subpopulations of neurons rather than on
synaptic plasticity, which might underlie long-term
memory. (Durstewitz et al., 2000, p. 1184) 

Although synaptic plasticity is largely neglected in
most current neuroscientific and ANN/robotic models of
STM we believe that there are good reasons for paying
closer attention to its possible role. Firstly, as Durstewitz et
al. (2000) point out, “different cellular and network mech-
anisms…are not mutually exclusive.” This means, even if
much is known about the role of persistent neural activity
in STM, this does not in any way rule out a possible role
for synaptic plasticity as at least a complementary mecha-
nism. Durstewitz et al. (2000), for example, speculate that
“through mechanisms for synaptic plasticity, more perma-
nent representations…might be formed that enhance
robustness of sustained activity and enable fast processing
at lower, metabolically economical firing rates.” Secondly,
as Durstewitz et al. (2000) also point out, the role of neuro-
modulators such as dopamine is simply not understood
yet, although it has been observed that, for example,
dopaminergic activity, which can effect synaptic currents,
increases during working memory tasks (e.g., Schultz,
Apicella, & Jungberg, 1993; Watanabe, 1996). Thirdly,
currently available techniques for observing brain activ-
ity, such as single-neuron recordings and brain imaging
techniques, focus on the measurement of neuronal activ-
ity, whereas synaptic changes are more difficult to moni-
tor. Hence, it is hardly surprising that the role that
persistent neural activity plays in working memory is bet-
ter studied and documented than the possible role of syn-
aptic plasticity. In synthetic studies, however, both are
equally easy or difficult to model, at least at an abstract
level.

Figure 1 The two situations in the T-maze environments
of the road sign problem. Adapted from Ulbricht (1996).
The empty circles indicate the goals, whereas the striped
circles indicate areas the agent should not enter.
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Hence, we believe that synthetic studies of the
role of synaptic plasticity in STM can be interesting
from both a scientific and an engineering perspective.
The former because they might contribute to neuro-
and/or cognitive-scientific theories and models of the
corresponding biological mechanisms, and the latter
because they might provide new ideas for implement-
ing STM, for example, in robots. 

This article therefore aims to illustrate an artificial
neural STM mechanism that is not based on the feed-
back or sustenance of neuronal activation, but on the
dynamic modulation of synaptic connection weights in
so-called higher-order recurrent ANNs. The workings of
this mechanism are illustrated in experiments with a
simple simulated robot facing the above delayed
response task and more complex variations of it (cf. also
Thieme, 2002; Thieme & Ziemke, 2002). As in most
adaptive behavior research, the ANNs used here are
only very rough abstractions of actual or possible bio-
logical mechanisms. Hence, this article certainly does
not directly contribute to neuroscientific theories or
models, although it will, for example, raise the question
if STM necessarily needs to be representational. The
article aims to illuminate further, at a more abstract
level, the potential role that neuromodulation of synaptic
weights can play in STM, and thus aims to contribute
potentially to the development of theories and models of
the underlying mechanisms in biological systems. 

The rest of this article is structured as follows: The
next section provides some background on different
types of feedback in recurrent ANN architectures and
the way they can be used as STM mechanisms. Further-
more, the relation to other work on dynamic short-term
adaptation/modulation of sensorimotor mechanisms is
addressed. Section 3 describes the experiments, and
Section 4 analyzes the most relevant results with a
focus on the use of neuromodulation of connection
weights, resulting in adaptive sensorimotor mappings,
as a STM mechanism in these tasks. Section 5, summa-
rizes the article and presents some conclusions. 

2 Background

2.1 Feedback in Recurrent Neural Networks

Recurrent ANNs are commonly used in autonomous
agents and adaptive behavior research because they
offer a uniform, low-level mechanism allowing the

integration of a more or less direct mapping from sen-
sory input to motor output with an implicit handling
of both long- and short-term memory. The majority of
recurrent neural architectures used in this type of
research make use of first-order feedback. As men-
tioned above, this means certain neuron activation
values are fed back into the network, typically in the
next time step. Meeden (1996), for example, trained
networks of this type to control a robot to switch peri-
odically between approaching and turning away from
a light source. The robot managed to solve the task
even when not given any input providing information
about its current goal/subtask. Using its internal feed-
back connections to remember its current goal, it was
able to deal with a situation of perceptual aliasing, and
thus could respond differently to identical light sensor
inputs in different contexts, that is, approach or turn
away depending on what the current goal was. Simi-
larly, Ziemke (1999) showed how first-order recurrent
ANNs controlling a robot trained to avoid objects in
one part of environment, but to hit identical objects in
another part, solved the task by feeding back a number
of different neural activation patterns to remember
which part of the environment they were currently in.

In the case of higher-order feedback, on the other
hand, it is typically connection weights (and/or bias
weights) that are modulated dynamically. Examples of
architectures utilizing this type of feedback are Pollack’s
(1987, 1991) sequential cascaded network (SCN) and
our variation, the extended SCN (ESCN; Ziemke, 1999,
2000) which is illustrated in Figure 2. Both of these
architectures can be described as consisting of a function
network that maps inputs to output and state units using
a single layer of connection weights (the function net-
work weights), and a context network that takes as
inputs the state unit activation values and produces as
output the next time step’s function network weights. 

More specifically, given an input vector ij(t), j =
1…n, state unit vector s(t) and output vector o(t) are
usually calculated as follows by the function network:1

Where f is the logistic activation function, and Wo(t)
and Ws(t), together referred to as function network
weights, are two-dimensional connection weight
matrices dynamically computed in every time step by

o t( ) = f Wo t( ) i1 t( ),...,in t( ) 1,( )⋅( )
s t( ) = f Ws t( ) i1 t( ),...,in t( ) 1,( )⋅( )
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the context network. This works slightly differently in
the ESCN than in the SCN. The difference is that in
the SCN the context network is used in every time
step, whereas its use is conditional upon the activation
of an additional decision unit in the ESCN (cf.
Figure 2). The idea behind this extension is that the
robot should be able to decide actively and selectively
when to change its sensorimotor mapping, instead of
(re-) setting the function network weights in each and
every time step. More specifically, given the state vec-
tor sk(t), k = 1…m, the decision unit activation d(t) and
the function network weight matrices Wo(t) and Ws(t),
are dynamically computed in every time step t as fol-
lows by the ESCN’s context network:

d(t) = f (Vd · (s1(t),…,sm(t), 1))

if d(t) ≥ 0.5 then Wo(t + 1) = Vo · (s1(t),…,sm(t), 1)

else Wo(t + 1) = Wo(t)

if d(t) ≥ 0.5 then Ws(t + 1) = Vs · (s1(t),…,sm(t), 1)

else Ws(t + 1) = Ws(t)

where f is the logistic activation function, Vd is a one-
dimensional connection weight matrix, mapping cur-

rent state to decision unit activation, and Vo and Vs are
two-dimensional connection weight matrices mapping
the current internal state s(t) to the next time step’s
function network weights, if the decision unit is active,
that is, has an activation value of at least 0.5. 

Unlike in other areas, such as (formal) language
recognition, there are only relatively few cases where
higher-order networks have been used in autonomous
agents and adaptive behavior research. One reason
might be that first- and higher-order networks are
computationally equivalent (Siegelmann & Sontag,
1995; Siegelmann, 1998), that is, every task solved by
a higher-order network could also, at least in theory,
be solved by some first-order net, and vice versa.
Computational equivalence of network architectures
in theory, however, does not say much about their suit-
ability to solve particular tasks in practice, or to serve
as a model of the biological neural mechanisms under-
lying memory. Given that first-order recurrent net-
works are already relatively well understood, the rest
of this article focuses on higher-order networks and
the way they can realize STM in delayed response
tasks. 

2.2 Related Work

To our knowledge, the work presented here, along
with our earlier related work (e.g. Ziemke, 1996,
1999, 2000), is unique in its use of higher-order recur-
rent networks and in the type of analysis presented
here. However, at least four groups/types of related
work on evolved synaptic plasticity and “fast,” that is,
moment-to-moment, adaptation of sensorimotor map-
pings can be identified. These will be addressed
briefly in the following, in order of increasing related-
ness.

Firstly, there is work on the evolution of synaptic
plasticity, that is, evolved neurocontrollers that change
their connection weights during their “lifetime” in
interaction with the environment. Floreano and Mon-
dada (1996), for example, evolved their neurocontrol-
lers’ use of different Hebbian-style rules for fast
moment-to-moment “learning” (cf. also Nolfi & Flo-
reano, 2000). The controlled robots exhibited stable
behavior realized through the continuous change of
connection weights in a dynamically stable and appar-
ently coordinated fashion. Contrary to our work, how-
ever, this weight fluctuation is based on local learning
rules, that is, each connection weight changes moment-

Figure 2 Extended sequential cascaded network (ESCN)
as a robot controller. Solid arrows indicate fully connected
connection weight matrices. The dotted arrow indicates
the selectivity of feedback, depending on the activation of
the decision unit.
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to-moment dependent on the activation of the pre- and
post-synaptic neurons. This means there is no possi-
bility of (or perhaps no need for) global modulation,
as realized by the context network in our higher-order
networks; furthermore there is no possibility of selec-
tive use of feedback and weight fluctuation as in our
extended SCN. 

Secondly, there is another recent approach to the
use of global modulation. The work of Husbands,
Smith, Jakobi and O’Shea (1998) on so-called GasNets
is strongly inspired by the modulatory effects of dif-
fusing gases in biological neural networks. Applying
this to robot controllers, an evolutionary algorithm
was used to construct control networks of gas-emit-
ting and conventional neurons, each of which had a
certain position in a two-dimensional plane. An
abstract model of the temporal and spatial properties
of gas diffusion was used, and the conventional neu-
rons’ transfer functions were effected by the current
concentration of gas. This type of mechanism was
used for training a camera-equipped robot on target
discrimination (approach of triangles on the wall,
avoidance of rectangles). In this case, the evolutionary
process determined the two-dimensional network
structure (including the visual morphology, that is,
which camera pixels to use as input) and the settings
of the synapses, whereas during the individuals’ life-
time the conventional neurons/synapses could be
modulated dynamically. Hence, GasNets can roughly
be likened to our higher-order recurrent neural robot
controllers as follows. In both cases there is one sub-
network embodying a sensorimotor mapping, and
there is another global mechanism that dynamically
modulates that sensorimotor mapping (through gase-
ous modulatory feedback and context-network-feed-
back respectively). However, Husband et al.’s work is
clearly much more biologically inspired than ours.
Moreover, there are significant differences in the way
feedback is used, both in the mechanism of adaptation
(gas diffusion vs. instantaneous adaptation) and in its
target (transfer functions vs. connection weights).

Thirdly, another recent approach to the use of glo-
bal modulation is the work of Ishiguro et al. (2000) on
the use of neuromodulators in dynamically rearrang-
ing neural networks. This work has been inspired by
Meyrand, Simmers, and Moulins’ (1991) work on the
lobster’s stomatogastric nervous system, which sug-
gests that to some degree “biological nervous systems
are able to change dynamically their structure as well

as their synaptic weights” (Ishiguro et al., 2000).
Using evolutionary algorithms, controllers for a leg-
ged robot were constructed. As in the work of Hus-
bands et al. (1998), the diffusion of neuromodulators
was evolved together with the network architecture.
Moreover, neurons were supplied with specific recep-
tors, sensitive only to certain neuromodulators, which
made the modulation more selective. Concerning the
relation to our work, similar comments apply as in the
case of Husbands et al. (1998). At an abstract level,
there are functional similarities in the way a sensori-
motor mechanism is combined with a second, modu-
latory mechanism. At the level of implementation
details, however, there are numerous differences, most
obviously in the level of biological detail integrated
into the modulatory mechanism.

Finally, there is the work of Bergfeldt and Linåker
(2002), which is most closely related to our work
(and also comes from the same lab). Bergfeldt and
Linåker constructed a two-level ANN architecture that
consisted of two mechanisms that are roughly equiva-
lent to context and function network in SCN and
ESCN. The lower-level sensorimotor mapping con-
sisted of a simple feed-forward network with input
units and output units connected by one layer of
weights. The higher level consists of an unsupervised
competitive learning mechanism that abstracts from
the sensory input to simple concepts like “corner” or
“corridor,” and a modulation network that maps the
currently active concept to values that are added to the
lower-level’s motor biases. Using an evolutionary
algorithm, systems of this type have been trained suc-
cessfully on simple delayed response tasks. The dif-
ferences and similarities to the work presented in this
article are fairly obvious: Functionally and structur-
ally their two-level architecture is very similar to SCN
and ESCN, but the modulation is realized in a very
different manner and only applied to motor biases
rather than to all sensorimotor connection weights.

3 Experiments

It might be worth noting that the experiments docu-
mented here are part of a larger set of experiments
with four different ANN architectures (Thieme, 2002;
Thieme & Ziemke, 2002). This article focuses on the
experiments with ESCN robot controllers. For details
on the other experiments and for a more detailed
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quantitative evaluation the reader is referred to
Thieme (2002). 

3.1 Agent and Environment

The experiments discussed in this article have been
carried out with a simulated Khepera robot (cf. Figure
3), using an extended version of Michel’s (1996)
Khepera simulator. The robot faced the six variations
of the road sign problem illustrated in Figure 4. In S1,
the original T-maze problem, the agent should turn to
the side where the stimulus appeared, whereas in S2, a
simple variation, it should turn to the other side. R1
and R2 are referred to as repeated T-maze problems.
In R1, the agent should turn to the side(s) where the
stimulus appeared, possibly twice. In R2, on the other
hand, the first and second light have different mean-
ings, that is, in the second case the agent should turn
toward the other side. M1 and M2 are referred to as
multiple T-maze problems, that is, here both stimuli
come before the first T-junction. In M1, both turns
should go toward the side where the respective stimu-
lus appeared, whereas in M2, as in R2, the meaning of
the second light is reversed, that is, the robot should
turn to the other side.

3.2 Control Networks and Training

Networks of the ESCN architecture, as illustrated in
Figure 2 and discussed in Section 2.1, were used as
robot controllers, receiving sensory input from the
robot’s eight infrared distance/proximity sensors and
two light sensors (cf. Figure 3), and controlling its

motors through two output units. As part of the simu-
lator’s functionality, random noise was added to simu-
lated sensor and motor values as follows: ±10% to
distance sensor values, ±5% to light sensor values,
±10% to motor speed amplitudes, and ±5% to the
direction of motion resulting from the speed differ-
ences (Michel, 1996). 

Networks were trained, for each of the six envi-
ronments separately, by evolving the connection
weights over 1,000 generations using a fairly standard
evolutionary algorithm. Agents were selected based
on their capacity to reliably reach the goal within a

Figure 3 The Khepera robot (Mondada, Franzi, &
Ienne, 1994) and its simulated counterpart. The labels
beginning with D refer to the infrared distance/proximity
sensors: back left (DBL), left-left (DLL), left (DL), front left
(DFL), front right (DFR), right (DR), right-right (DRR), and
back right (DBR). The figure also shows left and right
wheel/motor (ML and MR), which are controlled inde-
pendently, as well as the left and right ambient light sen-
sors (LL and LR) used in the experiments.

Figure 4 Example situations in six variations of the road
sign problem (exact start position, orientation and light
locations vary randomly, and goal locations vary accord-
ingly). Empty circles indicate goal locations, whereas
gray/striped circles indicate areas in which the agent
“dies” immediately. 
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limited number of time steps without touching the
walls. In each fitness evaluation the agent was faced
with different situations in the environment in a cyclic
fashion (starting in a random situation) until it had
solved a maximum of 20 situations or until it failed,
either by entering a dead end, touching a wall, or not
reaching the goal within 400 time steps. The fitness
measure was simply the number of situations solved
out of the maximum of 20 situations. It should be
noted that each general situation, that is, each combi-
nation of possible light positions (left-right, left-left,
etc.), could appear several times since, apart from ran-
dom variations in distances between starting position,
light position and T-junction, there are at most four
general situations in each environment.

Each artificial genome consisted of a sequence of
real values in the range [–10,10] that were mapped
into context network weights in a one-to-one fashion.
The input-output weights (in the function network),
however, were not evolved but determined by propa-
gating two initial context/state unit activations (evolved
along with the context network weights) through the
context network into initial settings for these weights.
The algorithm used a rank selection mechanism that
repeatedly picked out the best individual out of two
individuals randomly chosen among the 20 fittest in
the population, consisting of 100 individuals in total.
Each selected individual reproduced asexually (i.e.,

without crossover), resulting in a single offspring by
means of a mutation mechanism, in which each weight
was offset, with a probability of 0.05, by a value in the
range [–8,8] (but kept in the interval [–10,10]). An
elitist mechanism was also used which preserved the
best individual unmodified.

The starting condition for the agent and the place-
ment of the light sources in each configuration were
varied to rule out brittle solutions relying heavily on
these aspects. The starting position was offset by a
value in the range [–r, r], where r is the radius of the
agent, along the x- and y-axis, respectively. The start-
ing angle was chosen randomly between 70 and 110º ,
where an angle of 90º  means that the agent faces
straight toward the first junction. The placement of
each light source was offset along the corridor (i.e.,
either along the x- or y-axis) by a value in the range [–d,
d ], where d is the diameter of the robot.

4 Results and Analysis

ESCN controllers evolved to reliably reach the goal in
all environments. To illustrate how these networks
work, we will go through successful representative
solutions to all six T-mazes, covering some of them in
detail, and focusing on the use of neuromodulation of
sensorimotor mappings as an STM mechanism. For a

Figure 5 ESCN-controlled agents’ behavior and activation values in the second simple T-maze (S2) environments
(C0/C1 denote the context/state units, SEL the decision unit, for other abbreviations see Figure 3). Activation values are
illustrated as vertical black lines whose height corresponds to the represented value (for each time step). All unit activa-
tion values lie between 0 (black dot) and 1 (full height black line). A filled circle for each time step indicates the agent’s
position. To simplify the matching of the agent’s position/behavior and its network activation values the trajectories and
the time lines have been segmented into five equally long time segments (labeled 0 to 4). 
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more detailed quantitative evaluation the reader is
referred to Thieme (2002).

4.1 Simple T-mazes

In the first simple T-maze the network actually never
activated the decision unit, and thus it remained purely
reactive, always using the same sensorimotor map-
ping. Nevertheless, it solved the task by following the
left wall to the goal when the light appeared on the
left, and by turning right when facing the far wall of
the junction in the other case. Similar, purely reactive
solutions were reported by Bergfeldt and Linåker
(2002). 

The behavior of the agent in the second simple T-
maze is illustrated in Figure 5. In the first case (a),
where the light source appeared on the left, the agent
moved all the way to the goal using the same sensori-
motor mapping, with the appropriate right-turning
behavior triggered by the far side of the junction. In
the second case (b), while passing the light source, the
activation of context unit C1 slowly went up over a
few time steps until finally the decision unit (SEL)
became active. The network then switched to a new
sensorimotor mapping, providing the agent with left-
wall-following behavior that took it all the way to the
goal. It could be noted that in this case the decision
unit, somewhat unnecessarily, remains active all the
way to the goal, but we will see other examples later
where this is not the case.

The connection weight matrices realizing the two
sensorimotor mappings mentioned above are shown in
Figure 6. In case (a), the agent moved fairly straight
forward due to the combined effects of a strong posi-
tive bias weight for the right motor (MR) and the
effect of the proximity sensors. These had a mostly
inhibitory influence on the MR, but a mostly excita-
tory influence on the left motor (ML), which had a
weaker positive bias. The turn to the right was trig-
gered mostly by the proximity sensors on the left,
DLL and DL, which became highly activated when
the agent came very close to the wall at the far side of
the junction (cf. Figure 5a). This made the agent turn
right through a strong inhibition of the MR (see the
large negative weights between DLL/DL and MR in
Figure 6a) and further activation of the ML (positive
weights between DLL/DL and ML in Figure 6a). The
whole behavioral sequence in case (a) remained unin-
fluenced by the sensing of light on the left. The left

light sensor had a potential strong inhibitory influence
on context unit C1 (large negative weight between LL
and C1 in Figure 6a), but C1 had a negative bias any-
way and thus remained more or less inactive through-
out the whole sequence. 

In case (b), on the other hand, the agent started off
with the same initial sensorimotor mapping, but when
encountering the light on the right side the right light
sensor’s (LR) activation also led to the activation of
C1 (strong positive weight between LR and C1 in Fig-
ure 6a). After a short while context unit C1, as men-
tioned above, triggered the decision unit (SEL in
Figure 5b) and this activated the context network,
resulting in the new sensorimotor mapping illustrated
in Figure 6b. The crucial difference was that contrary
to the previous sensorimotor mapping (cf. Figure 6a),
the ML now had a negative bias (cf. Figure 6b), and
thus the agent had a greater tendency to turn left. The
agent did not continue to move straight in the junction,
but instead followed the left wall once the left proxim-
ity sensors DLL and DL’s excitatory influence on the
ML ceased. This is a relatively simple example of how
slight modulation of the sensorimotor mapping, as
embodied in the connection weights, can function as
an STM mechanism. 

Figure 6 Hinton diagrams for the ESCN sensorimotor
connection weights in the second simple T-maze (S2)
environments. Connection weights are illustrated as black
and white squares (black for negative/inhibitory weights,
white for positive/excitatory weights), whose size reflects
the weight magnitude. The columns labeled 1.0 contain
the biases (or “bias weights”). C0 and C1 values to the
right indicate the context unit activation values that led to
the respective weight setting. For other abbreviations see
Figure 3.
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4.2 Repeated T-mazes

The behavior of the ESCN-controlled agents in the
first repeated T-maze environments is illustrated in
Figure 7. In case (d), where both light sources
appeared on the agent’s right side, the decision unit
(SEL) never became active, that is, the agent solved
the task in a purely reactive fashion. Hence, the net-
work used the same sensorimotor mapping, following
the right wall all the way to the goal. In the other situ-
ations, whenever the agent passed a light source on its
left side the decision unit was activated, which led to a
new sensorimotor mapping and different set of behav-
iors. The agent ceased to follow the wall and instead
moved fairly straight forward until it faced the wall at
the far side of the next junction where the appropriate
left-turning behavior was engaged. Behaviorally this

is very similar to the above solutions of the second
simple T-maze environments. One type of light/turn
situation is handled with a default wall-following
behavior, whereas the other is handled by switching to
a different set of behaviors, moving straight ahead and
turning the opposite way in the junction.

The connection weight matrices underlying these
behaviors are shown in Figure 8. Having analyzed a
similar mechanism in detail above, the differences
between the two weight settings, and their behavioral
consequences, are relatively easy to explain here. The
default sensorimotor mapping used initially in all four
situations, and all the way to the goal in the fourth one
(cf. Figure 7d), is realized by the weights illustrated in
Figure 8a. A large positive bias for the ML and a very
small negative bias for the MR give the agent a right-
turn-, and thus right-wall-following tendency. When

Figure 7 ESCN-controlled agents’ behavior and activation values in the first repeated
T-maze (R1) environments.
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the agent encountered a light source on its left side
this activated context unit C0 (C1 is active all the
time), through the large positive weight between LL
and C0 (cf. Figure 8a). When C0 was strongly acti-
vated, then the decision unit (SEL) became active as
well (cf. Figure 7) and this led to the transition from
the first sensorimotor mapping (cf. Figure 8a) to the
second one, illustrated in Figure 8b. The crucial differ-
ence between the two seems to be the fact that in the
second case both motors have roughly similarly large
positive biases. This made the agent’s default behavior
straight forward motion rather than right turning (at
the junction), and the turn to the left was facilitated by
the right proximity sensors’ inhibitory influence on
the ML (negative weights between DFR/DR/DRR and
ML in Figure 8b). 

In the second repeated T-maze (not included due
to lack of space) the network simply kept the initial
sensorimotor mapping in all cases where the agent
already reached the goal by turning left in the first
junction. If the first light source instead appeared to
the right, it switched to a second mapping that made
the agent turn right at the first junction. Already when
encountering the wall in that first junction it switched
to a third mapping, and even to a fourth one if the sec-
ond light was encountered on the left side. 

4.3 Multiple T-mazes

In the first multiple T-maze2 the initial sensorimotor
mapping provided the agent with a right-wall-follow-
ing tendency and thus took the agent all the way to the

goal in a purely reactive fashion when lights were
encountered only on the right side. When a light
source was encountered on the left side, on the other
hand, independent of whether this was the first or sec-
ond light source, the agent switched to a sensorimotor
mapping leading to a slight turn to the right, conse-
quently moving through the corridor somewhat diago-
nally. As a result, the angle at which the agent would
encounter the wall at the far side of the first junction
depended on where the turn had been initiated. Hence,
that first junction could be handled depending on
which front proximity sensor was activated first/most.
At the second junction, the agent could then simply
always turn left since the above default strategy already
covered situations requiring a second right turn. 

The behavior of ESCN-controlled agents in the
second multiple T-maze environments is illustrated in
Figure 9. In this case, left turns were facilitated by
left-hand wall-following, whereas right turns were
achieved, as in several of the above cases, by first
moving straight in the junction and then turning when
facing the wall at the far side of the junction. It might
be worth pointing out that the use of the decision unit
(SEL), and consequently the use of the context net-
work for modulation of sensorimotor weights in the
function network, was highly selective and only oc-
curred once in each scenario. 

The ESCN’s sensorimotor (or function network)
connection weight settings used in the second multiple
T-maze tasks are illustrated in Figure 10. The initial
weight configuration (cf. Figure 10a) was such that in
the absence of other stimuli, the approximately equally
large positive motor biases resulted in straight forward
motion. In the cases where the first light source was
on the left side (cf. Figures 9a and 9b) the agent initi-
ated a right-circling behavior, facilitated through the
large negative weight between the LL and the MR,
combined with a weaker inhibitory connection between
LL and ML. This temporarily made the agent move
away from the first junction. When facing the wall in
the dead end this led to activation of the left frontal
proximity sensor (DFL), which in turn briefly acti-
vated context unit C1 through the large positive weight
between DFL and C1 (cf. Figure 10a), which in turn
activated the decision unit. 

As a result, the sensorimotor mapping was re-set
to the one shown in Figure 10b, which realized a left-
hand wall-following behavior. Similar to other cases
discussed above, this was facilitated through a large

Figure 8 Hinton diagrams for the ESCN sensorimotor
connection weights in the first repeated T-maze (R1)
environments.
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positive bias for the MR and a small negative bias for
the ML, giving the agent a tendency to turn left in the
absence of stimuli, combined with excitatory connec-
tions between the proximity sensors on the left (DLL,
DL, DFL) and the ML. Hence, the agent would move
forward as long as there was a wall to the left, and turn
left as soon as that wall “disappeared” in the junction.
In the cases illustrated in Figures 9a and 9b this took
the agent all the way to the goal, in both cases more or
less unaffected by the second light source on the left
and right, respectively. 

In the case illustrated in Figure 9c the agent
encountered the first light source on its right-hand
side, which also activated context unit C0 temporarily,
through the large positive weight between left light
sensor LL and C0 (cf. Figure 10a), but the behavior
was not influenced at all. When sensing the second
light source to the left, the agent, as in the above

cases, turned around to move temporarily away from
the first junction. During that turn the agent sensed the
first light source again with the LR, which also acti-
vated context unit C0 again. Now, however, context
unit C1 was activated at the same time, when facing
the wall during the turn, through the large positive
weight between left frontal proximity sensor DFL and
C1 (cf. Figure 10a). The joint activation of both con-
text units also triggered the decision unit (SEL),
which resulted in the new sensorimotor weight setting
illustrated in Figure 10c. This sensorimotor mapping
made the agent move forward by default through two
positive motor biases, and turn right in junctions. Both
frontal proximity sensors, DFL and DFR, have excita-
tory connections to the ML and inhibitory connection
to the MR (cf. Figure 10c). In this case these behav-
iors took the agent all the way to the goal, as illus-
trated in Figure 9c.

Figure 9 ESCN-controlled agents’ behavior and activation values in the second mul-
tiple T-maze (M2) environments.
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In the case where both light sources were placed
on the right side, as illustrated in Figure 9d, the agent
never turned away from the first junction. But as in the
cases illustrated in Figure 9a and b, the first time the
left front sensor DFL became activated, context unit
C1 was activated temporarily as well. This in turn trig-
gered the decision unit (SEL), which resulted in the
sensorimotor mapping illustrated in Figure 10b, which
even in this case took the agent to the goal through
left-hand wall-following. Hence, the first two scenar-
ios and the last one were all solved using the same
combination of behaviors/sensorimotor mappings, but
in the latter case the switch did not occur until after
(or in) the first junction. 

As mentioned briefly above, it should be noted
that in all four cases the decision unit became active
only once, that is, the sensorimotor mapping was
adapted only once. Hence, the agent is basically con-
trolled by purely reactive sensorimotor mappings all
the time, except that at one point there is a switch
from one reactive mechanism to another. It should be
noted that at all other points in time the context unit
activation values do not influence the sensorimotor
mapping at all. This means STM is here not realized
through the sustenance of neuronal activation patterns,

but only through the dynamic modulation of reactive
sensorimotor mappings, as embodied in the sensori-
motor connection weights. Furthermore, it might be
worth pointing out that in three out of four cases, the
modulation was actually not triggered by the light
stimuli. Hence, the new sensorimotor weights corre-
spond to the behavior that will take the agent to the
goal, but they could hardly be said to represent the
light stimuli or the side on which they appeared, in the
traditional sense of the term.

5 Summary

The main aim of this article has been to demonstrate and
analyze the use of neuromodulation of sensorimotor
mappings in higher-order recurrent neural robot control-
lers as an STM mechanism in delayed-response tasks.
After some introductory discussion of the way feedback
is used to provide STM in different types of recurrent
neural nets, a number of experiments with extended
sequential cascaded networks controlling simple robotic
agents in six different delayed response tasks were pre-
sented. The analysis focused on the details of the inter-
nal workings of the ESCNs and their interaction with
behavioral/environmental dynamics. The ESCN here
serves to some degree as a representative of the class
of higher-order recurrent neural networks, which has
been used relatively little in autonomous agents and
adaptive behavior research, and in other areas it has
not been analyzed in the way it has been here. 

The focus of our analysis has been on how STM
is realized in ESCNs through synaptic plasticity and
dynamic modulation of sensorimotor mappings (rather
than through feedback of neuronal activation patterns,
as in conventional recurrent nets), and how these
internal dynamics interact with the external/behavio-
ral dynamics, such as the use of reactive strategies. It
has been demonstrated, in particular in the analysis of
the last experimental scenario, how the ESCN, when
at its best only makes very selective use of modulatory
feedback, while as far as possible limiting itself to the
use of reactive sensorimotor mechanisms and occa-
sional switches between them. 

It should be noted that the way STM is realized in
these networks is very different from the traditional
view of the neural mechanisms underlying STM in
delayed response tasks. As discussed in the Introduc-
tion, the instruction stimulus has in many neuroscien-

Figure 10 Hinton diagrams for the ESCN sensorimotor
connection weights and resulting behaviors in the second
multiple T-maze (M2) environments.
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tific experiments been shown to create or trigger
neural activity that persists during the delay period
and guides the delayed behavioral response after-
wards. This neural correlate of STM is therefore com-
monly considered an internal representation of the
original stimulus. The ESCN-controlled robots, on the
other, as demonstrated in the previous section, clearly
realize STM, but they do so in a way that is not repre-
sentational in the traditional sense of a referential or
correspondence notion of representation (cf., for exam-
ple, Ziemke, 2001). This means that although the
modulated sensorimotor mapping to some degree
reflects the agent’s history of interaction with the
environment, in many cases there is no obvious cor-
respondence between external stimuli and the inter-
nal parameters, which are anticipating future behavior
rather than representing the past. 

In summary, we believe that the alternative way of
realizing STM in delayed response tasks that has been
demonstrated in this article is relevant to cognitive-
and neuroscientific theories and models of the relation
between memory, representation and behavior. In
future work, we intend to investigate further the
highly selective use of feedback and the strong exploi-
tation of environmental and behavioral dynamics, as
exhibited in the last set of experiments, as well as
address the question how a working balance between
them is found in the processes of self-organization and
agent–environment interaction.

Notes

1 Output and state units have biases (or bias weights); there-
fore 1 is appended to the input vector in these equations.

2 Not illustrated in detail, since the more interesting second
multiple T-maze will be analyzed in detail below.
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