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Abstract

This thesis concerns the application of computational intelligence techniques, mainly neural

networks and evolutionary computation, to computer games. This research has three parallel

and non-exclusive goals: to develop ways of testing machine learning algorithms, to augment

the entertainment value of computer games, and to study the conditions under which complex

general intelligence can evolve. Each of these goals is discussed at some length, and the research

described is also discussed in the light of current open questions in computational intelligence

in general and evolutionary robotics in particular.

A number of experiments are presented, divided into three chapters: optimization, imitation

and innovation. The experiments in the optimization chapter deals with optimizing certain

aspects of computer games using unambiguous fitness measures and evolutionary algorithms or

other reinforcement learning algorithms. In the imitation chapter, supervised learning techniques

are used to imitate aspects of behaviour or dynamics. Finally, the innovation chapter provides

examples of using evolutionary algorithms not as pure optimizers, but rather as innovating new

behaviour or structures using complex, nontrivial fitness measures.

Most of the experiments in this thesis are performed in one of two games based on a simple

car racing simulator, and one of the experiments extends this simulator to the control of a real-

world radio-controlled model car. The other games that are used as experimental environments

are a helicopter simulation game and the multi-agent foraging game Cellz.

Among the main achievements of the thesis are a method for personalised content creation

based on modelling player behaviour and evolving new game content (such as racing tracks),

a method for evolving control for non-recoverable robots (such as racing cars) using multiple

models, and a method for multi-population competitive co-evolution.



Chapter 1

Introduction

Once upon a time, it was widely believed that we could build artificial intelligence ourselves. In

other words, that we could understand the mechanisms of intelligence in sufficient depth and

detail to be able to write a program (or construct a machine) that was intelligent. Some people

still believe this; it’s a perfectly respectable academic opinion.

I don’t believe we can do this, at least not within the foreseeable future. There is just too

much we don’t know about intelligence. But I think we will have more success with building

systems that learn how to be intelligent. That is what this thesis about: how to construct

systems that learn how to be intelligent. More specifically, how to write software that learns to

be intelligent within computer games. My two main objectives are to show how computer games

can be used to further our understanding of how to create systems that learn to be intelligent,

and how systems that learn to be intelligent can be useful in the construction of computer games.

1.1 Main scientific contributions

The background chapters of this thesis can come across as somewhat eclectic, and the exper-

imental chapters describe more than a dozen groups of experiments (though the more central

experiments are described in more detail than the others; this will be discussed in the next

section). Therefore, it is important that I describe what I consider to be the main scientific

contributions of the thesis. They can be divided into a general theoretic framework and a few

specific experiments.

The general theoretic framework is the taxonomy of three different approaches to compu-

tational intelligence and games, and the discussion about the potential for CI in games and

games in CI inherent in each approach, in chapter 3. Most current research concerning CI and

games fail to appreciate the nature of computer games, and focus on using them as testbeds for
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reinforcement learning algorithms in a rather simplistic way. I point out several other ways in

which CI can be used for games, and games for CI, within a structured framework. In doing

this I draw not only on the CI literature but also on research findings in e.g. paleobiology and

game development.

While I consider all the experiments described in this thesis to be scientifically sound and

of at least some interest, the four sets of experiments which I claim to be the most important

contributions in this thesis are the following:

• The incremental evolution of general and specific driving skills in section 5.2. There, we

show that it there is such a thing as general driving skills in our car racing task, that this is

something different from being able to drive a single track, and that general driving skills

can be evolved through incremental evolution. We also show that general controllers can

be specialized through further evolution, and thereby obtain higher fitness on particular

tracks than controllers evolved directly for those tracks; for some tracks the difference is

that between being able to drive the track at all or not. This technique can both have

applications in computer games and represent some small progress towards a method for

evolving truly complex general behaviour.

• The evolutionary personalised content creation experiments described in sections 6.1 and 7.3.

The main invention here lies in the combination of modelling of human behaviour, evo-

lution of controllers to match the modelled behaviour, and evolution of game content (in

this case racing tracks) with entertainment metrics as fitness functions. These experiments

combine several computational intelligence techniques in a novel way, and opens up for

new applications of computational intelligence in games.

• The modelling of the dynamics of a radio-controlled car, and subsequent evolution of

controllers in simulation which can then be used to control the real car, described in

section 6.2. Like the content generation experiments, this experiment combines supervised

learning with evolutionary computation in an at least partly novel way. A crucial invention

needed to make this work was the use of several different models, acquired using different

learning algorithms, during controller evolution to cancel out exploitable weaknesses of the

models. With this approach, we believe to be the first to have used automated modelling

techniques to evolve transferable controllers for a fast, dynamic, “non-recoverable” robot.

• The use of “diffuse” competitive co-evolution, where more than two populations are used,

to compare different controller architectures, and to evolve more complex general behaviour

than would be possible with single-population approaches, described in section 7.2. While

diffuse competitive co-evolution has been used by a few researchers before (unbeknownst

2



to us at the time of conducting the experiments), it seems never to have been used with dif-

ferent controller architectures in the different populations. Some of the experiment results

were in line with predictions, such as the superior performance of the multi-population-

evolved controllers, while some were unexpected and intriguing, especially the effect where

faster-learning representations reach lower eventual fitness.

1.2 Organization of the thesis

The first four chapters of this thesis, including this chapter, are background chapters discussing

issues techniques, problems, issues and theories that will be used and/or investigated in the

experiment chapters. Chapters 5, 6 and 7 are experimental chapters, describing the motivations

for each experiment, the experimental methods particular to those experiments, and the results

of the experiment together with some discussion. The experimental chapters are topically or-

ganised, depending on which approach to computational intelligence and games is taken by the

experiments in the chapter. A final chapter puts the results in context and discusses future

directions for the research.

1.3 List of papers

This thesis is based on theoretical and experimental research which has previously been written

up in 12 scientific papers, which have all have passed the peer-review process and been accepted

for publication in the proceedings of various international conferences, symposia, and workshops

with high academic standards. Much of the same research is also currently being written up

or under review for archival publication in journals and books. This section lists the papers

on which the thesis is based, along with in what section(s) of the experimental chapters the

experiments in each paper is discussed. The theory, related work and methods of each paper is

instead discussed mostly in the background chapters of the thesis.

One problem with basing a doctoral thesis on 12 papers is that the amount of research

to describe threatens to make the thesis too long and lose focus. I have therefore selected five

papers, both because they are some of the better papers out of the 12 and because they are central

to the arguments of the thesis, to be discussed extensively. This means that the experiments

in those papers will be described in rather more detail in the thesis than in the papers. The

experiments in the other 9 papers will be discussed briefly, in about the level of detail of an

extended abstract. For those papers, the published paper rather than the discussion in the

thesis is to be considered the authoritative version. (All papers are available for downloading

from my web site, http://julian.togelius.com.) However, note that most of the papers share at
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least some theory, related work, and methods, and these will be discussed in the background

chapters. These are the papers:

• Julian Togelius and Simon M. Lucas (2005): Forcing neurocontrollers to exploit sensory

symmetry through hard-wired modularity in the game of Cellz. Proceedings of the IEEE

Symposium on Computational Intelligence and Games, 37-43. Briefly discussed in sec-

tion 5.4.2. [143]

• Julian Togelius and Simon M. Lucas (2005): Evolving Controllers for Simulated Car Rac-

ing. Proceedings of IEEE Congress on Evolutionary Computation, 1906-1913. Extensively

discussed in section 5.1. [142]

• Renzo De Nardi, Julian Togelius, Owen Holland and Simon M. Lucas (2006): Evolution

of Neural Networks for Helicopter Control: Why Modularity Matters. Proceedings of the

IEEE Congress on Evolutionary Computation. Briefly discussed in section 5.4.1. [36]

• Julian Togelius and Simon M. Lucas (2006): Evolving robust and specialized car racing

skills. Proceedings of the IEEE Congress on Evolutionary Computation. Extensively

discussed in section 5.2. [145]

• Julian Togelius and Simon M. Lucas (2006): Arms races and car races. Proceedings of

Parallel Problem Solving from Nature. Briefly discussed in section 7.1. [144]

• Julian Togelius, Renzo De Nardi and Simon M. Lucas (2006): Making racing fun through

player modeling and track evolution. Proceedings of the SAB Workshop on Adaptive Ap-

proaches to Optimizing Player Satisfaction. Briefly discussed in sections 6.1 and 7.3. [139]

• Hugo Marques, Julian Togelius, Magdalena Kogutowska, Owen Holland and Simon M.

Lucas (2007): Sensorless but not Senseless: Prediction in Evolutionary Car Racing. Pro-

ceedings of IEEE ALife. Briefly discussed in section 6.4.1. [83]

• Simon M. Lucas and Julian Togelius (2007): Point-to-Point Car Racing: an Initial Study

of Evolution Versus Temporal Difference Learning. Proceedings of IEEE CIG. Briefly

discussed in section 5.3.2. [80]

• Julian Togelius, Renzo De Nardi and Simon M. Lucas (2007): Towards automatic person-

alised content creation for racing games. Proceedings of IEEE CIG. Extensively discussed

in sections 6.1 and 7.3. [140]

• Alexandros Agapitos, Julian Togelius and Simon M. Lucas (2007): Evolving controllers for

simulated car racing with object-oriented genetic programming. To be presented at Gecco.

Briefly discussed in section 5.3.1. [3]
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• Julian Togelius, Renzo De Nardi, Hugo Marques, Richard Newcombe, Simon M. Lucas

and Owen Holland (2007): Nonlinear dynamics modelling for controller evolution. To be

presented at Gecco. Extensively discussed in section 6.2. [141]

• Julian Togelius, Peter Burrow and Simon M. Lucas (2007): Multi-population competitive

co-evolution of car racing controllers. To be presented IEEE CEC. Extensively discussed

in section 7.2. [138]

In addition, the following papers were published during my PhD, but are not included in

this thesis in order to keep its length manageable:

• Alberto Moraglio, Julian Togelius and Simon M. Lucas (2006): Product Geometric Cross-

over for the Sudoku Puzzle. Proceedings of the IEEE Congress on Evolutionary Compu-

tation. [94]

• Alberto Moraglio and Julian Togelius (2007): Geometric Particle Swarm Optimization for

the Sudoku Puzzle. To be presented at Gecco. [93]

• Alexandros Agapitos, Julian Togelius and Simon M. Lucas (2007): Multiobjective tech-

niques for the use of state in genetic programming applied to simulated car racing. To be

presented at the IEEE Congress on Evolutionary Computation. [4]

1.4 Notes on style

In this chapter, I use the word I to refer to myself and separate my views from those of others.

In the subsequent chapters, I will use the word we. The main reasons for this is that much of

the experimental work is done in collaboration with other researchers, as well as most of my

background reasoning have been discussed with others, and that I don’t want to switch between

the two forms of personal pronoun throughout the thesis. At the very least, all of the research

has been done under Simon’s supervision. So I think it is justified to use the first person plural

throughout the thesis, even though it should sometimes be construed as referring to the reader

and the author (me and you), or perhaps as pluralis majestatis; it is in any case not to be taken

as evidence of multiple personalities of the author.

Further, I consider it important that this thesis is reasonably easy to read, if possible it should

even be pleasant to read. This has a number of minor consequences, such as the limited use of

acronyms, and the occasional use of interchangeable terms. A more important consequence is

that several procedures and lines of reasoning that other authors would have presented in the

form of equations are here presented in plain English. I consider excessive use of mathematics
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to be disastrous for readability, and I therefore present some of the material in mathematical

form only when I am more or less forced to.
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Chapter 2

Computational intelligence

This chapter surveys a range of computational intelligence methods that will be used in the

experimental parts of this thesis, and the particular issues within those methods that will be

explored in the experiments. The first section is on evolutionary algorithms, a broad class of

algorithms mimicking natural evolution, that are used in at least some part of all the experiments

in this thesis. The next section is on neural networks, a class of function representations inspired

by biological nervous systems, that is again used (in some form) in almost all the experiments

in this thesis. Evolutionary robotics, which is a field that uses evolutionary computation and

(most often) neural networks for robot control, and which this thesis can be seen either as a

contribution to or as closely related to, is the subject of the third section.

The three first sections are by necessity only shallow overviews, as the subject of each of them

is a full-blown research field in its own right. For the final section, however, we go into some more

depth on a number of issues that arise when using evolutionary computation to create intelligent

behaviour. These issues, which are being actively researched within both the evolutionary

computation and evolutionary robotics communities, are the role and representation of sensors

and actuators, learning curves and incremental evolution, competitive co-evolution, modularity,

different controller representations and stateful versus reactive control. Each of these issues is

addressed and explored in at least one of the experiments in the thesis, most of them in several

experiments. Hopefully, the research described in this thesis will also have contributed at least

something to the understanding of each of the issues.

2.1 Evolutionary computation

Evolutionary computation is a label stuck to a number of algorithms inspired by Darwin’s the-

ory of biological evolution by natural selection, and also to the scientific field that studies these
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algorithms. To what extent these algorithms actually reproduce the mechanisms of biological

evolution varies wildly, but most computer scientists tend to disregard the biological interpre-

tation of evolutionary algorithms and treat them simply as global optimizers. Seen from this

perspective, evolutionary algorithms are enormously versatile, as they can optimize any problem

as long as the solution can be expressed as a sequence of parameters, and the fitness (quality)

of a candidate solution can be measured quickly and reliably. Compared to other optimiza-

tion techniques, little or no domain knowledge is required, though better results can usually be

achieved when infusing some domain knowledge[40].

To get a bit more concrete, a typical simple evolutionary algorithm works like this: first,

a number of candidate solutions (alternatively called chromosomes, genomes or individuals)

to the problem are generated randomly; the set of all of them is called the population. The

evolutionary process then proceeds in generations. In each generation, all indivuals in the

population are evaluated for how well they solve the problem at hand, and given a numerical

fitness by a fitness function. Then, some sort of selection takes place, whereby the more fit

individuals are kept and the less fit indivduals disposed of and replaced with new individuals.

The new individuals are created either from copies of the existing good (more fit) individuals, or

from recombination (crossover, blending together) of two or more good individuals. After that,

mutation (small random changes) are applied to all or some individuals in the population, and

the next generation starts. This process is repeated for a fixed number of generations, or until

a certain predetermined fitness level is reached by some member of the population.

Why this process works is easy to see on a common-sense level, if we visualize the algorithm

as moving the individuals through a multi-dimensional search space where each individual con-

stitutes a point in space, and changing some value of an individual moves that point in the

corresponding direction. (If the y-dimension of the space is taken to be the fitness of the in-

dividual, we talk about a fitness landscape) Bad individuals are continuously removed, good

individuals are kept, and new individuals are generated based on making random changes to

copies of the good individuals. Thus, the fitness of the best individual in the population can

never decrease (except in the case of noisy fitness, when two consecutive evaluations of the same

individual yield different fitness values, or when elitism is not used), and from the mutations

better individuals are likely to emerge, if they can be found in the vicinity of the best individu-

als. As a result, the best individual of the population moves closer to a local optimum or global

optimum, a point from which there are no fitter individuals nearby; this can be visualized as

a peak in the fitness landscape. However, mathematically proving that this process works has

turned out to be extremely difficult, and currently no general convergence proof of evolutionary

algorithms exists.
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The description of an evolutionary algorithm above is only intended to represent a typical

algorithm, and in the vast and diverse field of evolutionary computation every single part of the

mechanism described has been changed or replaced at some point. In their introduction to evo-

lutionary computation, Eiben and Smith introduce a taxonomy of evolutionary algorithms based

on how they vary in six important dimensions [40]: representation, fitness function, population,

parent selection mechanism, varation operators (mutation and recombination), and survivor se-

lection (replacement). However, such an extensive overview is outside the scope of this chapter.

Instead, we will here discuss the main evolutionary algorithms that will be used throghout the

dissertation.

2.1.1 Evolution strategies

Evolution strategies (ESs) are particularly well-suited to optimizing problems represented as

vectors of real numbers. The basic evolution strategy was introduced in the early 1960’s by

Ingo Rechenberg and Hans-Paul Schwefel, and was originally used for optimizing aircraft wings

in wind tunnels[9]. Here we present the simple ES we use in many of the experiments in this

thesis, and which forms the basis for the algorithms used in some other experiments.

1. At the start of a run, a population is created, containing µ + λ individuals. The first

µ individuals are also called the elite, while the other λ indviduals are called the tail.

Usually, we set µ = λ = a number between 15 and 50. Each individual is a fixed-length

vector of real numbers, with all numbers initially set to small random values.

2. The population is sorted, in order from higher-scoring to lower scoring individuals.

3. The λ worst-scoring individuals (the tail) is removed from the population.

4. The removed individuals are replaced with copies of the µ first individuals (the elite). If

µ = λ each individual in the elite is copied once.

5. Mutation is applied the λ new individuals in the tail. This means adding random num-

bers to all the real numbers in the vector constituting the mutated individual. These

random numbers are drawn from a Gaussian distribution with mean 0 and some low stan-

dard deviation, typically 0.1. This standard deviation is also referred to as the mutation

magnitude.

6. All individuals in the population are evaluated by the fitness function. If the fitness

evaluations are noisy (i.e. the fitness for the same individual changes between evaluations

due to random effects) each individual is evaluated several times (usually between 3 and

10) and the average of these values is used.
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7. If the requisite number of generations have passed, or the highest fitness value in the

population exceeds the desired fitness, the algorithm terminates and the most fit individual

is returned as its results. Otherwise, the number of generations passed is increased by one,

and the algorithm returns to step 2.

Note that no recombination is used, and that the mutation magnitude is constant throughout

the run; self-adaptation is not used.

2.1.2 Genetic algorithms

Genetic algorithms (GAs) were introduced by John Holland in 1975 as a tool for biological

modelling. The original version of genetic algorithms worked with individuals represented as

strings of bits, and the variation operators worked on the level of flipping and exchanging bits;

nowadays, however, genetic algorithms have been developed to work with a wide variety of

representations. A defining feature of GAs is that they all use some sort of recombination,

though the emphasis on recombination varies.

A typical simple GA works very much like the ESs discussed above, except for the inclusion

of recombination:

1. At the start of a run, a population is created, containing n individuals. The first part of

the population is referred to as the elite, and the second part as the tail; the proportion

between these parts depend on the experimental setup, with the elite usually considerably

smaller than the tail. The representation of the individuals is dependent on the problem

at hand.

2. The population is sorted, in order from higher-scoring to lower scoring individuals.

3. The tail is removed from the population.

4. The removed individuals are replaced with new individuals. These new individuals are

created by recombining two randomly chosen individuals in the population, and mutating

the resulting individual. Exactly how the recombination and mutation works is dependent

on the problem at hand.

5. All individuals in the population are evaluated by the fitness function. If the fitness

evaluations are noisy each individual is evaluated several times and the average of these

values is used.

6. If the requisite number of generations have passed, or the highest fitness value in the

population exceeds the desired fitness, the algorithm terminates and the most fit individual
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is returned as its results. Otherwise, the number of generations passed is increased by one,

and the algorithm returns to step 2.

2.1.3 Cascading Elitism

In many cases, there is more than one fitness measures to maximize; a problem where this is

the case is called a multiobjective problem. Evolutionary multiobjective optimisation is a rich

and active research field, and it would take us too far from the topics of this theses to discuss

that field here. However, in the experiments in sections 6.1 and 7.3 we have several different

objectives, and needed a way of handling this. We invented a very simple solution to this,

namely an evolution strategy with multiple elites. In the case of three fitness measures, it works

as follows: out of a population of 100, the best 50 genomes are selected according to fitness

measure f1. From these 50, the 30 best according to fitness measure f2 are selected, and finally

the best 20 according to fitness measure f3 are selected. Then these 20 individuals are copied

four times each to replenish the 80 genomes that were selected against, and finally the newly

copied genomes are mutated.

This algorithm, which we call Cascading Elitism, is inspired by an experiment by Jirenhed

et al. [68]. We have not analyzed the effects of this algorithm in detail, nor have we compared

it to “proper” multiobjective optimization algorithms, we have merely established that it works

for the particular problem instances we developed it for.

In both of the cases where multiple fitness functions are used in this thesis, the component

fitnesses are listed as f1, f2 and f3. In all other cases, only a single fitness function is used.

In most cases this fitness function is so simply defined that it is simply described as text. The

exception is the helicopter evolution experiments, where an equation is given.

2.2 Neural networks

Neural networks are mathematical structures that are, to varying degrees, inspired by the bio-

logical nervous systems. There is probably more published academic papers concerning neural

networks than anyone could read in a lifetime, and the variety of different types of networks

and learning algorithms is dizzying. For this reason we will here limit the discussion to the

particular class of neural networks that is used in the experiments in this thesis, namely the

multi-layer perceptron (MLP) and some variations and derivations thereof. We will also limit

our perspective on these networks to seeing them as function approximators, and not as mod-

els of biological nervous systems. These are arguably uncontroversial decisions, as the MLP is

almost certainly the most common type of neural network used in applied research, and is only
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distantly related to the networks used for modelling in neuroscience.

Modern introductions to neural networks from pattern recognition and machine learning

perspectives can be found in [10] and [91].

2.2.1 Multi-layer perceptrons

The MLP, together with the backpropagation learning algorithm, was popularized in 1986 by

Rumelhart and McClelland [114]. It can be seen as a generalization of the perceptron, a simple

learning structure first described by McCulloch and Pitts in 1940 [85]. Several theoreticians

have proved that a three-layer MLP can be made to approximate any numerical function, as far

as the requisite number of hidden neurons are present (see [10] for details). While these results

are certainly interesting and cause for cautious optimism, the practical feasibility of training an

MLP to approximate a particular function is another matter. Some of the algorithms used and

issues faced in this generally non-trivial task will be discussed in this chapter.

The basic abstractions in a MLP are the neuron and the connection. The neurons are

organized in layers; usually three layers, called the input layer, the hidden layer and the output

layer respectively. Connections are directional, and in a standard fully-connected MLP (in this

thesis we assume all networks are fully connected unless another structure (topology) is explicitly

given) all the neurons in the input layer are connected one-way to all the neurons in the hidden

layer, and all the neurons in the hidden layer are connected one-way to all the neurons in the

output layer. This means that a MLP has i ∗ h + h ∗ o connections, where i, h, and o are the

number of neurons in the input, hidden and output layer respectively.

Neurons and connections contain one numerical value each, but the connections act as con-

stants and the neurons as variables. This means that when a neural network is used for ap-

proximating a function (propagating a vector of values), the values in/of the neurons change

but not those of the connections. When training the network, however, the connection values

(also called weights) change. It also means that the functioning of a (fully connected) MLP is

completely specified by its connection weights.

Propagation

So, how does a multi-layer perceptron actually work - what does it do? It works like this. First

the input to the network is placed in the input layer, one value in each neuron (the input has to

be a vector with the same dimensionality as the length of the input layer). Then, the value of

each neuron in the hidden layer is calculated as the sum of all the contributions to that neuron

from the input neurons. The contribution from each input neuron is defined as the value of that

neuron multiplied by the weight of the connection from that particular input neuron to that
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particular hidden neuron. After the summing up, a transfer function or squashing function is

applied to the value of each neuron, introducing the nonlinearity that is crucial for the universal

computational power of the MLP. In the networks in this thesis, the hyperbolic tangent (tanh)

transfer function is used. Differently expressed, the activation of the hidden neuron becomes:

hj = tanh

(

n
∑

i=1

(ii ∗ wij)

)

(2.1)

The propagation from hidden layer to output layer works in exactly the same way. It is worth

noting that the layers don’t have to be of the same sizes at all; 5 inputs, 3 hidden neurons and

176 outputs is a perfectly possible (though improbable) MLP topology. (In most descriptions

of the MLP, it is stipulated that there is an extra bias connection to every neuron in every layer

from a constant input with the value 1, in order to achieve full computational power. (Otherwise,

an input of all zeroes could not result in a non-zero output.) In our implementation, we are

instead fixing one of the inputs to 1 in all experiments.)

Backpropagation

That is how a MLP works once its connection weights are set. To train MLPs, a number of

different algorithms can be used. The next section describes how evolutionary computation is

used to train networks; here, we describe the backpropagation algorithm for supervised learning

with multi-layer perceptrons. Supervised learning refers to approximating the function under-

lying a set of training data, which can be expressed a list of pairs of inputs and outputs. The

training data could consist in various demographic figures (inputs) and average house prices

(outputs) for a number of UK towns (data points), or, to take an example from the experiments

in this thesis, prior state and control signal (inputs) and next state (outputs) over a few thoused

samples taken from a motion capture system at 20 hz (data points). If there is enough data, the

data is representative enough of the underlying function (not too much noise), the underlying

function is not too complicated, and the network has the right size and topology, the backprop-

agation algorithm can usually train the network to reproduce the underlying function with good

accuracy.

The basic idea in the backpropagation algorithm is to go through all the data points several

times, and for each data point feed the input to the network, and compare the output of the

network (the prediction) with the “real thing”, the output that is part of the data point (the

target). When the prediction differs from the target, the weights of the network are changed so

as to better match the target. This is done by “descending the error gradient”; moving the value

of each connection in the direction that minimises the error that that connection contributed

to in the last forward propagation. To do this, we must calculate how much each connection
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weight has contributed to the error and in what direction. More formally, the equation for the

weight updates is the delta rule:

∆wij = η ∗ δj ∗ yi (2.2)

Here, ∆wij is the change in the weight of the connection from i to j, η is the learning

rate (a small positive constant value), yi is the input signal to node j (the signal that is being

propagated form i to j). η is the local gradient, which if j is an output node is defined as:

δj = aj ∗ (1− aj)(tj − aj) (2.3)

Where aj is the activation of output node j, and tj is the target value for that output. If we

are looking for the local gradient for a hidden node, it is:

δj = aj ∗ (1− aj)
∑

kǫoutputs

wjkδk (2.4)

Where wjk is the weight of the connection from hidden neuron j to output k, and δk is the

local gradient of that output.

What is outlined here are the central equations behind plain vanilla backpropagation. Even

disregarding the myriad variations of and improvements on basic backpropagation, there are

several technical considerations to be aware of in the the application of the algorithm which we

will not discuss here; interested readers are referred to Bishop’s textbook [10]. In this thesis,

only the “orthodox” backpropagation algorithm will be used.

2.2.2 Evolutionary neural networks

Evolutionary neural networks is the result of the happy marriage of two excellent ideas. The

name refers to the research field (and application practice) of using evolutionary algorithms to

set the weights (and sometimes devise the topology) for neural networks, but it can also refer

to the the very networks that are developed using this method. The practice of evolving neural

networks is also called neuroevolution. A good but somewhat dated introduction to the field

with a substantial bibliography can be found in [155].

Like backpropagation, neuroevolution can be used to train a network to approximate a

function given a list of data points representing the inputs to and outputs from the target

function. All that is needed for supervised learning is a fitness function that returns a fitness

proportional to how close the predictions of the network is to the targets. (The relative merits of

backpropagation and neuroevolution for supervised learning is a topic which we will not discuss
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here.) However, evolutionary algorithms are not limited to supervised learning, but can also

be used for optimization, reinforcement learning and unsupervised learning. Everything that is

needed is a fitness function that somehow judges the performance of the network.

Many of the experiments in this thesis uses what could be considered one of the simplest

form of evolutionary neural network, namely an MLP whose weights are tuned by an evolution

strategy. It works like this:

1. At the start of a run, a population of µ + λ individuals is created, each individual being

a vector of real numbers of the same dimensionality as the number of connections in

the neural network. Each dimension in the vector will be interpreted as a weight in the

network. (Remember that a fully-connected MLP is completely specified by its connection

weights.)

2. The population is sorted.

3. The tail is removed from the population.

4. The removed individuals are replaced with copies of the the elite.

5. Gaussian mutation is applied to the new individuals.

6. Each individual in the population is translated into a neural network, which is then tested

using the fitness function. The individual is assigned the fitness given to the neural network

constructed from it.

7. End evolution if the time is nigh, or return to step 2.

Neural networks can of course be evolved using other types of evolutionary algorithms,

such as genetic algorithms or particle swarm optimization. However, while mutation, especially

Gaussian mutation, usually is an efficient variation operator for neural network weights, recom-

bination between neural networks can sometimes have disastrous effects if not done right (many

types of recombination are possible). This is because of the competing conventions problem:

given that neural networks that behave identically can have very different internal weights (e.g.

different hidden neurons can be used for connecting the same input and output in the same

way), recombination between two fully functioning networks can easily result in an offspring

which of very low fitness1.

Several specialized evolutionary algorithms for evolving neural networks have been developed

during the last decade. These include Moriarty’s SANE, and Gomez’ ESP and CoSyNE, which

all rely on (different) forms of cooperative co-evolution to speed up of evolution of fixed-topology

1Literally a “worthless bastard”
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networks. The scope of these methods is not yet established, but they have managed to provide

substantial speed ups for some specific control and pattern recognition tasks [95][50][51].

Evolving topologies as well as weights

While the above methods all presuppose a fixed neural network topology and just evolve the

weights of the neural network, other algorithms have been developed that evolve the topology

of the network as well. The argument here is that the human designer knows neither what

topology is best for representing the solution to a particular problem, nor what topology makes

it easiest to evolve such a solution. (We will discuss how a network might be able to represent

but not learn a particular function later on in this chapter.) Many researchers would just use

a fully-connected feedforward network with about as many hidden neurons as inputs, but there

is no guarantee at all that this is a good topology for a particular problem.

Algorithms for evolving both topologies and connection weights can roughly be divided into

indirect and direct approaches (but see [127] for a more refined taxonomy, including an in-depth

discussion of different types of indirect encodings). The indirect approaches are so called because

they, taking clues from biology, distinguish between genotype and phenotype. The individuals

that are evolved by the evolutionary algorithm, the genotypes, are not the neural networks

in themselves but rather a procedural specification for how a neural network should be built.

Each time an individual is evaluated, the genotype must go through a developmental process to

yield its phenotype, the actual neural network which is then evaluated by the fitness function.

Early examples of neuroevolution using indirect encodings include Kitano’s algorithm based on

matrix rewriting [69], and Gruau’s Cellular Encoding, where the genotype is an expression tree,

which is “executed” in the development phase to construct a neural network [54][53]. Gruau’s

research inspired many researchers to develop similar systems, such as Hornby et al. [61] and

Kodjabachian and Meyer [70]. Other researchers have gone back to biology for more inspiration,

and returned with ideas such as artificial cell division and movement [23][66] and genetic reg-

ulatory networks [12], creating encodings that require rather complicated processes to go from

genotype to phenotype.

Whereas all of the above algorithms have been proven to be able to evolve neural networks

for at least some problem, such indirect encoding schemes are very rarely seen in application-

oriented research, or indeed in any research papers except the ones where they are first reported.

Further, there is a conspicuous absence of really impressive controllers or pattern recognizers

evolved using indirect encodings. The reason for this seems to be that such encodings don’t

work very well in practice. This becomes clear in those cases where head-to-head comparisons

have been made between direct and indirect encodings [118]. It is important to remember that
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any indirect encoding favours certain topologies over others, and might even make some parts of

design space completely inaccessible. The task of creating a generally efficient indirect encoding

is complex, interesting and unsolved.

Direct encoding approaches, however, can be made quite efficient. In these approaches, the

genotype and the phenotype are the same; the variation operators of the evolutionary algorithm

act directly on the topology and weights of the network. One direct encoding topology-evolving

algorithm which has attracted some attention for working well in practice is Stanley’s NEAT,

NeuroEvolution of Augmenting Topologies [126][123]. NEAT is a rather complex algorithm,

that uses protected subpopulations to preserve structural innovations until they become viable,

and innovation tracking that matches specific connections to their homologic equivalents in

other individuals in order to alleviate the competing conventions problem for crossover. The

central idea, though, is complexification. At the start of an evolutionary run, all individuals are

minimal neural networks, with only one connection from one neuron in the input array to one

of the output neurons. The mutation operator then works by adding, disabling (removing) and

splitting connections as well as changing the weights of existing connections. A connection can

be added between any two neurons; when a connection is a split, a new neuron is formed in the

middle of the old connection, connections are added from the start neuron of the old connection

to the new neuron, and from the new neuron to the end neuron of the old connection. In this

way, networks or arbitrary topology and complexity can be created. In empirical comparisons,

NEAT has been shown to be very competitive with evolving the weights of fixed-topology neural

networks, sometimes performing better but sometimes not performing as well [123][51].

Evolving the topologies of neural networks together with their weights is a very interesting

idea and research direction, and topology evolution might very well be a necessary part of

any generally efficient neuroevolution algorithm capable of handling truly complex problems.

However, topology evolution is not a focus of this thesis, and in order to be able to concentrate

on other issues all the neuroevolution experiments in the experimental chapters employ fixed

topologies. This being said, further investigation and understanding of the issues explored by

this thesis (especially incrementality and modularity) will no doubt help in the development of

the next topology-evolving algorithm.

2.3 Evolutionary robotics

In evolutionary robotics, evolutionary algorithms are used to construct the controllers (usually

based on neural networks), and sometimes the body morphologies, of real or simulated robots.

The research field took its beginnings in the early nineties with the work of Harvey, Husbands

17



and collaborators in Sussex, and Nolfi, Floreano and collaborators in Italy. The book by the

two latter is a good, but again somewhat dated, introduction to the field [102]. Their work,

in their turn, owes much to Rodney Brooks’ pioneering of behaviour-based robotics, which

focused robotics research on controlling robots by combinations of simple reactive behaviours,

rather than the complicated sense-plan-act loop driven by symbolic logic that had been the only

paradigm in town until the mid-eighties [14].

The most popular experimental platform for evolutionary robotics is probably the Khepera

robot, a small (fist-sized) circular robot with two wheels, and eight sensors that can act either

as directional light sensors or infrared range-finder sensors [92]. The robot has limited onboard

processing capacity, but can be connected via a wire to be controlled by a desktop computer, and

can be equipped with a gripper and a rudimentary linear (one-dimensional) camera. Importantly,

the robot is semi-holonomic, meaning that it can turn on the spot, and due to it’s low weight it

can stop and accelerate to full speed almost instantaneously.

Using configurations of one or several Kheperas or similar robots on tabletop arenas with

walls and other obstacles, controllers were evolved for many simple tasks, including variations

on wall following and phototaxis [56], “garbage collection” (picking up and moving red ob-

jects) [103], and simple life-time learning capacities [44][147]. Recently, many of the original

evolutionary roboticists have focused on evolving collective behaviours in swarms of more ad-

vanced but still semi-holonomic miniature robots [39], whereas other researchers have focused

on e.g. evolving morphologies [61], evolving controllers for legged robots [156], evolving robots

capable of modelling their own bodies [11], and using evolutionary robotics methods for inves-

tigating problems in theoretical biology.

The above is by no means intended as a complete overview of the state of the art in evolu-

tionary robotics - the space not permitting, and this thesis not mainly being about evolutionary

robotics anyway. However, from an overview of the literature in the field several observations

can be made. The most important of these is that so far, no truly intelligent complex intelli-

gence has been evolved. The most complex tasks which evolved robots have been able to solve

were solved with a combination of very simple reactive behaviours, and they usually seem easily

solvable by standard engineering methods. Simply stated, evolutionary robotics fails to scale

up. Given the rather obvious and grand promise of using the same method as nature did for

creating complex intelligence, this can be quite puzzling - nature obviously succeeded, so why

don’t we?

A lesser, but related, observation is that the vast majority of evolutionary robotics experi-

ments are done using robots that are more or less stable, can start or stop more or less instanta-

neously, and if they are wheeled, turn on the spot. This is a striking difference to most real-world
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vehicles and animal bodies. Neither a car nor an airplane can stop instantaneously or turn on

the spot, and when moving both require constant attention so as not to crash, in contrast to a

Khepera, which will usually stop and just stand there if movement commands cease. Similarly,

a human body requires a complicated chain of movement to get from one position (standing up,

right arm stretched out) to another (sitting down, legs crossed, hands clenching each other), and

requires a constant energy expenditure and stream of compensating movement commands to

not just fall over. In contrast, a Khepera’s gripper takes an integer between 0 and 255 as input,

promptly moves to the desired position and stays there until a new command is received. Even

though other researchers have used more complex robot morphologies, they are very rarely as

complex as human bodies or as dynamic as an airplane or fast car. Given the importance many

philosophers of cognitive of science place on the interplay of the nervous system with a complex

body for the emergence of intelligence, this is rather notable [86][26][97][107].

A third observation is that the dimensionality of the input space is generally low. A Khepera

has 8 (or 16) sensors, and this is usually the length of the array of inputs to the neural network.

Even when using more complex robots it is rare that more than ten input neurons are used.

When visual input from a camera is used, the value of just a few of the pixels are usually input

to the network; these pixels are either selected a priori by the human experimenter [29], or

chosen by the neural network in a process similar to active vision [43]. It is hard to imagine

how to respond intelligently to a complex world when presented with so low-dimensional sensory

information - how would you get along with your daily tasks if you could you experience your

environment only through a grey-scale screen with a resolution of 4 × 4 pixels? Not very well

at all, probably. We will return to this later on, but first we will discuss the issue of simulation

in evolutionary robotics.

2.3.1 Reality and simulation

One of the main reasons for the virtual absence of fast, non-holonomic or morphologically

complex robots in evolutionary is that it is very hard to use such robots with an evolutionary

algorithm. In evolution, we need to give the robot roughly equal starting positions in each trial.

Therefore, any actions that breaks the robot or moves the robot to a position from which it is

not trivial to move it back to the starting position (such as the robot having its legs and arms

tangled, being upside down, or just being out of range of the tracking system) is not permissible.

However, evolution relies on producing random strategies, and testing them to see whether they

work. So the only way to make sure that we can evolve behaviour is by using a robot so simple

and robust that it can withstand any sort of actions and then trivially be brought back an initial

position each trial. This pretty much excludes airplanes, racing cars and human bodies.
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For the purposes of the discussion here, we can call robotic systems which it is trivial to

automatically return to a good starting state (member of a set of a predefined starting states,

possibly just a single position and orientation) regardless of the preceding sequence of actions

recoverable, and a robotic system where this is not possible non-recoverable. A good example

of a recoverable system is a speed limited Khepera robot on a walled tabletop covered by an

overhead webcam; good examples of non-recoverable systems includes almost any mobile robotic

or vehicular system which is actually used for something.

The obvious answer to this problem is to evolve in simulation. Problem solved: just reset

the simulation at the start of each trial! An added benefit would be a huge potential speedup,

as an efficient simulation could be run much faster than real-time.

In practice, things are not that simple - far from. The reason that most evolutionary robotics

research is still done on physical robots is that good simulations are hard to get by. If we had

access to The Matrix2, we could do fantastic evolutionary robotics experiments effortlessly, but

alas, we have not. To get a good simulator of a robot, we either have to build a model of the

robot, based on physical theory and manual measurements, or learn a model, based on taking

actions and observing the responses from the real robot and its environment. Or a combination

of both.

Complicating the problem of acquiring a model good enough to base a simulation on is the

issue of model exploitation. Ample empirical experience has shown that evolutionary algorithms

are fantastically good at “cheating”, in the sense of finding strategies that use models in ways

that were not intended by the designer of the model, and would not work on the modelled system.

For example, if wall collision handling only works properly at low speeds, the evolutionary

algorithm will probably find a strategy that involves accelerating to high speeds and driving

straight through walls; if the rangefinder sensors are more accurate in simulation than reality,

the evolutionary might well find a strategy that relies on the exact sensor signatures of various

parts of the arena, and will not work with on the real robot with its noisy sensors. Here, the

celebrated capability of evolutionary algorithms to find unorthodox solutions that transcend the

conventions of human invention turns into a troublesome tendency to exploit little mistakes and

errors in a model, like a malicious lawyer uses his creativity to find holes in the law.

One of the earliest approaches to acquiring models specifically for evolution is Jakobi’s radical

envelope of noise hypothesis [65]. Jakobi advocates dividing aspects of the robot and environ-

ment simulation into a base set and an implementation set. The base set contains all the aspects

that are deemed (by the experimenter) to be required for a good evolved controller; these are

subject to the same variability as present in their real world characteristics. The implementation

2“The Matrix” is a 1999 Science Fiction movie where the world turns out to be simulated on a massive
computer.
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set contains all other aspects, and is subject to variable amounts of noise, from none to massive,

in order to discourage the evolution of controllers relying on features from that set (even on the

presence of noise, which is why the noise levels are varied). For example, if a robot only needs

one of its sensors for a particular part of a task, this sensor will be assigned to the base set

and the other sensors to the implementation set (and their readings in simulation will only be

variable amounts of noise). In other parts of the experiment, other other sensors might be part

of the base set, or maybe only some aspects of the readings of some sensors.

Jakobi does not prescribe any particular way of delineating base set aspects from implemen-

tation set aspects, nor any particular way of modelling the base set. This leaves us both with

the task of modelling the base set accurately unsolved, and with the additional task of deciding

what information is needed when - which, even if we manage to do it right, risks restricting the

creativity of the evolutionary process. Jakobi built a Khepera simulator using this method (he

used lookup tables of robots placed at various position relative to walls, and returned the sensor

readings in the table that were most similar to the simulated situation) that was used for several

experiments where controllers were evolved in simulation and transferred to the real robot with

intact functionality. However, this seems not to have been done with any significantly more

complex robots than the Khepera.

A recent and very different approach, that has also been used with morphologically more

complex robots, is Bongard et al.’s continuous self-modelling [11]. The process is best described

in a cycle. The robot start by performing an arbitrary action and recording its sensory con-

sequences. This information is passed to a set of internal models that compete for the best

explanation of the behaviour. In order to improve the quality of the self-model, the robot tries

to gather further information by triggering different actions. The action selection mechanism is

model-driven; it selects the next action based on the maximization of information, more specif-

ically it selects the action that causes the greatest disagreement among the competing internal

models. Once an action is selected, it is overtly executed and the whole cycle starts again.

Using this highly innovative and interesting method, Bongard et al. managed to co-evolve a

model and a controller for a legged robot direct in physical reality. However, it is very unclear

how well this method would be applicable to an unrecoverable robot, especially one with complex

dynamics or significant momentum. The crux here is that the action that maximizes information

might very well be one that breaks the robot, or otherwise puts it in an unrecoverable state.

Another possibility is to use a robot for which the dynamics have already been extensively

studied, and use the best available knowledge to constrain the solutions that can be learnt.

Abbeel et al. [1] used this technique to acquire a model of a large single-rotor model helicopter,

a model which was then used to learn a controller for the helicopter using temporal difference
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learning. Their work, though technically impressive, is characterized by the frequent use of

domain knowledge; whenever possible, human knowledge of the functioning of the system and the

characteristics of the desired task are used to constrain the model, and in the end a least square

algorithm is used to fit a handful of parameters in a mathematical model. Their approach works

well in the sense that it produces the desired behaviour, and nothing but the desired behaviour,

but it is certainly not in the spirit of evolutionary robotics: nothing new was learned about

how to achieve a solution to the task at hand, or about the capabilities of the robotic platform,

except in a strictly quantitative sense. (Strictly speaking, their approach is not evolutionary

robotics at all, as they don’t use evolutionary algorithms, and they are probably happy with

this being so.)

2.3.2 The assumptions and philosophy of evolutionary robotics

Most “mainstream” evolutionary robotics research is driven by a set of shared assumptions and

motivations, which very bluntly can be expressed as a wish to as far as possible exclude humans

from the design process and leave as much as possible to evolution, because we get better results

that way and/or because the results get more interesting that way. Some researchers, notably

Cliff [27][28] and Nolfi [98], have attempted to spell out these assumptions and motivations and

forge them into something like a coherent philosophy of evolutionary robotics.

Cliff stresses the importance of the action-perception cycle and modelling complete sensory-

motor pathways. This means that the neural network controlling the robot should be connected

directly to the robot’s sensors in one end and to its motors in the other end, without any addi-

tional human-constructed processing of the in- or outputs. Only by studying whole organisms,

whether physical robots or simulated agents in virtual worlds, in their natural environments,

can we learn how and when a certain behaviour arises and how it is produced. The argument

for this is that if we want to learn something about the neural mechanisms that “naturally”

underlie a particular form of adaptive behaviour, we need to refrain from interfering with how

that behaviour is represented. In particular, we need to avoid human interpretation and re-

representation of the sensor inputs.

The roots of this argument is Harnad’s critique of much of the early work in neural network

modelling of cognitive processes [55]. In these studies, processes such as conjugation of verbs or

recall from short-term memory were explored using mainly symbolic representations at both the

input and output end of neural networks, which where usually trained with backpropagation. As

a hypothetical example, the first and last letter of a word could be encoded as activations of the

52-dimensional input vector of a neural network, with each neuron representing a different letter,

and the activations on the output vector representing gender of the word, language it was written
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in, mood of the speaker or somesuch. Harnad (and, to be fair, several others) made the point

that while such experiments might help our understanding of the learning capabilities of neural

networks, they don’t help our understanding of grammar processing or short term memory, as

they suffer from the symbol grounding problem. That is, there is no guarantee information should

be represented/encoded in the same way in the human brain as in the experimental setup, or

that such a representation would ever occur in a naturally or artificially evolved system. Indeed,

not only is there not a guarantee, there is not even a reason to believe that the input and

output representation used should exist anywhere outside the experiment in question. So the

symbols are not grounded, and the neural network lacks semantics. It is very possible that

the actual problem of e.g. conjugating verbs in a complete system that can comprehend and

produce speech is indeed completely unrelated to the experiment, and thus that an experiment

with human-designed input and output representation fails to add to our understanding of the

actual phenomenon.

Cliff agrees with Harnad that the symbol grounding problem can be avoided by connecting

the sensors of the agents directly to the neural network controlling it, and its outputs to the

agent’s actuators. He also adds, following Brooks [14], that the agent should be situated and

embodied, so that it takes actions in a consistent world, whether real or simulated, where the

agent has a body that is affected by the interplay of the actions it chooses to take with the state

of the body and world, and the state of the body and world decides what it perceives. In other

words, the complete opposite of a neural network that is passively being fed a list of data and

outputting some transformation of it.

Nolfi distiniguishes between proximal and distal descriptions of behaviour. The distal de-

scription is a description of some behaviour from the point of view of an external observer,

that uses his own concepts to make sense of the behaviour. For example, when an ethologist

describes the behaviour of a mammal from his distal perspective, he might use such terms as

hunting, searching, fleeing etc. to describe different aspects of its behaviour. However, things

might be very different from the point of view of the sensory-motor system that creates the be-

haviour, i.e. from the proximal perspective. Nolfi argues that the proximal perspective always

provides the most relevant information for designing behaviour. If we try to interfere as human

designers, we will probably use the divide-and-conquer approach that is the norm in most types

of engineering, and divide the controller into different parts, responsible for different aspects of

behaviour. However, this division might be inappropriate to the demands of the task and fail

to exploit the possibilities inherent in the interplay of the robot’s body, control system and the

world. The best we can do, Nolfi argues, is therefore to avoid specifying the structure of the

control system, and design our fitness function so that is as high-level as possible, rewarding
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the overall performance on the target task rather than performance on components or aspects

of that task. It is worth noting that Nolfi advocates this approach not only for studying the

evolution of adaptive behaviours, but also for pure engineering purposes.

We will return to the important questions raised in the last few paragraphs in the sections

below on sensing and actuating, incrementality and modularity.

2.4 Issues in evolving controllers for complex behaviour

in embodied agents

Why won’t evolutionary robotics scale up? There are probably many reasons. Here, we will

discuss a number of open research questions and promising methodologies related to the central

goal of being able to evolve complex general intelligence. These are issues that remain to be

elucidated even after we have solved the problem of having a good enough robot or simulation

to evolve on.

This section was originally intended to be called “Issues in Evolving Intelligence”, but as we

are here going to discuss the topics which the research in this thesis aims to contribute to the

understanding of, and thus will have to go in to more detail, some demarcations have to be made.

(And so a long sentence can be justified. For the title, that is.) The first demarcation is that we

are talking about evolving controllers, of the variety that more or less conforms to the principle of

the closed sensory-motor loop. We are not discussing evolving plans, trajectories or parameters

for controllers where the actual control algorithm is already specified. The second demarcation is

that we are talking about embodied agents. The third is that we are not primarily discussing the

sort of higher-level cognitive functions that are the subject of linguistics, personality psychology

or fine literature, but rather the sort of sensorimotor coordination that is also displayed by many

of our fellow vertebrates.

2.4.1 Sensing

To illustrate the importance of having the right sensor data, consider the argument by palaeon-

tologist Andrew Parker that the development of the eye was the necessary precondition and

trigger of the evolution of complex behaviours and ecosystems at the time of the Cambrian

explosion, some 360 million years ago [104]. Before that point in time, the fossil record indicates

that complex body forms, thought to be necessary for fast and complex movement, simply did

not exist. Most probably, Earth’s oceans was filled with grey, slug-like beings slowly crawling

the seabed, filter feeding or eating other primitive animals when they happened upon them.

These creatures seem to have had simple light sensors, but not eyes capable of discriminating
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shape and colour at a distance. Soon after the first apperance of proper eyes in the fossil record,

we have a phenomenal diversification, with clear evidence of specialized predators of all sizes,

complicated defence mechanisms in grazers and filter-feeders, parasitism, symbiosis etc.

Seeing evolutionary robotics (and more broadly, evolutionary artificial intelligence) in this

light, the suspicion quickly arises that we might never move far beyond the behavioural com-

plexity of a slug without making sure that we have the right sensor data, the right amount of it,

and represented in the right way. As noted above (in section 2.3), in most evolutionary robotics

experiments, less than ten inputs are used. As a comparison, the eye of a fly has about 400

directional facets, and thus at least that many dimensions of visual input data available.

It is important to note that the issue of sensing is not settled by agreeing (or disagreeing)

with Cliff that we need to close to the sensory-motor loop, and feed the controller unprocessed

sensor data (and the actuators unprocessed controller outputs). There are still issues about the

type, amount and representation of sensor data.

If we use a physical robot, the type of sensor data we can use is obviously limited by what sort

of sensors are available on the robot. But, budget permitting, we can choose what robot we want

to use, or even develop our own. Here, there is a bewildering array of sensors to use: infrared

and laser rangefinders, different type of cameras, odometry, global (GPS) or local (e.g. Vicon)

positioning systems, whiskers, various exotic sensors for chemical compounds, air pressure etc.

All of these sensors are available in different versions, with different precision, range, noise levels

etc. If we evolve in simulation it is even harder to choose the best type of sensor, as we are

free to define whatever sensors we want. Some evolutionary roboticists have taken the logical

step to evolve the sensor configuration along with the controller, but these experiments have

largely been confined to evolving the angles of a small number of simulated infrared rangefinder

sensors [17].

As discussed above, the amount of sensor data used in evolutionary robotics experiments

is typically very small, even when visual data is used. Two likely contributing reasons to

this is that it is computationally expensive to simulate complex sensing, and that the hitherto

used neuroevolution methods are not able to cope with large amounts of inputs to the neural

networks. But it is not easy to ascertain whether these are indeed the main reasons, as people

usually don’t publish experiments with only negative results. Probably, there are numerous

half-written up reports on experiments with massive input spaces that just failed to evolve any

interesting behaviour lying around on researchers’ hard drives. Alternatively, most researchers

don’t see scaling up the complexity of input data as a priority.

The representation of input data is another understudied question, which becomes an issues

especially in studies done in simulation, where there is no “raw” format for the sensor data.
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Imagine the controlled agent is at position 10, 10 facing left; there is an adversary at 20, 30.

There are at least four obvious ways of representing this situation to the controller, and endless

variations and hybrids of these, without violating the principle of the closed sensory-motor loop:

• Third person Cartesian: two inputs are given the values 10 and 10, and two other inputs

are given values 20 and 30.

• First person Cartesian: two inputs are given the values 10 and 20.

• First person polar: two inputs are set to the angle and range to the adversary.

• Wraparound sensors: A number (e.g. 8) of simulated sensors are spread evenly around

the agent (at angles 0, π/2, π etc.), each sensor is connected to one input of the controller,

and all sensors return 0 except the one whose direction is closest to the direction to the

adversary. Or they all return a fractional value proportional to how close its direction is

to the direction to the adversary, etc.

All evolutionary robotics experiments must decide how to represent the input at some point,

but this is very rarely seen as a topic of investigation in its own right. One very recent example

of taking this issue seriously is Stanley’s tutorial at CIG 2007 [122].

Issues of sensing and sensor data representation will be addressed in sections 5.1, 5.2, 5.3.1

and 5.4.2.

2.4.2 Incrementality

When evolving a controller to solve a complex problem, the obvious way to design the fitness

function is to measure the success of each individual controller on solving the whole problem.

This, however, can give rise to the bootstrap problem: the initial, random controllers, fail to

make any progress at all towards solving the problem. All individuals receive zero fitness, and

consequently no evolution takes place. It is all too easy to construct such a fitness function:

imagine evolving a dogbot to fetch the slippers at the door and bring them to the armchair in the

middle of the room. A natural fitness function would be how many slippers are fetched, maybe

with the time taken to fetch them subtracted. However, the initial generation of controllers

would be completely random, probably having the dogbot running around in circles chasing its

tail or standing still and barking on the spot. Zero slippers are fetched in the first generation,

and so no slippers will ever be fetched.

A solution to this problem would be to use a sequence of fitness functions: first a fitness

function rewarding the controllers for getting the dogbot as close as possible to the slippers,

and once the best individuals in the population have a decent fitness of this sort, the fitness
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function is changed to one that assigns fitness based to how often the slippers are being picked

up, and then another one could be based on how close to the armchair they are dropped. The

assumption here is that the controller that performed well on the previous fitness function is

likely to at least occasionally perform decently on the next fitness function, and so a fitness

gradient is established in the population and evolution can proceed.

In evolutionary robotics, such a decomposition into a sequence of fitness functions, or of in-

creasingly complex versions of the same problem, is called incremental evoution. Early examples

of incremental evolution include Gomez and Mikkulainen’s simulated grid-world predator that

is first evolved to approach a static prey, then a slowly moving prey and finally a fast prey with

complicated behaviour [49]. It was shown that the incrementally evolved controllers performed

much better than controllers evolved using direct (non-incremental) evolution. Similarly, Har-

vey et al. evolved a visually guided robot first to move forward, then to move towards a large

target, to move towards a small target, and finally to move towards triangles and not towards

squares [57]. In this case, evolving directly for distinguishing triangles from squares did not

work at all.

Incremental evolution has strong similarities to programmed learning, an educational tech-

nique invented by the father of behaviorism, B. F. Skinner [120]. In this paradigm, complex

topics are taught to students through a “teaching machine” where simple questions are repeat-

edly given to the student, and if the student passes the question a new, more complex question is

given; if the student fails the question, some information pertinent to the question is given, and

a new question of similar difficulty is presented. (In practice, the “machine” could be a book

with instructions as to which page to jump to.) This idea drew considerable attention in the

1960’s, but currently holds negligible clout in educational policy, both because of dissatisfaction

from students, and because of the immense amount of work required in “programming” the

“machines”, but mostly because of behaviorism being so completely out of fashion nowadays.

However, the idea is alive and well in animal training, and it could be worth wile looking at

animal training programs for new ideas about incremental evolution.

It’s interesting to contrast the idea of incremental evolution with Nolfi’s argument (in sec-

tion 2.3.2) that we limit the potential of evolutionary robotics, both as an engineering tool and

as a scientific one, if we decompose the problem ourselves, and only feed the evolutionary process

bite-sized chunks. Incremental evolution is problem decomposition, if anything is. It might be

that we have a trade-off here: if we tell evolution which way to take, we are more likely to get

there, but we are also constraining evolution’s creativity. One way to have to the cake and eat

it could be to find a way to automatically decompose the problem into incremental stages, by

evolution or otherwise. But to do this we need to clarify when incremental evolution works, and
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when it doesn’t.

Another perspective on incrementality is that in real life, real organisms only have one fitness

function and it’s quite a crude one (roughly, the number of grandchildren the organism has).

Still, very complex behaviour manages to evolve, probably because there is not only one way

to take; there are countless niches to fill, and the evolution of one capability can pave the way

for (or exapt) another (e.g. according to one theory, language evolved to be able to gossip

about other hominids in our flock, but then it turned out to be useful for lots of other things).

Thus, it might be that externally imposed incrementality is only really necessary because of the

simplicity of our experimental environments.

In this thesis, incrementality will be addressed in sections 5.2, 5.4.1 and 7.2.

2.4.3 Modularity

Another form of decomposition is modularity, where the controller rather than the task is decom-

posed. The majority of work done in evolutionary robotics and evolutionary neural networks is

on evolving the connection weights of a single network of homogeneous structure, such as a fully

connected MLP. Modular neural networks can, very broadly, be categorized as neural networks

made up of structurally and/or functionally distinct parts. Theories about modularity go far

back in the history of science, and there are reasons to believe that modularization of neural

networks can render them more evolvable.

Modularity and the mind

The debate over whether the mind is modular goes back at least to early modern ages, with the

empiricists (e.g. Locke and Hume) claiming that the mind was “a blank slate” at birth, acquiring

its content through associations between sensory data, and the rationalists (e.g. Descartes), who

thought that we had the mind was innately and intricately structured. Back then, however, little

was known about the brain. The first to base his theory of mind explicitly on neural modularity

was probably Franz Joseph Gall (1758-1828), best remembered as the father of phrenology. Gall

maintained that the brain was composed of a great number of “propensities” or “faculties”, such

as self-esteem, imitation, tune, and cautiousness, all of which were physically localizable. The

methods he proposed to localise these faculties, however, rightly became infamous.

In the early twentieth century, behaviorism was invented and gradually came to dominate the

new science of psychology [119]. Like classical empiricism, behaviorism stated that no knowledge

was innate, but all was formed from experience; the mechanism whereby this was accomplished

was the association of stimuli with order stimuli, or of actions with consequences. At birth

mind was a tabula rasa, blank slate. As behaviorism gave way to cognitive psychology, the
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anti-modular bias persisted.

However, in the early eighties, the cognitive scientist Jerry Fodor brought modular thinking

back with his influential book “The Modularity of Mind”, where he argued that the mind/brain

is made up of several modules at the input and the output stage (e.g. modules for perceiving

various visual patterns, and executing smooth movements) but that these modules all connect

to a “central processing unit” [45]. Others have since gone further, especially within the field of

evolutionary psychology, which partly relies on the massive modularity hypothesis [7]. According

to this hypothesis, the mind/brain is made of thousands of modules, which are responsible for

particular behaviours, from mate-seeking to navigation to sleeping at night. One of the main

arguments for this hypothesis is that there seems never to have been any evolutionary pressure

for a non-modular, general-purpose brain, and that evolution usually proceeds by building new

layers on top of the existing organism. Thus, the most probable path for evolution would be to

incrementally add new functionality to an existing mind, rather than redesigning the mind from

ground up. Some evolutionary psychologists add that it is very hard to imagine how a non-

modular mind would function at all. However, this hypothesis has come under heavy criticism

from more orthodox psychologists, who usually accept that the mind is modular to some degree

(a la Fodor) but assert that there is very scant empirical support for the massive modularity

hypothesis [112].

While the debate is sometimes fierce over the amount of functional modularity of mind, there

is broad agreement among neuroscientists about there being considerable structural modularity

in the brain [22]. The human brain (and those of most animals) is clearly divided into numerous

parts, that are different to each other even to the naked eye; furthermore, there is plenty of

repeating structure in some parts of the brain, e.g. in the visual areas. Some parts of the brain

have also been shown to have a very distinctive functionality, in the sense that if an area is

damaged you lose the corresponding functionality - for example Broca’s and Wernicke’s areas of

the parietal cortex, involved in speech production in comprehension, respectively. The specific

function of some other parts of the brain is much less understood.

Evolving modular neural networks: theory

Why would we want to evolve modular neural networks? The two broad answers, which are

of course not mutually exclusive, is that we with good models can make a contribution to the

ongoing interdisciplinary investigation into modularity in natural systems summarized above,

and that we could conceivably increase the evolvability of neural networks by modularizing them

in different ways, thus increasing the performance of technical applications of neuroevolution.

While the potential for neural network modeling to contribute to natural science might be
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obvious, some explanation might be needed as to why modularity would increase the evolvability

of such networks (and in particular, why it could be a cure for the curse of dimensionality).

First we need to make a distinction. We can call dividing up a neural network into several

modules, where none of them need to be similar to the other modules, static modularity. When

two or more modules are identical, sharing topology and connection weights (defined by the same

part of the genome) we call this repeating modularity. The special case of repeating modularity,

where modules are repeating according to some tiling or symmetry, can be called convolutional

modularity.

The following arguments for the usefulness of modularity are drawn from an earlier paper

by Togelius [137], and another by Di Ferdinando and Calabretta [20].

• To begin with static modularity, the fact that most neurons in a module are only connected

to other neurons in that module (encapsulation) reduces neural interference, a term coined

by Calabretta for when parts of the network which have nothing to do with each other,

and therefore should not be connected, are connected. The problem this causes can be

understood by thinking of a fully connected network - in such a network, any connection

weight change is bound to influence every neuron! This causes a lot of epistasis, and

more or less rules out neutral mutations (mutations which change the network without

increasing or decreasing fitness). Severing the right connections can increase evolvability

by reducing neural interference. This illustrated in a lesioning experiment by Nolfi, who

showed that cutting just a single connection in a robot-controlling network allowed for

much higher fitness on a task [99].

• Another huge benefit of encapsulated modules is the reduction of the search space dimen-

sionality. Most of the parameters of a neural network are connection weights; in a fully

connected neural network, these increase on the order of the number of neurons squared.

In a modular neural network the number of connections per neuron can be dramatically

smaller. Apart from a smaller search space, fewer connections also means faster network

updating.

• Given that evolved modular networks are usually structurally obscure, and their inner

workings in many cases more or less impossible to understand even for the human designer

of the software that evolved the network, another benefit of modularity is it might be

possible to find out which evolved modules do what and reuse those modules in another

network, or connect them to some other non-neural code.

• Moving on to the benefits of reusable modularity, having several modules defined by the

same part of the genome further decreases the search space. This effect can be dramatic
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in the case of convolutional modularity with a large number of modules.

• Finally, modularity can be combined with incremental evolution to create layered evolution,

where modules are evolved one by one, and the weights of the old modules “frozen” (not

affected by the mutation operators) while the new module are evolved. This was shown

to be more effective than either incremental evolution or static modularity alone in a

simulated robotics experiment [136][137].

Evolving modular neural networks: practice

Several researchers have tried evolving neural networks with fixed topologies for various tasks,

and usually shown that modularization increases evolvability of the network. Starting with a

non-robotic experiment, Schraudolph trained a convolutional network to evaluate board values

for the board game go[117]. The network has certain simularities to the convolutional pyramids

as used in optical character recognition.

Husken et al. did an interesting experiment, where they evolved a monolithic network to-

gether with which subset of its connections to activate, and showed that for a network with

two completely separable inputs and outputs, more or less encapsulated modules did indeed

evolve [63]. Further, Di Ferdinando and Calabretta showed that hard-coded modularity in-

creased evolvability on a pattern-recognition task based on a simple model of the what/where

visual system in the mammalian brain [42].

More interesting for our purposes is the experiments that have been done with evolving

modular neural networks for robot control. An early example is Beer’s work with evolving

CTRNNs that act as pattern generators. Beer used six identical modules with only limited

intercommunication and no central controller to successfully evolve a walking gait in a model

insect [47]. The use of CTRNNs, where neurons have internal state, in this example points to

the need to recognize that reusable modules are indeed separate modules with their own state,

even though they are generated from the same genetic information.

A more recent example with evolving repeated modules is due to Vaughan, who evolved a

segmented robot arm for grasping objects in a two-dimensional simulated environment [148].

Each segment of the arm was fitted with an identical neural network, where the output of one

segment’s network was the input to the next; the first segment was the only one to receive any

direct sensor input.

The most well-known (or at least highly cited) experiment in evolving modular networks for

robot control is probably due to Calabretta et al. [21]. Calabretta’s team investigated several

modular and non-modular network architectures for a rather complicated robot control task,

and found that the modular structures evolved better than the non-modular ones, and of those
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structures the one where human involvement was minimized (by letting the network itself choose

when to use which module) performed best.

Evolving the modularity itself

Deliberately modularising neural networks can be criticised with the same argument as that

used against incremental evolution in the previous section: we are constraining evolution by

forcing it onto our chosen path, and might miss out on some of its most innovative solutions.

One way to retain the full innovative capacity of evolution while reaping the benefits could be to

evolve the modularisation itself. Several of the indirect neural network encodings mentioned in

section 2.2.2 were designed to allow static or repeating modularity to emerge, and this did indeed

happen in some experiments. However, the failure of these encodings to match the performance

of fixed-topology neuroevolution in the general case point to the need for further research and

new approaches in this area. In order to design a winning evolutionary modular neural network

design algorithm, we probably need to learn more about what sorts of modularity work when

through systematical experiments with hard-coded modularity.

In the experimental chapters of this thesis, different types of modular controllers will be

analysed and compared to non-modular controllers in sections 5.4.2, 5.4.1 and 7.2.

2.4.4 Controller representations

In the discussion above we have implicitly assumed that the controller is based on a neural

network, similar to a standard MLP in its function but possibly with a different topology.

However, such neural networks are not the only evolvable representations capable of universal

function approximation. The main competitors in this respect are the various forms of more

complex and often more biologically faithful types of neural networks, and the various types of

genetic programming.

Continuous-time recurrent neural networks is a class of more complex neural networks, whose

capabilities subsume and significantly extend the capabilities of multi-layer perceptrons [8]. Like

an MLP, each neuron in a CTRNN has several inputs, and produces a single output value which

can be fed as input into several other neurons; unlike in a MLP, each neuron has a persistent

activation, and several parameters guiding how the state evolves in time.

While CTRNNs, just like MLPs, represent the activation of a neuron as a scalar with a

value defined at any instant in time, spiking neural networks borrow another key principle

from the study of biological nervous systems and represent neural activations as “spikes”, short

bursts of negative (simulated) electric potential interspersed with long periods of relatively low

electric potential. In such networks, the activation of a neuron is defined as spike density over
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a given period of time [35]. Other networks take the basic idea of a neural network in yet other

dimensions, such as networks with plastic synapses [44], homeostatic networks [38], complex-

valued networks etc.

Genetic programming (GP) refers to the evolution of computer programs or function ap-

proximators which are not represented as neural networks [73]. In most cases, GP programs

are represented as expression trees. This means that they consists of a number of nodes, both

terminals and non-terminals, the difference between these being that a non-terminal has child

nodes, which are themselves either terminals or non-terminals. Evaluation of a GP tree is typi-

cally done through lazy evaluation: the root node of the tree is evaluated first; it’s child nodes,

and child nodes’ child nodes etc. are then evaluated recursively as needed, in order to provide

the values needed to evaluate the root node.

Thinking of a GP tree in terms of a neural network, the terminals can be thought of as the

inputs to the tree, the root node of the tree can be thought of as the output, and the non-terminal

nodes as the neurons. Two crucial differences between neural networks are that there is no

multiplication of node outputs by connection weights (or, equivalently, all connections between

the node have the weight 1), and that most non-terminals used in GP trees are quite different

from the normal MLP neurons, which sums the inputs from its “child nodes” and then applies

the tanh squashing function to the sum. Standard GP non-terminals include the arithmetic

operators (+,−, ∗, /) applied to two child nodes, and the conditional operator outputting the

value of the second child if the value of the first child is below 0, otherwise the value of the third

child. Most GP trees have a mix of different types of non-terminals, unlike MLPs and similar

neural networks where all neurons function identically.

Other significant differences are in the variation operators. Almost all GP algorithms are

constructive, meaning that they start small and grow bigger through mutation, recombination

and selection. A common mutation operator is one-point macro-mutation where a node is

selected at random, and exchanged for a freshly created node of a type picked at random from

list of permitted node types. The new node can be either a terminal or a non-terminal, in

which case its children are created recursively in the same way. A potential problem with this

operator is that the tree can grow without bounds, if non-terminals are selected more often than

terminals. Therefore, a maximum tree depth, at which only terminal nodes can be selected by

the mutation operator, is often imposed. In most GP implementations, recombination is used

as well as mutation; the simplest recombination operator simply picks a random node in one

tree and swaps it with another random node in another tree (of another individual). Obviously,

many more variations of mutation and recombination exist in the GP literature.

One of the main inventions in tree-based GP is automatically defined functions (ADFs)
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[74], which are external trees that can be called by terminals by the main tree(s) of the same

individual. The advantage of ADFs is that the same ADF can be called several times from

different trees, or from different points in the same tree, hence allowing for reusable modularity.

Additionally, there are variations on GP that do not use tree representations, for exam-

ple linear GP, where string of instructions similar to mainstream programming languages are

evolved; we will not go into detail of any of these variations here.

With this wealth of different evolvable controller representations available, the key question

is: which one is best? Put a little less crudely, there are number of interrelated questions

that we currently don’t know the answers to: What controller representations can learn good

control fastest (learning speed)? Can some controller representations learn to solve more complex

control tasks than others (learning depth)? What is the relation between learning speed and

learning depth? Are some controller representations better suited for some problems and other

representations for other problems? If so, is there a systematic relationship between problems

and suitable representations? Which controller representations are most understandable and

reusable by human designers? Which controller representations are easiest to combined with

non-evolutionary learning algorithms?

There is currently no complete answer to any of these questions, and little to be learned from

either theory or empirical studies. We do have partial answers to the last two questions, though.

Evolved GP trees are usually much easier to understand than evolved neural networks, as the

operations performed at the GP non-terminals are much closer to scientifically educated humans’

ways of thinking than the operations of MLP neurons are, and as the constructive evolution of

GP trees make for sparser structures than fully connected networks. Further, there are other

variations of GP developed expressively to be easier to understand for humans [146]. On the

other hand, MLPs and some other neural networks can easily be trained by non-evolutionary

algorithms, such as the ubiquitous backpropagation algorithm, and thus it is easier to create

systems that combine evolutionary learning with other forms of learning.

One take on the questions about learning depth and learning speed is how they relate to the

complexity of the controller. It seems more or less obvious that a larger neural network would

be able to produce a more complex behaviour, as there is simply room for more information

in it. But would the larger neural network learn a behaviour of a given complexity faster or

slower than the smaller neural network? E.g., the complexification approach of Stanley’s NEAT

algorithm relies on the assumption, borne out by some experimental results of his, that learning

speed is higher for a small network [123], but see section 7.2 for results suggesting otherwise.

It is not obvious how to settle such questions other than by doing numerous independent

empirical studies, where different controller architectures and different sizes of the same archi-
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tecture are compared on different tasks by different experimenters. The experiments presented

in this thesis therefore represent only a small contribution to answering these questions.

In this thesis, the neural networks we use are either MLPs or simple MLP-based recurrent

networks, but we are also comparing these with different versions of tree-based GP programs

in some cases. The more exotic version of neural networks and genetic programming have been

left out in order to simplify both implementation and analysis by limiting the number of extra

parameters that could affect learning speed.

Comparisons between different controller representations will be made in sections 5.1, 5.3.1

and 7.2.

2.4.5 Stateful control and internal models

In much of the discussion above, we have implicitly assumed that the controller is a function

from inputs (typically sensors) to outputs (typically motor activations). Thus, at any point in

time, the outputs of the controller only depends on its inputs at that very moment, and not

on the state of the controller itself. The same sensor readings always result in the same motor

actions. Such controllers are called reactive controllers. The opposite, controllers whose outputs

are influenced by the internal state of the controller, are called stateful controllers.

Several evolvable controller representations allow for the development of stateful controllers.

The most common neural networks with stateful capabilities are the above mentioned recurrent

neural networks, which differ from feedforward networks in that they can have cycles, or con-

nections from a neuron to itself or to another neuron which ultimately connects to itself (but

note that e.g. CTRNNs can have state without being recurrent). The one we will be using

mainly here is the simple Elman network, so called after its invention by Elman in 1990 [41];

it also commonly goes by the name of recurrent MLP, as it it is a straightforward extension of

a multi-layer perceptron. The difference between an MLP and an Elman network is that the

latter in addition to the layers of connection between the input layer and the hidden layer, and

between the hidden layer and the output layer, also has a layer of connections from the hidden

layer to itself, so that each hidden neuron has a connection to itself and connections to each of

the other hidden neurons (in this case; variations are possible).

The propagation phase of a recurrent MLP is just like that of a normal MLP, except that

every time step, a copy is made of the activations of the hidden neurons; every time step,

activations are also propagated from the copy of the hidden neuronal layer of the previous time

step to the hidden neuronal layer of the current time step, via the connections in the recurrent

connection layer. The backpropagation algorithm can be adapted to work with recurrent MLPs,

yielding an algorithm called backpropagation through time. This is an advantage of recurrent
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MLPs over more complex neural networks with state capabilities, such as CTRNNs.

As discussed above, most GP systems represent solutions as simple expression trees, which

only allow for reactive controllers. However, ever since the very early days of GP, researchers

have been experimenting with forms of GP that allow stateful controllers to evolve. In some

experiments in his first book on GP, Koza used global registers that could be manipulated with

specially built storage operators [73], and later introduced the notion of automatically defined

store (analogously to his ADFs discussed above) [75]. Similarly, Teller introduced the concept

of Indexed Memory to allow reading and writing from an arbitrary set of memory cells [133].

Recently, Lucas introduced Object-Oriented Genetic Programming (OOGP) [78][2], an approach

where the primitives of the evolved program are calls to methods of objects in a standard object-

oriented language, such as Java. The intention is to leverage the considerable libraries of tried-

and-true atomic operations available in the API’s of modern programming languages, including

complex data structures.

So both neural nets and GP are available in strictly stateless versions as well as versions that

allow for statefulness to be evolved. Yet it’s possible to use model-based control, which normally

requires state, while basing a controller on a stateless function approximator such as an MLP

or a GP tree. This is done by complementing the function approximator with an explicit model

of the dynamics of the agent, and instead of using the function approximator to generate motor

commands given sensor inputs, it is used to estimate the value of being in a particular state, as

specified by the sensor inputs. The controller then takes all the possible actions in its internal

simulation of the agent, and feeds the simulated sensor inputs resulting from the simulated new

state to the controller, one after another, and records the value estimates. After simulating all

possible actions, the highest-value action is selected as the output of the controller, and thus

for being carried out in the real world (or in the “real” simulation). While there are apparent

potential advantages of this approach, it relies on having a sufficiently fast and accurate model

of the agent’s dynamics available, something that is often not the case. It also relies on it

being possible and practical to enumerate the available actions (or at least a representative and

meaningful subset of them) at any point in time. It could also be argued that it violates the

principle of the closed sensory-motor loop.

Despite these different ways of evolving stateful controllers, a great many evolutionary

robotics experiments use strictly reactive controllers. When is statefulness an advantage, or

even a requirement? This is a topic of both debate and empirical research, though there is

probably more of the former than of the latter.

Several cognitive scientists and roboticists argue forcefully that the need for agents to have

internal representations of their surroundings is exaggerated. (Representations are clearly a form
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of internal state, but it is a point of debate whether all state can be interpreted as representa-

tional.) Brooks famously claimed that “The world is its own best model”, in other words that a

situated and embodied agent doesn’t need to store a complicated model of its environments, as

its ability to control its sensors means that it can simply examine its environment when needed,

a process known as active perception [14]. Similar sentiments are echoed by philosophers such

as Clark [26].

Some evidence for world models being far less common and extensive than commonly as-

sumed comes from a set of experiments on human vision, the debate over the correct interpre-

tation of which is referred to as “the Grand Illusion debate”. Many fairly recent experiments

in psychophysics show that the human visual system is unable to take in information at a very

high bandwidth - we simply don’t see nearly as much as we think we do. (These experiments

are often very entertaining to read about, or to perform on yourself. For example, did you know

that while we can very easily spot the slight details differing between two pictures flashed in

quick succession, this becomes more or less impossible if we wait half a second after extinguish-

ing the first picture before showing the new picture?) Philosophers such as Patricia Churchland

interpret this as evidence that we just think we have a model of the world, while we really don’t,

at lease not a very detailed one [25].

In the same vein, several evolutionary roboticists have performed experiments aimed at

showing that tasks whose solutions appear to require stateful control can actually be solved

by reactive controller through active perception. To this end, Nolfi managed to evolve reactive

neural network controllers managing to approach cylindrical objects and avoid walls, even though

the robot (a Khepera) was equipped only with a crude rangefinder sensor array, to which walls

and cylinders would look the same from most angles; evolution found a solution involving clever

repositioning of the robot into a vantage point from where the objects could be ambiguated [100].

The research on active vision from Cliff’s and Floreano’s teams (discussed in previous sections)

also serve as examples of evolutionary robotics research being used to push the boundaries of

reactive controller [29][43].

Yet, there are clearly tasks where reactive controllers fall far short. For example, there is

evidence that the feedback loop between your hand, your eyes and your brain is too slow for

you to control the movement of your hands accurately at high speeds using only the most recent

information about the position and velocities of your hand. The only way to effect the degree

of control we obviously have seems to be to have an internal model of the dynamics of the arm

and hand.

Similarly, many tasks require different types of memory and can thus not be solved by

reactive controllers. Behaviours requiring memory are displayed by a large variety of animals;
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it is common even for invertebrates to be able to find their way back to previously visited

areas. This can usually not be done by a purely reactive controller, as the action selected is

often dependent not only on the current state but also on previous states (i.e. what places the

organism has visitied previously).

In cognitive science, there a strand of thinking emphasising the role of internal simulation of

the body for higher cognitive functions, such as imagination and consciousness. For example,

according to Holland’s theory of Machine Consciousness, we need to build robots with detailed

models of their own bodies as well environments, in order to build machines that can emulate,

achieve or be useful for studying human-level consciousness [60].

The models we will be using in this thesis will be rather simple, and we will not be overly

concerned with whether our evolved controllers will be conscious anytime soon. Rather, we

will investigate the potential usefulness in having or acquiring models for learning control in

certain well-defined tasks. Stateful and reactive control will be compared in sections 5.3.1 and

7.2. State-value control will be contrasted with action-value and direct control in section 5.3.2.

Further, acquisition and use of dynamics models will be dealt with in section 6.2

2.4.6 Competitive co-evolution

Co-evolution is when the fitness function of an individual is made dependent on other individuals,

either in the same population, or in a different population altogether. A fundamental distinction

within co-evolution is between cooperative and competitive co-evolution. In the cooperative

varieties of co-evolution, which will not be discussed further here, different individuals share

fitness or otherwise reap benefits from co-operating with each other, whereas in the competitive

variety one individuals fitness in increased from another one’s fitness being decreased, either

through competition for shared resources, zero-sum fitness, direct battle between agents or

some other mechanism.

The promise of competitive co-evolution is the hope that linking the fitness in this way will

lead to some form of global improvement, as individuals compete against each other. The idea

is to encourage an evolutionary “arms race”, where improvements in some individuals cause

further improvements in other individuals, and vice-versa. This idea is laid out (in the context

of natural, not artificial, life) in a classic paper by Dawkins and Krebs, where they provide a

taxonomy of naturally occurring types of competitive co-evolution (interestingly, only a few of

these appear to have been used in artificial evolution) [34].

One of the first experiments to achieve good results from artificial arms races was Hillis’

co-evolution of sorting networks and sorting problems [59]. In this pioneering experiment, a

population of sorting networks was scored according to how well they solved the highest-scoring
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members of a population of sorting problems, whereas the sorting problems were scored according

to how well they defeated the highest-scoring members of the sorting network population. The

best co-evolved networks beat both networks that had been evolved without co-evolution and

hand-designed sorting networks.

Inspired by this early success, several research groups attempted to co-evolve predator and

prey robots, where the predators were scored according to how fast they could catch the prey,

and the prey were scored according to how long they could avoid the predator [57][101]. While

these studies had some success, it quickly became clear that co-evolutionary algorithms can be

prone to complex dynamics, which can thwart global progress towards higher fitness. There has

also been a implicit assumption that an evolutionary arms race leads directly to an increase in

complexity, though this is not always the case.

An example of a potential problem with co-evolution is that of “cycling” between different

strategies. If an individual develops a strategy that affords it a higher fitness relative to other

individuals, it will spread through the population, which will stabilise until a strategy arises that

exploits a weakness in the previous one. There is then another rapid replacement of individuals.

However, there is no guarantee that the new strategy is better than the one its predecessor

replaced, as the dominance relation is intransitive.

E.g. if the population is first dominated by a strategy we call “Rock”, this can be replaced

by the strategy “Paper”, which in turn can be replaced by “Scissors” - but Scissors is actually

inferior to Rock, although it’s superior to Paper!

It is therefore possible for the population to cycle through the same set of possible strategies,

each exploiting the weaknesses of the previous one, without any global increase in fitness (such

as the development of the strategy “Reinforced Pliers”, which beats Paper and is immune to

Rock).

Another problem that can occur in the case of more than one population is disengagement, a

loss of selective gradient [149]. This is where one population evolves individuals of higher fitness

more quickly, and they consistently beat individuals in another population. Therefore the other

population would see a uniform selection pressure, due to consistently being beaten, and thus

succumb to directionless genetic drift.

Several attempts have been made to address these problems, the most prominent of which

was invented by Rosin and Belew: the “hall of fame” [113]. This technique has the individuals

of the current generation compete not only against other current individuals, but also against

a selection of good individuals from previous generations. Exactly how this should be done has

been the subject of several studies, see e.g. [129][17]; there is some evidence that this process

leads to a sort of conservatisim, in that the selection pressure becomes biased towards solutions
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that can successfully counter as many previously evolved opponents as possible, rather than

radically new solutions.

Currently, we are far from a panacea to the problems of competitive co-evolution. Put

another way, there are plenty of open research questions concerning the dynamics of algorithms

of this type.

In this thesis, competitive co-evolution is explored in sections 7.1 and 7.2.

2.4.7 Evolution and other forms of reinforcement learning

Evolution is not the only way to learn control based on feedback. In the broad category of rein-

forcement learning we also find a class of algorithms learning from local reinforcements. These

algorithms associate particular actions with rewards, rather than the global learning of evolution-

ary algorithms, which associate rewards with complete strategies. The most famous and widely

used of these algorithms are the temporal difference learning (td-learning) algorithms [130].

Various forms of td-learning exist, but they all work essentially according to the following

specification. Each time-step, the following steps are taken by the controller:

1. Consider a set of possible actions and score them according to the value function. This

can be done either by assigning values to actions based on the current state (the action-

value approach), or by simulating the actions and assign a value based on the simulated

state, as detailed above in section 2.4.5 (the state-value approach). The set of possible

actions can be all possible actions for the current state if this number is low, or otherwise

a heuristically selected subset of that set.

2. Take the action that the value function scores highest (or, with a small probability, another

action).

3. Get the reward for this action from the environment.

4. Update the value function depending on the feedback from the environment and the pre-

vious estimate of the action’s value.

The “trick” of td-learning is in the updating of the value function in step 4. As an example,

consider update equation the Sarsa(0) variety of td-learning, using the action-value approach:

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at)) (2.5)

Where Q(st, at) is the value of action a given state s at time t according to the value function,

rt+1 is the reward observed at the next time-step, α is the learning rate, and γ is the discount

rate; both of the latter constants are commonly set to small positive values, e.g 0.1. The
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interesting thing about this equation is that the value function is updated with a value that is

partly dependent on its own valuation of the best action of the next state. This lifting-itself-by-

its-bootstrap procedure ensures that the rewards for particular actions will influence not only

the value function’s valuation of that action, but also, to a lesser degree, its valuation of actions

that lead to the rewarded action. It can be proven that under certain conditions variations

on td-learning, such as Sarsa, converge to the real value function. These conditions are rather

restrictive, and for most interesting tasks there is no convergence proof.

The main lure of td-learning algorithms is the idea that because they can adapt during a

trial to local reinforcements, rather than just changing their policy between trials, and that

the modification of the value function is directional rather than stochastic, they can potentially

learn much faster than evolutionary algorithms. On the other hand, there are certain differences

with evolutionary algorithms that make them less attractive in some respects.

One is that controllers must be based on mappings from state or state and action to value,

represented either as a function approximator (such as a neural network) or as a table. As

discussed above, this means that they must be able to enumerate (a representative subset of)

all possible actions, and in the case of state value functions, possess a fast and accurate model

of the agent’s dynamics. Evolutionary algorithms, on the other hand, can learn both state value

functions and action value functions, but also direct control where the output of the controller

is interpreted as motor commands. It also means that the value function must be able to learn

from examples in a supervised fashion, something which constrains the range of useful function

representations. It is hard to see td-learning creating controllers based on complexification of

neural networks, or on genetic programming.

Another difference with evolution is that instead of a fitness function, a reward scheme needs

to be specified. This can sometimes turn out to be non-trivial. While it is straightforward to

convert a reward scheme to a fitness function (just count the rewards incurred during a trial),

the opposite is not the case, and for many problems several very different reward schemes can

be designed where some work well and some not at all.

Overall, despite both algorithms being able to solve reinforcement learning problems, evo-

lutionary learning and td-learning represent two very different ways of thinking. Consequently,

the research communities investigating each family of algorithms are large separate, and papers

written by and for td-learning researchers are often written in a style which renders them inac-

cessible to researchers working in evolutionary learning. (Quite possibly the opposite is also the

case.) This makes it all the more important to use empirical comparisons to investigate under

what conditions one or the other type of reinforcement learning algorithm works better, and

in general experimentally characterise the differences and similarities between them. The holy
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grail of this research direction would be an algorithm that combined the advantages of both

types of algorithm with the disadvantages of none of them.

With recognition of the importance of such comparisons, the body of work comparing tem-

poral difference learning with evolution is growing steadily. Often, though, these efforts are

disconnected from each other and use dissimilar performance measures; it is often not clear

what to make of comparisons that seem to come up with partly contradictory findings. Further,

many of the comparisons deal with learning evaluation functions in board games, which is quite

dissimilar from the agent control domains that are the main focus of this thesis.

An influential early experiment on td-learning of board game evaluation functions is due

to Tesauro, who managed achieve world-class performance when training neural network-based

Backgammon evaluation functions with self-play [134]. Pollack and Blair tried training eval-

uation functions using the same game and function representation, but instead of td-learning

they used the simplest possible form of evolution, a hill-climber where a single individual was

repeatedly mutated, and the mutation was kept only if it won a number of games over the

non-mutated individual [108]. The algorithm worked, but its end results were far inferior to

those of Tesauro [135].

Darwen [33] did a set of similar comparisons for Backgammon, and found that population-

based evolution eventually outperformed td-learning when training a linear board evaluation

function, even though evolution was much slower. However, when training a nonlinear evaluation

function, board evaluators trained by evolution never reached the performance of those trained

by td-learning for the simple reason that evolution training took too long time; this, in turn,

was because effective evolution needed to evaluate the same pair of individuals many times.

Runarsson and Lucas [115] investigated temporal difference learning versus co-evolutionary

learning for small-board Go strategies. There it was found that td-learning learned faster, but

that with careful tuning, evolution eventually learned better strategies. In particular, with

evolution it was necessary to use parent-offspring weighted averaging in order to cope with the

effects of noise. This effect was found to be even more pronounced in a follow-up paper by

Lucas and Runarsson [79], comparing the two methods for learning an Othello position value

function. Kotnik and Kalita [72] found that evolution outperformed TDL at learning to play the

card-game rummy, which unlike the board games in the above studies is not a game of perfect

information.

However, there are some comparisons using dynamic agent control domains as well. Taylor et

al [132] compared td-learning and the NEAT neuroevolution algorithm for ’keep-away’ robocup

soccer, and found that evolution could learn better policies, though it took more evaluations to

do so. Results also showed that Sarsa learned better policies when the task was fully observable
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and NEAT learned faster when the task was deterministic.

Gomez et al [51] investigated an impressive range of reinforcement techniques, including

several versions of neuroevolution and td-learning, on four increasingly difficult version of the

benchmark pole-balancing problem, ranging from simple to very hard versions. In striking

contrast to some other studies, the best evolutionary methods uiniversally outperformed the

best TD-based methods, both in terms of learning speed and in terms of which methods could

solve the harder versions of the problem at all. Further, there was significant differences between

different neuroevolutionary and td-based methods, with the best td-based techniques sometimes

outperforming some evolutionary techniques. The relative ordering of the algorithms was similar

across the different versions of the problem.

Some general results are beginning to emerge, but there is still much to be learned. One

tendency that can be observed in many - though not all - of the observed studies is that td-

learning learns faster than evolution, but evolution eventually learns better strategies. Under

what conditions this is true is an important question.

In this thesis, we won’t provide the missing synthesis of all this information, but hopefully add

another small piece of the puzzle, in section 5.3.2 where we compare td-learning with evolution

on the car racing problem.

2.5 Summary

This chapter has provided a very high-level overview of evolutionary computation, especially as

applied to neural networks and robot control. We have treated the problem of reality versus

simulation in evolutionary robotics, and the philosophy of evolutionary robotics, in some more

detail, and have likewise gone into some depth on a number of topics that come up when trying

to evolve complex general behaviour. These topics include sensors and their representation,

incrementality, modularity, controller representation, stateful versus reactive control, competi-

tive co-evolution and the relative advantages and disadvantages of evolution when compared to

other reinforcement learning algorithms. Taken together, this provides a grounding in compu-

tational intelligence methods and current research issues against which the contributions in the

experimental chapters can be judged.

This chapter has also described the basic learning algorithms, in particular the simple evolu-

tion strategy, which are used in the experimental chapters of the thesis. In some of the particular

experiments these algorithms are used in their naive form, whereas in other experiments slightly

augmented versions are used. Those algorithms are described in the relevant experimental sec-

tion, referring to the descriptions given in this chapter.
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Chapter 3

Computational intelligence and

games

Computational intelligence techniques can be said to have been combined with games for the

first time in 1959, when Samuel applied a simple reinforcement learning algorithm to the board

game Checkers (also known as Draughts) [116]. With no human instructions, through only

playing itself and observing which sequences of moves won games and which sequences lost, and

using the extremely limited hardware available at the time, the algorithm managed to learn

strategies good enough to beat its inventor.

After Samuel’s early success, all was quite quiet on the CI for a long time. But for as long as

there has been artificial intelligence research, a few researchers have worked on applying classical

AI techniques, essentially specially tailored search algorithms, to board games such as Chess and

Checkers. This line of research eventually led to the much-publicized victory of the IBM Deep

Blue Chess computer over world Chess champion Gary Kasparov in 1997 [96]. Whereas this and

other results are impressive in their own right, little or no computational intelligence is used in

such research. Likewise, virtually no effort was spent by the academic community on developing

AI for other types of games than board games, or on developing AI whose goal was not to win

the game, for a long time.

In the last few years, however, a critical mass of researchers have become interested in both

computational intelligence and in games, in one way or another, for the small but rapidly growing

research field of Computational Intelligence and Games (CIG) to form. Much of the research in

this field is published in a small number of conferences, all annual and started in recent years, that

deal mainly in CIG research: Artificial Intelligence in Interactive Digital Entertainment (AIIDE),

Eurosis GAME’ON, and IEEE Symposium on Computational Intelligence and Games (IEEE-

CIG). This research can also sometimes be found in mainstream CI journals and conferences,
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and also in some specialised game publications, such as the AI Game Programming Wisdom

series of books [111].

In the last few years, a few PhD theses have appeared whose main focus is the application

of CI to games, for example the theses of Spronck [121], Yannakakis [154] and Bryant [15].

All of these also deal with rather complex games, and with the use of CI techniques for other

purposes than winning games as quickly and efficiently as possible, but rather with adapting

difficulty levels of opponents to that of a human player (Spronck), to optimise player satisfaction

(Yannakakis) and to generate behaviour that looks intelligent to the human player (Bryant).

This chapter presents a two-dimensional taxonomy of CIG research, which will be used to

sample existing research in the field and to structure the experimental chapters of the thesis.

The first dimension of the taxonomy indicates how the CI algorithms are used in the game:

for optimization, for imitation or for innovation. The second dimension indicates whether the

research uses games to study or enhance computational intelligence, or computational intelli-

gence to augment games. Obviously, many studies and experiments could be seen as falling

into several of these slots, and it is quite possible that the taxonomy is incomplete in the sense

that some research which is undoubtedly CIG would fall outside of it. When that happens, the

taxonomy will have to be revised; currently we will use the proposed categories to discuss CIG

research in general. Among the many different types of games that will be discussed, we will

emphasise racing games, as such games figure prominently in the experimental chapters of this

thesis. But before putting CI and games together, we will briefly discuss computer games per

se.

3.1 Computer games

There is not one definition of what a game is, but plenty. In fact, the philosopher Wittgenstein

used the concept of a game in a number of thought-experiments designed to show that it was

impossible to correctly define any concept in terms of sufficient and necessary conditions; instead,

concepts are implicitly defined by those things that they refer to, and which are related to each

other through family likeness. Learning to use a concept is learning to play the language-game

that the concept forms part of, yet another example of a game [150].

While Wittgenstein is fairly far removed from the relatively down-to-earth topics of this

thesis, more pragmatically minded authors have provided other definitions. The legendary game

designer Sid Meier (creator of what the author of this thesis considers the best computer game

ever, the epic strategy game Civilization) defines a game as “a series of meaningful choices”.

Others, such as Zalen and Zimmermann, emphasize conflicts as central to games: a game is
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“a system in which players engage in an artificial conflict, defined by rules, that results in a

quantifiable outcome”. Juul provides a more academic definition: “A game is a rule-based

formal system with a variable and quantifiable outcome, where different outcomes are assigned

different values, the player exerts effort in order to influence the outcome, the player feels

attached to the outcome, and the consequences of the activity are optional and negotiable”.

In discussing these and other definitions, game designer Raph Koster remarks in his recent

book that none of them contain the word “fun” [71]. As fun seems to be so central to games,

he then devotes the rest of the book to understanding what makes games fun. According to

Koster, a game is fun to play because we learn the game as we play; we understand and learn

the patterns underlying the game, and finally “grok” how to play it. This requires that the level

of challenge always is approximately right, and that new patterns are always available to learn

- games that are too simple or impossible to understand are boring. (It is important to note

that games can still be fun after figuring out how to win them, as long at is possible to learn

how to play even better.) Thus, a game is fun because it is a good teacher, at least according

to Koster.

Another theorist who has tried to nail down the essence of games and why they are fun is

Thomas Malone. He claims that the factors that make games fun can be organized into three

categories: challenge, fantasy, and curiosity [81]. The first thing to point out about challenge

is that the existence of some sort of goal adds to the entertainment value. Further, this goal

should not be too hard or too easy to attain, and the player should not be too certain about

what level of success he will achieve.

Games that include fantasy, according to Malone, “show or evoke images of physical objects

or social situations not actually present”. The sensation of being somewhere else, being someone

else, doing something else. As for the third factor, curiosity, Malone claims that fun games

have an “optimal level of informational complexity” in that their environments are novel and

surprising but not completely incomprehensible. These are games that invite exploration, and

keeps the user playing just to see what happens next.

With this very general characterisation in mind, let us now take a look at what types of

games there are.

3.1.1 Types of computer games

There are countless taxonomies of computer games, all of which will be ignored in this section, in

favour of a homebrewn categorisation more relevant to the argument of the thesis: computerised

games, agent games and management games. We will also take a first look at how each type of

game can be used in CI research, though this will be developed further in the rest of the chapter.
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Computerised games are games which you don’t really need a computer to play, because

the computation involved is minimal. Such games almost always have discrete state spaces and

simple rule sets, and are usually atemporal. Here we find all the classic board games: Chess,

Checkers, Go, Monopoly etc. We also find card games such as Poker and Bridge, and puzzles

such as crosswords and Sudoku. On the far end of the complexity scale for this type of games

we find tabletop role-playing games such as Dungeons and Dragons, which are commonly played

without the help of a computer, but with thousands of pages of reference material available, a

large assortment of dice, and occasionally a pocket calculator. It is worth noting that even if

physical sports such as Tennis, Football or Fencing are considered to be games, they don’t fall

into this category, as they require physical activity from the player in a way which e.g. board

games don’t. Rather, simulations of such sports can be played on computers with the intense

physical activity replaced by button-pressing1, but these are rather different things that fall

into either the agent game or management game category (both are categories that require a

computer to play).

Due to the simplicity of implementing computerised games, they are well suited for fair com-

parisons of different CI algorithms with each other, and with human players. This is especially

true for those games that have been extensively analysed and which have large and active com-

munities of human players. However, due to the nature of these games, the range of cognitive

skills that can be investigated is strictly limited: Chess is extremely badly suited for research

into perception, movement, the codependence of brain and body etc. (Though note Stanley’s

innovative application of a form of active vision for learning to play Go [128].) A case in point

here is how little we learned about human intelligence from Deep Blue’s victory over Kasparov.

Agent games are games where the player controls an agent in a simulated world, and more

or less directly decides what the agent does at any point in time. Plenty of games fall into this

category, including shoot-em-ups such as Space Invaders, platformers such as Super Mario Bros,

racing games such as Need for Speed, adventure games such as the venerable Legend of Zelda or

the more recent Grand Theft Auto, first-person shooters (FPSs) such as Halo, simulation games

such as Microsoft Flight Simulator, fighting games such as Tekken, some role-playing games

such as the single-player The Elder Scrolls: Oblivion or the multi-player World of Warcraft and

some aspects of sports games such as EA’s FIFA or NHL. Usually, such games happen in real

time, adding an element of resource-constrained decision making; they are often also games of

imperfect information, as the player can not see the whole play-field or level. The complexity of

the dynamics of the agent varies wildly, from the grid-world of Snake (of Nokia phone fame) to

the intricate modelling of wing-tip turbulence of the aforementioned Microsoft Flight Simulator,

1See Nintendo’s Wii Sports for an interesting hybrid between computer game and physical game.
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but the dynamics is always so complex that the game cannot be played in real time without

a computer. Similarly, the complexity of the challenges and the graphical representation vary

enormously with the age, budget, target audience and quality of the game.

Agent games are especially well suited for studying questions related to cognitive science,

or to testing biologically inspired ideas, especially about perception and sensory-motor coordi-

nation. This is because agents in many (not all) agent games can be said to be situated and

embodied, according to the definitions discussed above. Essentially, many agent games permit

much the same type of experiments to be done as can be done in evolutionary robotics, with

the crucial difference that they also permit experiments to be done that could definitely not be

done with real robots, lest you have an armada of spaceships to spare. Just how well suited

they are will be argued at greater length later in the chapter.

Management games is a bit of a catch-all term for all the games that don’t fit into one of the

above two categories. In such games, the player does not control a single embodied agent, at least

not most of the time. Rather, the task of the player is to devise strategies, allocate resources,

schedule events, or just generally solve puzzles that don’t directly involve controlling an agent,

be they temporal or atemporal. Management games are, like agent games, too complex to be

played practically without computers. This category includes real-time strategy games (RTSs)

such as Warcraft, complex turn-based strategy games such as Europa Universalis, god games

such as Sim City or The Sims, some aspects of sports games such as the above mentioned FIFA

and NHL, text-based adventure games such as Adventure but also completely unclassifiable

outings such as Wario Ware.

As this category of games is defined more by what it isn’t than by what it is, characterising

it in terms of its usefulness is a bit complicated. What can be said is that the complexity of such

games makes them rather less suited than computerised games for comparisons of CI algorithms;

playing a single turn in Civilization takes several orders of magnitude more computational effort

than in Chess, the game’s difficulty might make it hard for the algorithms to learn anything

at all, and the game is so hard to analyse that if one algorithms performs better than another,

it might be hard to draw any general conclusions. And like computerised games, management

games are usually unsuited for research on motor and perception issues. On a positive note,

some management games can be made to accurately reproduce aspects of real-world decision

making, so that algorithms can be evaluated on the game for their suitability for solving the real-

world problem. A good example of this is Miles and Louis’ research on evolving path-planning

algorithms and influence maps for controlling simulated forces in a naval RTS game [90]. The

U.S. Navy is funding this research, hoping to eventually use the results of it for actual military

decision making.
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3.1.2 Commercial versus academic game AI

While the academic study of AI for games, and especially CI for games, has a rather short

history, computer games have for as long as they existed needed some sort of AI to control non-

player characters (NPCs). One would therefore expect a significant overlap between academic

and commercial game AI. However, this is not the case: the two fields have different goals and

use different types of algorithms. We will here discuss these differences and how the fields could

be brought together.

If we exaggerate the differences a little bit, we could say that academic researchers use CI

to try to beat games, whereas AI programmers in game companies use their techniques to try

to make games more interesting. The reason why the commercial game companies are not very

interested in beating their own games is that if you have full access to the game, creating an

NPC that plays the game better than any human player is easy - you just have to cheat, i.e.

give the NPC some information or abilities that the human doesn’t have.

There are exceptions to this, as some games are so complex that the amount and nature

of cheating necessary for the NPCs to win over a good human player might be such that it

detracts from the game experience. For example, in Civilization it is a common complaint (at

least on higher difficulty levels) that when waging war against computer-controlled civilisations,

military units magically appear in the enemy’s cities without the NPC spending the requisite

time on building them. Thus, Civilization and similar hugely complex games would be among

the minority of games where an AI that played the game better would have obvious industrial

applications.

The motivations that drive AI programmers in the game industry is to create AI that makes

the game entertaining, and keeps the players playing, ultimately driving the sales of the game.

In listing desirable properties of game AI, the commercial game AI programmer Gilgenbach

claims that good NPC AI should be understandable, predictable, consistent, not too fast, and

“not take cheap shots” (hide and shoot you in the back etc.) [48]. This goes very well with

Koster’s view that games are fun when you can understand them gradually; if your opponents

are too smart, the game is no fun.

Typically, game companies have a very pragmatic take on how AI is implemented, and

anything goes as long as it works in the game; the techniques used to conjure the illusion of

intelligence don’t need to have anything to do with what academic researchers would recognize

as AI or CI. Instead, the NPCs in the majority of games are controlled by finite state machines,

lists of conditional statements, and the occasional A∗ pathfinding algorithm. Typically, no

learning is present in either development or execution of the AI. Everything is hard-coded by

the human game developers.

49



So why are CI algorithms, which are undoubtedly more powerful and scalable than finite state

machines and lists of conditional statements, hardly ever used in commercial games? Several an-

swers have been given. A common argument is that there are simply not enough computational

resources available; CI algorithms use many more processor cycles than the current techniques,

and most of the computing power in a modern game goes to producing the pretty graphics. The

argument typically goes on to claim that people will stop caring about pretty graphics sometime

soon now, and together with new hardware becoming available, this will herald the new era of

true AI in games. This argument has been around since the Ancient Geeks, and has not aged

well. The Playstation 3 is many orders of magnitude more powerful than the Nintendo NES,

but the games for the former console seem not to use much more CI than those for the latter

did. And yes, people care just as much about pretty graphics now as they ever did.

A much better answer is that CI algorithms are too unpredictable for using in-game. Evo-

lutionary algorithms, td-learning and backpropagation might deliver fantastic results, but also

terrible results. The NPCs might become far too easy or far too hard to beat (or cooperate

with), or just start to behave erratically and illogically, ruining the illusion of intelligence and

the suspension of disbelief. Further, if NPC players change their behaviour patterns too quickly

and too radically, the player might feel that he doesn’t understand the game and all his learning

efforts are in vain, even if the new NPC behaviour is perfectly logical and understandable in

itself. If Koster and Gilgenbach are to be believed, this is very bad game AI design.

If you ask a game developer about the greatest challenge facing them right now, chances are

they will not mention AI at all. Instead, they might reply that with all the processing power

and storage space now available, games are expected to be bigger and prettier than ever before,

and so the problem is producing enough content to fill the game. Developing a major title might

require more than a hundred developer-years, and no small percentage of the people employed

are artists and level designers. The huge amount of resources needed to develop a game means

that fewer major games are profitable. If the CI community could come up with ways to use

their techniques to cut down on development costs, especially for level design and artwork, they

might get rather more attention from the game industry than they have seen in the past.

Reconciling academic and commercial game AI research

Several academic researchers have addressed this disconnect between academic and industrial

game AI research, and given suggestions for how the two communities could learn to interoperate.

In an influential article from a few years back, Laird and van Lent argue [76] argue that full-

fledged commercial computer games are the ideal application area for human-level artificial

intelligence. Laird and van Lent argue that users are driven to online games because of the
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failings of current game AI. Gamers want NPCs they can interact in much richer ways than

the current crop, and who behave in an overall human-like way. Both academics and game

developers would have much to gain from this, as no other AI application areas demand such

a broad range of human-level cognitive skills, and as better AI could make more complicated

NPCs (that don’t rely on cheating) possible, heightening the game experience.

Laird and van Lent are not CI researchers, and so they argue not for evolutionary algorithms

and neural networks, but rather for good old-fashioned AI techniques such as planning algorithms

and expert systems. As such algorithms are more similar to, and in some cases even rather

straightforward extensions of, the techniques that are already in use in commercial games (an

expert system can be seen as a list of conditional rules), game developers are probably less

reluctant to adopt them. And Laird and van Lent make a good case that full-feldged commercial

computer games are good research platforms for academic AI developers, including the essential

recognition that something that hundreds of people have developed and hundreds of thousands

of people play is not just like any robot simulator, and cannot be claimed to lack validity and

abstract away from the challenging issues in the same way. However, they fail to explain how

their proposed augmentations of NPCs with better AI would make games more fun, and thus

translate to higher revenues for game developers.

Baekkelund expresses similar views in a more recent article which focuses on practical issues

in collaboration between industry and academia [6]. While convincingly explaining some of

the benefits for academic researchers of tapping into commercial game technology, he doesn’t

explain in detail how more advanced AI would benefit the games industry. Instead, he claims

that “Research AI stands to be an important source for sparking innovation within game AI”

and that “Games with particularly innovative AI will stand out among competitors”. This

might will be true, but doesn’t help us guide our research.

Turning the issue somewhat on its head, Cowling suggests that we view the writing of AI as

a sport in itself [31]. He notes that there has been competitions between AI programmers, where

the goal is to write the AI that wins against the other competitors’ AIs, for a long time. Fairly

recently, such competitions have expanded from computerised games such as Chess into games

requiring a broader take on AI, such as Robocup (robot football). Several academics have also

written games specifically tailored to AI competition, such as Cellz [77], The Virus Game [32]

and Terrarium [89].

Such games are unlikely to ever get a really large following, however, if they rely on the

“players” being able to program and being knowledgeable about AI in order to “play” the game.

But imagine that the player could teach the NPCs how to behave without actually writing code,

but instead through some other means such as demonstrating the correct behaviour to them,
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rewarding or punishing them, or maybe just connecting boxes in a colourful interface. Then

gamers without any expert knowledge could easily train NPCs to compete with their friends’

trained NPCs. This would form a new game genre, heavily dependent on modern CI techniques.

(That games based on training NPCs and battling them out against each other can succeed is

obvious, looking at the astonishing success (over 100 million games sold!) of the Pokemon series,

though the creature training there is relatively simplistic and not based on CI algorithms.)

Cowling discusses some games operating at least partially according to these ideas; they will

all be discussed in the next three sections. In those sections we also try to subsume the various

ideas about commercial and academic game AI expressed above under our analysis of different

types of CI in games.

3.2 Optimization

Most academic CIG research takes the optimisation approach. This means that some aspect

of a game is seen as an optimisation problem, and an optimisation algorithm is brought to

bear on it. Anything that can be expressed as an array of parameters and where success can

in some form be measured can easily be cast as presenting an optimisation problem. The

parameters might be values of board positions in a board game, relative amount of resource

gathering and weapons construction in a real-time strategy game, personality traits of a non-

player character in an adventure game, or weight values of a neural network that controls an

agent in just about any kind of game. The optimisation algorithm can be a global optimiser like

an evolutionary algorithm, some form of local search, or any kind of problem-specific heuristic.

Even CI techniques which are technically speaking not optimisation techniques, such as td-

learning, can be used. The main characteristic of the optimisation approach is that we know

in advance what we want from the game (e.g. highest score, or being able to beat as many

opponents as possible) and that we use the optimisation algorithm to achieve this.

3.2.1 Games for computational intelligence: testing machine learning

algorithms

There is a wealth of examples of different sorts of computer games being used to test the

efficiency of CI algorithms, either through comparing different algorithms against each other or,

more commonly, simply through showing that a particular algorithm can be used to learn to

play (or optimize the playing of) a particular game. For computerised games, the list is very

long indeed; in section 2.4.7 we gave several examples of using both evolutionary algorithms

and td-learning to learn evaluation functions for board games, but there are other important
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studies using only evolutionary methods, such as Fogel’s Blondie24, where evolution learned to

play Checkers at a very high level [46].

Several researchers have also used different forms of management games, mainly strategy

games, as benchmark problems for their algorithms. E.g. the above cited work of Miles and Louis

on evolving path-planners and influence for a naval RTS game [90], but also Spronck’s work on

evolving construction priorities and other aspects of strategy in the classic RTS Warcraft [121].

In agent games, evolutionary computation has been used to tune parameters for hard-coded

NPC controllers in the very popular FPS Counterstrike [30]; for the 2D space shooter Xpilot,

Parker and Parker have evolved both parameters for hard-coded control algorithms [105] that

turned out to play very well against standard battle bots and human competitors, and neural

networks that control the spaceship on their own [106], closing the sensory-motor loop but

playing less well. As an example of a different type of agent game and a different learning

algorithm, Graepel et al. applied the Sarsa variety of td-learning to the behaviour learning in

the modern commercial fighting game Tao Feng with good results [52]. Also worth mentioning

is Priesterjahn et al.’s evolution of control for agents in the FPS Quake 3, based on the internal

data structure in the game [110].

Several groups of researchers have taken the optimization approach towards racing games.

Tanev [131] developed an anticipatory control algorithm for an R/C racing simulator, and used

evolutionary computation to tune the parameters of this algorithm for optimal lap time. Chap-

erot and Fyfe [24] evolved neural network controllers for minimal lap time in a 3D motocross

game. And there are other things than controllers that can be optimised in car racing, as is

demonstrated by the work of Wloch and Bentley, who optimised the parameters for simulated

Formula 1 cars in a physically sophisticated racing game [151] with the objective of lowering

lap times, and by Stanley et al., who evolved neural networks for crash prediction in simple car

game [125].

Our own work on optimization in three agent games (simulated car racing, Cellz and heli-

copter control) is discussed in chapter 5; in addition, we have performed elsewhere published

experiments in evolutionary solution of Sudoku puzzles, which is a straighforward application

of optimization to computerised games [94][93]. It should be noted that the work of Chaperot

discussed above was done after our initial publication on simulated car racing, and the work of

Tanev was done concurrently. (There are other important differences as well, for example that

Chaperot’s racing simulator lacks walls so that that vehicle never gets stuck, and that Tanev

only evolved parameters for his controller, while we evolved the full controller.)
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3.2.2 Computational intelligence for games: optimizing agents and

games

None of the above optimization experiments were concerned mainly with improving the en-

tertainment value of games. Further, the games used were games where NPCs or computer

strategies can be hand-coded to beat all human players without cheating, or with only relatively

non-obtrusive cheating, so the demand from the games industry for CI techniques to play the

game better should be small.

The possible exceptions to this are the more complicated games, Counterstrike and Warcraft,

where more experienced players might suspect that the computer players are able to “see” things

that they shouldn’t be able to see. Partly for that reason, those two games are played more

often against other human players than against computer players.

This is not to say that it is impossible to use CI algorithms to make these games more fun. It

would be very possible to e.g. evolve game parameters for a game in order to make it more fun,

with the fitness function being either reports by human testers, or some sort of entertainment

metric. It is also entirely possible that this is already being done in the development phase

of commercial games, but that the game developers see no reason to report it in journals or

conferences; its apparent absence from common publication venues only point to it not having

been tried in academic game research. However, in the Innovation section below, we will discuss

attempts to evolve complete control systems according to entertainment metrics.

3.3 Imitation

In the imitation approach, supervised learning is used to imitate some aspect of a game. What

is learned could be either the player’s behaviour, the behaviour of another game agent, or the

dynamics according to an agent moves. While supervised learning is a huge and very active

research topic in machine learning with many efficient algorithms developed, this does not seem

to have spawned very much research in the imitation approach to CIG.

3.3.1 Games for computational intelligence: testing supervised learn-

ing algorithms

Unlike the situation for optimisation and reinforcement learning algorithms, there appears to

be very little published research on using games to test supervised learning algorithms. The

main reason for this is almost certainly that there are plenty of high-quality datasets for testing

supervised learning algorithms freely available already. Using games to test these algorithms
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would only be meaningful if what was tested was a version of an algorithm specially modified

to work with the game in question, otherwise, one of the available datasets could be used.

One of the few studies in the literature that uses games to compare supervised learning

algorithms is the paper by Chaperot and Fyfe discussed above, where a second experiment

compared variations of the backpropagation algorithm for learning to drive based on human

examples [24].

3.3.2 Computational intelligence for games: modelling behaviour and

dynamics

Several commercially successful games have used the imitation approach to enhance gameplay.

We have examples from both agent games and a management game in this section; it seems

that no-one has explored imitation in computerised games.

An example from management games is the critically acclaimed Black and White by Lionhead

Studios. In this game, the player takes the role of a god trying to influence the inhabitants of

his world with the help of a powerful creature. The creature can be punished and rewarded for

its actions, but will also imitate the player’s action, so that if the player casts certain spells in

certain circumstances, the creature will try to do the same to see whether the player approves

of it.

In racing games, there are actually examples of the imitation approach being taken during

both development and on-line during game-play. For the Playstation game Colin McCrae Rally

2.0, Hannan (an academic CI researcher turned game developer) trained neural networks to

imitate his own driving in order to produce good human-like NPC driving [84]. The neural

networks were standard MLPs trained with the Rprop variation of backpropagation, though

much time went into choosing the size of the network and the correct set of inputs. However,

the neural networks only provided the basics of the driving AI; there was a layer of rules on

top, that decided what driving styles to adopt in different situations, e.g. when to overtake a

competitor and recover from a crash [18].

An example of using imitation on-line, during the actual gameplay, is the XBox game Forza

Motorsport from Microsoft Game Studios. In this game, the player can train a “drivatar” to play

just like himself, and then use this virtual copy of himself to get ranked on tracks he doesn’t want

to drive himself, or test his skill against other players’ drivatars. During the development of this

feature, a number of approaches were tried, including neural networks, but their performance

was unsatisfactory. Instead, a simpler approach was used, where the racing line and speed on

each track segment was recorded, and a hard-coded algorithm kept the car as close as possible

to the recorded racing line. This method necessitated certain constraints on the track design,

55



also that crash recovery was handled using another hard-coded algorithm [58].

Moving from racing games to real car driving, Pomerleau’s work on teaching a real car to

drive on highways through supervised learning based on human driving data is worth mention-

ing [109]. The neural networks associated human driving commands with features extracted

from a forward-pointing video camera, and thus learned to drive rather well on real (Ameri-

can) highways. Pomerleau’s reason for using imitation rather than optimisation in this case was

probably not that interesting driving was preferred to optimal driving, but rather that evolution

or td-learning using real cars on real roads would be costly.

Our own research presented in chapter 6 deals with imitation of both behaviour and dynamics

in the context of car racing.

3.4 Innovation

The border between the optimisation and innovation approaches is not clear-cut. Basically, the

difference comes down to that in the optimisation approach we know what sort of behaviour,

configuration or structure we want, and use CI techniques to achieve the desired result in an

optimal way. Taking the innovation approach, we don’t know exactly what we are looking for.

We might have a way of scoring or rewarding good results over bad, but we are hoping to create

lifelike, complex or just generally interesting behaviours, configurations or structures rather than

optimal ones. Typically an evolutionary algorithm is used, but it is here treated more like a tool

for search-based design than as an optimiser.

3.4.1 Games for computational intelligence: evolving complex general

intelligence

In section 2.3 we discussed the problems holding back progress in evolutionary robotics in some

detail, especially the problem of finding suitable experimental environments and tasks. In short,

evolution on real robots faces the recoverability problem, the problem of computation time, and

the problem of high costs of robots and environments. Evolution in simulation faces the problems

of simplicity and exploitability: most robot simulators have too simple dynamics, allow only for

too simple tasks to be performed, allow only for too simple and low-dimensional inputs to the

controller, and have exploitable weaknesses in the sense that evolution can produce behaviour

that leads to high fitness due to a flaw in the simulator but would never work on the real robot.

These could very well be the real reasons we have not seen any really complex general behaviour,

or “real intelligence”, emerging from evolutionary robotics simulations.

The innovation approach to games for computational intelligence means taking computer
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games, especially complex agent games, seriously as a replacement for robotics in evolution-

ary robotics. Such computer games have a long list of advantages over real robots or robot

simulations, potentially solving all the problems discussed above:

• Compared to fitness evaluation on real robots, evaluation in a computer game can happen

much faster, for two reasons: one is that computer games can be run faster than real-time;

even the most advanced computer games of today, that brings a top-of-the line desktop

down on its knees, will have cycles to spare on next year’s computer, and running games

from the 1980’s on a virtual machine you can get speedups of orders of magnitude. Another

is that any game can be run in several replications across a cluster of computers, giving the

evolutionary algorithm an ability to evaluate several individuals in parallel at moderate

cost.

• Like in robot simulations, recoverability is simply not an issue - just restart the game.

• Unlike robot simulations, there are already very good tasks and associated fitness functions

present. If we agree with Koster that good games are good teachers, then a good game is

designed so that it is at first easy for a complete to novice to make some progress without

dying, but this becomes harder as the game progresses, with more and better enemies and

puzzles and more constraints in terms of time, energy etc. Really good games demand not

only more of the same skills, but expands the set of demanded skills as the game goes on,

providing us with a form of implicit incremental evolution. The fitness function is simple:

the score of the game.

• Competitive co-evolution is also well catered for, with many games specially tailored to

competitive playing over the internet. Some of these games (such as Counterstrike or

Halo) have huge communities of active players, allowing evaluation against real humans

and their sometimes very sophisticated tactics. Many of these games also feature ranking

systems, allowing testing against humans of a particular skill level.

• The graphics of modern games, which can hardly even be compared to those of the vast

majority of robot simulations, allow for very complex, high-dimensional visual input to

the controllers. Further, games are developed so that they are playable using only the

information given on the screen; thus there is no problem about selecting what sort of

information to use, just how to make the controller understand it.

• In the same way, computer games provide well-defined outputs from the controller: just

connect the outputs from the evolved controller to a simulated game controller, joystick

or keyboard.
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• Another important advantage over robot simulations is that all games are designed so as

not to have exploitable weaknesses, and commercial games go through huge amounts of

testing to make sure that there are no ways of cheating and getting top score without being

able to play the game particularly well. This is a significant benefit when compared to

standard robot simulations. (Turning the problem on its head, evolutionary algorithms can

be used to identify such weaknesses, thereby automating game testing to some extent, as

exemplified by Denzinger et al. working in collaboration with games developer Electronic

Arts [37].)

Given all these advantages, it’s surprising that not more CI researchers take agent games

seriously. A common counter-argument is that computer games are not “real”. But how can

something which has taken hundreds of developer years to construct, and hundreds of thousands

of players spend countless hours on playing not be real? Perhaps it’s a question of age; researchers

that have grown up with computer games at home are more likely to take them seriously.

One interesting example of the innovation approach to games for computational intelligence

is the previously mentioned work of Floreano et al. [43] on evolving active vision in a racing game,

work which was undertaken not to produce a controller which would follow optimal race-lines

but to see what sort of vision system would emerge from the evolutionary process.

As for the experiments in this thesis, most of the research using the car racing game is part

of a project to see how complex and general intelligence can be evolved in such apparently

simple games, ranging from the rather straightforward driving behaviour in chapter 5 to the

more complex interactions in chapter 7.

3.4.2 Computational intelligence for games: emergence and content

creation

The innovation approach can be used to make games more entertaining as well. This can be

done for all different types of games, either by improving aspects of existing games or by creating

completely new types of games.

An example of improving existing games is Yannakakis and Hallam’s work on evolving inter-

esting opponents for a simple version of the classic Pacman game [152]. In those experiments,

the ghosts (opponent NPCs) were evolved according to a fitness function constructed as a way of

measuring Malone’s entertainment factors; the efficacy of this method was borne out in surveys

of human players.

But what is evolved does not need to be NPC behaviour, but could also be other forms of

game content such as levels, environments, puzzles or artwork; in fact, it is quite possible that

automatic ways of generating other content is in higher demand in the games industry than
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automatic ways of generating behaviour. In section 7.3 we present a method of evolving racing

tracks based on player models.

Finally, there is the possibility of creating new genres of games based on evolutionary inno-

vation, e.g. training games as discussed above. An impressive example of this is Stanley et al.’s

NERO game. Here, real-time evolution of neural networks provide the intelligence for a small

army of infantry soldiers [124] The human player trains the soldiers by providing various goals,

priorities and obstacles, and the evolutionary algorithm creates neural networks that solve these

tasks. Exactly how the soldiers solve the tasks is up to the evolutionary algorithm, and the

game is built up around this interplay between human and machine creativity.

3.5 Summary

In this chapter, we first discussed computer games per se, distinguishing between computerised

games, agent games and management games. We then discussed various ways in which compu-

tational intelligence can be applied to games, identifying three major approaches: optimisation,

imitation and innovation. Within each of these approaches we gave examples of how games can

be used in CI research, and how CI research can be used to augment games.

While chapter 2 provided the necessary background in computational intelligence methods

and research issues to situate the experiments in this thesis, the present chapter aims to provide

the same sort of background when it comes to the application of computational intelligence to

computer games. However, this chapter cannot claim to be an exhaustive overview of issues and

research trends. This is mainly because the CIG research field is still young and far from well-

defined. Further, important insights into the nature of games and entertainment maximisation

can be found in other academic disciplines, most notable game studies, and in the often non-

academic discourse of game development practice. The author willingly concedes to not be well

read in these fields. However, as the field of CIG matures, insights from these fields will have

to be integrated.
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Chapter 4

Games in this thesis

The main experimental environments in this thesis are two simple racing games based on a

car racing simulator. However, to demonstrate the applicability of the evolutionary learning

methods we discuss here, and to further investigate some of the topics discussed in chapters 2

and 3, some experiments were conducted in different game environments. Both of the additional

games, Cellz and helicopter control, are like the car simulation based on agent control in contin-

uous physics-based domains. The experiments conducted in these additional environments are

described in less detail in the thesis, and so these domains in themselves are described in less

detail than the car racing simulation.

In this chapter, we are not discussing the important issue of which aspects of the environment

is available to the controller, nor how these aspects are represented. As how to best sense an

environment is one of the issues the research in this thesis aims to throw new light on, it is

instead discussed in the methods subsection of the relevant experimental sections.

Also worth noting is that we are in this chapter describing all the experimental environments

from a games perspective; both the helicopter control and car racing domains can very well be

treated from a robotics perspective as well. In section 6.2 we treat the car racing problem from

more of a robotics perspective.

4.1 Simulated car racing

Most of the experiments in this thesis use simulated car racing as their experimental environ-

ment. Several versions of a simple car racing simulator were developed specifically for these

experiments, and the different versions were refined incrementally during the course of research.

Two main types of car racing game was developed using this simulator, track-based racing and

point-to-point racing. In this section, we first describe the car dynamics that are common to
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both games, and the the rules and special dynamics of each game.

Early on in the project, we were considering using a freely available open source car simu-

lator such as RARS (http://rars.sourceforge.net/), TORCS (http:// torcs.sourceforge.net/), or

CarWorld (http://carworld.sourceforge.net/) for the experiments. This could possibly have sped

up development time and allowed access to good car dynamics and 3D visualization. However,

in order to have full freedom to conduct the experiments we wanted, we needed to be able to

change any aspect of the simulation, and learning a complex piece of code in enough detail to

change what we wanted could well be as complicated as writing it from scratch. Further, while

3D graphics output would be desirable and non-trivial to create ourselves, the dynamics and

collision handling present in the available open source offering was not significantly better than

what we could create ourselves. Also, most third-party simulations are not built with computa-

tional efficiency as a high priority, and computational efficiency is of paramount importance for

something that acts as part of a fitness function in an evolutionary algorithm. Most important

to our decision to build the simulation ourselves, however, was that we wanted the simulation

implemented in pure Java, for maximum portability between platforms.

The car racing simulation is intended to qualitatively, but not quantitatively, replicate racing

a small (scale 1/24) radio-controlled (R/C) car on a tabletop racing track, or on a small indoors

floor. More specifically, we started with replicating a tabletop track we have set up at the

University of Essex, and the feel of driving our 18 cm toy car on it. A computer-controlled R/C

racing competition was organized at the 2005 IEEE Congress on Evolutionary Computation

(CEC), with three entrants, but only one competitor managed to drive successfully around

the track based on the overhead video feed. The difficulty of this problem contributed to our

decision to concentrate on car racing in simulation; however, see section 6.2 where we return to

the problem of controlling the physical car.

The specific features we wanted to model was that the car would be driving relatively fast

for its size, and have poor grip on the surface, easily skidding at high speeds, due to its low

mass. For the same reasons collisions would be highly elastic and easily send the car spinning

in a hard-to-predict manner.

In the following subsections we will give a number of equations that specify the dynamics

and collision behaviour of the cars. Here, any bold text signifies a two-dimensional vectorial

entity; everything else is scalar. Italic text followed by parentheses() signifies a function.

4.1.1 Dynamics

In the simulation, a car is simulated as a 20∗10 pixel rectangle, operating in a rectangular arena

of size 400 × 300 or 400 × 400 pixels. The car’s complete state is specified by its position (p),
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velocity (v), orientation (θ) and angular velocity (θ̇). The simulation is updated 20 times per

second in simulated time, and each time step the state of the car(s) is updated according to the

equations presented here. The fundamental equations for the position are:

st+1 = st + vt (4.1)

vt+1 = vt ∗ (1− cdrag) + fdriving + fgrip (4.2)

cdrag is a scalar constant, set to 0.1 in most versions of the simulation.

fdriving represents the vectorial contribution from the motors. The scalar component of the

contribution is 4 if the forward driving command is given, 2 if the backward command is given,

and 0 if the command is neutral. The vector is obtained by rotating the vector consisting of

(the scalar component, 0) according to the orientation of the car.

fgrip represents the effort from the tyres to stop the car’s skidding. It is defined as 0 if

the angle between the direction of movement and orientation of the car is less than π/16.

Otherwise, it is a vector whose direction is perpendicular to the orientation of the car: θ− (π/2)

if the difference is > 0, otherwise θ + (π/2). Its magnitude is the minimum of the velocity

magnitude of the car and the maximum lateral tyre traction, which is set to 2 in all versions of

the simulation.

Similarly, the fundamental equations for the orientation of the car are:

θt+1 = θt + θ̇ (4.3)

˙θt+1 = ftraction(fsteering()− θ̇t) (4.4)

fsteering() is defined as magnitude(v) if the steering command is left, −magnitude(v) if the

steering command is right, and 0 if it is centre.

ftraction limits the change in angular velocity to between −0.2 and 0.2.

The behaviour emerging from all this is a car that accelerates faster (and reaches higher

top speeds) when driving forwards than backwards, that has a fairly small turning radius at

low speeds, but an approximately twice as large turning radius at higher speeds, due to a large

amount of skidding at moderate to high speeds.
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4.1.2 Collisions

All versions of the car racing problem feature collisions of some sorth, either between cars and

walls, between one car and another, or both. These are implemented slightly differently.

Wall collisions

In those versions of the car racing simulation which have tracks defined by walls, the walls are

represented as colored pixels in a background image covering the whole track. The color of each

pixel encodes the orientation of the wall segment of which it is part; these slopes are stored in a

table which is indexed on the color of the pixel. (When a track is created, the walls are usually

represented as lines with a 10 pixel width. Tracks are either created by a human designer using

a simple graphical tool, or through an evolutionary process, as detailed in 7.3. In both cases,

the track is converted to an image-based representation before being used for driving.)

Collision detection is done each time step, by checking each corner of the 20 ∗ 10 rectangle

bounding the corner for intersection with one of the walls. The checking is done by looking at the

colour of the pixel at that position in the background image; the extremely low computational

overhead of this method is the reason for choosing it over more direct but also computationally

more expensive methods based on computational geometry. The collision detection method can

have three different outcomes: no intersection is detected, an intersection is detected with one

of the corners, and intersection is detected at two corners. Due to the limited speed of the car

relative to the frequency of collision checking, intersection with three or four corners is virtually

impossible, and if it should occur it is treated as collision with two corners.

Obviously, if no intersection is detected, no collision handling is performed.

If one or two intersections are detected, velocity, angular velocity and position of the car is

updated as follows:

θ̇ = (̇θ) +−mag((v)) (4.5)

vnew = [cos(fnewdir()) ∗
v

2
, sin(fnewdir()) ∗

v

2
] (4.6)

s = s + vnew (4.7)

In equation 4.5, the magnitude of the velocity is added to the rotational velocity if the inter-

section is detected at the front-right corner or the back-left corner. It the intersection is detected

at the front-left or the back-right corner, the magnitude of velocity is instead subtracted from
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the rotational velocity.

fnewdir is calculated as in different ways depending on where the collision was detected. First,

the direction (in the global frame of reference) of v (before the collision) is calculated asmovedir,

and, and the slope of the wall at the point if collision as wallangle. (The average of the angles

of the two walls is used if intersections with different walls are detected in two corners.) Then,

newdir = movedir+−abs(movedir−wallangle). The absolute of the difference is added if the

collision is detected at the back left or front right corner, and subtracted otherwise. If a full

frontal collision is detected, abs(movedir − wallangle)/2 is added, and if a collision is detected

at both back corners, this term is subtracted.

The resulting wall collision behaviour has the car, for the most part, “bouncing” off walls with

reduced speed and changed orientation, and some angular momentum that keeps influencing the

orientation of the car over the next few time steps. Sometimes, the car bounces off the wall in

such a way that it can simply continue driving, often it has to back away first, and in a few

cases (mostly in corners of the track) it is simply stuck and can not easily get back on track.

The actual bouncing is relatively hard to predict, which taken together with the reduction in

speed makes it hard to devise a driving strategy that consistently exploits wall collisions in a

way that would not work when driving a real R/C car on a tabletop track with wooden walls.

Vehicle collisions

A collision between two cars differs from a collision between one car and a wall in several respects:

both cars are (usually) moving, the collision affects both cars, and it is impossible to get stuck

in a corner. Vehicle collisions are therefore handled differently from wall collisions.

Each time step, all corners of both cars are checked for collision with the other car; collision

checking is done for both cars before collision handling is initiated for any car. This is done

simply by checking whether each corner intersects the rotated and translated rectangle defining

the other car. The point of collision is calculated as the center of the points of intersection

on both cars, and the collision handling method is then called on both car objects. The first

thing that happens is that the velocities (both speed and direction) of the two cars is simply

exchanged:

vthis = vother (4.8)

Then, in order to avoid the otherwise occasionally occuring phenomenon that the two cars

“hook up” to each other and keep moving together as a unit, the center of each car is moved a

few pixels away from the center of the other car:
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sthis = sthis + [cos(∆pos), sin(∆pos)] (4.9)

∆pos = pthis − pother (4.10)

How the angular velocity is affected depends on where the point of collision is relative to

center of the car and its orientation.

θ̇ = θ̇ +−
mag(vother) +mag(vthis)

2
(4.11)

If the corner closest to the point of collision is the front left or back right, the average of this

and the other car’s velocity magnitude is subtracted from the angular velocity, otherwise it is

added. Additionally, this update of the angular velocity is only done in a particular time step

if no vehicle collision was detected in the preceding time step.

The resulting collision response is somewhat unrealistical in that the collisions are rather too

elastic; the cars sometime bounce away from each other like rubber balls. On the other hand,

we reliably avoid the hooking up of cars to each other, and make it possible, though hard, for a

skilful driver to intentionally colide with the other car in such a way that the other car is forced

off course or into a wall (but also easy for the driver initiating the collision to fail this maneuver,

and lose his own direction).

4.1.3 Games

Two games were based on the simulate car racing dynamics: point-to-point racing and track-

based racing. Although the track-based racing game was chronologically developed (and put to

use as an experimental environment) first, point-to-point racing is somewhat simpler and will

therefore be described first.

Point-to-point racing

In this game, one or two cars race in an arena without walls. The objective of the game is to

reach as many way points as possible within a set number of time steps, either 500 or 1000.

These way points appear within a 400× 400 pixel square area; the cars are not bounded by this

area and can drive as far from the center of the arena as they want. At any point in time, three

way points exist within this area. The first two way points can potentially be seen by the car,

but only the first of them can be passed, nothing happens when a car drives through one of the

other two way points. These way points are randomly positioned at the start of a trial, so that

no two trials are identical. See figure 4.1 for a depiction of the game.
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Figure 4.1: Two cars in the point-to-point racing game. The black circle represents the current
way point, the dark gray circle the next way point, and the light gray circle the next way point
after that.

If the centre of one of the cars comes withing 30 pixels of the first (current) way point, this

way point is passed. The following things happen:

• The passed way points count (the score) for that car’s driver increases by 1.

• The current way point disappears, the second way point becomes current, and the third

way point becomes second.

• A new third way point is generated, by drawing its x and y coordinates from a uniform

distribution limited by 0 and 400.

The objective of the game is simply to reach as many way points as possible within the time

limits, on a single trial or averaged over several trials. With only one car this mainly comes

down to maneuvering the car to the current way point as fast as possible, but some foresight

is needed as the way points are not navigated to in isolation. With two cars on the same track

considerably more complexity is added. The following is a probably incomplete breakdown of

the tasks that need to be mastered, in order of increasing difficulty, in order to win the game in

direct competition with a sophisticated opponent:

1. Reach the current way point. This requires not only driving towards the correct way

point, but also not overshooting it. A driver that constantly accelerates (issues the forward

command) while steering in the direction of the way point will end up “orbiting” the way

point at one time or another, as the grip of the tyres is limited and decreases with speed.

2. Reach the current way point fast. While it is possible to solve the preceding task by just

driving very slowly (through only accelerating when the speed of the car is below a low
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threshold) and steering in the direction that the angle between the direction of the car and

the way point is smallest, it would obviously take a long time to reach the way point that

way. As a driver that on average reaches way points faster will win over a slower driver,

it is necessary to drive at as high speed as possible without overshooting the way point.

3. Reach the current way point in such a way that the next way point can be reached quickly.

For example, it is usually a bad idea to reach the current way point going at full speed

away from the next way point, which will soon be the current way point. In such cases,

it often pays off to start braking before reaching the current way point, and trading off a

slight delay in reaching that way point with being able to reach the next way point much

faster.

4. Predict which car will reach the current way point first. If a driver can predict whether

his car or the opponents’ car will reach the next way point first, he can take appropriate

action. An obvious response is aiming for the next way point instead, and waiting for it to

become the current way point; in that way he only misses one way point, instead of risking

to miss two way points. However, knowing for sure which car will reach the current way

point first involves understanding not only the dynamics of the car simulation, but also

the behaviour of the other driver. What if he decides that he is not going to make it first

to the current way point, and goes for the next way point directly himself?

5. Use collisions to ones advantage. There are situations when it is advantageous to be able to

knock the opponent of course. For example in case the opponent would get to the current

way point first, due to higher speed, but it is possible to get in the way of the opponent

and collide with him so that he misses the way point. It could even be possible to “steal”

some of his velocity this way, and use it to get oneself to the current way point faster.

Conversely, if the opponent has figured out how to disrupt one’s path through intentional

collisions, it becomes important to learn how to avoid such collisions.

Track-based racing

The track-based racing game introduces tracks and walls. A track consists of starting points for

one or two cars, impermeable walls, and a way point chain. The goal of this game is to get as

many laps around the track as possible within a given amount of time, usually 700 time steps,

in one trial or averaged over several trials. Progress is measured by the number of way points

passed. Each passed way point awards a score equal to 1/n where n is the number of way points;

passing all the way points constitutes one lap and awards score 1, whereas in most of the tracks

used in this thesis it is this possible to reach scores of between 2 and 3 within the given time.
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Figure 4.2: A single car on one of the easier tracks in the track-based racing game. The circles
represent way points and the lines protruding from the car represent wall sensors, as detailed in
sections 5.1 and 5.2.

Unlike in point-to-point game, in the track-based game more way points are used (often

between 5 and 10), and their positions are (like those of the walls) fixed for the duration of the

trial, and except for the experiments in section 7.3 also between trials. Like in the point-to-

point game, only the current way point can be passed at any one time, and the next way point

automatically becomes visible when the current way point is passed. When the last way point is

passed, the first way point in the chain becomes current again. In the tracks used in this thesis,

the way points are laid out so that driving around the track in the middle of the track will mark

all way points as passed.

At the beginning of a trial, each car is positioned very near one of the starting points (the

starting points are very close to each other) pointing in the direction specified by that starting

point, which is also roughly the direction the track is intended to be driven. Very small random

deviations to both heading and position are here introduced, so that no two trials start with the

car(s) at exactly the same position and orientation.

The track-based racing task offers slightly different challenges than the point-to-point task.

On one hand it can be seen as harder, as the presence of the walls restrict possible paths. On

some tracks, it is not possible to follow a straight line between two way points, as the car would

end up colliding with a wall. On the other hand, the walls provide some guidance as to which is

the right way to take, and it is potentially possible to drive some (all?) tracks without relying

on way points at all.

Another difference is that because the walls and way point chain are fixed, it becomes

possible to learn good paths for specific tracks; in theory, a controller could perform optimally

on a particular track but fail to make a single lap on other tracks. When, and to what extent,
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a controller would actually specialize on a particular track or evolve general driving skills will

be investigated in the experimental chapters.

As in the point-to-point game, having two cars competing against each other on the same

track brings additional challenges, in that blocking, overtaking and avoiding the opponent now

becomes possible (and often mandatory). The presence of walls, however, makes the collisions

potentially more hazardous, as it is possible to be pushed into a wall and lose much valuable

time; some collisions may mean no more progress at all on the track if the driver is not able to

recognize that he is stuck, back away, and resume driving in the right direction.

4.2 Other games

The following two games are used in experiments that are described in less detail in the thesis,

and as such they are described in less detail themselves.

4.2.1 Simulated Helicopter Control

One of the experiments in this thesis concerns controlling a single-rotor helicopter in simulation.

Although the helicopter simulation, and the waypoint-following task to be performed in it,

is here treated as a game, and the research as being about how to best evolve game agent

control, it was originally undertaken as part of the UltraSwarms project. This project, initiated

by Owen Holland and with Renzo De Nardi responsible for system development and scientific

experimentation, aims at producing a group of autonomous micro helicopters, that move together

in a swarm-like fashion and continuously exchange data and collaboratively process complex

information about their environment through grid computing. The hardware platform chosen

for this is a commercially available Hirobo model helicopter, with its electronics completely

replaced by a custom-designed circuit board, a microcomputer running Linux, a bluetooth chip

and an inertial measurement unit. As acquiring a good model of the helicopter is both dependent

on all the hardware being finished and properly tested, and rather difficult in itself, the decision

was taken to start investigating how to develop the controller for the helicopter in parallel with

developing the hardware, using a freely available open source helicopter simulator.

The simulator in question is the Autopilot software suite, which simulates a XCell 60 model

helicopter with a high degree of accuracy (http://autopilot.sourceforge.net). The computation

of rotor thrust and drag forces is done using blade element theory, and rotor and stabilising bar

dynamics are modelled in detail, as proposed by Mettler et al. [87]. Update of the simulation

is done at 100 Hz; current state of the helicopter is fed to the controller, and control signal

fed to the helicopter, at 50 Hz. While the XCell 60 helicopter differs from the hardware plat-
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form in development for the UltraSwarms in several ways, there are also important similarities.

Most importantly the complexity of the dynamics is of the same order. Both the real Hirobo

helicopter and the simulated XCell helicopter are virtually unflyable in the absence of assis-

tive control mechanisms (most importantly yaw stabilization) or proper education in helicopter

flight. Whereas almost anyone can drive a real or simulated R/C car in a straight line and

stop, extensive training is required to be able to take off, fly in a straight line, and land in the

Autopilot simulator or using the R/C helicopter it simulates. In this respect, the simulated

helicopter control domain is more challenging than the simulated car racing domain.

Basing a challenging game on this simulation is relatively straightforward, as the simulation

itself is so challenging. The task is basically an extension of the point-to-point car racing task

to three dimensions. At the beginning of each trial, which lasts for 1000 time steps, a new way

point chain is generated consisting of way points with a mean distance of 17.5 feet between

them. As in the car racing games, only the current way point can be visited at any time, and

a way point is deemed visited if the centre of the helicopter was within 1 foot of the centre of

the helicopter. The basic fitness function is simply the number of way points visited per trial,

although other fitness functions that took into account the mean deviation from the shortest

path between the way points were used in some experiments.

The helicopter control game is included in this thesis in order to show that controllers can

be developed through simulated evolution in much the same way as for the simulated car racing

and Cellz games, even though the dynamics of the agent is considerably more complex, as

is the dimensionality of inputs to the controller. A second reason for including it is that the

experiments performed using it demonstrate and corroborate some of the earlier discussed points

about modularity and incrementality in evolution of neural networks.

4.2.2 Cellz

Cellz is a simple dynamical game designed specifically as a test bed for evolutionary algo-

rithms [77]. Like simulated car racing and helicopter control it is a game which takes place in a

physics-based environment simulated in discrete time, where the goal involves reaching certain

points in space within a specified time. Unlike those domains, however, the commands returned

from the controller are continuous rather than discrete, there are many potential points to reach

at any one time, and typically there is a whole bunch of agents active simultaneously rather

than just one or two. A screen shot from a game of Cellz with movement traces of the individual

agents is shown in figure 4.3.

Imagine an ooze full of single-celled organisms on the hunt for food particles. This is the

central metaphor for Cellz, which was designed with simplicity of the rule-set in mind, yet
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Figure 4.3: An evolved perceptron controller playing Cellz, with movement traces on.

allowing for complex dynamics to emerge. Each agent is circular, and moves about on a two-

dimensional area. Within this area, ten food particles are scattered randomly. The agents each

have an energy level, which can be used for accelerating in any direction; each time-step an

agent’s controller specifies a two-dimensional force vector. When the energy reaches zero, the

agent dies, but if it doesn’t move, it doesn’t use any energy. When an agent reaches (comes

close enough to) a food particle, two things happen: the agent’s energy level increases, and the

food particle disappears, only to instantly reappear at a random place in the (bounded) game

area. If the energy level of the agent exceeds a certain limit, it splits into two agents, each with

half the original energy level.

A game (trial) of Cellz lasts for 2000 time steps, and the score (fitness) is simply the total

energy level at the end of the trial. In other words, high scores are reached by eating as much

food as possible, and dividing into as many agents as possible, while not moving unnecessarily.

So, how does one play Cellz, and wherein lies the difficulty? If only one agent was present,

the problem would be similar to a travelling salesman problem in that a number of points have

to be reached while moving a minimal distance, but with the added complication that a new

point appear at a random position whenever a point is reached, and that momentum and friction

has to be taken into account, so continued acceleration is necessary to keep a given speed, but

it’s desirable to not reach a way point at too high a speed, or you will take longer time reaching

the next way point. When more than one agent is present, things get more complicated still.

One of the main complications is that it is now desirable to avoid going for food particles that

another agent is going to get to first.

In the version of the game that is used for the experiment in this thesis, the same controller

is used to control all the agents in a game - the sensors of each agent are input to the controller,
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and the movement commands for that agent are output, in turn - so the controller acts as a

“hive-mind”. However, it is possible to envision versions of the game where each agent has its

own controller, and evolution is done “in situ” as a new controller is created as an offspring

of the old controller each time an agent divides. Other potential extensions involve multiple

species where high-energy agents of one species can eat low-energy agents of another species,

etc.

The Cellz game is included in this thesis partly to show that learning controllers through

simulated evolution is feasible for multi-agent games as well, but mainly because the experiment

that uses this environment nicely illustrates the usefulness of convolutional modularity.
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Chapter 5

Optimization

In this chapter we present six series of experiments that take the optimization approach to

CIG. The two first of these are presented in detail, while the four others are more summarily

discussed. The first four of the experimental series concern simulated car racing, and concern

(in order of appearance) the evolution of controllers for single cars on single tracks, scaling up

to several tracks, comparisons between neural networks and genetic programming (with and

without state capabilities) and comparisons between evolution and temporal difference learning.

The remaining experiments concern evolution of control for Cellz and for simulated helicopter

flight.

5.1 Racing single cars on single tracks

This section, based on a paper presented at CEC 2005 (where it won the Best Student Paper

Award), details our first experiments with evolving control for simulated car racing [142]. The

goal was to investigate whether good car racing control could be evolved at all, and if so, how

the controller and its inputs should be represented in order to be evolvable.

The experiments in this section take place the track-based racing game, but using the first

version of the car racing simulator, which is somewhat simpler than the one described in sec-

tion 4.1. As can be seen from the figures in this section, the graphical representation is simpler,

but the dynamics and the collision detection and handling are also a bit simpler. In the case of

a single car on a single track, however, this should not make any qualitative difference for the

results. Another difference is that trials last for 500 generations instead of 700, and that being

able to complete one lap in that time yields a fitness of 5 (the number of way points) rather

than 1. The results here are thus not quantitatively comparable to those in later sections.

All the experiments in this chapter used a 50+50 ES as described in section 2.1. Five different
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controller architectures were tested: action sequences, open-loop neural networks, force fields,

neural networks with third-person (“Newtonian”) inputs, and neural networks with first-person

inputs. Further, each controller was tested both with and without small random perturbations

to the starting position and starting orientation.

5.1.1 No inputs and action sequences

Methods

An action sequence is a one-dimensional array of length 500, containing actions, represented as

integers in the range 0-8. An action is a combination of driving command (forward, backward,

or neutral) and steering commands (left, right or center). When evaluating an action sequence

controller, the car simulation at each time step executes the action specified at the corresponding

index in the action sequence. E.g., at time step 0 the action specified at position 0 was taken,

and time step 73 the action specified at position 73, and so on. At the beginning of each

evolutionary run, controllers are initialized as sequences of zeroes. The mutation operator then

works by selecting a random number of positions between 0 and 100, and changing the value of

so many positions in the action sequence to a new randomly selected action.

As stated in the beginning of this section, the fitness function was the same in this exper-

iment as in all other experiments in this section, the total progress measured as a continuous

approximation of the number of way points passed. Similarly, the EA used in all experiments

in this section is a 50 + 50 ES as described in section 2.1.

Results

After evolving the action sequence controllers for 100 generations, most evolutionary runs

reached a fitness of about 2; after 500 generations, they often reach about 5. The resulting

behaviour indeed looks more like more or less random actions that just happen take the car in

the right direction than it looks like good driving. The car drives very slowly, and many evolved

controllers spend considerable amounts of time standing virtually still before finally starting to

move. We hypothesize that a major factor restraining fitness growth is the ubiquity of local

optima in the early parts of the sequence. This comes about because each action is associated

with a time step rather than a position on the track, so that a mutation early in the sequence

that is in itself beneficial (e.g. accelerating the car at the start of a straight track section) will

offset the actions later in the sequence in such a way that it probably lowers the fitness as a

whole, and is thus selected against.

Under the randomized starting point regime, fitness is often below two and does not rise

much further. Analysis of evolved controllers shows that the car often gets stuck on walls. A
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plot of fitness evolution for both the fixed and random starting points is shown in Figure 5.1.

Figure 5.1: Evolving action sequences. The upper graph represents the fitness of the best
individual in each generation, averaged over 10 evolutionary runs, under the fixed starting point
regime. The lower graph represents the same entity when the car was evolved with randomized
starting positions.

5.1.2 Open-loop neural network

Methods

A standard MLP as described in section 2.2.1, with two inputs and five hidden nodes, is fed

with the number of the current time step divided by 500, yielding an input value of 0 in the first

time step and 1 in the last, and a constant input with the value 1.

Results

After 100 generations of evolution, the controller typically reached fitness levels of about 2 to

3. The car behaviour looks no less random than that of the action sequence controllers, the

main difference is that the car goes faster in this case. Most evolutionary runs found a way

for the car to accelerate into the walls at the right angle and speed to bounce it’s way around

little more than half of the track, but none got further. An analysis of the actions produced by

the controller reveals that the controller issues the same action for several hundred time steps

in a row, and only changes action once or twice per trial. At the moment we don’t know why

higher-fitness controller refuse to evolve.

When evolving with randomized starting points it seems to be impossible to find a behaviour

sequence that relies on bouncing off walls in the right way, and so evolved controllers tend to just

run around in circles and reach very low fitness levels, barely above zero. The fitness evolution

of this type of controller is shown in Figure 5.2.
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Figure 5.2: Evolving open loop neural network controllers. The upper line is for a fixed starting
position, the lower line for randomised starts.

5.1.3 Newtonian inputs and force fields

Methods

A force field controller is here defined as a two-dimensional array of two-tuples, describing the

preferred speed and preferred orientation of the car while it is in the field. Each field covers an

area of n*n pixels, and as the fields completely tile the track without overlapping, the number

of fields are (l/n)*(w/n), where l is length, and w is width of the track, respectively. At each

time-step, the controller finds out which field the centre of the car is inside, and compares the

preferred speed and orientation of that field with the cars actual speed and orientation. If

the actual speed is less than the preferred, the controller issues an action containing a forward

command, otherwise it issues a backward command; if the actual orientation of the car is left of

the preferred orientation, the issued action contains a steer right command, otherwise it steers

left. In the results reported here, we used fields with the size 20 × 20 pixels, evolved with

gaussian mutation with magnitude 0.1, though we have tried other combinations of field size

and mutation magnitude without any improvement in fitness. This is broadly similar to the kind

of controllers evolved in [64], though we are controlling a car rather than a holonomic robot.

Results

The force field controllers evolved very slowly, and after 100 generations barely exceeded fitness 1;

evolving for 1000 generations sometimes brought fitness up to around 4 when using fixed starting

positions; when starting positions were randomised, fitness stayed at 1. The cars moved around

in a peculiar fashion, sometimes following a sane path around the track for a while, only to

become stuck oscillating between two force fields a moment later. Figure 5.3 shows the fitness
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evolution of this type of controller, and Figure 5.4 shows a sample trace.

Figure 5.3: Evolving force field controllers.

Figure 5.4: Movement trace of a car controlled by a force field controller.

5.1.4 Newtonian inputs and neural networks

Methods

The neural network is fed seven inputs: a constant input with value 1, the x and y components

of the car’s position, the x and y components of its velocity, its speed and its orientation. All

inputs are scaled to be in the range -10 to 10. Seven hidden neurons are used in the network,

and the two outputs are interpreted as described above.
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Results

Evolving for 100 generations, best fitness varies considerable between evolutionary runs. While

most runs produced controllers with fitness values around 3, at least one run produced a con-

troller with fitness over 6. None of the controllers manage to the driver the car properly around

the track however, the fittest controller instead drove the car into the“box” in the center of the

track and exploited a glitch in the fitness function, whereby it can come close enough to the aim

points on the left side of the track for the fitness function to increase without the car ever going

around the left wall of the box. The cars drive fast and seem to make sensible turns, but they

all eventually get stuck on a wall.

Randomising the starting position produces controllers of slightly lower fitness. Figure 5.5

shows the fitness evolution of this type of controller, while Figure 5.6 shows a sample trace of

the car.

Figure 5.5: Evolving newtonian neural network controllers.

5.1.5 Simulated sensor inputs and neural networks

Methods

In this experimental setup, the six inputs to the neural network consist of one constant input

with the value 1, the speed of the car, and the outputs of three wall sensors and one aim point

sensor. The aim point sensor simply outputs the difference between the car’s orientation and

the angle from the center of the car to the next aim point, yielding a negative value if that point

is to the left of the car’s orientation and a positive value otherwise.

Each of the three wall sensors is allowed any forward facing angle (i.e. a range of 180 degrees),

and a reach, between 0 and 100 pixels. These parameters are co-evolved with the neural network

of the controller in the following manner: a genome consists both of the specification of the neural
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Figure 5.6: Movement trace of a car controlled by a neural controller with newtonian inputs.

network, and of the parameters of the sensors (3 ∗ 2 = 6 scalar values). All sensor parameters

are between 0 and 1, and are multiplied by Π and 100 to give the angle and reach, respectively.

Mutation works in the same way on both neural networks and sensor parameters, adding a

value drawn from a Gaussian distribution with mean 0 and standard deviation 0.1 to each value

among both network weights and sensor parameters.

The sensor works by checking whether a straight line extending from the centre in the car

in the angle specified by that sensor intersects with the wall at eleven points positioned evenly

along the reach of the sensor, and returning a value equal to 1 divided by the position along the

line which first intersects a wall. Thus, a sensor with shorter reach has higher resolution, and

evolution has an incentive to optimize both reaches and angles of sensors. This type of sensor

controller is related to the wrap-around vector histogram approach of [13], except that we are

only using three sensors instead of full wrap-around.

Results

After 100 generations, evolution produced a controller with excellent fitness values, which equal

more than three laps around the track in the allotted 500 time steps. The cars drive around the

track at close to full speed, cutting corners incredibly close, crashing into walls only where they

can take advantage of the rebound. The sensors vary considerably in the combination of angles

and ranges, though often show a bias towards straight ahead and left. An example evolved

sensor configuration is shown in Figure 5.7, which uses the short left sensor to help follow the

inside wall, or take close cut corners, and the longer range sensors to help decide when to turn.

The best final fitness value found when examining ten evolved controllers was 16.04, which
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Figure 5.7: A sample evolved configuration of sensors.

narrowly beats the best human competitor so far. When evolving with randomised starting

positions best fitness was slightly lower, with a similar sensor setup. The lower fitness is due to

the cars slowing down in corners. Figure 5.8 shows the fitness evolution of this type of controller,

while Figure 5.9 shows a sample trace of the car’s movement.

Figure 5.8: Evolving sensor-based neural controllers with full inputs.

To investigate the relative contributions of the wall and aim point sensors, we “lesioned”

the controller by disabling the sensor types one at a time. First, we disabled the wall sensors,

and evolved controllers making use only of the aim point sensor, speed and the constant input.

Under the fixed starting point regime this resulted in cars with fitness often between 11 and 12;

they drove well, but bumped into the wall protruding from the top of the track once every lap.

When randomizing starting points, the aim sensor-only controller fared much worse, reaching

medium fitness about 7. Evolution produced a controller that sometimes made its way around

the track, but, depending on initial conditions, more often got stuck on a wall. Figure 5.10
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Figure 5.9: Movement trace of a car controlled by a sensor controller.

shows the fitness evolution under this restriction.

Figure 5.10: Evolving sensor-based neural controllers without wall sensors.

We then re-enabled the wall sensors and instead disabled the aim point sensor. Under the

fixed starting point regime, evolution produced controllers that often had all wall sensors set

long range, and pointing approximately 20 degrees left of straight ahead, and that drove at

high speed, more or less following the outer wall. When randomizing starting points, they

often have a long range sensor pointing straight forward, and medium range sensors pointing

approximately 45 and 90 degrees to the left, and execute careful following of the outer wall

without ever bumping into it.
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Figure 5.11: Evolving sensor-based neural controllers without aim point sensors.

Controller Fixed Randomized
Action sequence 2.23 1.36
Open loop neural 2.72 0.17
Force field 1.16 0.16
Newtonian neural 2.94 1.84
Sensor-based 13.59 12.4
No wall sensors 11.76 7.02
No aim point sensor 10.97 11.33

Table 5.1: Average fitness of best individuals of 10 evolutionary runs of the various controller
architectures under the starting point regimes.
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5.1.6 Conclusions

The most consistent effect across all the experiments reported above is that controllers (except

the sensor controller with the aim point sensor disabled) have higher fitness when starting posi-

tion and orientation is kept fixed. Not surprisingly, evolution is able to optimize car behaviour

better in these noise-free cases, and has to develop more robust behaviour (which means longer

lap times) or risk getting stuck on a wall when starting position is randomized. When racing

actual physical cars, starting position will necessarily vary, and so performance under this regime

is the more interesting factor when evaluating the suitability of a controller for transfer to a

physical domain.

Our experiments also point to the vast superiority of first-person to third-person information

for the problem at hand. Especially, the simulated range-finder sensors have turned out to be a

very powerful device. This might be because of the existence of walls, which presumably makes

any mapping from third-person spatial information to appropriate first-person actions extremely

nonlinear. A controller using third-person information (such as visual data from an overhead

web camera) could get around this problem by somehow representing the walls, and re-creating

the kind of sensors used in our sensor-based simulations described above. The problems with

using third-person information might also partly be due to difficulty of rotating coordinates as

the car’s orientation changes.

We were somewhat surprised by the poor performances of the action sequence and force field

controllers, both of which should theoretically be able to represent good solutions, at least for

fixed starting points. We therefore hypothesize that the poor performance is because of problems

with the evolutionary algorithm rather than the representations per se; our main culprit here is

the mutation methods, which seem to drive the action sequence into local optima and make for

very slow progress in force field evolution. For a fixed starting position, it should be possible to

achieve good lap times by seeding the EA with an action section observed by running an evolved

sensor controller, but we’ve not yet tried this.

Regarding force field controllers, an alternative hypothesis is that it is very hard (or even

impossible) to successfully drive a non-holonomic vehicle around a track using that method, as

it does not take into account the state of the car when entering a particular cell (this is not a

problem for holonomic vehicles, which can be treated as stateless).

5.2 Scaling up to multiple tracks

After finding out that very good car racing control could indeed be evolved, and that neural

networks combined with simulated range-finder, way point and speed sensors where the way to
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go, the next step was to investigate how well this approach scaled up. In this section, which

is based on a paper presented at CEC 2006, we first devise a set of racing tracks of differing

difficulty, evolve controllers for each track in turn, investigate different approaches to evolving

controllers that can race more than one track, and finally optimize such generally proficient

controllers for driving particular tracks.

The concrete questions we pose and try to answer are the following: How robust is the

evolutionary algorithm, that is, how certain can we be that a given evolutionary run will produce

a proficient controller for a given track? Is the layout of the racing track directly influencing the

fitness landscape so that some tracks are much harder than others to evolve, while not being

impossible to drive? What is the transferability of knowledge gained in evolving for one track

in terms of performance on other tracks? Can we evolve controllers that can proficiently race

all tracks in our training set? How? Can such generally proficient controllers be used to reliably

create specialized controllers that perform well, but only on particular tracks? Finally, can this

be done even for tracks for which it is not possible to evolve a good controller from scratch?

These experiments were performed in the track-based racing game using the full car racing

simulator described in section 4.1, with one crucial difference: at the time of doing the experi-

ments there was a bug in the way point sensor, so that it was impossible to tell the difference

between way points behind and in front of the car. This bug was discovered well after the

results were written up and published, but in hindsight it can actually be viewed as a feature.

Its existence in no way invalidates the results, as it proves that the methods work even with a

slightly incapacited sensor. (The main way it affects the controller is that it can lose direction

and start driving backwards on the track under some circumstances.) In section 5.3.1 we repeat

some of the experiments in this section with a fixed way point sensor, and the results there are

qualitatively very similar though quantitatively somewhat better.

Like in the preceding section, a 50 + 50 ES was used as the evolutionary algorithm for the

experiments in this section.

5.2.1 Methods

For the experiments we have designed eight different tracks, presented in figure 5.12. The tracks

are designed to vary in difficulty, from easy to hard. Three of the tracks are versions of three

other tracks with all the waypoints in reverse order, and the directions of the starting positions

reversed.

The neural networks controlling the cars have nine inputs: one bias input with the value

1, one speed input, one input from the waypoint sensor, and six inputs from wall sensors. All

networks have two outputs, which are interpreted as driving commands for the car.
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Figure 5.12: The eight tracks. Notice how tracks 1 and 2 (at the top), 3 and 4, 5 and 6 differ in
the clockwise/anti-clockwise layout of waypoints and associated starting points. Tracks 7 and 8
have no relation to each other apart from both being difficult.
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Figure 5.13: The initial sensor setup, which is kept throughout the evolutionary run for those
runs where sensor parameters are not evolvable. Here, the car is seen in close-up moving upward-
leftward. At this particular position, the front-right sensor returns a positive number very close
to 0, as it detects a wall near the limit of its range; the front-left sensor returns a number close
to 0.5, and the back sensor a slightly larger number. The front, left and right sensors do not
detect any walls at all and thus return 0.

The wall sensors are slightly updated versions of the sensors used in our previous experiment.

Each sensor has an angle (relative to the orientation of the car) and a range, between 0 and

200 pixels. The output of the wall sensor is zero if no wall is encountered along a line with the

specified angle and range from the centre of the car, otherwise it is a fraction of one, depending

on how close to the car the sensed wall is. A small amount of noise is applied to all sensor

readings, as it is to starting positions and orientations.

In some of the experiments the sensor parameters are mutated by the evolutionary algorithm,

but in all experiments they start from the following setup: one sensor points straight forward

(0 radians) in the direction of the car and has range 200 pixels, as has three sensors pointing

forward-left, forward-right and backward respectively. The two other sensors, which point left

and right, have reach 100; this is illustrated in figure 5.13.

5.2.2 Evolving track-specific controllers

The first experiments consisted in evolving controllers for the eight tracks separately, in order

to the test the software in general and to rank the difficulty of the tracks.

For each of the tracks, the evolutionary algorithm was run 10 times, each time starting from a

population of “clean” controllers, with all connection weights set to zero and sensor parameters

as explained above. Only weight mutation was allowed. The evolutionary runs were for 200

generations each.

Fixed sensor parameters: Evolving from scratch

The results are listed in table 5.2, which is read as follows: each row represents the results for

one particular track. The first column gives the mean of the fitnesses of the best controller
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Track 10 50 100 200 Pr.
1 0.32 (0.07) 0.54 (0.2) 0.7 (0.38) 0.81 (0.5) 2
2 0.38 (0.24) 0.49 (0.38) 0.56 (0.36) 0.71 (0.5) 2
3 0.32 (0.09) 0.97 (0.5) 1.47 (0.63) 1.98 (0.66) 7
4 0.53 (0.17) 1.3 (0.48) 1.5 (0.54) 2.33 (0.59) 9
5 0.45 (0.08) 0.95 (0.6) 0.95 (0.58) 1.65 (0.45) 8
6 0.4 (0.08) 0.68 (0.27) 1.02 (0.74) 1.29 (0.76) 5
7 0.3 (0.07) 0.35 (0.05) 0.39 (0.09) 0.46 (0.13) 0
8 0.16 (0.02) 0.19 (0.03) 0.2 (0.01) 0.2 (0.01) 0

Table 5.2: The fitness of the best controller of various generations on the different tracks, and
number of runs producing proficient controllers. Fitness averaged over 10 separate evolutionary
runs; standard deviation between parentheses.

of each of the evolutionary runs at generation 10, and the standard deviation of the fitnesses

of the same controllers. The next three columns present the results of the same calculations

at generations 50, 100 and 200, respectively. The “Pr” column gives the number of proficient

best controllers for each track. An evolutionary run is deemed to have produced a proficient

controller if its best controller at generation 200 has a fitness (averaged, as always, over three

trials) of at least 1.5, meaning that it completes at least one and a half lap within the allowed

time.

For the first two tracks, proficient controllers were produced by the evolutionary process

within 200 generations, but only in two out of ten runs. This means that while it is possible to

evolve neural networks that can be relied on to race around one of these track without getting

stuck or taking excessively long time, the evolutionary process in itself is not reliable. In fact,

most of the evolutionary runs are false starts. For tracks 3, 4, 5 and 6, the situation is different as

at least half of all evolutionary runs produce proficient controllers. The best evolved controllers

for these tracks get around the track fairly fast without colliding with walls. For tracks 7 and 8,

however, we have not been able to evolve proficient controllers from scratch at all. The “best”

(least bad) controllers evolved for track 7 might get halfway around the track before getting

stuck on a wall, or losing orientation and starting to move back along the track.

Fixed sensor parameters: Generality of evolved controllers

Next, we examined the generality of these controllers by testing their performance of the best

controller for each track on each of the ten tracks. The results are presented in figure 5.3, and

clearly show that the generality is very low. No controller performed very well on any track it

had not been evolved on, with the interesting exception of the controller evolved for track 1,

that actually performed better on track 3 than on the track for which it had been evolved, and

on which it had a rather mediocre performance. It should be noted that both track 1 and track

3 (like all odd-numbered tracks) run counter-clockwise, and there indeed seems to be a slight

87



Evo/Test 1 2 3 4
1 1.02 (0.14) 0.87 (0.1) 1.45 (0.18) 0.52 (0)
2 0.28 (0.06) 1.13 (0.35) 0.18 (0.1) 0.75 (0.26)
3 0.58 (0.16) 0.6 (0.22) 2.1 (0.48) 1.45 (0.66)
4 0.15 (0.01) 0.32 (0.02) 0.06 (0.05) 1.77 (0.52)
5 0.07 (0.02) -0.02 (0) 0.05 (0) 0.2 (0.11)
6 1.33 (0.18) 0.43 (0.07) 0.4 (0.2) 0.67 (0.22)
7 0.45 (0.11) 0 (0.07) 0.6 (0.18) 0.03 (0.04)
8 0.16 (0.03) 0.28 (0.04) 0.09 (0.07) 0.29 (0.18)
Evo/Test 5 6 7 8
1 1.26 (0.17) 0.03 (0) 0.2 (0.18) 0.13 (0)
2 0.5 (0.13) 0.66 (0.19) 0.18 (0.15) 0.14 (0.02)
3 0.62 (0.13) 0.04 (0.1) 0.03 (0.09) 0.14 (0.02)
4 0.22 (0.1) 0.13 (0.13) 0.07 (0.09) 0.13 (0.02)
5 2.37 (0.28) 0.1 (0.04) 0.03 (0.05) 0.13 (0.01)
6 1.39 (0.42) 2.34 (0.05) 0.13 (0.13) 0.14 (0.11)
7 0.36 (0.08) 0.07 (0.03) 0.22 (0.15) 0.08 (0)
8 0.21 (0.03) 0.08 (0.1) 0.1 (0.09) 0.13 (0)

Table 5.3: The fitness of each controller on each track. Each row represents the performance of
the best controller of one evolutionary run with fixed sensors, evolved the track with the same
number as the row. Each column represents the performance of the controllers on the track
with the same number as the column. Each cell contains the mean fitness of 50 trials of the
controller given by the row on the track given by the column. Cells with bold text indicate the
track on which a certain controller performed best.

bias for the other controllers to get higher fitness on tracks running in the same direction as the

track for which they were evolved. We have not analysed this further.

Evolved sensor parameters: Evolving from scratch

Evolving controllers from scratch with sensor parameter mutations turned on resulted in some-

what lower average fitnesses and numbers of proficient controllers, as can be seen in table 5.4.

The controllers that reached proficiency seemed to be roughly equally fit as those evolved with

fixed sensors, but more evolutionary runs got stuck in some local optimum and never produced

proficient controllers when sensor parameters were evolvable. It is not known whether this is

simply because of the increase in search space dimensionality caused by the addition of sensor

parameters, or if they complicate the evolutionary process in some other way.

Evolved sensor parameters: Generality of evolved controllers

Table 5.5 details the performance of one controller evolved with sensor mutation on for each

track on all the tracks in the test set. Controllers evolved with evolvable sensor parameters

turn out to generalize really badly, almost as badly as the controllers evolved with fixed sensors.

However, there are some interesting differences, and the controllers evolved for track 1, 2 and

6 (but not the others) actually perform better on tracks for which they were not evolved. It
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Track 10 50 100 200 Pr.
1 0.3 (0.05) 0.58 (0.17) 0.65 (0.18) 0.89 (0.4) 1
2 0.32 (0.09) 0.72 (0.4) 0.81 (0.49) 0.91 (0.6) 3
3 0.53 (0.22) 1.39 (0.51) 2.77 (0.66) 1.99 (0.7) 7
4 1.37 (0.89) 2.25 (0.34) 2.42 (0.37) 2.41 (0.36) 10
5 0.4 (0.07) 0.64 (0.35) 0.95 (0.55) 1.31 (0.66) 4
6 0.48 (0.12) 0.7 (0.29) 0.83 (0.39) 0.99 (0.65) 2
7 0.33 (0.11) 0.43 (0.08) 0.44 (0.08) 0.5 (0.15) 0
8 0.16 (0.02) 0.21 (0) 0.21 (0) 0.21 (0) 0

Table 5.4: Evolving controllers for individual tracks from scratch with sensor mutation turned
on; format as in table 5.2.

Evo/Tst 1 2 3 4
1 1.33 (0.29) 1.04 (0.34) 0.31 (0.04) 2.54 (0)
2 0.84 (0.19) 1.81 (0.14) 1.49 (0.55) 2.92 (0.16)
3 0.15 (0.01) 0.07 (0.04) 1.04 (0.22) 0.26 (0.04)
4 0.14 (0) 0.11 (0.03) 0.51 (0.14) 1.47 (0.49)
5 0.04 (0.11) 0.21 (0.05) 0.28 (0.05) 0.34 (0.07)
6 0.57 (0.03) 0.31 (0) 2.51 (0.02) 2.72 (0.26)
7 0.19 (0.05) 0.1 (0.05) 0.22 (0) 0.05 (0.05)
8 0.06 (0.04) -0.09 (0.02) -0.04 (0.02) -0.02 (0.01)
Evo/Tst 5 6 7 8
1 0.68 (0.11) 0.04 (0.02) 0.32 (0.16) 0.13 (0)
2 0.3 (0.03) 0.55 (0.15) 0.13 (0.14) 0.14 (0)
3 0.26 (0.06) 0.32 (0.07) 0.05 (0.08) 0.01 (0)
4 0.17 (0) 0.19 (0.11) 0.11 (0.07) 0.12 (0.02)
5 2 (0) 0.14 (0.05) 0.04 (0.1) 0.15 (0.02)
6 0.42 (0.03) 2.53 (0.22) 0.11 (0.09) 0.13 (0)
7 0.13 (0.09) 0.16 (0.06) 0.16 (0.11) 0 (0)
8 0.07 (0.05) 0 (0) -0.01 (0.02) 0.21 (0)

Table 5.5: Fitness for individual controllers on different tracks evolved with sensor mutation
turned on; format as in figure 5.3.
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is quite hard to see any kind of logic in which controllers will do well on which tracks, except

those they were evolved for, and more data would definitely be needed to resolve this.

5.2.3 Evolving general and robust driving skills

The next suite of experiments were on evolving robust controllers, i.e. controllers that can drive

proficiently on a large set of tracks.

Simultaneous evolution

Our first attempt consisted in evolving controllers on all tracks at once. For this purpose, we

ran several evolutionary runs where each controller was tested on all the first six tracks, each

for three trials, and the fitness was averaged over all these trials. We ran several evolutionary

runs with this setup, and with both evolvable and fixed sensor parameters, for long periods of

time, but found very little progress - no controller reached an average fitness above 1.

Incremental evolution

Abandoning this method, we tried incremental evolution. The idea here was to evolve a controller

on one track, and when it reached proficiency (mean fitness above 1.5) add another track to

the training set - so that controllers are now evaluated on both tracks and fitness averaged -

and continue evolving. This procedure is then repeated, with a new track added to the fitness

function each time the best controller of the population has an average fitness of 1.5 or over,

until we have a controller that races all of the first six tracks proficiently. The order of the

tracks was 5, 6, 3, 4, 1 and finally 2, the rationale being that the balance between clockwise

and counterclockwise should be as equal as possible in order to prevent lopsided controllers, and

that easier tracks should be added to the mix before harder ones.

This approach turned out to work much better than simultaneous evolution. Several runs

were performed, and while some of them failed to produce generally proficient controllers, some

others fared better. A successful run usually takes a long time, on the order of several hundred

generations, but it seems that once a run has come up with a controller that is proficient on the

first three or four tracks, it almost always proceeds to produce a generally proficient controller.

One of the successful runs is depicted in figure 5.14, and the mean fitness of the best controller

of that run when tested on all eight tracks separately is shown in 5.6. As can be seen from

this table, the controller does a good job on the six tracks for which it was evolved, bar that it

occasionally gets stuck on a wall in track 2. It never makes its way around track 7 or 8.

The successful runs were all made with sensor mutation turned off. Some runs of incremental

evolution were made with sensor mutation allowed; however, they failed to produce any proficient
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Figure 5.14: A successful incremental run, producing a generally proficient controller. New
tracks were added to the fitness function when fitness of the best controller reached 1.5; this
happened at generations 53, 240, 253, 394 and 536. Maximum fitness continued to increase for
approximately 50 generations after that. The graph show the fitness of the best controller (dark
line) and the mean fitness of the population.

Track 1 2 3 4
Fitness (sd) 1.66 (0.08) 1.48 (0.25) 2.56 (0.2) 2.49 (0.15)
Track 5 6 7 8
Fitness (sd) 2 (0.25) 2.02 (0.42) 0.4 (0.21) 0.16 (0.07)

Table 5.6: Fitness of an incrementally evolved general controller with fixed sensor parameters
on the different tracks. Compound fitness over all 8 tracks is 2.01 (0.11).

controllers. We speculate that this is because these runs suffer from ”premature specialization”

- after evolving a good controller for the first track, the sensor setup might not be suited for

good driving on the second track, and changing the parameters would diminish fitness on the

first track, thus creating a local optimum. That the first two tracks are, from the point of view

of the car, mirror images of each other, adds plausibility to this hypothesis.

Further evolution

Evolving sensor parameters can be beneficial, however, when this is done for a controller that has

already reached general proficiency. We used one of the generally proficient controllers evolved

using the incremental method as the seed for a new evolutionary run, with sensor mutation

turned on and controllers tested on all six tracks simultaneously. The results was an increase

in mean fitness, as can be seen in 5.7. Although the mean fitness does not increase on every

single track, the best controller of the last generation races all the tracks more reliably, and is

very rarely observed to crash into a wall in such a way that the car gets stuck. The evolved

sensors of this controller showed little similarity to the original sensor setup, described above -

see figure 5.15 for an example.
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Track 1 2 3 4
Fitness (sd) 1.66 (0.12) 1.86 (0.02) 2.27 (0.45) 2.66 (0.3)
Track 5 6 7 8
Fitness (sd) 2.19 (0.23) 2.47 (0.18) 0.22 (0.15) 0.15 (0.01)

Table 5.7: Fitness of a further evolved general controller with evolvable sensor parameters on
the different tracks. Compound fitness 2.22 (0.09).

Figure 5.15: Sensor setup of the further evolved general controller analysed in table 5.7. Only
three sensors seem to be long enough to be of any use, and all of those point to the right or
front-right. The asymmetry and ”waste” is somewhat surprising, as the controller performs well
on all the first six tracks (but it does do slightly better on clockwise than on anti-clockwise
tracks).

5.2.4 Evolving specialized controllers

In order to see whether we could create even better controllers, we used one of the further

evolved controllers (with evolved sensor parameters) as basis for specializing controllers. For

each track, 10 evolutionary runs were made, where the initial population was seeded with the

general controller and evolution was allowed to continue for 200 generations. Results are shown

in table 5.8. The mean fitness improved significantly on all six first tracks, and much of the

fitness increase occured early in the evolutionary run, as can be seen from a comparison with

table 5.7. Further, the variability in mean fitness of the specialized controllers from different

evolutionary runs is very low, meaning that the reliability of the evolutionary process is very

high. Perhaps most surprising, however, is that all 10 evolutionary runs produced proficient

Track 10 50 100 200 Pr.
1 1.9 (0.1) 1.99 (0.06) 2.02 (0.01) 2.04 (0.02) 10
2 2.06 (0.1) 2.12 (0.04) 2.14 (0) 2.15 (0.01) 10
3 3.25 (0.08) 3.4 (0.1) 3.45 (0.12) 3.57 (0.1) 10
4 3.35 (0.11) 3.58 (0.11) 3.61 (0.1) 3.67 (0.1) 10
5 2.66 (0.13) 2.84 (0.02) 2.88 (0.06) 2.88 (0.06) 10
6 2.64 (0) 2.71 (0.08) 2.72 (0.08) 2.82 (0.1) 10
7 1.53 (0.29) 1.84 (0.13) 1.88 (0.12) 1.9 (0.09) 10
8 0.59 (0.15) 0.73 (0.22) 0.85 (0.21) 0.93 (0.25) 0

Table 5.8: Fitness of best controllers, evolving controllers specialised for each track, starting
from a further evolved general controller with evolved sensor parameters.
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Figure 5.16: Sensor setup of controller specialized for track 5. While more or less retaining the
two longest-range sensors from the further evolved general controller it is based on, it has added
medium-range sensors in the front and back, and a very short-range sensor to the left.

Figure 5.17: Sensor setup of a controller specialized for, and able to consistently reach good
fitness on, track 7. Presumably the use of all but one sensor and their angular spread reflects
the large variety of different situations the car has to handle in order to navigate this more
difficult track.

controllers for track 7, on which the general controller had not been trained (and indeed had

very low fitness) and for which it had previously been found to be impossible to evolve a proficient

controller from scratch.

Analysis of the evolved sensor parameters of the specialized controllers show a remarkable

diversity, even among controllers specialized for the same track, as evident in figures 5.16, 5.17

and 5.18. Sometimes, no similarity can be found between the evolved configuration and either

the original sensor parameters or those of the further evolved general controller the specialization

was based on.

There are many reasons why this could be the case. The most obvious reason is that there

could well be many different ways of solving the same task. As a hypothetical example, for

Figure 5.18: Sensor setup of another controller specialized for track 7, like the one in figure 5.17
seemingly using all its sensors, but in a quite different way.
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specialized driving for a particular track, the controller might depend on either an “inside” or

an “outside” wall sensor as the main trigger for turning, and either a backward or forward wall

sensor for dissolving ambiguities regarding which turn to take. Another contributing reason

could be that not all sensors need to be used in decision making. A sensor could have a

long reach but all connection weights from it might be close to zero, and so several seemingly

different sensor configurations might really be rather similar if only “active” sensors are taken

into account. When trying to understand the space of sensor configurations it is also important

to remember that even a sensor with a short reach can be important. If the presence of a wall

in a certain direction only needs to be responded to when it is very close, it makes more sense

to have a short sensor than a long one, as the shorter sensor has higher resolution given the

limited number of sampling points, and will respond with a larger difference in output signal

for the same difference in wall distance, than a longer sensor.

5.2.5 Observations on evolved driving behaviour

In section 5.1, we found that artificial evolution can produce controllers that outperform human

drivers. To corroborate this result, the author measured his own performance on the various

tracks, driving the car using keyboard inputs and a suitable delay of 50 ms between timesteps.

Averaged over 10 attempts, the author’s fitness on track 2 was 1.89, it was 2.65 on track 5, and

1.83 on track 7, numbers which compare rather unfavourably with those found in table 5.8. The

author would like to believe that this says more about the capabilities of the evolved controllers

than those of the author.

Traces of steering and driving commands from the evolved controllers show that they often

use a PWM-like technique, in that they frequently - sometimes almost every timestep - change

what commands they issue. For example, the general controller used as the base for the special-

izations above employs the tactic of constantly alternating between steering left and right when

driving parallell to a wall, giving the appearance that the car is shaking. Frequently alternating

between neutral and forward drive is also used a way of keeping a certain speed; an approach

many engineers would use when designing a controller for a vehicle that can only be controlled

with discrete inputs. Doing so is however practically impossible for a human driver, and analy-

sis of action traces for human drivers shows much fewer changes to the commands given; as an

example, the author changes drive command only four times per lap when racing on track 3.

5.2.6 Conclusions

We believe that the results presented above answer, at least in part, the several questions posed

at the start of this section. Different tracks can indeed be constructed that have differing
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difficulty levels, in terms of the probability that an evolutionary run starting from scratch will

produce a proficient controller within a given number of generations, and the mean fitness of

evolved controllers. Difficulty levels range from very easy, where the evolutionary algorithm

almost always succeeds, to very hard, for which no successful controllers have been found, and

agree with intuitive human difficulty ratings of the same tracks. These skills are, however, not

transferable: a controller evolved from scratch to perform well on a given track usually performs

very poorly on all other tracks. Evolving sensor parameters along with network weights makes

for fewer proficient controllers (probably because of more local optima), a result which is not

inconsistent with the good controllers that do emerge being slightly superior to fixed-sensor

ones, as found in previous experiments.

As for the question on whether we can automatically create controllers with driving skills

so general that they can proficiently race all tracks in our training set, this can be done by

using incremental evolution, going from simpler to more complex tracks, with sensor mutation

turned off. Attempts to evolve general controllers with sensor mutation turned on failed, as did

attempts to evolve controllers on all tracks simultaneously. Once a general controller has been

created, its fitness can be increased through continued evolution with sensor mutation turned

on. Specialized controllers can be created by further evolving a general controller, using only

one track in the fitness function. These specialized controllers invariably have very high fitness.

Much to our surprise, this was true even for one hard track which the general controller had not

been evolved on and which it had very low fitness on, and for which we have not been able to

evolve proficient controllers from scratch. Apparently, the general controller is somehow closer

in search space to a proficient controller for that track, even though it has no proficiency itself

on that track. Exactly how this works remains to be found out.

The ease with which specialized controllers can be gotten from general controllers point to a

possible application in racing games: if a user designs his own track, the game could easily evolve

NPC drivers with the required driving skill for that track, starting from a generally proficient

controller.

5.3 Further experiments in optimizing car driving

In this section, we briefly discuss two series of experiments aimed at further investigating how to

best learn good driving behaviour for the well-defined task of single-car racing. The first series

of experiments compare neural networks with genetic programming in stateful and non-stateful

versions. The second series compares evolution with td-learning, and state-value control with

action-value control and direct control.
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5.3.1 Comparing controller architectures on the track task

This section is based on a paper presented at GECCO 2007, with Alexandros Agapitos as first

author [3]. The two parallel goals of these experiments was to compare neuroevolution with

genetic programming, and to compare representations that allow for stateful control and those

that only allow for reactive controllers to be evolved. As a bonus, we compared the effect of the

number of rangefinder sensors on the performance of the neural network-based controllers.

In this section, we will mainly discuss the results of our experiments, and the reader is

referred to the paper for the background on object-oriented genetic programming and all the

details on the gp implementation, including most parameters. Some analysis of the evolved gp

trees are also presented in the paper.

Methods

The experiments were done in the track-based racing game using the full car racing simulation

(with non-buggy way point sensor). As the order of the experiments follow those described

in section 5.2 quite closely, the same tracks were used and numbered in same way. The usual

50 + 50 evolution strategy was used for most of the experimental runs, but as crossover is often

observed to work better for gp than it does for neural nets, a genetic algorithm with population

100 was used for some of the gp experiments.

The gp trees were intialised with depth 5, and were allowed to grow to a maximum depth

of 8 if ADFs were used, and 10 if they were not used. Uniform crossover combined with point

mutation was used in the GA based runs, and in the ES based runs subtree macro-mutation

was used. In all the gp experiments, a set of non-terminals were used that included standard

arithmetic functions, conditional branching, ordinal predicates (less than, more than etc.), and

calls to get the value of a specific wall sensor with range and angle defined by the value of the

child nodes. The terminals included a range of constants as well as the values of the speed

and way point sensors. For the object-oriented gp experiments, two added non-terminals could

either get or set the values in a register.

Taken together, the sets of terminals and non-terminals should give gp considerably more

expressive power than neuroevolution. For example, it would be possible to evolve a gp-based

controller that moved its sensors, so that it had different configurations depending on its speed.

In all, nine different configurations of controller architecture and evolutionary algorithm were

compared:

• Functional gp without ADFs and crossover

• Functional gp with ADFs, no crossover
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Table 5.9: Average fitness of best controller for generations 10, 50, 100, 200 (averaged over 10
independent evolutionary runs - std. deviation in parentheses)

Method 10 50 100 200

Functional/no ADFs/Macromutation 1.26 (0.65) 2.33 (0.4) 2.47 (0.4) 2.51 (0.15)
Functional/ADFs/Macromutation 1.54 (0.45) 2.54 (0.17) 2.62 (0.15) 2.67 (0.1)
Functional/no ADFs/Recombination 1.87 (0.52) 2.38 (0.16) 2.45 (0.17) 2.46 (0.17)
Functional/ADFs/Recombination 1.62 (0.74) 2.23 (0.63) 2.39 (0.47) 2.53 (0.17)
OO/Macromutation 1.55 (0.61) 2.47 (0.7) 2.54 (0.18) 2.59 (0.18)
OO/Recombination 1.10 (0.75) 2.39 (0.3) 2.47 (0.07) 2.55 (0.07)
MLP 0.13 (0.17) 2.48 (0.67) 2.92 (0.09) 3.08 (0.07)
Recurrent 0.19 (0.16) 1.06 (0.45) 2.43 (0.46) 2.92 (0.16)
MLP with less sensors 0.19 (0.22) 2.65 (0.08) 2.94 (0.08) 3.07 (0.02)

• Functional gp without ADFs, with crossover

• Functional gp with ADFs and crossover

• Object-oriented gp with ADFs, no crossover

• Object-oriented gp with ADFs and crossover

• Multilayer perceptrons, 12 hidden neurons, 12 wall sensors

• Elman-style recurrent networks , 12 hidden neurons, 12 wall sensors

• Multilayer perceptrons, 12 hidden neurons, 4 wall sensors

Evolving single-track Controllers

The first set of experiments concern the evolution of driving skills on a single track, namely

track 5. In this set of experiments, each evolutionary run starts with freshly created controllers:

neural networks with all connection weights set to 0, or GP controllers with small randomly

generated trees. For each controller configuration, we ran 10 independent run of 200 generations

with population 100. The results of this can be seen in table 5.9.

The first observation on the results is that all configurations of both neural network and GP

controller representations managed to evolve high-performing car drivers. But the performance

of GP and NN controllers are not identical. Generally, it can be seen that the GP controllers

evolve much faster than the neural network controllers, but that the neural network controllers

ultimately reach higher fitnesses. No significant difference can be seen between functional and

object-oriented GP, and between recurrent and feedforward neural nets.

Performance on Several Tracks

Next, we looked at the generalisation capability of the controllers evolved in the preceding

section. This was done by trying each of these controllers on each of the eight tracks, not only

the track for which they had been evolved.
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Figure 5.19: (a) Best-of-generation individuals using GP with ADFs; (b) Best-of-generation
individuals using OOGP and MM (generalisation to additional tracks is shown after generation
200); (c) Tracks driven proficiently using OOGP and MM; (d) Best-of-generation-individuals
using MLP; (e) Generalisation to additional tracks after generation 200 using MLP (f) Tracks
driven proficiently using MLP

In general, the evolved neural networks perform significantly better than the GP controllers

even for tracks for which they have not been evolved. Like in the previous section, not much

of a difference was found between stateful and stateless controllers. Finally, similarly to the

experiments in section 5.2, all controllers scored lower on other tracks than on track 5, for which

they had been evolved, but scored slightly better on tracks which like track 5 run counter-

clockwise than on those that run clockwise.

Evolving Generalisation

The final set of experiments concern the incremental evolution of general controllers. In these

experiments, each evolutionary run was seeded with the results of the 200 generations of evo-

lution on a single track described above. Then, evolution proceeded for 50 generations, with

the crucial difference that the fitness function was made incremental; each controller evaluation

was done as the average of the progress that controller displayed on a set of tracks. At the first

generation of each evolutionary run, only track 5 was used for fitness evaluations, but every

time a controller reached fitness 1.5 a track was added to the evaluation set (and kept for the

duration of the evolutionary run). The sequence in which tracks were added was 5, 6, 3, 4, 1, 2,

7, 8. (Note that every second track added runs clockwise instead counterclockwise, to increase
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Method Avg. no of tracks

Functional/ADFs/Macromutation 6.0 (0.8)
OO/Macromutation 5.8 (0.91)
OO/Recombination 4.6 (1.07)
MLP 8.0 (0.0)
Recurrent 8.0 (0.0)
MLP with less sensors 8.0 (0.0)

Table 5.10: Average number of tracks, proficiently driven (averaged over 10 independent evolu-
tionary runs - std. deviation in parentheses)

the diversity between tracks added in sequence and thus avoid overfitting to a particular driving

direction.) A controller that was able to generalise completely and drive proficiently on all tracks

would at the end of these 50 extra generations have all 8 tracks in its evaluation set, whereas a

very poor generaliser would be stuck with only track 5 in the set.

As a consequence, the graphs depicted in figure 5.19 for these evolutionary runs include

not only the fitness of the best controller in the population but also the incrementation level

(number of tracks in the evaluation set) of the population.

As we can see from table 5.10, both NNs and GP are able to incrementally generalise pre-

viously evolved controllers and achieve proficiency on a majority of the eight tracks. However,

there is a marked difference, in that the neural network-based controllers on average generalised

significantly better, and end up being able to drive proficiently on seven of the eight tracks.

On the other hand, there seems to be no significant performance difference between stateful

and stateless controllers, i.e. between MLPs and functional GP on the one hand and recurrent

networks and OOGP on the other hand.

Conclusions

The main finding of our experiments is that, for the given problem and experimental setup,

the various versions of GP evolve faster than NNs, but the neural networks ultimately perform

better, especially on the more complicated version of the task, that takes all eight tracks into

consideration.

An early suspicion was that as the GP trees evidently make use of much fewer wall sensor

readings than the neural network controllers, this contributed to the fast learning but poor

generalisation of GP controllers. The argument was that it is easier to learn to drive on a

simple track when only caring about the speed and the angle to the next waypoint, but that

this strategy breaks down when exposed to the more complicated tracks where the straight line

between two waypoints might pass through a wall. As neural networks are in effect forced to

consider all its sensor readings, this makes it harder to find an initial control strategy, but once

found, such a control strategy will be much more robust. Much to our dismay, our hypothesis
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was falsified by the inclusions of the ”minimal” neural network controller that only uses four

wall sensors, yet performs almost as well as those controllers that use 12 wall sensors.

Another hypothesis is that we are being unfair to GP when we are asking it to compete with

neural networks on the neural networks’ home arena. GP experiments typically use much larger

population sizes and different selection regimes. Given such changes the GP controllers might

very well outperform our neural network controllers.

An additional puzzling phenomenon is the virtual lack of difference between the performance

of stateless and stateful controller representation. Our best bet as to why this is so is that we

need even more complex versions of the car racing task, such as competitive multi-car racing,

in order to exploit the statefulness of the controllers. Maybe we also need to introduce more

complex primitive objects, e.g complete forward models of the car dynamics, as objects which

could be accessed and manipulated by the OOGP system.

5.3.2 Comparing learning methods for point-to-point racing

In this section, which is based on a paper presented at CIG 2007 with Simon Lucas as first

author, we compare evolution with temporal difference learning, and direct control with state-

value and action-value based control [80]. The game used here is one of the simplest possible

variations on car racing possible, as it is a stripped-down version of the point-to-point task,

allowing only for one car (and thus no collisions at all), only five actions instead of nine, and

having a rather simplified dynamics model. Fitness is calculated depending as the number of

way points passed in 500 time steps. The details of the car model, and of the learning algorithms,

are to be found in the paper. The paper also contains comparisons with a holonomic version of

the car game, and an extremely simple one-dimensional version.

Manual control

Both of the authors of the paper attempted to solve the task themselves repeatedly in the course

of experimentation. On a good day, the authors typically scored between 12 and 16.

Hand-coded control

Two hand-coded controllers were implemented: Greedy and Heuristic.

The algorithm for each of these controllers is simple: consider the state of the system after

each possible action, and select the action that leads to the best score. In this case, the scores

are penalty values, so this means the action with the lowest score will be selected.

The score function used for the greedy controller is simply the Euclidean distance between

the car and the next waypoint. The heuristic controller improves on this by adding in a penalty
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term proportional to the square of the car’s speed. The square of the speed is used on the basis

that stopping distance is proportional to this.

The greedy algorithm performs poorly; its failure to consider the velocity of the car leads to a

tendency to significantly overshoot each waypoint. This is because given the current state of the

system, the action that takes the car closest to the next waypoint usually involves accelerating

toward the waypoint. The addition of the velocity penalty in the heuristic controller leads to

much better performance, with a fitness of 18.8 averaged over 1000 evaluations.

Action-value control

Two different representations of the action values were used: neural networks and tables. The

table-based controller had 33 ∗ 5, or 135 cells. Selection was done on the following three dimen-

sions: speed, angle to the next waypoint and distance to the next waypoint. Cut-off values for

these dimensions were set to 0.08, 0.3 and 0.31 respectively, values which were found after an

exhaustive search.

Likewise, the MLP-based controller takes speed, angle and distance to the next waypoint,

and the action to evaluate as input, and outputs an estimate of the value of that action.

First, we tried the Sarsa variety of temporal difference learning. Learning with the table-

based representation was extremely unreliable, with only some runs learning anything at all, and

frequent cases of “unlearning” were reasonably good behaviour was observed for a number of

epochs, before plunging back into randomness. But at least in some cases td-learning produced

controllers with performance significantly better than random. Still, the best-performing learned

controller had a fitness of only 4.7. The training runs that succeeded did so within 1000 epochs.

In contrast to the td-learned controllers for the one-dimensional case, which performed better

when occasional random movement was turned off (ǫ set to 0) after training, the controllers

learned for the car model needed a (small) non-negative ǫ in order to perform.

TDL with the MLP-based representation was unable to learn any meaningful policy at all.

We then tried evolving action-values using the same representations, and a 15+15 evolution

strategy. For the both the connection weights of the neural networks and the values in the cells

of the tables, we used Gaussian mutation with standard deviation 0.1.

Evolution reliably produced somewhat capable action value function based controllers for

the car model. The best evolved table-based controller (from several runs that produced similar

controllers) scored 14.4, and basically drives well, apart from the occasional case of “orbiting”.

Very similar results were achieved using the MLP-based representation, with the best evolved

controller scoring 15.7.
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Figure 5.20: Evolving a state-value MLP for controlling a normal car. The error bars show the
range of fitnesses (pm σ) in each generation.

State-value control

For the state-value control experiments, the controller took and retracted all the five possible

actions in an internal model identical to the actual dynamics model, and used a function approx-

imator to evaluate the value of each action based on the state resulting from that action. The

highest-valued action is then selected for actual execution. What is actually trained through

td-learning or evolution is the function approximator, and here we compared perceptrons with

multi-layer perceptrons.

For input to the function approximator, we compared two different feature vector with two

and three inputs respectively. The two-input version consisted of the Euclidean distance to the

next waypoint, and the square of the car’s velocity. The three input version takes these two

and also adds a directional feature: the absolute value of the sin of the angle between the car’s

heading and the direction to the next waypoint. In each case the value function then applies

the feature vector as input to a neural network, whose single output is taken to be the value of

that state.

Using a 15 + 15 ES running for 100 generations, very good performance was reliably evolved

despite the very noisy fitness evaluations due to the way points being randomized for every trial.

Figure 5.20 shows one such evolutionary run with MLP approximators (1 hidden layer with 10

units).

Temporal difference learning, on the other hand, was rather unreliable. When it did learn

it often achieved high performance within the first 10 epochs, and in these cases offered much

faster learning than evolution. It reached similar performance when using the linear function

representation, but not when using the neural network representation.

Direct control

The above approaches learn controllers that are based on some sort of explicit representation of

the values of states or actions. These are, to our knowledge, the only types of controllers that
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can be learnt using temporal difference learning. But evolutionary algorithms are also capable

of solving reinforcement learning through direct search in policy space, creating controllers that

don’t necessarily directly represent state or action values. In case of point-to-point car racing,

such controllers would take (aspects of) the state of the car as inputs and output the desired

action to take. We chose to represent the controllers as standard three-layer neural networks,

and used the same Evolution Strategy as above.

The neural network was fed with the velocity in vertical and horizontal dimensions, the

magnitude of the velocity vector, and the distance and relative angle to the next waypoint.

Ten hidden neurons were used, and the two outputs were interpreted as movement commands,

with one output controlling steering and the other longitudinal acceleration. (The output range

sensitivity is a bit different in this experiment than in the preceding sections, as the steering

output is interpreted as left if below −0.1, right if over 0.1, otherwise centre. This is a mere

accident, and to our best knowledge insignificant. A number of auxiliary experiments with

varying this and other parameters have shown that varying the output sensitivity makes no

noticeable difference as long as the mutation magnitude is set high enough, e.g. 0.1.) Using

this approach, good controllers reliably emerged from the evolutionary process. Several runs of

500 generations each produced controllers of similar fitness, the best of them scoring on average

20.1. This controller consistently keeps a high speed and only rarely misses a waypoint, and

then only “orbits” briefly.

Combining evolution and temporal difference learning

As we have seen, evolution and temporal difference learning can both be used to learn func-

tional (state, action) to value mappings, although with varying speed, reliability and ultimate

success. Another interesting question is whether the two methods learn different solutions to

the problems. Especially, it might be suggested that while Sarsa learns approximately correct

action values, evolution will learn values that work, regardless of whether they are correct or

not. To investigate this, we tried applying our evolutionary algorithm to solutions that had

been learned with Sarsa, and Sarsa to solutions that had been evolved. Due to time and space

constraints (for us, not for the algorithms) this was only done for the action-value approach.

Seeding the Sarsa algorithm with evolved action value based car controllers had an interesting

effect, in that it had no effect at all: the further td-learning made no significant change, neither

negative or positive. Or in other words, td-learning performs much better when initialised with

an evolved controller. Seeding evolution with the results of Sarsa made no significant difference

to seeding evolution with random controllers: good controllers evolved just as quickly as they

do when evolution is initialised with empty tables or MLPs with neutral connection weights.
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One way of interpreting this is that evolution actually does learn the correct action values;

another is that evolution has a “lock-in effect”, creating a local optimum td-learning can’t break

out of.

Conclusions

In table 5.11, we present the fitness of the best controller obtained through all of the different

methods, tested on 1000 tracks.

Table 5.11: Best controllers found for the normal car, tested on 1000 tracks.
Method Td-learning Evolution

State-MLP - 36.7
State-Perceptron 31.1 31.5

Action-Table 4.7 14.4
Action-MLP 0 15.7
Direct-MLP - 20.1

Experiments were made on a variety of problem setups using different feature vectors, and

different neural networks (multi and single layer perceptrons). In each case, state-value learning

worked much better than action-value learning. Evolution worked more reliably and achieved

better final fitness than reinforcement learning, but reinforcement learning, when successful,

learned faster. Further, for learning action value functions with TDL, table-based representa-

tions were always superior to MLP-based representations. When evolution was used without

a model, the direct approach was superior to learning action values. Our suspicion that the

method learns differently and not only better or worse was supported by the “lock-in effect”

observed when combining them.

The task is clearly very sensitive to the learning method, the architecture, and the chosen

input features. A strong distinction can be seen between methods which work very well, such as

evolved state-based MLPs, and those that work very badly, such as TDL-trained action-based

MLPs. While it is likely that with more work it would be possible to improve the TDL results,

a great strength of the evolutionary methods is the ease with which they can be applied.

The state-value methods can only be applied when a forward model exists, which is able

to predict the next state of the car given the current state and the selected action. This is

simple for the simulation, where we had access to the exact forward model. For controlling a

real car we would have to infer a forward model, something we do in section 6.2. However, these

models are only ever approximate, and we don’t know if the state-value approach would retain

its advantage when used together with such a model.

It is also an open question if these results hold up if a similar comparison is to be performed

on a more complicated version of the car racing problem, involving two cars and possibly walls.
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5.4 Optimization in other game domains

While most of the experiments in this thesis deal with car racing in one form or another, we

have also used evolutionary optimization to learn to play several other games. In this game we

present experiments with evolving neural network-based controllers for a helicopter simulation

game and the Cellz game.

5.4.1 Controlling a simulated helicopter

This section is based on a paper presented at CEC 2006, with Renzo De Nardi as first author [36].

The research was performed as part of the UltraSwarms project, of which Renzo is a part, and

which aims to produce swarms of miniature helicopters that perform collaborative computing

over wireless networks while flying. As a first step in this project, an individual helicopter

must be brought to fly autonomously, using a controller that can in turn receive higher-level

commands from a swarming algorithm. As the hardware platform was still in preparation at

the time of doing the research, we decided to use the open source helicopter simulator described

in section 4.2.1 for these initial experiments in controller acquisition.

As the simulator is very accurate, flying the helicopter is very, very hard. None of the authors

could even it get it off the ground and hovering in the same place for more than a few seconds,

and trying to complete the way point following task we evolved controllers for was out of the

question. The problem turned out to be too difficualt not only for humans, but for algorithms

as well; a great amount of effort was spent on approaches that turned out not to work.

In the notation used below, the helicopter state is specified by the variables

[x, y, z, u, v, w, φ, θ, ψ, p, q, r]

The state vector follows the conventional notation used in the aircraft control community; x, y, z

and u, v, w are the position in the inertial reference frame and the velocity in the helicopter’s

frame of reference, while φ, θ, ψ and p, q, r are the rotations and rotational velocity about the

axis of the helicopter, respectively.

The simulator comes complete with a PID (proportional, integral, derivative) controller,

which was hand-tuned by the creators of the simulator, and able perform the way point following

task (though not with much grace). In our experiments, we made use of parts of this controller

in various ways while we were exploring ways to automatically create controllers that would

eventually outperform the PID controller by a respectable margin.

More details about e.g. the simulation, previous work and some of the experiments are to be

found in the paper. The paper also has an analysis of the shortcomings of monolithic networks
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and simultaneous evolution, which is largely superseded by the discussion in sections 2.4.2

and 2.4.3.

Non-working methods

In the first approach, we tried to evolve a full MLP with two layers of weights, using a 10 + 23

evolution strategy, and a fitness function based only on progress along the waypoint chain. (The

odd population size is because the simulation is very computationally expensive, so we had to

distribute the evaluations to a cluster, and we had only 34 machines available.) The MLP was

given all 12 state variables (position, velocity, angles and rotational velocity), plus the location

of the next waypoint in 3 dimensions, and the network’s four outputs were used to drive all the

control surfaces of the helicopter.

Results were not encouraging. In some cases, no goal-directed behaviour at all was observed,

save that of maintaining enough altitude not to crash into the ground. In some other cases,

the helicopter drifted slowly towards the first waypoint, but rarely reached it. In all cases, the

helicopter was continuously spinning around the z axis, though the speed with which it did this

varied.

Figuring that the z spin was the problem, we tried removing the yaw control (responsible

for controlling the z spin) from the neural network, and reinstating the yaw part of the PID

controller, but to no avail. We then tried a wide variety of ways of modularizing the neural

network, and changes to the fitness function, to be able to evolve a controller that would both

follow the way points and not spin around. Nothing worked. Thinking that it would be impos-

sible to evolve yaw stabilization together with the other aspects of the controller, we then opted

for incremental evolution.

Incrementally substituting a PID with neural networks

In our first working approach, we used the PID controller delivered with the simulator to enforce

functional separation in the network.

The first phase was the evolution of the yaw controller. For this purpose a very simple neural

network, with four connections in all, was evolved to stabilize the yaw. This network was evolved

using a fitness function that linearly penalised deviation from the target heading. Each trial

lasted for only twenty timesteps, and evolution produced a fairly good solution within several

tens of generations. During the second phase, the yaw network was free to evolve along with

the rest of the controller.

The second phase was divided into three steps; in all steps the same fitness function was

used. In step 1, a three layer MLP was substituted for the PID controller’s guidance layer; it
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Figure 5.21: Topology of the substitution network.

took as its input the distances from the waypoint, and the velocity of the helicopter, (both in

body coordinates) and had as outputs the desired pitch and roll attitude to the longitudinal and

lateral PID‘s.

In step 2, the two inner PID loops (longitudinal and lateral) were removed and substituted

by two separate MLPs. These were evolved to act on the information given by the neural outer

layer, and they output helicopter motor commands (longitudinal and lateral cyclic control, and

collective pitch). After this step, we had a working helicopter controller consisting solely of

neural networks.

In step 3, the outer network layer, which was frozen during step 2, was allowed to evolve

further, along with the inner network layer. In this way, the networks could coadapt to each

other, potentially allowing them to exploit modes of cooperation not possible for the purely

linear PID controllers.

The controller based on the inner network reached a good fitness level within 200 generations

in all ten replications of the experiment. Evolution of the outer network showed more variability,

but within 500 generations an outer network had been evolved in all replications which gave the

controller a reasonable, if not good, performance. When both networks were further evolved

together, however, very good performance was reached in every replication (see fig. 5.22).

Incremental/simultaneous evolution of modular networks

The next experiment aimed at evolving a controller without any involvement of the PID. The

first phase, evolving a simple yaw stabilizer, was repeated exactly as in the previous working

approach.

For the rest of the controller, three relatively simple custom-topology neural networks (fig-

ure 5.21) were evolved simultaneously using the standard fitness function. The three networks

respectively output longitudinal cyclic control, lateral cyclic control, and the collective pitch;

the topologies of the networks are depicted in figure 5.23. The longitudinal network had the
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Figure 5.22: Evolving the substitution network in three steps. Best fitness (black line) and
average of the best fitnesses (gray line) over 10 repetitions of the evolution are shown. Error
bars show the standard deviation calculated every 20 generations.
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following inputs: longitudinal distance to waypoint (∆x), u, q and θ. Similarly, the lateral

network made use of the lateral distance to the waypoint (∆y), v, p and φ. The collective pitch

network used the difference in altitude of the waypoint (∆z) and ż.

The experiment was replicated ten times. The variability in fitness within the first few

hundred generations was quite high, but within 500 generations very good performance was

reached in all ten replications, as shown in figure 5.24.

Evolving PID gains

In order to obtain a controller to serve as a meaningful standard of comparison in our perfor-

mance tests, we evolved the gains of PID controllers structurally identical to the handcrafted

controller shipped with the simulator. As in the neuroevolutionary approaches above, this only

108



0 50 100 150 200 250 300 350 400 450 500
0

2

4

Generations

F
itn

e
ss

Figure 5.24: Evolving the modular network. Best fitness (black line) and average of the best
fitnesses (gray line) over 10 repetitions of the evolution are shown. Error bars show the standard
deviation calculated every 20 generations.

worked if yaw control was evolved first, with the rest of the PID gains “frozen” until the heli-

copter was stable around the z axis.

Performance comparison

However, to better understand the peculiarities of the different controllers, additional tests were

performed on four tasks differing from the one used in the evolutionary process:

Task 1, Sparse waypoints

The first test was simply a repetition of the task used for the controller evolution, but over a

much longer timespan. The extra time allowed for values of Pchain bigger than 1.0 since the

helicopter was able to fly the whole waypoint chain more than once.

Task 2, Close waypoints

Closer waypoints were chosen for the second task, with the average distance between the way-

points now set to 6 feet.

Task 3, Sparse waypoints in presence of wind

The waypoints were chosen with the same criteria used for task 1, but an external disturbance

in the form of wind gusts was added to the simulation in order to test the robustness of the

controller. The wind was simulated as a time varying vector ([0, 10] ft/s) added to the helicopter

velocity.

Task 4, Sparse waypoints with varying gross weight

This task provided an understanding of the controllers’ ability to handle variations in the he-

licopter’s weight (and mass). The maximum random weight variation was set to fifty percent

since the payload of a small helicopter can often reach this limit.

In addition, since the fitness function used for evolution gives only limited insight into the

specific abilities of the controllers, three more specific performance indices were developed:
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Table 5.12: Performance of the various controllers on different tasks
Handcrafted Evolved Substitution Modular

PID PID Network Network

Close waypoints

Pchain 0.96 (0.077) 1.85 (0.091) 2.27 (0.182) 2.38 (0.106)

ep 0.95 (0.216) 0.40 (0.048) 1.04 (0.21) 0.34 (0.044)

eh 0.005 (0.003) 0.010 (0.002) 0.457 (0.002) 0.013 (0.001)

Sparse waypoints [10, 25ft]

Pchain 0.46 (0.121) 0.74 (0.273) 1.35 (0.127) 1.64 (0.081)

ep 1.61 (0.265) 0.84 (0.192) 2.5 (0.748) 0.63 (0.242)

eh 0.007 (0.001) 0.015 (0.004) 0.459 (0.003) 0.018 (0.002)

Sparse waypoints with wind [0, 10ft/s]

Pchain 0.27 (0.231) 0.49 (0.330) 0.95 (0.434) 1.07 (0.565)

ep 1.99 (3.705) 2.58 (2.880) 3.54 (3.097) 1.33 (1.651)

eh 0.069 (0.083) 0.160 (0.216) 0.430 (0.146) 0.062 (0.049)

Crash 7 2 2 4

Sparse waypoints with variable weight [±50%]

Pchain 0.54 (0.128) 0.83 (0.235) 1.3 (0.170) 1.53 (0.137)

ep 1.68 (0.271) 0.80 (0.153) 2.28 (0.503) 0.618 (0.112)

eh 0.012 (0.002) 0.017 (0.005) 0.48 (0.02) 0.031 (0.017)

• progress along the waypoint chain Pchain (higher is better),

• mean deviation from the shortest path ep =
∑N
i=0 | wh | (lower is better),

• mean heading error eh =
∑N
i=0 | ψ − ψnext | (lower is better).

Table 5.12 shows the results of the tests; the best values are printed in bold. The waypoint

layout was randomly generated at the start of every evaluation, and each task was repeated 20

times; the average value (and standard deviation) of the performances obtained is shown (in

parentheses). The penalty for crashing into the ground was a fitness of 0, rather than a negative

fitness as during evolution. On the wind task, the number of crashes in 20 trials is given; this

is a measure of the ability of the controller to maintain stable flight. In all the test tasks the

performance was evaluated during a predefined period of 3000 timesteps (corresponding to 60s

of flight time).

Figures 5.25 and 5.26 show the trajectories of an evolved PID controller and an evolved

modular neural network controller respectively, performing the same task (task 1) for 1100

timesteps. The PID exhibited a very conservative strategy, slowing down when still far away

from the waypoint and almost stopping when close to it. The network-based controller instead

retained a better control over the helicopter speed that produced a more linear trajectory and

better progress along the waypoint chain.

Generally, the modular network (evolved without involving the PID) performed best in all

four variations of the task, as it always progressed the furthest of the four controllers along

the waypoint chain, and always moved in a more or less straight line to the waypoint. The
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Figure 5.25: Trajectory of an evolved PID after completing 1100 timesteps of a typical sparse
waypoint task. In this particular run the progress along the path (after 3000 timesteps) was
1.14, the mean trajectory error 0.39 and the mean heading error 0.019. The dots mark the
position of the helicopter every 10 timesteps.

Figure 5.26: Trajectory of a modular network controller after completing 1100 timesteps of the
sparse waypoint task used in Fig.6. At the and of the run (3000 timesteps) the progress along
the path was 1.70, mean trajectory error 0.38 and mean heading error 0.016.

substitution network was a close second as far as progress along the chain was concerned, but

had a more mixed performance when it came to deviation from the shortest path, and was the

only controller that has any significant problems keeping the desired heading.

The performance of the PID controllers was much worse than the neural network controllers

when it came to progress along the waypoint chain, except in the situation with the waypoints

closer together, where its performance was comparable to (if slightly lower than) the neural

networks. This suggests that the reason for the good performance of the neural network con-

trollers was not only the superiority of evolutionary tuning over manual tuning, but also the

lack of nonlinearity in the PID controllers. It simply does not seem possible to evolve a purely

linear controller than is robust enough to perform well over the various task variations and

performance measures we used here.
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Conclusion

Both of the successful approaches we tried for evolving neural networks generated very capable

controllers that significantly outperformed the human-designed PID controller. They also out-

performed our attempts to control the vehicle manually by leaps and bounds. It is interesting to

note that the evolved neural networks were quite robust when the parameters of the task, vehicle

and environment were varied, something that could not be said about the PID controllers. This

may be due to two factors: evolution is better at tuning weights and gains than are humans;

and the nonlinearity of neural networks makes them better suited for handling such variations

than linear controllers. Such robustness is obviously important when transferring controllers to

real vehicles.

Without incorporating some domain knowledge in the evolutionary process, we have not

been able to evolve a controller for doing anything more advanced than not crashing. Domain

knowledge has been introduced either by using parts of a hand-designed PID controller, or by

using knowledge of which inputs should be relevant to which outputs. Another form in which

human judgement (though not really domain knowledge) was used was that the yaw control

network always had to be evolved before the rest of the controller. This phenomenon resonates

well with common wisdom in manual controller design: the simpler and less interconnected a

controller is, the easier it is to tune.

Whether and how artificial evolution can be made to overcome this phenomenon is an open

question.

5.4.2 Playing Cellz

In this short section, based on a paper presented at CIG 2005 [143], we discuss a comparison of

different neural network-based controller architectures for playing the Cellz game, as described

in section 4.2.2. The central hypothesis (which is borne out by the experiments) is that when a

symmetry exists in the input array, higher fitness can be achieved if the structure of the neural

network is modularised so that it is forced to take this symmetry into account. The paper details

an additional experiment with a related function approximation task, and has some additional

discussion.

In these experiments, each cell is equipped with eight cell sensors and eight food sensors

spread evenly around its body (see figure 5.27); each sensor measures the distance to and

concentration of other cellz or food in its 45 degree angle. The sensor arrays are used as inputs

to the controllers, and their outputs are used to generate the force vectors controlling the cell.

Four different neural architectures were tested and compared, two “monolithic” and two

“convoluted” . The first two architectures were standard multi-layer perceptrons (MLPs). The
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Figure 5.27: The wraparound sensors.

first MLP consisted of an input layer of 16 neurons, an 8 neuron hidden layer and an output

layer of two neurons. The second MLP had two hidden neuron layers of 16 neurons each.

In both architectures, positions 0-7 received inputs from the “food” input vector of the Cellz

agent, positions 8-15 received inputs from the “cells” input vector, and the two outputs from

the network were used to create the force vector of the cell.

The other two architectures consist of eight separate but identical neural network modules

- they share the same genome. Each module can be thought of as assigned to its own pair of

sensors, and thus being at the same angle r relative to the x axis as those sensors. The outputs

from the each module’s two output units is rotated r degrees, and then added to the summed

force vector output of the controller.

In the convoluted architectures, each module gets the full range of sixteen inputs, but they

are displaced according to the position of the module (e.g. module number 3 gets food inputs

3, 4, 5, 6, 7, 0, 1, 2, in that order, while the input array to module 7 starts with sensor 7;

see figure 5.28). In the first convoluted architecture the modules lack hidden layer, but in the

second convoluted architecture, each has a hidden layer of two neurons.

It is interesting to compare the number of synapses used in these architectures, as that

number determines the network updating speed and the dimensionality of the search space.

The MLP with 8 hidden neurons has 144 synapses, while the MLP with two hidden layers totals

544 synapses. The perceptron-style convoluted controller has 32 synapses per module, which

sums to 256 synapses, and the hidden-layer convoluted controller has 36 synapses per module,

which sums to 288 synapses. It should be noted that while the convoluted controllers have little

or no advantage over the MLPs when it comes to updating speed, they present the evolutionary

algorithm with a much smaller search space, as only 32 or 36 synapses are specified in the
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Figure 5.28: Simplified illustration of the convoluted architectures, taking only one type of sensor
into account. The connections in black are the connections from all sensors to one module; this
structure is repeated (grey lines) for each module.

genome.

All four architectures were evolved with a 5+25 evolution strategy; as the available computer

power was limited, this was only done ten or so times for each configuration.

The two MLP architectures were evolved for 200 generations. The one-layer MLP evolved

somewhat faster and reached a higher final fitness. Both architectures produced good controllers,

whose agents generally head straight for the food, even though they fairly often fail to take their

own momentum into consideration when approaching the food, overshoot the food particle and

have to turn back.

Finally, the two convoluted controllers were evolved for 100 generations, and quickly gener-

ated very good solutions. The convoluted controller with a hidden layer narrowly outperformed

the one without. Not only did good solutions evolve considerably faster than in the cases of the

MLPs, but the best evolved convoluted controllers actually outperform the best evolved MLP

controllers with a significant margin. As the computational capabilities of any of the convoluted

controllers is a strict subset of the capabilities of the MLP with two hidden layers, this is slightly

surprising, but can be explained with the extravagantly multidimensional search problems the

MLPs present evolution with even if a better solution exists it is improbable that it would be

found in reasonable time.

It is also interesting to note that the length of the neural path from sensor to actuator in

the robots (that is, the number of hidden layers) seems to be of relatively small importance.

A comparison between controllers evolved in this paper, the winner of the GECCO 2004 Cellz

contest, and the hand designed controllers mentioned in the original Cellz paper (Lucas 2004)

is presented in table 5.13. (The differences between the best three controllers are so small
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Table 5.13: Mean fitness and standard deviations over 100 game runs for controllers mentioned
in this paper in comparison to other noteworthy Cellz controllers.

Controller Fitness sd
JB-Smart 1.1 (Winner of GECCO 2004 Cellz contest) 1966 20

Convoluted controller with one hidden layer 1934 18
Hand-coded sensor controller 1920 26
MLP with one hidden layer 1460 13

Hand-coded greedy controller 1327 24
MLP with two hidden layers 1225 14

so as not to be statistically significant in small samples.) The convoluted controller with one

hidden layer is one of the best controllers found so far (though the convolutional aspect of the

controller was hand-designed). Note that the winner of the GECCO 2004 contest was also

partially hand-designed, as a neural implementation of the hand-coded sensor controller. So far

the purely evolved neural networks have been unable to compete with the networks that have

been partially hand-crafted.

Our results clearly show that hard-coding modularity into neurocontrollers can increase

evolvability significantly, at least when agents show symmetry, as they do in many computer

games and robotics applications. They also show that certain types of modularity perform

better than others, depending on the task at hand. Adding hidden neural layers might either

increase or decrease evolvability, depending on the task. As neural encodings that intend to let

modularity emerge always have certain biases, these results need to be taken into account when

designing such an encoding.

Regarding the particular issue of rotational symmetry in sensors, a related set of experiments

by Bryant and Miikkulainen is worth mentioning [16]. Bryant and Miikkulainen trained agents

in a multi-agent turn-based strategy game, where each agent had a set of wrap-around sensors

very similar to the ones used by the Cellz agents. However, instead of evolution they used

backpropagation to imitate human behaviour, and instead of encoding the symmetry in the

neural network the set of training data was rotated. This method significantly increased the

performance of the controllers when faced with situations not encountered in the training data.

5.5 Summary

In this chapter, a number of experiments concerning the learning of control for well-defined

tasks were described. The experiments can roughly be divided into foundational experiments

in evolving car control, described in sections 5.1 and 5.2, auxiliary experiments in learning car

control, described in section 5.3, and experiments in evolving control for other game domains,

described in section 5.4. The foundational experiments in evolving car control establish that

car controllers can be evolved using a particular experimental setup, where the car controller is

115



represented as a neural network and is fed data from a number of rangefinder wall sensors, a speed

sensor and a way point sensor. They also show how general driving skills can be incrementally

evolved, and how controllers can be specialized for very good performance on individual tracks.

In addition, we show that a number of other combinations of controller architecture and sensor

setup are apparently not possible to evolve good driving behaviour with.

The foundational experiments in evolving car control set the stage for all other car racing

experiments in this thesis, as the methods developed in the foundational experiments are used

and elaborated on in the later experiments. The auxiliary experiments in learning car control,

on the other hand, corroborate, complement and elaborate on the results of the foundational

experiments. A number of different controller architectures and learning methods were compared

with complex and interesting results, but the original method of evolving neural networks proved

to be at least as good as other tested methods in reliably coming up with good controllers. The

experiments in evolving control for other game domains don’t build directly on any of the car

racing experiments, but a number of insights into what works and what doesn’t work when it

comes to evolving neural network controllers can be shared between these domains. Some of

the key cross-domain insights concern the benefits of modularity, incrementality and ego-centric

sensors, all of which are further discussed in section 2.4.

116



Chapter 6

Imitation

In this chapter we discuss three series of experiments where we model or imitate aspects of car

racing. In the first section we model behaviour, in particular the driving styles of human players

in the racing simulator. The second section looks at imitating not behaviour but dynamics,

acquiring a models of a physical radio-controlled car that is subsequently used to evolve driving

behaviour for the car. The third section briefly discusses another attempt at modelling dynamics,

this time in the racing simulator and in a different transformation space.

6.1 Imitating driving styles

In two papers, presented at the SAB Workshop on Optimizing Player Satisfaction 2006 and

CIG 2007 respectively, we developed a new method for personalised content creation in racing

games; the project was done in collaboration with Renzo De Nardi [139][140]. The method

consists in modelling the driving style of a human player and evolving a racing track for that

particular player. The track evolution part of the project will be discussed in section 7.3. Those

experiments use a controller trained to behave like a modelled human in important respects

as part of the fitness function for tracks. More specifically, this controller will be driven on

candidate tracks, and aspects of its performance on those tracks will be used in the fitness

calculation for the tracks.

In this section we discuss our approach to player modelling, focusing on the method used in

the later paper. The outcome of our modelling algorithm will be a controller, which in some

respects behave like the modelled human, and can be used in the track evolution experiments. In

the following, we will analyze what we actually need to model, describe the differences between

direct and indirect modelling, and present the results of our modelling experiments.
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6.1.1 When is a player model adequate?

The only complete model of a human player is the human player himself. This is both because

human brains and sensory systems are rather more complex than anything machine learning can

learn, and because of the limited amount of training data available from the few laps around a

test track which is the most we can realistically expect a player to put up with. Further, it is

likely that a controller that accurately reproduces the player’s behaviour in some respects and

circumstances works less well in others. Therefore we need to decide what features we want

from the player model, and which features have higher priority than others.

As we want to use our model for evaluating fitness of tracks in an evolutionary algorithm,

and evolutionary algorithms are known to exploit weaknesses in fitness function design, the

highest priority for our model is robustness. This means that the controller does not act in

ways that are grossly inconsistent with the modelled human, especially that it does not crash

into walls when faced with a novel situation. The second criterion is that the model has the

same average speed as the human on similar stretches of track, e.g. if the human drives fast on

straight segments but slows down well before sharp turns, the controller should do the same.

That the controller has a similar driving style to the human, e.g. drives in the middle of straight

segments but close to the inner wall in smooth curves (if the human does so), is also important

but has a lower priority.

6.1.2 Direct modelling

What we call direct modelling is what is arguably the most straightforward way of acquiring

a player model: use supervised learning to associate the state of the car with the actions the

human take given that car state. We let several human players drive test tracks, and logged the

speed and the outputs of waypoint sensor and the wall sensors (as defined above) together with

the action taken by the human at each timestep. Two methods of supervised learning were tried

on this data set: training a multilayer perceptron for use in the controller with backpropagation,

and using the unprocessed data for controlling the car with nearest neighbour classification of

input data. Both methods resulted in worthless controllers that rarely completed a whole lap.

While the trained neural networks were worthless in an uninteresting way, the nearest neighbour-

based controllers reproduced the modelled players’ driving style almost perfectly, until the slight

random perturbations in the game presented the controller with a situation that differed enough

from anything present in the training data, and the car crashed. None of the controllers were

able to recover from crashes, as the human players had not crashed during the data collection,

and thus the situation was not in the data set.

We believe this not to be a problem with the particular supervised learning algorithms we
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used but rather an unavoidable problem with the direct modelling approach. As no model

is perfect, controllers developed with direct modelling will tend to err, which diminish their

performance to lower than the modelled human. In general, it is very unlikely that they will

perform better than or as good as the modelled human (though it is theoretically possible that

individual controllers could perform well), as any deviance from correct modelling will tend

toward random behaviour. Such imperfect controllers will likely crash into walls, and will not

know how to recover, as the controllers can’t learn from their mistakes.

This problem was recognized by the developers of Forza Motorsport, who solved it by placing

certain constraints on the types of tracks that were allowed in the game, and then recording

the player’s racing line over each possible track segment. Still, collisions with walls could not

be entirely avoided, so a hard-coded crash-recovery behaviour was needed [58]. While this

modelling method ostensibly works, it places far too many constraints on the tracks to be useful

for our purposes.

6.1.3 Indirect modelling

Indirect modelling means measuring certain properties of the player’s behaviour and somehow

inferring a controller that displays the same properties. This approach has been taken by

e.g. Yannakakis in a simplified version of the Pacman game [153]. In our case, we start from

a neural network-based controller that has previously been evolved for robust but not optimal

performance over a wide variety of tracks, as described in section 5.2. We then continue evolving

this controller with the fitness function being how well its behaviour agrees with certain aspects

of the human player’s behaviour. This way we satisfy the top-priority robustness criterion, but

we still need to decide on what fitness function to employ in order for the controller to satisfy

the two other criteria described above, situational performance and driving style.

In our earlier paper, we measured the average driving speed of the human player on three

tracks designed to represent different types of driving challenges, and then evolved controllers

to match that performance as closely as possible on each of the three tracks. That method was

successful, but could be argued to fail to capture much of the driving style of the player. The

later paper used the following method, which is an attempt to model the driving in more detail

while still using an indirect approach.

First of all, we design a test track, featuring a number of different types of racing challenges.

The track, as pictured in (fig 6.1), has two long straight sections where the player can drive

really fast (or choose not to), a long smooth curve, and a sequence of nasty sharp turns. Along

the track are 30 waypoints, and when a human player drives the track, the way he passes each

waypoint is recorded. What is recorded is the speed of the car when the waypoint is passed,
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Figure 6.1: The test track and the car.

and the orthogonal deviation from the straight path between the waypoints, i.e. how far to the

left or right of the waypoint the car passed. This matrix of 2 ∗ 30 values constitutes the raw

data for the player model.

The actual player model is constructed using the Cascading Elitism algorithm (see sec-

tion 2.1.3), starting from a general controller and evolving it on the test track. Three fitness

functions are used, based on minimising the following differences between the real player and

the controller:

• f1: total progress (number of waypoints passed within 1500 timesteps),

• f2: speed at which each waypoint was passed,

• f3: orthogonal deviation where the way point was passed.

The first and most important fitness measure is thus total progress difference, followed by

speed and deviation difference respectively.

6.1.4 Results

In our experiments, five different players’ driving was sampled on the test track, and after 50

generations of the Cascading Elitism algorithm with a population of 100, controllers whose

driving bore an acceptable degree of resemblance to the modelled humans had emerged. The

total progress varied considerably between the five players - between 1.31 and 2.59 laps in 1500

timesteps - and this difference was faithfully replicated in the evolved controllers, which is to

say that some controllers drove much faster than others (see the speed fitness in fig.6.2 and

fig.6.3). Progress was made on the two other fitness measures as well, and though there was

still some numerical difference between the real and modelled speed and orthogonal deviation at
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Figure 6.2: Evolving a controller to model a slow, careful driver. Since the initial general
controller is quite well-performing, the evolutionary algorithm quickly adapts the driving style
to obtain the required progress and speeds. At last also the ortogonal deviation fitness improves.
See section 6.1.3 for the description of the fitnesses.
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Figure 6.3: Evolving a controller to model a good driver. The lack of progress on minimising
the progress difference is the result of the fact that the progress of the modelled driver is very
close to that of the generic controller used to initialise the evolution. See section 6.1.3 for the
description of the fitnesses.

121



most waypoint passings, the evolved controllers do reproduce qualitative aspects of the modelled

players’ driving. For example, the controller modelled on the first author drives very close to

the wall in the long smooth curve, very fast on the straight paths, and smashes into the wall at

the beginning of the first sharp turn. Conversely, the controller modelled on the anonymous and

very careful driver who scored the lowest total progress crept along at a steady speed, always

keeping to the center of the track.

Summing up, indirect modelling of behaviour produces player models which qualitatively

seem to be reasonably faithful to the modelled human. We haven’t attempted any quantitative

validation of the accuracy of the models themselves, however in section 7.3 we demonstrate their

usefulness for evolving tracks.

6.2 Imitating real car dynamics for controller evolution

The experiments detailed in this section should be seen in the context of the questions discussed

in section 2.3.1: can we use a simulation to evolve controllers for a physical robot? If so, how

do we acquire the models on which to base this simulation? In particular, how do we do this

for a non-recoverable robot, that can break or otherwise can’t easily be returned to its starting

position and configuration. In this section, based on a paper presented at Gecco 2007 with Renzo

De Nardi, Hugo Marques and Richard Newcome as co-authors, we investigate how to do this

for the small radio-controlled car that is the qualitative basis of the car racing simulator [141].

6.2.1 Our approach to dynamics modelling and controller evolution

As discussed in section 2.3.2, one of the guiding principles of evolutionary robotics is to as far

as possible exclude the human from the controller design process. The viewpoint taken in this

section is that this should also be the case for the model acquisition. In other words, we are

seeking to minimise the amount of domain knowledge used to produce the model. There are

several reasons for this stance. One is that, similar to the argument for leaving controller design

to evolution, we can potentially harness more of our learning algorithms’ power and creativity.

Another is that we want a method of model aquisition that can be used for modelling different

types of robots (wheeled, winged, walking, whatever) with few or no changes. But the most

important one is that for some systems we just don’t have the domain knowledge available. For

example, for the helicopters in the UltraSwarm project (see section 5.4.1) there is no dynamics

model available.

In section 2.3.1, we discussed several approaches to acquiring models that can be used

to evolve (or otherwise learn) controllers, particulary those of Bongard, Abbeel et al. and
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Jakobi [11][1][65]. Here we contrast their approaches with the one we are currently taking.

While interesting, Bongard’s approach seems to place certain requirements on the type of

robot used, requirements which our system does not meet. Importantly, our model car is dy-

namical and all states are transient, whereas Bongard’s robot can be kinematically modelled; it

would also be possible to crash or otherwise lose control of our car during the experimentation

phase performed by the algorithm.

Abbeel et al. succeed in modelling a car and a conventional single rotor helicopter, but not

without putting in considerable domain knowledge, and even adapting their systems so as to be

easier to model (such as voltage stabilisation on the car). This is all good if modelling a particular

car or helicopter is the primary goal. We aim instead to address the more general problem of

nonlinear modelling for controller evolution when the assumptions about the underlying system

being modelled are relaxed.

As for Jakobi’s approach, the reliance on a human to separate base set from implementation

set clearly violates our goal of minimizing domain knowledge.

6.2.2 Model requirements for controller

evolution

As stated above, we are interested in system identification as a means of making it possible

to evolve controllers, and the requirements we have on the models we infer are thus likely to

differ from those placed on models used in e.g. traditional control theory. These differences stem

from evolutionary computation’s well known tendency to exploit the model or fitness function at

hand. As trying randomly generated strategies is essential to evolution, the candidate controllers

are likely to take actions which are very different from any actions in the training data for the

model, or which otherwise “break” the model so that it produces responses which are wildly

different from the system it is intended to model. Such weak spots in the model can often be

exploited by the evolutionary algorithm to create controllers that achieve good fitness, but are

completely useless in reality. An example of such an exploit for a car racing model would be

if the model moved sideways when a steering command was issued while the car was standing

still. A model with such a deficiency could well be learnt if the situation (steering while not

driving) was not in the training data, and the right constraints were not applied to what sort

of dynamics could be learnt.

That the models behave in a way which adheres to the constraints implied by the system

being modelled is paramount, however beyond learning these large scale constraints, acquisition

of non-exploitable models is more important than achieving high precision with a specific training

set.
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However, there are ways in which the model could fail to conform to the modelled system

and still be usable for controller evolution. In general, we believe that deficiencies that make it

harder for the controller to perform its task (e.g. driving to a way point) is admissible, whereas

deficiencies that make it easier to succeed are not. For concrete examples in our current domain,

we believe that it is preferable that the model overestimates the turning radius of the car to

that it underestimates it, that too long lag between command and effect is preferable to too

short lag, and that it is probably acceptable if the model misjudges all accelerations by some

constant, but absolutely not that the model makes it possible to turn the car on the spot.

That being said, we want to avoid encoding any of the above ideas into our model represen-

tations, in the form of explicit constraints on dynamics or otherwise, in line with our principle

of minimising our use of domain knowledge.

6.3 Data collection

The car we used is a small and inexpensive radio controlled toy car with a mass of approximately

0.3Kg and a length and width of respectively 18cm and 10cm (Figure 6.4). The car is provided

only with simple bang-bang control inputs: forward or backward at full throttle and steering

right or left. The combination of the asymmetry in turning and the slack of the worn out

differential drive gearbox makes controlling the car a non-trivial task. The only modification

made to the car was the addition of five very light and reflective fiducial markers necessary for

tracking. No electrical modifications of any kind were made, which means that the battery level

had a direct impact on the car’s top speed and responsiveness. The remote control of the car

was modified in order to be controlled by the parallel port of our computer. A simple Java

program outputs the steering commands given by a human driver via keyboard to the parallel

port, and logs the commands together with the current car state.

The current car state was obtained from a Vicon infrared tracking system that can record the

position of the markers placed on the car with a very high accuracy (in the order of millimeters)

and a frame-rate of 200fps. The real time data reconstruction delay offered by the system is

also very low (in the order of milliseconds) and being considerably shorter than our control

speed (20Hz) can be safely neglected. All the 50 square meters that constitute the test area

were covered with white paper to reduce (but not eliminate) skidding of the car and infrared

reflectivity of the floor.

The tracking system produces the absolute car position with reference to a coordinate frame

fixed to the test area (a third person perspective), which is translated into the car centered frame

of reference and numerically differentiated to produce the car state. As it can be expected the
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Figure 6.4: The toy car and its remote, note the reflecting markers.

process of numerical differentiation introduces noise in the computed velocities. In order to limit

the noise, we record the data with a time resolution of 200Hz and compute the velocities, which

are then low-pass filtered and down-sampled to 20Hz. To avoid distortion in the data a FIR

(finite impulse response) filter was used and the delay introduced by the filtering process was

compensated for. The control commands were logged together with the car state.

As it is common practice in vehicular dynamics we define the state of the car as the set

constituted by its forward, lateral and angular velocities [u, v, ψ̇]. The derivative of the state

1 [u̇, v̇, ψ̈] will be used for the corresponding accelerations; u1 and u2 indicate the driving and

steering input.

In order to minimise the use of domain knowledge, we decided not to collect data while a

human driver was performing the point-to-point car racing task (see section 4.1.3), but instead

while performing a set of various driving manoeuvres that we regarded to be representative of the

space of possible driving maneuvres. In total, about 6 minutes of driving data was collected with

different manoeuvres ranging from loops and figure-8s to simple starting and stopping. Visual

inspection of the collected data indicated that the lag in the loop (from sending command to

acquiring position information) was negligible compared to the 20Hz frequency of the controller,

and thus did not need to be modelled.

1Computed as [u̇, v̇]t = R(ψ̇t)−1
∗ [u, v]t+1 − [u, v]t, ψ̈t = ψ̇t+1 − ψ̇t. Where R(ψ̇t)−1 denotes the rotation

matrix between the body frame at time t + 1 and t. Throughout the paper [u, v, ψ̇] and [u̇, v̇, ψ̈] refers to the
state and acceleration at time t.

125



6.3.1 Modelling techniques

Four different function representations, with different associated learning methods, were used

to learn models of the car: a function approximator based on twenty-seven MLPs (multi-layer

perceptrons) trained with back-propagation (backprop27 ), another based on three MLPs aided

by an integration routine and trained with artificial evolution (evolved3 ), a simple nearest neigh-

bour classifier, also using an integration routine, and a parametrized model of the car based on

physical insight, with its parameters set by evolution.

In the nonlinear system identification literature, colour-coding is traditionally used to dis-

tinguish the level of prior knowledge that is available:

• White Box models : the model is perfectly known,

• Grey Box models: the model structure is known based on some physical insight, but its

parameters remain to be estimated,

• Black Box models : prior knowledge is not used.

The backprop27 is the darkest model we produced as it produces the next state of the system

based on its current state and on the control inputs. The only handcrafted information pushed

through the system was the choice of the neural network used depending on the active control

signal (see below). The evolved3, the nearest neighbour and the parametrised models are grey-

box models as they all assume a physical system. Given a state and a control action, they only

produce the derivative of the state vector, a sound assumption for any physical system actuated

by forces and torques. The evolved3 and the nearest neighbour models are very dark grey boxes;

they simply predict accelerations, leaving the computation of the new state to an external

routine that takes care of the integration. In contrast, the parametrized model incorporates

substantially more domain knowledge, as it explicitly tries to model coupling effects and friction

that are known to be present in the real car.

Back-propagation MLPs

Our first model architecture does not assume anything about the system to be modelled, but

rather about the space of inputs. Since the car has a relatively small set of action commands,

and since those actions are discrete, it is possible to to take advantage of this by using a separate

neural network for each possible command. This would possibly give each network a simpler

function to learn, not only by reducing the output space, but also by eliminating the motor

commands from the input space (as the appropriate network outputs can be selected solely on

the base of the action input). In total we used 27 networks (9 possible actions × 3DoF) receiving

as inputs the full state ([u,v,ψ̇]) and the usual bias. The networks were then trained to predict
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the state of the system at the next time-step. We used the standard back-propagation algorithm

based on the square error between the model output and the logged car data for the training.

All the almost 7000 data point logged were repeatedly used in the 1000 training epochs.

Evolved MLPs

In this second attempt we raise the level of domain knowledge in the model by assuming that

the state of the system is constituted by physical quantities that can be computed by integrating

acceleration, direct results of states and input commands.

Three separated MLPs are in this case evolved to produce the difference between the current

and the future state of the system. Each network uses as input the current state of the system

and the control command and produces the change in one of the states. The weights of the neural

network were then evolved using a standard 50+50 evolution strategy, encoding the weights of

the networks as real numbers, and mutating them with Gaussian mutation with variance 0.01.

The fitness function was the mean square error between the predicted state and the ground

truth state logged for the car, calculated as follows. A starting point in the data was picked at

random, and the state of the simulated car was initialised to be the same as the state of the

real car. The same commands were then fed to the simulated car as to the real, and the state

of the simulated car updated using the model under evaluation, for 10 time steps, after which

the square difference between the real and the simulated state was calculated. The fitness of a

model was defined as the negative mean of these errors over 100 repetitions of this process.

The evolved3 models were generally evolved for 1000 generations, though they consistently

achieved peak fitness after a few hundred generations.

Nearest neighbour

Like the evolved3 models, but unlike the backprop27 models, the nearest neighbour-based model

maps current state and command to accelerations. The model is very simple and consists in

having the real car data organized in nine tables, one for each control command, each entry

mapping a recorded state [u, v, ψ̇] to a current acceleration [u̇, v̇, ψ̇]. When predicting, given

the current control command and state, the algorithm finds the state entry in the associated

table with the smallest Euclidean distance and adds the corresponding acceleration entry to the

current state.

Parametrised model

The parametrised model we adopted is inspired by the model presented in [1], and is mainly

a fruit of the insight on the underlying physics we gained by driving the car and studying the
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logged data. It consists in a set of algebraic equations, the parameters of which will be fitted

to best approximate the car data. Since the lateral translations are generally very small, we

deliberately neglected the lateral motion. There were three principal effects we wanted the model

to be able to reproduce: 1) there can be asymmetry between forward and backward motion and

right and left turning; 2) it is not possible to turn the car on the spot; 3) the motion of the

car is characterised by static and dynamic friction. To achieve the first requirement we simply

allowed for four different proportional constants between the control input and the respective

accelerations (forward acceleration u̇f , backward acceleration u̇b, right angular acceleration Ψ̈r,

left angular acceleration Ψ̈r). As suggested in the model by Abbeel, to stop the model from

spinning on the spot we simply defined the rotational speed as a proportion of the forward speed

(see equation 6.1). And finally to account for static and dynamic friction we defined minimum

velocity factors (minimum forward velocity um, minimum angular velocity Ψ̇m) and linear and

viscous drag (linear drag Dul, linear viscous drag Duv, angular drag DΨl, angular viscous drag

DΨv). Additional safety factors were also defined to avoid unrealistic velocities (maximum linear

velocity uM, maximim angular velocity Ψ̇M).

ψ̈d = ψ̇Dψl + sgn(ψ)ψ̇2Dψv

ψ̈ = 1(|ψ̈| > Ψ̈M)(1(u2 = 1)uΨ̈r − 1(u2 = −1)ψ̈Ψ̈l)− ψ̈d

ψ̇ = 1(|ψ̇| < Ψ̇m)u+ 1(|ψ̇| ≥ Ψ̇m)sgn(ψ̇)Ψ̇M (6.1)

u̇d = uDul + sgn(u)u2Duv

u̇ = 1(|u̇| > u̇M)(1(u1 = 1)u̇f − 1(u1 = −1)u̇b)− u̇d

u = 1(|u| < um)u+ 1(|u| ≥ um)sgn(u)uM

The 12 parameters that fully define the model were then evolved using the same evolution

strategy and fitness function as described in section 6.3.1. In this case the parameters were

encoded as arrays of real numbers and evolved with the same 50 + 50 elitist scheme adopted

for the 3MLPs model. As with the MLPs, the parametrised models were evolved for 1000

generations but peaked after a few hundred.

Single- and multi-model controller evolution

The final modelling technique we introduce here is multi-model evolution: we evolved two extra

controllers using more than one model, at each controller evaluation the controller was tested

using two or three of the best evolved models, acquired using different techniques and repre-

sentations; the fitness used was the lowest fitness of those achieved. In this way, we reasoned,

any evolved strategy that relied on exploiting a weakness of a particular model would score

128



models u v ψ̇

backprop27 0.6528 0.0832 1.3036
(0.6526) (0.0832) (1.3033)
[58.90] [106.58] [80.35]

parametrised 0.3213 0.0669 0.5294
(0.3211) (0.0668) (0.5291)
[28.99] [85.63] [32.63]

evolved3 0.6668 0.1498 1.0061
(0.6666) (0.1497) (1.0055)
[60.17] [191.80] [62.01]

n. neighbour 0.3164 0.0223 0.4122
(0.3157) (0.0223) (0.4114)
[28.55] [28.58] [25.41]

Table 6.1: The root mean squared error [m/s], (standard deviation [m/s]) and [root relative
error %] of each model in the testing data.

badly, as this particular weakness would not be present in the other models (but rather other

weaknesses). According to this hypothesis, the extent to which we can avoid any systematic

weaknesses that plague all our models depends both on the quality of the training data and

the diversity of function representations and learning algorithms used to acquire the different

models. A certain kinship with Jakobi’s radical envelope of noise hypothesis can be seen in that

the use of multiple models can be said to implicitly separate a base set (properties that can be

modelled without exploitable weaknesses) from an implementation set (those that can not).

The performance of each controller was then tested with each one of the models and finally

with the best model of all: the physical car.

6.3.2 Model acquisition experiments

Using the various architectures discussed, several models were obtained and selected for con-

troller evolution. In the case of the n. neighbour and backprop27 only one model was produced

for each technique; with both parametrised and evolved3 the best models produced after the

first evolutionary run had complete were chosen. The accuracy of the selected models were then

verified using a validation dataset held back during training. In testing the models are initially

given the state from the values of the real car. Each model is given the control signals (u1 and

u2) recorded from the real car and at each time step the predicted state is propagated as the

next state. In this way, we are able to see the deviation of each model from the baseline given by

the testing data. In Table 6.1 are shown the root mean squared error (RMSE) of the predictions

of the velocities (u, v and ψ̇) when compared with the testing data.

A plot of the predictions made by each model is shown in Figs 6.5 and 6.6 using a subset

of the testing data. Here we show only the results of the variables u and ψ̇, since these are the
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Figure 6.5: Predicted forward speed u for each of the models acquired

ones that have greater impact on the quality of the model.

The nearest neighbour model sometimes follows the baseline accurately and other times

misses it completely. Without any form of interpolation, the nearest neighbour algorithm un-

derstandably fails to generalise in novel situations which are outside the envelope of the training

data. In addition, the parametrised model often produces overestimates and sometimes is slow

to react to the control commands. The set of 27 networks trained with back-propagation can

follow the baseline relatively closely, however, as seen in the example plots large errors in the

predictions can occur over short periods of time (spikes). A quite different behaviour is seen in

the predictions produced by the evolved3 model which has high frequency oscillations of varying

amplitude.

6.3.3 Controller learning experiments

Once a set of models had been derived we proceeded to investigate their usefulness as simulators

with which to evolve controllers. The task we chose to evolve controllers for was point-to-point

car racing, as defined in section 4.1.3 (except for the dynamics defined there, of course). The

reasons for choosing this task over the more complex walled car racing task is that it does not

require modelling of collisions with walls.

The fitness function of the task is defined as follows: the controller is allowed to control the

car for 500 time steps, equivalent to 25 seconds of simulated time. During this time, the car has

to pass as many way points as possible, and the fitness is equal to the number of passed way
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Figure 6.6: Predicted angular speed ψ̇ for each of the models acquired

points at the end of the 500 time steps. A way point is considered passed when the center of

the car is within 30 centimeters of the centre of the way point; when a way point is passed, a

new way point immediately pops up at a random position within a radius of 1.5 meters from

the centre of the arena. Only one next way point is available to pass at any one time.

The controllers we evolve are based on recurrent neural networks with 5 inputs, 6 hidden

neurons, and 2 outputs. The inputs are as follows: a constant bias input of 1, the forward speed

of the car (u), the rotational velocity of the car (ψ̇), the angle to the next way point (relative

angle between the forward direction of the car and the line that connects the center of the car

and the waypoint), and the Euclidean distance to the next way point. All inputs are in SI units.

The two outputs are interpreted as follows: the car is sent the command to steer left if the first

output is below −0.3, to steer right if above 0.3 and straight forward otherwise. Similarly, the

value of the second output means drive backward if below −0.3, forward if above 0.3 and neutral

otherwise.

As for the evolutionary algorithm, the very same evolution strategy is used as is used for the

evolutionary model acquisition above. All weights of the neural network are mutated in parallel

by adding numbers drawn from a Gaussian distribution. Each fitness evaluation is the mean of

ten trials of 500 time steps each.
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contr. bp27 param evo3 nn real

bp27c 18.6 9 1.3 14 9.33
(0.76) (1.19) (0.61) (1.04) -

paramc 18.1 15.1 1.3 15.5 14
(0.79) (0.66) (0.43) (0.62) -

evo3c 0.7 0.2 13.4 0.3 0.33
(0.52) (0.19) (0.87) (0.29) -

nnc 15 5 0.7 17.0 5.33
(1.22) (1.45) (0.43) (0.83) -

mm1c 11 4 15.0 12 8.33
(1.57) (1.3) (0.95) (1.40) -

mm2c 13.6 10 10.2 11.7 9.33
(0.72) (1.04) (0.75) (0.89) -

humFc - - - - 8.33
- - - - -

humBc - - - - 6.0
- - - - -

Table 6.2: Fitness and standard deviation (below) of each controller on each model: the columns
refer to the models and the rows to the controllers.

Results

Controllers that successfully completed the point-to-point racing task within a given model could

reliably be evolved with that model within a few hundred generations (see figure 6.7). However,

this is more or less a tautology. Things start to get interesting when controllers evolved for one

model are tested on another, and really interesting when they are tested on the real car. In

table 6.2 we can see the results of a number of such tests. The table contains four controllers

derived using the modelling techniques described: nearest neighbour, backpropagation, neu-

roevolution, evolutionary parameter optimisation (nnc, bp27c, evo3c, paramc), two controllers

derived using versions of the multi-model controller evolution (mm1c being a combination of

evo3 and nn, and mm2c being a combination of bp27, evo3 and nn), and the best efforts of

one of the authors driving either forward or backward (humFc, humBc ). The controllers tested

were the best of two evolutionary runs on the same model; no attempt at measuring the fitness

variance between evolutionary runs was made, but we believe it to be low.

As is clear from the table, a controller evolved using a particular model works better on that

model than on any other. This effect is most pronounced for the controller produced on the

evolved neural network model, but is present for the other controllers as well. Qualitatively,

the evolved neural network model behaves quite differently to the other models, with abrupt

accelerations and huge turning radii. The backprop27 model is generally the one that “feels most

natural”, while the nearest neighbour model behaves just like the real car in many situations

only to behave rather inappropriately in situations for which it has no data.

The only controller that consistently performs well on all models is one of the multi-model-
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Figure 6.7: Evolution of controllers.

evolved controllers, mm2c. This controller also produced the most robust behaviour on the real

car, even if the highest mean fitness on the real car was achieved by the controller evolved on

the paramc model (the high fitness of that controller is only because of the limited length of the

trials; on longer trials, mm2c-evolved controllers would have scored higher than paramc-evolved

controller). However, as we shall see below, these controllers go about their task in rather

different ways. This is illustrated by figure 6.8, that traces a few seconds of several controllers

trying to reach the same sequence of way points with the real car.

Analysis of evolved control strategies

When transferring the evolved controllers to the real car it was observed that almost all of them

drive the car backwards; all except the one which was evolved based on the 3-model multi-

model trick (mm2c). The advantage of driving backwards seems to be that the car is more

maneuverable; the car does go faster when driving forward, but this is apparently not very

important given the limited size of the arena and the time taken to accelerate and decelerate.

Apart from mostly driving backwards, the behaviour of the controllers vary wildly. The

controller evolved on the parametrised model (paramc) is perhaps the most straightforward (or

straight-backward) as it drives directly towards the way point at full speed at all times. This

works very well when the angle between the car and the way point is small or the distance to

the way point is high, but if the next way point pops up right next to the car, the controller gets

stuck “orbiting” around the way point, driving in endless circles without being able to reach it
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(a) backprop27 model. (b) parametrised model

(c) evolved3 model (d) nearest neighbour model

(e) 2 model multi-model : nearest neigh-

bour and evolved3 models
(f) 3 model multi-model : nearest neigh-

bour, evolved3 and parametrised models

Figure 6.8: Traces of a number of different controllers, evolved using single models (a, b, c, d)
or combinations of those models (e, f), all tested on the real physical car with the same way
point configuration.
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as its turning radius is too large. A variation on this behaviour is exhibited by the on average

best-performing controller (bp27c) evolved on the backprop27 model. This controller almost

always turns right; approaching a way point it aims slightly left of the point and then does an

inexplicably sharp right turn just before passing the way point. (We would have suspected an

evolutionary exploit of a weakness in the model if the model was not actual physical reality.)

The strategy works fabulously for most way points, but even this controller sometimes gets stuck

in orbit, and some trials get very bad fitness. The reason for its high average fitness is that the

trials are short, and switching between two trials usually gets the car out of orbiting.

The only controller that seems never to get stuck is the one evolved on the 2-model multi-

model controller (mm1c) evolution. While this controller quite often misses a way point, it

usually immediately brakes to a full stop just afterwards. When accelerating again, the car has

a narrower turning radius than it would have at full speed, and is thus able to turn back and

reach the way point. This strategy surprised us at first, as we had not thought of it ourselves,

but it obviously works.

Another strategy, as displayed by the 3-model multi-model evolved controller, is to drive

forward most of the time, trying to aim for the way point. When missing a way point the car

backs off some distance and fully repositions so as to be able to reach the way point on a second

try. The controller evolved on the 3-MLP model (evo3c) seems to perform some sort of peculiar

dance around the arena, with little relation to the position of the way point or to the behaviour

exhibited by the same controller in the model it was evolved for.

Analysis of strengths and (exploitable) weaknesses of the models

As the controller representation and evolutionary method are kept constant for all attempts at

controller evolution, the characteristics of the models are bound to be the sole determinants of

the differing fitnesses and behaviours of the evolved controllers. In this section, we attempt to

analyse the strengths and weaknesses of these models based on observations when driving them

manually, and observations on the evolved controllers driving in their native models.

The 3-MLP model is the most obviously exploitable model, as its very high rates of accel-

eration from standstill makes a kind of zig-zagging strategy possible, which certainly would not

work on the real car. As the top speed of the model is not very high, but the turning radius

is, it is all too tempting to use this exploit to quickly get to a way point. However, we note

that the 3-MLP model works well in combination with another model for multi-model controller

evolution, as its high turning radius precludes a turning radius exploit and the zig-zagging won’t

work in any other model.

The parametrised model, which is the model incorporating the most domain knowledge, is
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generally admirably well-behaved. But it is still vulnerable to turning radius exploitation, as

its turning becomes unrealistically sharp at very low speeds. We have seen controllers evolved

for this model driving fast and straight, and suddenly slowing down and creeping around the

turns. A similar exploit seems to exist for the nearest-neighbour model. A more serious exploit

for that model, however, is the spinning on the spot phenomenon, whereby the car can turn

around without moving forward after certain decelerations.

For the backprop27 model, things look different: when driving fast, and suddenly braking

and changing the steering at the same time, the car can suddenly accelerate in unexpected

directions. This little oddity seems not to be exploitable by the controller, but we have seen its

slight underestimation of the car’s turning radius being exploited.

6.3.4 Discussion

The approach to dynamics modelling and controller evolution presented in this paper apparently

works well enough to produce proficient (and interesting) controllers for toy car racing, using

very little domain knowledge and an ill-behaved toy car. While others have been able to learn

competent control of radio-controlled toy cars, we believe we are by far assuming the least about

the system we are modelling. Minimising use of domain knowledge might be seen as an academic

concern in the current context, but becomes all the more important in other domains, where

domain knowledge is often lacking. (Also, there is nothing wrong with academic concerns.)

Additionally, our concern ties in very well with the general spirit of evolutionary robotics, which

is to minimise human interference in the process of controller design. We hope lessons learned

and techniques developed here, in particular the use of multi-model controller evolution (which

to some extent was the “trick” that finally made our experiments work) will be transferable

to other domains. However, the results can currently only be considered tentative, and the

multi-model evolution “trick” might not work in other domains. Especially, one might suspect

that vehicles which have higher-dimensional dynamics (e.g. helicopters) will also have more

complicated exploitable weaknesses, which will be harder to cancel out.

6.4 Other types of imitation

It is of course possible to model both behaviour and dynamics in other domains than car racing.

For other agent games approaches similar to the ones discussed in the two sections above could

easily be taken. Even for computerized games and management games, it seems very possible

to at least indirectly model playing styles. In this thesis, however, we are not providing any

examples of imitation outside of the car racing domain.
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However, we will briefly discuss a different sort of dynamic modelling in the car racing

domain, this time using only the simulated version of car racing and with transformations

taking place in sensor space.

6.4.1 Imitating simulated car dynamics in sensor space

This section is based on a paper presented at IEEE-Alife 2007 with Hugo Marques as first

author, and Magdalena Kogutowska as third [83]. When comparing this section, where the

paper is briefly discussed, it is worth remembering that the work here is chronologically earlier

than the work discussed in the above section on dynamics modelling for the physical radio-

controlled car. F Mx ( t ) x ( t + 1 )u ( t )
Figure 6.9: Given a set of motor commands - u(t) - and the current state - x(t) - the forward
model generates a prediction of the outcome - x(t+1).

The problem addressed here is how to predict sensor data based on earlier sensor data and

actions taken, in a complex environment with walls (the full track-based racing game is used,

with a fixed sensor array). In other words, we are learning forward models (see figure 6.9). In

effect, this means both imitating the dynamics of the car - but in an “unnatural” transformation

space - and learning the layout of the track, which is arguably a more complex task than only

learning the car dynamics, as is done in the previous section. (At least if the dynamics are

similar in both cases. We don’t currently know whether the dynamics of the simulated or real

car are more complex.)

In this section several ways of acquiring the required models are compared. The central

questions we try to answer is whether good enough forward models can be learned, and whether

there are qualitative as well as quantitative differences between forward models learned based

on minimization of error and those learned based on maximization of performance.

To test our forward models, we developed two different tasks, which are extension to the

standard task of driving around a track in track-based racing game.

Tasks

Imagine driving in an unlit tunnel, in a car whose headlights has the irritating habit of flickering

on and off, sometimes staying off for several seconds at a time. Or imagine remotely controlling

a vehicle based on an unreliable image feed that blacks out from time to time. These scenarios
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are the motivation for the intermittent task. The delay task, on the other hand, is motivated by

the delay in car state information reaching the controlling computer from an overhead webcam

in some of our real-world experiments.

Technically speaking, both tasks change the sensor model of the car. In the intermittent

task, there are two possible states

• The normal state, where current sensor information is presented to the controller, or

• The blackout state, with all sensors off.E n v i r o n m e n t
F M

C o n t r o l l e r
S e n s o r sx ( t )x ( t + 1 ) x ( t + 1 )x ( t + 1 ) S w i t c h

x ( t )u ( t ) u ( t )

Figure 6.10: The switch mechanism

In order to decide what signal reaches the controller we used the concept of switching proposed

in [82](see figure 6.10). This consists of using the signal directly from the sensors whenever that

signal is available and using the output of the forward model otherwise. At each timestep, the

sensor model has a probability of 0.2 to go from the normal to the blackout state, and will then

stay in the blackout state for a number of time steps drawn from a uniform distribution with

a maximum of 10 or 20 time steps. While in the blackout state, the information received by

the controller depends on whether there is a predictor present or not, and on the experimental

setup. In the case without a predictor, the controller input is a vector of all zeroes, or the last

real sensor vector before the start of the blackout. When a predictor is present, the controller

input is the output of that predictor, which in turn receives input from the action and sensor

vector at time t, be it the real information or the output of previous prediction, and tries to

predict state t+1.

In the delay task, the controller never receives the current sensor data. Instead, when no

predictor is present, the controller input is the current sensor vector from a number of n time

steps ago, n equals 3 in most of the experiments. When a predictor is present, at each timestep
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the controller receives the end result of the predictor being run n times, starting with the real

sensor vector and action at time t-n, and then its own predictions for time steps t-n+1 to t.

Experiments

Throughout the experiments in this section, a “general” controller is used, which has been

evolved incrementally according to the procedures described in 5.2. When the sensor data is

not altered in any way, this controller completes on average 2.84 laps on the chosen track, with

a standard deviation of 0.007. This means that while other controllers drive somewhat faster,

this is a very robust controller.

We chose to compare predictors created through three different methods: backpropagation,

evolving for prediction ability, and evolving for driving ability. For the backpropagation training,

a log of sensor data from a number of runs of the above controller with unaltered sensor data is

used as training data. When evolving for prediction, the predictor is not affecting the control of

the car, and the fitness value is the negative mean prediction error. Evolving for driving ability

means measuring fitness as progress on the track, with the predictor being evaluated indirectly.

For all of these methods, we systematically varied the size of the hidden layer in the predictor

networks, with all methods being tested for networks of 5, 10, 15, 20 and 25 hidden neurons.

We also varied some parameters for the other predictor creation methods: training with back-

propagation was done with training sets of 7, 70, 700, 7000 and 70000 data points; evolving for

performance on the intermittent task was done with maximum blackout lengths of 10 and 20

time steps; and evolving for performance on the delay task was done with delay lengths of 3 and

6 time steps. We did 50 replications each of most experimental configurations.

In this section we will not discuss all these results, but only some of their main features, and

refer to the paper for the full story.

The Intermittent Task

Training networks to minimise the error based on logged driving the data was not very effective

for producing forward models that helped to cope with the intermittent task. This was true

regardless of whether the supervised learning was done using backpropagation or using evolution

with minimum error as the fitness, and regardless of the amount of training data used. Further,

the error on the validation set appeared to have no relevance to the actual performance of the

predictor.

Evolving for higher performance, on the other hand, yielded much better performance and

much higher prediction errors. Some predictors trained with backpropagation performed rea-

sonably well, but these were not necessarily the ones that had the lowest prediction error.
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Figure 6.11 shows some representative examples of the driving performed by the same predictor

with predictors learned in different ways.

(a) (b) (c) (d)

(e) (f)

Figure 6.11: Figure showing the trajectories of a range of predictors during the intermittent task
with blackout length set to 10: a) The best performing predictor trained with backpropagation,
b) The trace of the predictor with the lowest error when trained with backpropagation, c) The
trace of the predictor with the highest error when trained with backpropagation, d) The best
evolved predictor, e) The best evolved controller with the lowest error, f) Predictor with no
prediction

In face of such results, some observations on what behaviour these predictors give rise to

could be enlightening - or so we reasoned.

Without a predictor, the car starts accelerating, turning left when sensor inputs are blocked.

If the last sensation is kept at the start of a blackout the car, perhaps obviously, keeps doing

exactly what it was doing before the blackout. The controller normally makes numerous small

turns (a sort of wiggling motion) even on straight segments of the path, examples of this can be

seen in figure 6.11, especially a and c. This often causes the car to end up driving into a wall

even during straight sections of the track, when last sensations are retained. We also found that

the wall bumping behaviour was popular amongst the majority of controllers trained for fitness;

We were surprised to see how little influence the predictors had on the controllers - often doing

nothing other than turning left and accelerating when asked to predict sensor data.

When it comes to the evolved predictors, we are not entirely sure why they are so successful.

A possible solution for the controller would be to apply brakes and thereby minimising the risk

of collisions until the sensors are back online. But this does not seem to be what happens.

Instead, the controllers take different actions depending on the last non-blocked sensor vector,

usually keeping the speed constant.
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The Delay Task

A similar, but not identical, pattern can be seen when testing predictors on the delay task.

Almost all the predictors trained with supervised learning behave very badly on the delay task

as well - in fact, even worse than they do on the intermittent task. As above, the error on

training and validation set have no apparent relation to performance (or lack of) when paired

with the controller on the delay task. Performance of these predictors, and the baseline (using no

predictor at all, feeding the controller outdated sensations), is shown in figure 6.12. Interestingly,

the baseline actually outperforms most of these predictors at short delay lengths.
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Figure 6.12: Graph shows a comparison between the best-performer (max. fitness), best-
predictor (min. error), worst-predictor (max. error) using no prediction and various delay
lengths, trained with backpropagation. The baseline is a controller without predictor

Controllers evolved for performance fared much better, but again had much higher prediction

errors. Several evolved predictors were possible to help the controller achieve good fitness on the

delay task with delay length 3. With longer delays than 5, however, almost all the predictors

reverted to baseline fitness, little more than zero. The exception was a single predictor which

showed the remarkable ability to produce suboptimal but still good fitness levels for exceptionally

long delays, at least up to 20 time steps. This can all be seen in figure 6.13.

All tested predictors and non-predictors have displayed variations on two fundamental be-

haviours. Most of the predictors trained for prediction simply make the controller turn to the

left and crash. All other predictors (including no predictor at all) make the controller swerve

from side to side, as if the driver was drunk. A plausible interpretation of this behaviour is that

the controllers are constantly overcompensating for being too close to one wall or another. The

fitness of a predictor seems to be inversely proportional to the magnitude of these oscillations,

with the best predictors rarely if ever colliding with the wall. The “remarkable” predictor that

could handle long delays also display a variation of this behaviour, but seems especially good
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Figure 6.13: Comparison between the evolved best-performer, best-predictor and worst-predictor
using no prediction and various delay lengths. The baseline is a controller without predictor

at hitting the walls with the back of the car first so as always being able to recover from wall

collisions without getting stuck or losing its direction.

Several additional experiments (reported in the paper) test the generality of the predictors

over different tracks and different controllers, and rule out that the same effect could be obtained

by evolving controllers directly without predictors.

Discussion

The two main findings of these experiments are that predictors evolved for maximizing perfor-

mance, as part of a controller-predictor system, vastly outperform those that were designed to

minimize prediction error. This effect is consistent across different training regimes, data sets,

tasks, tracks etc., and hold up over a large number of replications of the experiments. The other

main effect is that there is no clear correlation between prediction error and performance as part

of a controller-predictor system. Indeed, looking at the trend over all the mentioned controllers,

there is a positive correlation - higher prediction errors means better performance. Obviously,

the predictors that allow the controller to do the task to not do this by predicting the future

sensor inputs of the car.

These results could be seen as bolstering an argument to always look at internal simulation

of perception in the context of a complete dynamical system, and that having an accurate

model might not always be necessary. It could also be interpreted in the more prosaic way that

dynamics modelling is very hard if not performed in a suitable transformation space, but that

evolution usually finds a way to sidestep the problem you intend for it to solve.

While a large number of experiments were done as part of this suite, many of which cannot

be found in this section but only in the paper, some rather simple things were never tried. For
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example, we never tried hand-coding rules for how to handle sensor blackouts or delays. It is

not impossible that a simple rule of the type “set both steering and drive to neutral in every

time step where all sensors output 0” would have performed better than our trained predictors,

but we don’t know, as we never implemented this rule. On the other hand, finding the best way

of dealing with sensor outages were never the main objective of the study; we were primarily

looking for greater insights into the workings of and differences between some different learning

methods.

6.5 Summary

In this chapter, three series of experiments dealing with imitating various aspects of dynamics

and behaviour in different car racing environments were described. The first series of experiments

concerned the imitation of driving styles in the development of player models for later use in

track evolution experiments in section 7.3; the next section described the acquisition of dynamics

models of physical miniature R/C cars and the subsequent evolution of controllers based on

those models, and the third section described several attempts at simultaneously modelling the

dynamics of a simulated racing car and the layout of a track.

Though all the described experiments were done in the domain of car racing, and draw on the

foundational car racing experiments in sections 5.1 and 5.2, there are considerable differences in

what sort of learning was attempted and in what environment. This makes it hard to distill the

results of the various studies into some sort of general wisdom about imitation or modelling, in

car racing or otherwise.

One problem that recurred throughout the different experiments, however, was how to judge

the quality of an acquired model. Some of the player models arrived at in the player modelling

experiments (the ones obtained through direct modelling) were obviously wrong, in that the con-

trollers didn’t manage to drive a single lap on the test track. Others (obtained through indirect

modelling) were at least decently good, but how faithful they really were to the modelled human

player is hard to ascertain without doing extensive studies using the qualitative judgement of

several humans. After any quantitative measure is satisfied, the question remains how well this

measure really reflects the sort of similarity we are seeking.

Similarly, in the physical car dynamics modelling experiments, models could be acquired

through satisfying some quantitative criterion (error minimisation), and controllers could be

evolved for good performance on that particular model, but when tested on the real car the

same controller could fail miserably. Here, we have an indirect test of imitation quality through

the performance of derived controllers on the real car, but still only an indirect test, and also
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quite time-consuming. Multi-model evolution was found to be a good way to achieve robust

controllers, letting the shortcomings of the different models cancel out each other.

The problems with judging imitation quality are maybe most vividly illustrated by the

experiments in the last section, where two different quantitative criteria (fitness maximisation

and error minimisation) give rise to dramatically different models. It is hard to tell whether

those experiments should be considered successful in the normal sense of the word - after all,

the best evolved predictors did not do any discernible predicting - but they do offer interesting

insights into the peculiar challenges of behaviour and dynamics imitation.
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Chapter 7

Innovation

In this chapter we discuss a number of experiments where evolution is used, but not to achieve

a well-defined goal, but rather to innovate. In the first two sections we use competitive co-

evolution to evolve driving behaviour. Here, the fitness function is partly dependent on the

other driver on the same track, and so it is not clear what sort of driving yields the highest

fitness (in contrast to single-player races, which are about driving fast along the best racing

line). In the third section, we evolve not controllers, but racing tracks. The fitness function is

here based on a player model and a metric of what sort of tracks should be fun, yielding rather

innovative tracks.

7.1 Co-evolving car controllers for competitive driving

This section is based on our first paper on competitive co-evolution for simulated car racing,

which was presented at PPSN 2006 [144]. In these experiments, the full track-based racing

game, as presented in section 4.1, is used. The difference is that the cars have eight rangefinder

sensors instead of six, and that a separate array of eight Boolean values decide whether each

sensor is a standard wall sensor or a car sensor. The car sensors work exactly like the wall

sensor, except that they return a value dependent on whether the other car, rather than a wall,

is within the sensors’ scope and how far away it is.

Simulated competitive car racing allows some uncommon forms of competitive co-evolution

to be explored. Most competitive co-evolution experiments use two populations, where one

population contains prey and the other predators, or one population parasites and the other

hosts, or some similar asymmetric configuration. In other words, most competitive co-evolution

is interspecific; here, all the individuals are of the same “species” in that they are evaluted in

the same way. Co-evolution can therefore be single-population and intraspecific.
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A second way in which simulated car racing allows uncommon modes of co-evolution is

through the existence of a well defined solo fitness function: any controller can be tested both

for absolute solo fitness, which means the distance covered when racing without competition,

absolute competitive fitness, which is the same thing when having to take the behaviour of

another car into account (including the possibility of collisions), and relative fitness, which is

defined as how far in front of or behind the competitor a controlled car finishes. Further,

absolute competitive fitness and relative fitness can be blended seamlessly. We believe that

these characteristics make our car racing games ideal for exploring co-evolution.

The first set of questions we try to answer in this section concern the extension of the car

racing model and evolutionary approach to two cars: how well will controllers evolved for solo

racing do with competition? Will it be possible to co-evolve controllers that do better? Is

our controller architecture and sensor setup appropriate for this? Will we be able to evolve

human-competitive drivers, and if not, what are the problems with our method?

The second set of questions address co-evolution. Will there be a difference in fitness, and in

behaviour, if we evolve for absolute, relative or mixed absolute and relative fitness? What sort

of difference will be observed? For example, will controllers evolved for relative fitness turn out

to drive more aggressively? Will there be a difference in sensor setups?

7.1.1 Co-Evolutionary Algorithm

For the co-evolutionary algorithm, a modified (µ + λ) evolutionary strategy with µ = 50 and

λ = 50 was used. The difference between the co-evolutionary algorithm used here and a standard

evolutionary strategy is in the fitness calculation. There are two types of primitive fitness

defined: absolute and relative fitness. The absolute fitness of a controller C is calculated in

the “standard” way, as defined in section 4.1 and used in several other experiments in this

thesis. Relative fitness is defined as the difference in absolute fitness between C and the car it

is competing against. Both the absolute and relative fitness values for a given controller was

calculated as the mean of three trials of the controller on each of the tracks.

When the primitive fitnesses of all the controllers have been calculated, they are normalized,

so that they are all in the range [-1..1]. The final fitness value of each controller is then calculated

by blending the two primitive fitness values: fitness = p ∗ absfit+ (1 − p) ∗ relfit where p is

the proportion of absolute fitness, a constant set at the beginning of the evolutionary run. It

could be argued that only evolution with completely relative fitness constitutes co-evolution.

There are three mutation operators: Gaussian mutation of all neural connection weights,

Gaussian mutation of all sensor parameters (angles and lengths), or sensor type mutation.

Each time the mutation method of a controller is called, numbers drawn from a Gaussian
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Figure 7.1: The three tracks used in the experiments, including waypoints. Each track also
shows a sample car with evolved sensors.

distribution with a standard deviation of 0.1 are added to both neural connection weights and

sensor parameters. With a probability of 0.4, a sensor type mutation is also performed, meaning

that one of the sensors has its type changed from car to wall or wall to car.

At the start of an evolutionary run, all controllers have four wall sensors and four car sensors,

pointing in random directions and with random ranges, and the neural connection weights are

initialized to small random values.

Three different tracks, namely the counter-clockwise versions of the six easier tracks of the

eight tracks used in section 5.2, were selected for the present experiments; these tracks are shown

in figure 7.1. Each pair of controllers were tested on all three of these tracks.

7.1.2 Experiments

Giving solo-evolved controllers some competition

10 separate solo-evolutionary runs were made according to the setup described in the Methods

section above. Each evolutionary run lasted for 200 generations. (The mean fitness was zero at

generation 0 of every evolutionary or co-evolutionary run in this paper; fitness growth graphs

have been omitted to conserve space.)

On average, the best individual of the last generation of each of the evolutionary runs had

fitness 2.49 (with standard deviation σ = 0.23), and used 5.7 (σ = 0.67) wall sensors and 2.3

(σ = 0.67) car sensors. The best run resulted in a best controller with fitness 2.67, and the best

controller of the worst run had fitness 1.89. Most of the evolved sensor setups consisted in a

relatively even spread of medium-range wall sensors pointing forward and diagonally forward,

and the few car sensors pointing backward.

One of these controllers, with fitness 2.61 (0.13), was selected for further testing. When put

in a competition with another car controlled by a copy of the same controller, average fitness

dropped to 1.23 (0.6). Behavioural analysis shows that the two cars collide repeatedly at the

beginning of almost every trial, as they don’t have any method of detecting and reacting to each

other’s presence. Depending on starting conditions, the outcome of the competitions vary, but

usually one or both of the cars is either driven to collide with the wall, or spun around so that
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Prop abs 0.0 0.25 0.5 0.75 1.0
Abs/solo 1.99 (0.31) 2.09 (0.33) 2.11 (0.35) 2.32 (0.23) 2.23 (0.23)
Abs/duo 0.99 (0.53) 0.95 (0.44) 1.56 (0.45) 1.44 (0.44) 1.59 (0.45)
Rel/duo 0 (0.75) 0 (0.57) 0 (0.53) 0 (0.55) 0 (0.47)
Wall/car 5.8 / 2.2 5.6 / 2.4 5.2 / 2.8 4.2 / 3.8 6.4 / 1.6

Table 7.1: The results of co-evolving controllers with various proportions of absolute fitness.
All numbers are the mean of testing the best controller of ten evolutionary runs for 50 trials.
Standard deviations in parentheses.

it starts driving the track the wrong way. A car that starts going the wrong way is usually,

but not always, unable to turn around and start driving in the correct direction again; a car

that crashes into the wall usually gets stuck. This is because of the controller design rather the

game mechanics, as it is perfectly possible for a human player to back away from the wall and

continue driving in the right direction. In many trials, however, one of the cars managed to

escape the collisions in the right direction and proceeded to make its way smoothly around the

track.

From this experiment, it can be seen that the problem of racing two cars concurrently is

sufficiently different from the problem of solo-racing that the performance of a solo-evolved

controller is catastrophically compromised when tested in competition conditions.

Co-evolving controllers: The absolute-relative fitness continuum

50 evolutionary runs were made, each consisting of 200 generations. They were divided into five

groups, depending on the absolute/relative fitness mix used by the selection operator of the co-

evolutionary algorithm: ten evolutionary runs were performed with absolute fitness proportions

0.0, 0.25, 0.5, 0.75 and 1.0 respectively. These were then tested in the following manner: the best

individuals from the last generation of each run were first tested for 50 trials on all three tracks

without competitors, and the results averaged for each group. Then, all five controllers in each

group were tested for 50 trials each in competition against each controller of the group. Finally,

the number of wall and car sensors were averaged in each group. See table 7.1 for results.

Analysis

It is clear that, when driving without competitors, the co-evolved controllers on average have

lower absolute fitness than the solo-evolved controllers. Behavioural inspection suggests that the

co-evolved controllers drive more carefully, seldom accelerating to top speeds, and take corners

more conservatively. A similar but smaller difference in absolute solo-fitness seems to exist

between the groups of co-evolved controllers, with controllers evolved more for absolute fitness

performing better than controllers evolved more for relative fitness. The controllers within a
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Figure 7.2: Traces of the first 100 or so time-steps of three runs that included early collisions.
From left to right: red car pushes blue car to collide with a wall; red car fools blue car to turn
around and drive the track backwards; red and blue car collide several times along the course
of half a lap, until they force each other into a corner and both get stuck. Note that some trials
see both cars completing 700 time-steps driving in the right direction without getting stuck.

group perform similarly, and the lower fitness comes from driving slower around the track rather

than crashing into walls or losing direction.

The difference between controllers co-evolved with different fitness mixes becomes clearer

when we measure performance in competition with other controllers from the same group, where

controllers evolved mostly for absolute fitness generally get about half a lap farther than those

evolved mostly for relative fitness. Behavioural analysis confirms that this is because the cars

more often collide at the start of a trial, often forcing one or both of the cars to crash against the

wall or spin around and lose track of which direction it is going. Often, the controllers evolved

with low (0 or 0.25) proportions of absolute fitness actively look for trouble by trying to collide.

(See figure 7.2).

There seems to be little consistency in evolved sensor setups, samples of which can be seen in

figure 7.1 (wall sensors are blue; car sensors are pink; each car is travelling forwards in direction

of the waypoints). We found one controller in the group evolved purely for relative fitness

that had only wall sensors and no car sensors, and another one in the group evolved for purely

absolute fitness! There is no obvious tendency towards fewer or more car sensors at either end

of the fitness mix, and the data is too scarce to prove any more subtle tendency. When looking

at all 50 controllers together, every controller has at least three wall sensors, and there is always

at least one pointing mostly forward. On average, the cars have twice as many wall sensors as

car sensors, and when car sensors are present, there seems to be at least one pointing mostly

backward; overall, more car sensors point backward than forward.

In order to find out how the controllers evolved with various fitness mixtures performed

against each other, we tested all the five controller groups against each other. The slightly

surprising results was that the groups performed on average equally well against each other,

though with considerable intra-group variation. The absolute fitnesses of the controllers in

these encounters were quite low, on average 0.96, which suggest that all controllers are quite ill

prepared to race against controllers from another fitness mix group.
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Prop abs 0.0 0.25 0.5 0.75 1.0
Co-evo 1.41 (0.52) 0.99 (0.44) 1.32 (0.58) 1.23 (0.65) 1.41 (0.45)
Solo-evo 1.68 (0.56) 1.95 (0.62) 1.74 (0.57) 1.38 (0.65) 1.51 (0.63)

Table 7.2: Co-evolved versus solo-evolved controllers.

Co-evolved versus solo-evolved controllers

The 50 controllers co-evolved with various fitness mixes in the section above were now tested

against the 10 solo-evolved controllers from section 7.1.2. For each group, the ten co-evolved

controllers competed for 10 trials with each of the 10 solo-evolved controllers. See table 7.2 for

results.

Note that there is a mostly small but consistent fitness advantage for the solo-evolved con-

trollers over the co-evolved ones. (Both co-evolved and solo-evolved controllers performed sig-

nificantly worse in these competitions than when tested in solo racing conditions.) The cause

of this fitness difference is not completely obvious after looking at a large number of these com-

petitions, but it appears that the solo-evolved controllers (which gain higher fitness than the

co-evolved ones in solo trials) simply outrun the co-evolved controllers in many cases, and so

avoid many of the collisions, and further corroborate the hypothesis that the controllers tend

to be very specialized to compete against controllers similar to themselves. This could be seen

either as a shortcoming of the evolutionary algorithm, or as the desired state of things; it could

be argued that the co-evolved controllers should have strategies general enough to take on any

opponent, or that a their more careful driving style should always make them slower than a

solo-evolved controller.

Evolution with a static target

To investigate whether the tendency to specialization in co-evolved controllers could be used

to create controllers that could out-compete the solo-evolved controllers from section 7.1.2, we

modified a copy of the co-evolutionary algorithm to work with a static target. In this configu-

ration, each controller is evaluated by racing three races against randomly selected controllers

out of the ten solo-evolved controllers. It should be noted that this is not co-evolution at all, as

the target controllers do not evolve. The car controlled by the target controller could instead

be seen as an interactive feature of the environment.

The experiments we run with this configuration failed to generate any controllers with better

fitness than the target controller. This was despite attempts at evolving from scratch, starting

from a general controller, or starting from a clone of the target controller, and using various

mixtures of absolute and relative fitness. Our interpretation of this is that the solo-evolved

controller drives the tracks as fast as can be done given its sensing and processing limitations,
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and that the same limitations hinder the co-evolved controllers from doing any better.

Human-competitiveness of evolved controllers

A random selection of controllers were tested by competing with a car controlled by one of the

authors via the keyboard. It was found that the solo-evolved controllers were generally good

contenders, driving at about the same skill level or slightly better than the author, as long as

collisions were avoided. However, it was found to be quite easy to learn how to collide with the

computer controlled car in such a way that it got stuck on a wall, and then continue to win the

race. Most of the co-evolved controllers were pretty simple to beat by just accelerating hard at

the beginning of a race and keep driving, as their slower driving wouldn’t allow them to catch

up.

7.1.3 Discussion

Our main positive finding concerns the effects of changing the type of fitness function. A very

clear effect was that controllers evolved more for relative fitness acted more aggressively, but

covered less distance both when running solo and when competing with other controllers from

the same population, than controllers evolved more for absolute fitness. We could not find

any systematic difference between the sensor setups evolved with the various fitness mixtures,

but observed a general tendency to point car sensors backwards rather than forward, and the

opposite tendency for wall sensors - it seems to be more important to watch your back than to

know what your competitors are doing in front of you.

A finding that is relevant to the overarching quest to scale up evolutionary artificial intel-

ligence using computer games is that competitive car racing is a much more complex problem

than solo car racing. This can be seen both from the drastic degradation of fitness when solo-

evolved controllers are put in competitive environments, and from our great difficulty in evolving

controllers that can reliably outperform the solo-evolved ones. It can also be seen from the total

inability of all evolved controllers to backtrack upon a frontal collision with a wall, and the

relatively poor ability of most evolved controllers to find the correct direction after having been

spun around. This points to the need for more complex sensors and neural networks.

However we set up the evolutionary runs, they seem to suffer from over-specialization, where

the controllers in a population only learn to race each other. This result is in broad agreement

with what has been found in co-evolutionary predator-prey experiments, as discussed in sec-

tion 2.4.6. So even though the current experimental environments allows us to explore a larger

space of variants of competitive co-evolution, it seems that at least the currently explored form

of co-evolution suffers from the same basic obstacles to evolving generally good competitive
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behaviour as previously attempted approaches.

7.2 Multi-population competitive co-evolution

A year later we revisited the problem of competitive co-evolution, armed with a number of new

ideas, and using the point-to-point car racing game rather than the track-based racing game.

In this section, based on a paper presented at CEC 2007 [138], we investigate the use of multi-

population competitive co-evolution, where more than two populations are used. We believe

that we are the first to use more than two populations for single-species co-evolution, and we

are rather certain that we are the first to use it for comparing controller architectures.

Why would multi-population co-evolution be better than one- or two-population versions

of the algorithm? To answer this question, we can go back to Janzen, who distinguished be-

tween true and or diffuse co-evolution [67] in the context of evolutionary biology (not computer

science). The former is defined as evolutionary change in a specific trait of one population in

response to the evolutionary change of one specific trait possessed by another population. In

contrast, the latter is defined as non-specific evolutionary change in response to a group of traits

possessed by another population, or group of populations.

Bullock argued that diffuse rather than true co-evolution would be desirable from an engi-

neering standpoint, as diffuse co-evolution should lead to more robust solutions [19]. One way

of achieving diffuse co-evolution would be to use many populations, and test individuals against

other individuals in more than one other population. Following his suggestion, Hornby and

Mirtich did exactly this in a predator-prey simulation [62].

Our own take on this is to use multiple populations to try to force diffuse symmetric co-

evolution, but also to use it to compare controller architectures. (In Hornby and Mirtich’s work,

controller architectures did not vary between species.) In the process, we compare two different

selection strategies: steady-state and generational selection.

Generational and steady-state selection

Standard co-evolution proceeds in generations. In each generation there is a period of evaluation,

followed by population decimation and replacement.

Though this generational scheme is the standard approach to co-evolution in use today, it

is not the only way that co-evolution can proceed. In nature, the process of replacement is

usually less dramatic - populations usually remain stable and there is continuous replacement

of individuals.

Miconi and Channon [88] introduce one method of performing steady-state co-evolution. The
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N -strikes-out algorithm they propose performs both evaluation and replacement asynchronously,

on an individual basis. To our knowledge, this is the first steady-state co-evolutionary algorithm.

This asynchronous updating means that the selection landscape changes gradually, in effect

acting as a self maintaining archive of previous fit individuals, and avoiding the need for a

hall of fame. The motivation is that this will discourage exploits of the current champion’s

weaknesses, as there is more likely to be other high fitness individuals which don’t share that

specific weakness.

Another advantage of the steady-state approach is that is not necessary to manage the

generational changes in the population. The algorithm merely needs to keep track of the number

of defeats for each individual, which is simpler than the generational approach.

Research questions

The main question we address in this section is what is it possible to do with multi-population co-

evolution. Can we evolve controllers that perform better than those evolved with solo-evolution,

or one- or two-population co-evolution? Can we use multi-population co-evolution to investigate

the relative benefits of different controller architectures? When seeding a number of populations

with the same architecture, can we evolve a behaviourally diverse set of controllers?

We are also interested in the relative performance of the steady-state and generational multi-

population co-evolutionary algorithms. Particularly, we wonder whether the N -strikes selection

mechanism manages to further alleviate the cycling problems.

And in addition to the issue of how to best compare a number of controller architectures, we

are of course interested in the results of the comparison: which of the implemented controller

architectures is best for the task given? For us, the underlying motivation is to be able to evolve

complex general intelligence; studying the properties of particular controller architectures and

evolutionary algorithms is a means to that end, rather than the other way around.

7.2.1 Controller architectures

A number of evolvable controller architectures were implemented, for purposes of comparing

speed and quality of learning. All controller architectures are based on one or two evolvable

function approximators (in all cases except one these are neural networks), and in an all cases

the main function approximator outputs two real numbers. These two numbers are interpreted

as follows: if the first output is above 0.3, the driving force is set to forward, if below -0.3 the

driving is to backward, and otherwise driving set to neutral. The second output decides whether

to set the steering for current timestep to left, right or centre in the same way.
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MLP controllers

The MLP controller is based on a standard multi-layer perceptron with 8 inputs, 6 hidden

neurons, 2 outputs and tanh activation function. The inputs to the network are the speed of

the car, the angle to the current way point, the distance to the current way point, the angle

to the next way point, the distance to the next way point, the angle to the other vehicle, and

the distance to the other vehicle (both the last values are set to 0 if there is no other vehicle

present). Apart from these inputs, a bias input (always set to 1) is added to the all neural

networks described in this paper.

All angles are calculated as the difference between the orientation of the car and a straight

line to the waypoint or competitor car in question. We have found that the input representation

described above tends to produce controllers that drive backwards, and further that adding

PI radians to all angles instead produce controllers that tend to drive forwards. However, the

controllers evolved with angles thus reversed actually score somewhat lower on average, which

is why we have decided to keep all angles as is in the experiments in this paper.

At the start of an evolutionary run, all connection weights of the neural networks are set to

zero. Mutation consists of adding random numbers drawn from a Gaussian distribution with

standard deviation 0.1 in all neural networks described here.

Recurrent controllers

Most of the controllers are based on simple recurrent neural networks, commonly known as

Elman networks [41]. The recurrent neural networks are implemented as standard MLPs, with

extra connections from the hidden layer of the last time step to the hidden layer of the current

time step.

Several controller architectures based on such networks are compared. The RMLPSmall,

RMLP and RMLPBig controllers are all based on recurrent networks with exactly the same

inputs and outputs as the MLP controllers described above, but differ in the size of its hidden

layer, being 4, 8 and 16 units respectively. Two additional controller architectures were also

based on recurrent networks but with impoverished inputs: the RMLP1WPOnly has only 6

inputs to its network, as angles and distances are given only to the current way point and the

competitor’s car, and the SimpleRMLP does not even input angle and distance to the competitor

car to its network, which only has 4 inputs.

Modular controllers

The modular controllers represent an incorporation of domain knowledge into the controller

architecture. The design is based on the observation that the most important task for a good
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controller, besides driving to a particular way point as quickly and reliably as possible, is to

choose which way point to go for: the current or the next? Assuming that these two tasks are

reasonably separable, the modular controllers are based on one MLP, that decides which way

point to go for, and a SimpleRMLP controller that controls the car. The MLP receives three

inputs: a bias, the distance to the current way point divided by the distance to the other car,

and the speed of the car divided by the speed of the other car. If the only output of the MLP is

above 0, the angle and distance to the current way point is fed to the SimpleRMLP, otherwise

those of the next way point are fed.

In previous experiments with evolving neural networks in layered control architectures, we

have found that it is sometimes helpful to evolve the lower layers before the higher layers [137].

Therefore, two versions of the modular architecture are tested: the ModularRMLP is initialised

with all connection weights in both networks set to empty. The PrimedModular controllers, on

the other hand, are initialised with a “blank” MLP but a SimpleRMLP that has already been

solo-evolved to good fitness as an independent controller.

GP-based controllers

Finally, one controller architecture was based on genetic programming. Each controller consists

of two function trees (evaluating to the two outputs, which are then interpreted as driving and

steering) and three automatically defined functions (ADFs). The function trees are initialised

randomly, and mutated with single-point macro mutation, where a randomly selected node in

each tree is replaced with a randomly generated node. The trees are limited to a depth of 5 in

order to make the computational expense of these controllers on par with the neural network-

based controllers. When it comes to the node types, the set of terminals consists of sensor inputs

(any of the eight inputs given to the MLP and recurrent controllers), constants (randomly ini-

tialised to values between 0 and 2) and ADF calls; the set of non-terminals consists of arithmetic

functions (plus, minus, multiplication and protected division), trigonometric functions (sin, cos,

tan and tanh) and an if-then-else function (if the first child evaluates to more than 0, return the

value of the second child, otherwise the third child). To avoid loops, the ADF calls are restricted

so that an ADF can only call an ADF with a higher id than itself.

7.2.2 Co-evolutionary algorithms

In this paper we compare two different co-evolutionary algorithms: generational and steady-state

co-evolution.
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Generational

We used a standard evolution strategy. For single population co-evolution, the steps are:

1. Evaluate each individual against another chosen at random from the best performing half

of the population.

2. Pick the fittest half of the population to keep, and replace the other half with mutated

versions of the fittest half.

3. Start another generation.

For multi-population co-evolution, a similar procedure is followed, only now each individual

is evaluated against one of the fitter individuals from each population.

Steady-state

We use a modified version of the N -strikes-out algorithm, as detailed by Miconi and Channon.

The one-population version consists of the following steps:

1. Pick two individuals A and B from the population at random.

2. Pit them against each other; determine the winner and the loser of the confrontation (if

any).

3. If the loser has been defeated N times over its entire history, delete it and replace with a

new individual.

4. Start another comparison.

In the two population case, Miconi and Channon found that a naive approach of comparing

one random individual from each population caused disengagement, resulting in the weaker

population losing any selection gradient.

They overcame this by comparing two individuals from population A against an individual

from population B. The winner and loser were determined by which of the population A individ-

uals had scored best against the individual from population B. This process was then reversed,

and two individuals from B were evaluated against an individual from A.

The members of a population were therefore only competing against each other, rather than

other populations. The individual from the other population was simply used to evaluate the

fitness of the two individuals.

We follow a similar approach in this paper, generalised to n populations. The advantage

of this evaluation scheme is that it should discourage the scenario where one member of the
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population discovers an exploit which allows it to beat other members of the population, but

lowers its general fitness.

One concern with the algorithm is that with a noisy fitness function, high fitness individuals

can still be beaten occasionally by lower fitness individuals. Because individuals are deleted after

a certain small number of defeats, this would mean losing desirable individuals. As suggested

in [88], one way around this would be to introduce the concept of ‘forgetting’ old defeats.

The approach we took was to have a defeat factor, which we multiplied the number of losses

by at each comparison. If less than 1, this should cause the number of losses to decay towards

zero, being topped up by new losses. It means old defeats would be considered less important.

Another concern we had was that selection had no direct dependence on absolute fitness (an

individual’s score on the track). In theory, a controller could win many comparisons by blocking

the other controller so it achieved a low score. This would mean individuals that scored lower

could still win lots of contests, and spread through the population.

This should be more of a concern with the single population N -strikes, but it could still be

an issue in the n population case.

To combat this, we decided to make the defeat factor dependent on absolute fitness. We

want individuals with a high apparent fitness to be given more evaluations before deletion, and

low fitness individuals to quickly be replaced.

We therefore made the defeat factor F for an individual have the form:

F =
1

exi−x̄
(7.1)

Where xi is the fitness of the individual, and x̄ is the mean fitness of its population.

This means the defeat factor will be large in low-fitness individuals, and small for high-fitness

individuals, implying more rapid forgetting of old defeats.

In order to adjust this parameter in a convenient manner, we introduced a defeat factor

multiplier D, as shown below:

F =
1

eD(xi−x̄)
(7.2)

When D is 0, we get plainN -strikes behaviour. When D is greater than zero, we get an increasing

contribution of absolute fitness.

One advantage of this form is that it retains the predictability of the number of deletions.

In plain N -strikes, the number of deletions should be approximately the number of comparisons

divided by N . We found that this behaviour was preserved by using this form of the defeat

factor.
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Parameter tuning

One of the features of the N -strikes out algorithm is its flexibility - there are many parameters

that can be varied. In initial parameter tuning we tried varying the following parameters for

the single-population case:

• population size P

• number of strikes resulting in deletion N

• the number of games during an evaluation

• the value of the defeat factor multiplier D

Preliminary results suggested that a large population meant fitness initially rose slower but

reached a higher value than in a small population.

We also found small values of N performed better than larger values.

The only effect of changing the number of games during an evaluation should be to alter the

level of noise in the fitness function. We found that in high noise environments (such as using

only one game to compare two individuals), setting D = 0.5 caused a quicker rise in fitness than

the plain N -strikes. However, both resulted in about the same fitness eventually.

For subsequent experiments, we chose the values of:

• P = 30

• N = 2

• at least 5 games per comparison

• D = 0.5

The other decision to make was how to perform replacement. We used only mutation and

not crossover in this paper, so the most straightforward choices were replacement by a mutated

version of either the winner or loser of the comparison. We chose replacement by a mutation of

the winner, as this should aid the rapid spread of high fitness through the population.

The generational algorithm had less parameters to adjust. We decided on a population size

of 30, and at least 5 games per comparison, to allow direct comparison with the N -strikes-out

algorithm.

7.2.3 Results

Our experiments proceeded as follows: first, to establish a baseline for the experiments with

the many-population co-evolutionary algorithms, we tested each of the controller architectures
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Figure 7.3: Solo evolution of diverse architectures, 20 runs.

independently. This was done using both solo evolution and single-population co-evolution. We

then tried using both the generational and steady-state algorithms to compare controller archi-

tectures. The controller architecture that was found to perform best was then used to seed all

populations of both multi-population evolutionary algorithms. The idea here was to investigate

diversification between populations, and the extent to which multi-population competition helps

evolve complex general behaviour.

Solo evolution of controller architectures

Our first set of experiments concerned the evolution of controllers for the single-car version of

the task. All nine controller architectures described above were evolved in single-architecture

populations using a standard 15+15 evolution strategy for 200 populations. These experiments

were all repeated for 20 runs. In figure 7.3 we have plotted the fitness growth of the five differ-

ent controller architectures, including one based on RMLPs (Elman-style recurrent networks).

Several things can be learned from this figure: one is that the GP controllers consistently reach

a much lower final fitness than the other architectures, even though they learn quite fast in the

first few generations. The PrimedModular controllers perform slightly better than the others

in the end, but this is probably because they have effectively evolved for longer, the lower layer

being pre-evolved. Other than that, RMLPBig (large recurrent network) learns fastest of the

controllers.

In figure 7.4 we compare the five different controller architectures based on monolithic (non-

modular) RMLPs. What is remarkable here is how similar their ultimate performance is. The

only difference of any note is in their learning speed, and here we see a clear relation to the

size of the network: the larger the network is (more inputs and larger hidden layer) the faster
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Figure 7.4: Solo evolution of different rmlp-based architectures, 20 runs.

it learns.

Single-population co-evolution

Next, we ran a number of experiments where we co-evolved controllers for the two-car version

of the task, using single-population co-evolution with populations of 30 individuals containing

only one controller type each. So in these runs, the controllers only ever compete against other

controllers of the same architecture. We did 20 runs for each controller architecture, using both

the generational and the modified N -strikes-out steady-state co-evolutionary algorithms.

Generational: In figure 7.5 we plot the fitness of the best controller of each generation for the

same five controller architectures as in figure 7.3. As in the solo evolution, the GP controllers

start out as fast learners but are by far the worst of the lot at the end of 200 generations.

Unlike in the solo runs, we see a very clear superiority of the modular controllers over the

other architectures. At the end of the runs, the primed modular controllers do better than the

non-primed, but the fitness for the non-primed ones is still increasing.

Looking at the RMLP-based controllers (figure 7.6) we see no difference in ultimate fitness

and little difference in learning speed. Again, the larger networks learn somewhat faster.

Steady-state: The results of the steady-state runs were very similar, as can be seen from

figure 7.7 (we have omitted the graph for rmlp-only comparisons out of space considerations).

The primed modular controller still performs almost twice as well as the GP controller. One

difference is that the non-primed modular controller learns much faster with steady-state than

with generational co-evolution.
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Figure 7.5: Single-population generational co-evolution of diverse architectures, 20 runs.
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Figure 7.7: Single-population steady-state co-evolution of diverse architectures, 20 runs.

Multi-architecture multi-population co-evolution

And so, at last, we come to the multi-population co-evolution. We used nine populations for

these experiments, one population for each controller architecture. In these runs, which lasted

for 500 generations (or steady-state equivalents) each individual of each population is tested

against individuals of all other populations, thus controllers of all other architectures. At least

20 runs were made for both the generational and steady-state algorithms.

Generational : Figure 7.8 plots the fitness growth of the populations populated by the main

different controller architectures (remember that all nine populations were part of the runs,

though only five are plotted). Some of what we see here could be expected, given our single-

population results. The modular controllers still win (in this case literally) over the other

controllers. But what is unexpected is that the GP-based controllers no longer do worst, indeed

they perform almost as well as the MLP-based controllers at the very end of the 500 generations.

Instead, the RMLPBigControllers perform worst by a significant margin.

This rather surprising result concerning the RMLPBig controller architecture is put into

context when looking at figure 7.9, which compares only the RMLP-based controllers. Here we

see that the smaller the RMLP-based controller is, the better ultimate fitness it reaches, with

the minimalist SimpleRMLPControllers coming out on top.

Steady-state: The steady-state runs paint a similar picture. The main difference between

figure 7.10, which shows the fitness growth of the main controller architectures, and figure 7.8

is a slower overall fitness growth, and that the GP controllers as a result don’t do any better

than the RMLPBig controllers, i.e. not very good at all.

The graph for the RMLP-based controllers has been omitted in order to conserve space, but
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Figure 7.8: Nine-population generational co-evolution of diverse architectures, 10 runs.
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Figure 7.10: Nine-population steady-state co-evolution of diverse architectures.

looks essentially like figure 7.9 but with slower fitness growth.

Single-architecture multi-population co-evolution

In the final set of experiments, we filled all nine populations with RMLPBig controllers, as

these are in theory capable of expressing the most complex strategies. We then evolved them

for 500 generations, 10 runs each for the generational and steady-state algorithms. We are not

showing any graphs of the same type as for the other experiments, as these would be quite

uninteresting: all the populations reach the same fitness (of their best individuals) on average,

with little differences between the populations in an individual run. This fitness is around 8 or

8.5, virtually the same as the fitness of the RMLPBig controllers in the multi-architecture runs.

Comparison of best controllers

At this point, the reader will probably wonder which of the experiments above actually pro-

duced the best controllers. As always with co-evolution, this question is not straightforward

to answer. But we’ve tried to answer this in two ways: by measuring the competition score of

representatively high-performing controllers (the best we could find from a limited probe) from

each experiment, and by testing the same controllers against each other in two-car racing.

Competition score is the score used to rank submitted controllers in the league table of the

CIG Car Racing Competition. It is calculated by letting the controller race 500 trials on its

own, and 500 trials each against a rather low-performing hard-coded heuristic controller and a

medium-performing MLP-based controller. Table 7.3 shows the competition score breakdown

for the selected high-performing controllers. Judging from these scores, the multi-population

runs yielded the best overall controllers, the single-population runs slightly less good and the
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Controller solo heuristic fixed competition
score

n-pop gen MLP 16.86 12.01 12.27 13.71
n-pop gen Modular 16.49 9.52 13.37 13.13
n-pop nstr MLP 17.40 11.85 12.73 13.99
n-pop nstr Modular 16.59 10.54 12.96 13.36
1-pop gen Modular 16.38 6.96 13.20 12.18
1-pop gen RMLPBig 14.90 11.30 11.89 12.69
1-pop nstr Modular 15.19 10.06 10.16 11.80
1-pop nstr RMLPBig 16.64 11.08 11.68 13.13
Solo Modular 18.50 2.80 3.20 8.17
Solo RMLPBig 17.35 4.91 6.54 9.60

Table 7.3: Competition score of a variety of high-performing controllers

solo evolutionar runs really rather bad controllers. The best controller found seem to be based

on a MLP, but the differences are not great between the architectures.

Table 7.4 shows the results of direct competition between these controllers. The differences

are sometimes quite dramatic, as when the solo-evolved RMLPBig gets 8 points lower fitness

than the single-population-evolved modular controller. If a clear winner has to be picked, it is the

modular controller evolved with generational multi-population co-evolution, which does not lose

significantly to any other controller. Generally, the same dominance pattern of multi-population

over single-population over solo evolution persists.

7.2.4 Discussion

We set ourselves a handful of questions to solve at the beginning of the section, and even though

we can draw quite a few conclusions from our experiments, all the questions have not been

answered. To begin with our conclusions, we found that when two cars were involved, the

modular controllers outperform all the other controller architectures, and they do quite well

otherwise as well. For solo- and single-population evolution larger, more complex controllers

learn faster, whereas this is not the case for multi-population co-evolution. It thus seems that

to the extent that multi-population co-evolution is useful for comparing the performance of

different controller architectures, it is so in a rather different way than single-population co-

evolution. What is clear about the multi-population co-evolution is that (for our particular

problem instance) it produces generally better controllers than either solo evolution or single-

population co-evolution, corroborating one of our main hypotheses.

Why large networks seem to learn faster than small networks is an interesting question,

and our results are somewhat at odds with the received wisdom in the among neuroevolution

researchers. For example, the NEAT algorithm starts out with minimally connected networks,

and incrementally complexifies these. The stated reason for this is that the search space should
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n-pop n-pop n-pop n-pop 1-pop 1-pop 1-pop 1-pop Solo
gen gen nstr nstr gen gen nstr nstr RMLPBig

MLP Modular MLP Modular Modular RMLPBig Modular RMLPBig
n-pop gen MLP 0.00 -0.75 0.09 -0.42 -0.81 1.20 2.37 1.17 4.58

n-pop gen Modular 0.75 0.00 0.71 0.35 0.09 1.91 2.65 1.90 5.48
n-pop nstr MLP -0.09 -0.71 0.00 -0.53 -0.31 1.08 2.81 1.50 4.64

n-pop nstr Modular 0.42 -0.35 0.53 0.00 0.17 1.06 2.82 1.52 4.31
1-pop gen Modular 0.81 -0.09 0.31 -0.17 0.00 2.10 0.68 1.77 3.57

1-pop gen RMLPBig -1.20 -1.91 -1.08 -1.06 -2.10 0.00 1.56 0.36 4.15
1-pop nstr Modular -2.37 -2.65 -2.81 -2.82 -0.68 -1.56 0.00 -1.51 8.02

1-pop nstr RMLPBig -1.17 -1.90 -1.50 -1.52 -1.77 -0.36 1.51 0.00 3.88
Solo RMLPBig -4.58 -5.48 -4.64 -4.31 -3.57 -4.15 -8.02 -3.88 0.00

Table 7.4: Score differences in competitions between controllers (average of 500 games). A positive value means that the controller of the current row beats the
controller of the current column.

1
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be reduced, which is assumed to lead to better or faster learning [123]. However, our results

trigger the suspicion that minimal networks might not have any advantages at all over larger

networks, except for the lesser computation required in propagating values through the network.

We are currently not sure about why the more complex controllers seem to learn faster. It

is entirely possible that this is a domain-specific effect, linked e.g. to the mutation magnitude

employed - for a given mutation magnitude, there is larger chance that a Gaussian mutation

will lead to a radical change in at least one dimension in a high-dimensional search space than

a low-dimensional one. Further experimentation is needed in order to test whether this effect

persists over different parameter settings and domains.

A major unsolved puzzle is why the RMLPBig controller fared so badly, and generally, why

RMLP-based controllers did better the simpler they were, in the multi-population experiments.

Our main hypothesis here is that because the more complex controllers learn faster, they settle

for a particular strategy sooner than the others, and that this particular strategy is not a very

good one because the other controllers have not yet developed any useful strategies. Once

learned, these strategic niches function as local optima, as learning a generally better strategy

would require first unlearning the current mediocre strategy. The slow-learning simple controllers

instead find themselves competing against several more well-developed strategies as soon as they

unfold their wings, and are forced to learn more general strategies. If this is true, and the effect

generalises to other problems, this ”slow learner’s advantage” could be a valuable tool in our

understanding of co-evolutionary dynamics. We are currently thinking of the best way to test

this hypothesis.

What we have not had time (and space) to investigate here is the behavioural diversity

between the evolved controllers from the different experiments. Thus, we don’t know whether

the superior performance of the multi-generation co-evolution is because of increased diversity

between populations, but we still think this is the case. This needs to be investigated further in

a forthcoming paper, using both quantitative and qualitative measures.

We are also careful to point out that we are not claiming the superiority of multi-population

competitive co-evolution over two-population co-evolution in the general case. At least not

just yet. The experiments in this section will first have to be validated through independent

repetition in different domains and with parameter settings.

7.3 Personalized racing track creation

In this section, we are discussing the evolution of fun racing tracks for human players. As

stand-ins for the human players (who would certainly not be interested in driving the same
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track hundreds of times with only slight variations) we use models of their driving styles in the

evalution of the tracks’ fitness. The driving style models are exactly those acquired in section 6.1,

and this section is also based on the same two papers as that other section.

In order to evolve a racing track based on a player model, we must know what it is for a

racing track to be fun, how we can measure this property, and how the racing track should be

represented in order for good track designs to be in easy reach of the evolutionary algorithm. We

have not been able to find any previous research on evolving tracks, or for that sake any sort of

computer game levels or environments. However, Ashlock et al.’s paper on evolving path-finding

problems is worthy to mention as a an example of an approach that could possibly be extended

to certain types of computer games [5].

We have discussed some theories about what makes computer games fun in section 3.1. Of

special interest here is the theory of Malone that fun depends on challenge, fantasy and curiosity.

At least challenge and curiosity could potentially be measurable. It seems clear that a racing

track should not be too challenging, and not too easy either. As for the curiosity, or “optimal

level of informational complexity”, this could mean that the track should be varied so that

different types of challenges alternate when you drive around it.

An observation of our own, confirmed by the opinions of an unstructured selection of non-

experts, is that tracks are fun where it is possible to drive very fast on straight sections, but it

is necessary to brake hard in preparation for sharp turns, turns which preferably can be taken

by skidding. In other words, it’s fun to almost lose control. However, it is possible that this is

a matter of personality, and that different players attach very different values to different fun

factors. Some people seem to like to be in control of things, and people have very different

attention spans, which should mean that some people would want tracks that are easier to learn

than others. Identifying different player types and being able to select a mix of fun factors

optimal to these players would be an interesting project, but we are not aware of any empirical

studies on that subject.

7.3.1 Fitness functions

Developing reliable quantitative measures of, and ways of maximising, all the above properties

would probably require significant effort. For these experiments we chose a set of features which

would be believed not to be too hard to measure, and designed a fitness function based on these.

The features we want our track to have for the modelled player, in order of decreasing priority,

is the right amount of challenge, varying amount of challenge, and the presence of sections of

the track in which it is possible to drive really fast. The corresponding fitness functions are:

• f1: the negative difference between actual progress and target progress (in this case defined
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as 30 waypoints in 700 timesteps),

• f2: variance in total progress over five trials of the same controller on the same track,

• f3: maximum speed.

7.3.2 Track representation

In our earlier paper we evolved fixed-length sequences of track segments. These segments could

have various curvatures and decrease or increase the breadth of the track. While this represen-

tation had the advantage of very good evolvability in that we could maximise both progress and

progress variance simultaneously, the evolved tracks did look quite jagged, and were not closed;

they ended in a different point than they started, so the car had to be “teleported” back to

the beginning of the track. We therefore set out to create a representation that, while retaining

evolvability, allowed for smoother, better-looking tracks where the start and end of the track

connect.

The representation we present here is based on b-splines, or sequences of Bezier curves joined

together. Each segment is defined by two control points, and two adjacent segments always

share one control point. The remaining two control points necessary to define a Bezier curve

are computed in order to ensure that the curves have the same first and second derivatives at

the point they join, thereby ensuring smoothness. A track is defined by a b-spline containing 30

segments (the full genome thus consisting of a 60-dimensional array), and mutation is done by

perturbing the positions of their control points through adding small numbers from a Gaussian

distribution.

It can be noted that even though this representation makes nonsensical and undrivable tracks

possible, and even probable, such tracks will be strongly selected against and quickly weeded

out of the population, precisely because they are undrivable.

The collision detection in the car game works by sampling pixels on a canvas, and this

mechanism is taken advantage of when the b-spline is transformed into a track. First thick

walls are drawn at some distance on each side of the b-spline, this distance being either set to

30 pixels or subject to evolution depending on how the experiment is set up. But when a turn

is too sharp for the current width of the track, this will result in walls intruding on the track

and sometimes blocking the way. The next step in the construction of the track is therefore

“steamrolling” it, or traversing the b-spline and painting a thick stroke of white in the middle

of the track. Finally, waypoints are added at approximately regular distances along the length

of the b-spline. The resulting track (see fig.6.1) can look very smooth, as evidenced by the test

track which was constructed simply by manually setting the control points of a spline, through
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Figure 7.11: Track evolved using the random walk initialisation and mutation.

a process of human trial-and-error.

7.3.3 Initialisation and mutation

In order to investigate how best to leverage the representational power of the b-splines, we exper-

imented with several different ways of initialising the tracks at the beginning of the evolutionary

runs, and different implementations of the mutation operator. Three of these configurations are

described here.

Straightforward

The straightforward method starts from an initial track shape forming a rectangle with rounded

corners. Each mutation operation then perturbs one of the control points by adding numbers

drawn from a gaussian distribution with standard deviation 20 pixels to both x and y axes.

Random walk

In the random walk experiments, mutation proceeds like in the straightforward configuration,

but the initialisation is different. A rounded rectangle track is first subject to random walk,

whereby hundreds of mutations are carried out on a single track, and only those mutations that

result in a track on which a generic controller is not able to complete a full lap are retracted.

The result of such a random walk is a severely deformed but still drivable track. A population

is then initialised with this track and evolution proceeds as usual from there.
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Figure 7.12: A track evolved (using the radial method) to be fun for the first author, who plays
too many racing games anyway. It is not easy to drive, which is just as it should be.

Radial

The radial method of mutation starts from an equally spaced radial disposition of the control

points around the center of the image; the distance of each point from the center is generated

randomly. Similarly at each mutation operation the position of the selected control point is

simply changed randomly along the respective radial line from the center. Constraining the

control points in a radial disposition is a simple method to exclude the possibility of producing

a b-spline containing loops, therefore producing tracks that are always fully drivable.

7.3.4 Results

We evolved a number of tracks using the b-spline representation, different initialisation and

mutation methods, and different controllers derived using the indirect player modelling approach.

Straightforward

Overall, the tracks evolved with the straightforward method looked smooth, and were just as

easy or hard to drive as they should be: the controller for which the track was evolved typically

made a total progress very close to the target progress. However, the evolved tracks didn’t differ

from each other as much as we would have wanted. The basic shape of a rounded rectangle

shines through rather more than it should.
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Figure 7.13: A track evolved (using the radial method) to be fun for the second author, who is
a bit more careful in his driving. Note the absence of sharp turns.

Random walk

Tracks evolved with random walk initialisation look weird (see 7.11) and differ from each other

in an interesting way, and so fulfil at least one of our objectives. However, their evolvability is a

bit lacking, with the actual progress of the controller often quite a bit different from the target

progress and maximum speed low.

Radial

With the radial method, the tracks evolve rather quickly and look decidedly different (see fig.7.12

and 7.12 depending on what controller was used to evolve them, and can thus be said to be

personalised. However, there is some lack of variety in the end results in that they all look

slightly like flowers, clear bias of the type of mutation used.

Comparison with segment-based tracks

It is interesting to compare these tracks with some tracks evolved using the segment-based

representation from our previous paper. Those tracks (see fig.7.14) do show both the creativity

evolution is capable of and a good ability to optimise the fitness values we define. But they

don’t look like anything you would want to get out and drive on.
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Figure 7.14: Tracks evolved using the segment-based method. Track (a) is evolved for a weak
player, and tracks (b) and (c) for a good player. Tracks (a) and (b) are evolved using all three
fitness functions defined above, while track (c) is evolved using only progress fitness.

7.3.5 Discussion

Based on the player models at hand we seem to be able to evolve tracks that satisfy our own

fitness criteria reasonably well. These tracks also look rather interesting, at least in our opinion.

However, whether they are actually more fun to drive than tracks generated randomly or without

a player model is not obvious. To find out, we would need to conduct empirical studies with

a large number of human subjects. This would indeed be interesting research in its own right,

but we currently don’t have time or resources.

Further, there is much work let to do before we have a track representation and evolutionary

method that can compete with hand-designed tracks. Currently, the tracks either look a bit

like flowers, or very jagged. Adding a third dimension to the racing makes devising a good

representation even more challenging.

7.4 Summary

This chapter presented three series of experiments on evolving controllers or structures with

an unclear and open-ended fitness criterion; we don’t know exactly what we want, but we are

looking for ways to get there, and might know when we are on the right way. The two first

sections concern competitive co-evolution. We explored the absolute-relative fitness spectrum,

and introduced multi-population co-evolution with different controller architectures. The wealth

of interesting and occasionally counter-intuitive results from especially the second section points

to that the combination of competitive co-evolution with game agent control holds considerable

promise, and that this enterprise is still in its initial, explorative stage.
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The third section concerned the evolution of racing tracks based on previously acquired

player models. This area is even more underexplored, and the results in this section are highly

tentative (they also suffer from the problem of being very hard to validate without the use of

studies on humans). At the same time, this project could potentially be very rewarding, in that

it could open up a new application field for computational intelligence in games.

174



Chapter 8

Conclusions

We have in this thesis presented a large number of experiments that apply evolution, and

occasionally other reinforcement learning or supervised learning algorithms, to different games

in different manners with different goals and outcomes. Writing a single conclusion chapter to

all this might seem a bit contrived. On the other hand, not having a conclusion wouldn’t be

right either.

Thus, this chapter will contain two main sections, summarizing the main contributions and

open directions for future research from two different perspectives: that of computational in-

telligence and that of game AI. Within each section, our contributions will be discussed in the

context of a number of open research topics.

A final section will summarise and discuss future research directions.

8.1 The computational intelligence perspective

In this section, we view the experiments of the preceding chapters in the perspective taken in

chapter 2. In the following, we shall go through a number of topics and issues central to that

chapter, and discuss how the experiments in this thesis can contribute to our understanding of

them.

8.1.1 Robot reality and simulation

In section 2.3.1 we discussed the problems associated both with evolving on real robots and with

acquiring robot simulations good enough to meaningfully evolve behaviour in. Throughout this

thesis we have demonstrated how computer games can provide complex dynamic environments

good enough to evolve (and otherwise learn) interesting behaviour in. We have also have argued

qualitatively for the suitability of computer games as environments in which to evolve complex
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general behaviour in section 3.1, suggesting that computer games to a rather large extent can

replace robotics in evolutionary robotics.

However, sometimes the goal is not to learn behaviour in general, but rather to learn to con-

trol a particular physical robot. In section 6.2 we presented a general approach for modelling the

dynamics of robots and evolving controllers in simulation that could be transferred back to the

physical robot. Central to that approach is the multi-model evolution, where the controllers are

tested with several models developed using different learning algorithms and/or representations.

The most obvious way to continue the research described here is to show that really complex

behaviour can be evolved in computer games. For this we probably need to switch from home-

made computer games to complex commercial games, and from the simplified input we currently

use to high-dimensional visual inputs. (At least if we take the symbol grounding problem and

importance of closing the sensorimotor loop seriously; while it might be very possible to evolve

good game solutions using the internal representations of the game, this would arguably not

amount to evolving intelligence.) Another path to take is to try to model the dynamics of

more complex robots (or possibly robots in more complex environments) and see if multi-model

controller evolution scales up. This path is currently being taken for the micro-helicopters in

the UltraSwarms project.

8.1.2 Incrementality and modularity

As discussed in sections 2.4.2 and 2.4.3, decomposing the controller structurally and/or func-

tionally, and decomposing the learning of it temporally, can be very useful from the standpoint

of efficiently learning effective controllers. In this thesis, no truly new theories about incremen-

tality or modularity have been presented, but instead we have demonstrated the applicability

of the concepts to a few domains (in at least slightly novel ways) and so corroborated existing

theories.

In sections 5.4.2, 5.4.1 and 7.2 we showed the superiority of modular neural network-based

controllers over non-modular controllers. In the case of the Cellz game, the modularity was of

a symmetrical or convolutional kind which we have not seen used in control learning before. In

the helicopter learning experiments, the difference in performance between modular and non-

modular controller representations was qualitative rather than quantitative, in that the non-

modular networks would not learn to fly at all. The same experiments also convincingly showed

that there are “wrong” modularizations that don’t improve evolvability at all, and demonstrated

the usefulness of combining modularity with incrementality. In the case of the multi-population

co-evolution experiments, the extensive list of controller architectures compared proved that the

superior performance of the carefully modularized architectures are not due to an unlucky choice
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of non-modular architecture.

The experiments with incremental generalization and specialization of driving skills in sec-

tion 5.2 demonstrate the application of incremental approaches in a novel way, as the task is

not fundamentally changed as much as aspects of the task is removed and taken away; an inter-

esting result here is that “general” driving skills can be incrementally evolved, pointing to the

usefulness of incremental evolution for evolving truly general intelligence.

As the benefits of incrementality and (the right sort of) modularity are well established,

these concepts are probably to be regarded as tools rather than future research topics in their

own right. A related reserach topic is instead to show that the right type of tasks, i.e. computer

games, naturally have an inherent incremental structure suitable to learning complex general

behaviour. Another future research topic is to develop algorithms that automatically find suit-

able modularisations for given problems. However, unpublished research by the author suggests

that this is not easy at all. The currently most promising direction here is to use some sort of

memetic algorithm, where selection takes place on two different time scales: on a larger time

scale, a suitable structure for the function representation (e.g. modularisation of the neural

network) is evolved. Each evaluation of the modular structure would then involve a search of

the parameter space of the function representation on a smaller time scale (e.g. local search

through a hill climber for neural network weights). Such an algorithm would almost certainly

have to trade slower learning speed for simpler problems for better final fitness for more complex

problems.

8.1.3 Controller architectures and learning methods

Sections 2.4.4, 2.4.5 and 2.4.7 discuss the relative merits of different controller architectures and

different types of reinforcement learing algorithms. These sections also made it clear that there

is little consensus on these topics. Unfortunately, this thesis will not provide such a consensus,

but might take us a little bit on the path toward true insight into this important issue.

Most of the experiments in this thesis compare controller architectures or learning algorithms

in one way or another. Apart from the points about modularity, a number of main conclusions

can be drawn:

First of all, all the non-modular controller architectures we have tried in this thesis have had

rather similar learning abilities. There have quantitative differences in both learning speed and

eventual performance of the best learned controllers, but these differences have been quantitative

rather than qualitative, and not really dramatical (in the extremes, one architecture might

eventually reach twice the fitness of another, but never ten times the fitness). When there has

been a qualitative difference in learning abilities, this has always been down to inappropriate
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inputs to the controller (such as in section 5.1), or to non-modular controllers not being up to

the job.

Especially, in the two sections where genetic programming and neuroevolution were com-

pared (5.3.1 and 7.2), we found gp-based controllers to be able to learn just the same tasks as

neural network-based controllers. However, the best neural network-based controllers always

quantitatively outperformed the best gp-based controllers. Usually, the gp-based controllers

learned faster, but this effect was not as pronounced.

In those two sections we also compare (potentially) stateful with reactive controllers. We

found no significant performance difference between the two classes. This could be because

the tasks we used don’t really require the use of internal state, but more likely it is because

something else in our experimental setup prevents the evolution of solutions that harness the

full power of recurrent neural networks and object-oriented genetic programming. Also, we have

not analyzed the evolved solutions further to look for potential differences in driving style, or

measured the use of state.

In section 7.2 we also compare neural network-based controllers of different sizes, i.e. with

different number of hidden neurons. The results are somewhat surprising, in that the controllers

of different sizes all seem to eventually reach the same fitness, but the larger controllers get there

faster. We are currently not aware of any theory that can explain this.

Finally, in section 5.3.2 we compare evolution with temporal difference learning, and state-

value control with action-value and direct control (the rest of the controller learning experiments

in this thesis use direct control exclusively). The results, that state-value control outperforms

action-value and direct control, and that temporal difference learning learns faster than evolution

but is less reliable and ultimately reach lower fitness levels, are in line with our own ideas and

some - but not all! - published studies on similar domains.

With disagreement over these topics abundant, many more such comparative studies need

to be done in the future, and theory needs to be developed that is supported by their results.

Eventually, this research might lead to reinforcement learning algorithms that combine the

best features of evolution and temporal difference learning, and which dynamically select the

most appropriate controller representation. A rather straightforward way of doing this, which in

various incarnations have been suggested or (to a limited extent) explored by various researchers

is to evolve populations of controllers which use some form of td-learning to further learn during

their lifetime. A more radical approach would be to start by looking at what information we have

(local reinforcements, global fitness measures), what methods for change we have (stochastic

variation, recombination, gradient descent in model space, instance-based learning etc.) and

try to synthesise a new algorithm from these parts. Quite possibly, evolution itself could be
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employed in the design of the learning algorithm, e.g. by giving the various components of the

learning algorithm as primitives to a genetic programming system.

8.1.4 Co-evolution

The topics of section 2.4.6 are explored in two sections in the innovation chapter, namely 7.1

and 7.2. In these sections we competitively co-evolve car controllers using single-population

co-evolution in the track-based racing game, and multi-population co-evolution in the point-to-

point racing game, respectively.

The main positive conclusion of the first of these sections is that different mesures of relative

and absolute progress measures in the fitness measure leds to interestingly different behaviour

(the videos of sneaky evolved drivers pushing each others off the track have proved quite popular

on on-line video sharing sites). On the other hand, the best competitively co-evolved controllers

for the two-car version of the track-based racing game were nowhere near as human-competitive

as solo-evolved controllers on the solo racing version of the game. The co-evolved controllers are

just not good enough; this might be due to the limited amount of sensors or limited size of the

neural networks, or to pathologies of the co-evolutionary algorithm. Obviously, there is much

scope for improving the performance of such controllers in new experiments, possibly using the

insights gained fromt the work described in the next section.

In that section, we show that multi-population competitive co-evolution really works, in

that overall better controllers are evolved than those that are evolved using single-population

co-evolution or solo evolution. The results also point to a few surprising results, especially

that there seems be a correlation between larger size neural networks, faster learning and lower

eventual fitness - in the multi-population case, but not the single-population case! Further

investigating these effects in particular and the use of multi-population competitive co-evolution

in general is currently a top research priority.

8.2 The game AI perspective

In the last section, we asked what games can do for us (well, for computational intelligence).

In this section, we will ask what we can do for games, thereby adopting the perspective of

chapter 3. The three potential contributions to computer games development that can be found

in this theses are the methods for generalization and specialization, for generation of diverse

opponents, and last but not least for personalized content creation.
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8.2.1 Generalization and specialization

In section 5.2 we demonstrated that it is possible to incrementally evolve not only generally

good driving behaviour, but also driving behaviour that is specialized to drive very well on

particular tracks, at the expense of some general driving ability. Furthermore, while incremental

generalization takes a good number of generations, the specialization process is much faster.

One obvious application of this is in racing games which contain a track editor, with which

the player can design his own racing tracks (several such games exist, e.g. TrackMania Nations,

which currently doesn’t provide computer-controlled opponents on user-created tracks). The

method would be to first evolve general controllers that can race all tracks that can be developed

using the track editor (subject to some constraints such as the tracks being drivable at all).

When the player then designs a track, the specialization process can then be used to quickly

develop opponents that can give the player a match on his own track. The drivers don’t need

to be evolved for maximum speed, they could instead be evolved to e.g. match the speed of the

driver.

Another use of the specialization process could be to measure the difficulty of the player-

designed track. It could for example be defined as being equal to the time it takes to specialize

to full fitness (starting from a number of different general controllers), or simply the fitness of

the specialized controller after a certain number of generations.

This method could in principle be extended to many other types of games where it is possible

to talk about playing skill in general and in specific cases, mainly agent games but possibly also

management games.

8.2.2 Generation of diverse opponents

In sections 7.1 and 7.2 we present different methods of evolving controllers which differs sig-

nificantly not only in driving performance but also in driving style. One way of doing this is

to tune the fitness function, mixing different amount of relative and absolute fitness. Another

way is to use multi-population competitive co-evolution, where the controllers in the different

populations are forced into different ecological niches. Yet another way, which is not explored

in this thesis, would be to use multi-objective evolutionary algorithms, and define a number of

behavioural objectives.

In driving games, having a diverse set of opponents can certainly make the game more fun;

there is more variety, and thus more to learn. This is also true of almost any game with more

than one NPC, agent and management game alike.
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8.2.3 Personalized content creation

The possibly most innovative experiments in this thesis are reported in sections 6.1 and 7.3.

In these experiments, players’ driving styles are modelled, and tracks are evolved for maximal

entertainment of the modelled players. This could give rise to significant add-ons to existing

racing (and other) games, or inspire the creation of new types of games. The methods could be

combined with generative encodings for environments, to evolve entertaining cities, battle maps,

levels, clothing, etc. And who would not want a racing game where the track you are driving

never repeats, but just always contains the sort of parts you really enjoy driving?

The experiments on personalized content creation in this thesis are definitely exploratory

rather than mature, but the scope for future research along the lines drawn up there is immense.

8.3 Summary and future research directions

Computational intelligence and computer games can be combined in a great variety of ways. In

this thesis, a taxonomy has been given of approaches to computational intelligence in games,

and existing research within the nascent field of computational intelligence and games has been

positioned within this taxonomy.

Three distinct approaches to computational intelligence in games have been identified: op-

timization, imitation and innovation. Within each approach computational intelligence can be

used for the purposes of enhancing computer games, and likewise, computer games can also

be used to enhance computational intelligence by providing stimulating problems for new and

existing algorithms. We want to emphasise that with stimulating problems we mean not only

benchmarks for machine learning algorithms, but also the sort of environments in which complex

general intelligence might emerge, consonant with the original goal of evolutionary robotics.

A number of experiments have been presented within all three approaches, with several

experiments designed to be of interest both for computational intelligence research and for

game development. The majority of the experiments use simulated (and in one case real) car

racing as experimental environments, but experiments have also been presented that use two

other physics-based agent games.

The three most significant (or at least least insignificant) contributions to science in this

thesis, according to the author, has been listed in section 1.1. In short, they are the personal-

ized content creation idea (along with a proof of concept player modelling and track evolution

implementation) discussed in sections 6.1 and 7.3, the multi-model approach to dynamics mod-

elling for controller evolution discussed in section 6.2, and the multi-population competitive

co-evolution algorithm discussed in section 7.2.
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Plenty of possibilities for taking the research presented in this thesis further has been dis-

cussed in this chapter as well as in the experimental chapters. It is our belief that the potential

for evolution of complex general intelligence inherent in the car racing problem has not been

exhausted yet, and that there is much good research left to do by scaling up to a slightly

more complex version of the problem (e.g. allowing for more cars simultaneously on the track),

allowing for higher-dimensional input, using more powerful function representations (such as

complexifying neural networks) and more sophisticated co-evolutionary algorithms. And when

the best possible racing car controller for a sophisticated racing game, winning against a variety

of good opponents with widely differing strategies, we can move on to the next game with even

more potential - which could be an evolution of car racing, as is Wipeout or Grand Theft Auto,

allowing for already evolved controllers to incrementally develop.

But when we have evolved the best possible racing car controller we will have already have

achieved a lot - almost certainly we would have generated more complex general intelligence

that has ever been automatically generated before. Such an achievement would at the very least

force various research communities to take computer games more seriously, and possibly also

game developers to take computational intelligence research more seriously.

However, in addition to grand visions of the future, much groundwork remains to be done.

Many of the experiments described in this thesis have led to interesting results, pointing to

possible new insights into the nature of evolutionary learning. These include the incremen-

tal evolution of general and specific control, the cancellation of exploitable model deficiencies

through multi-model evolution, the slow-learner’s advantage in multi-population competitive

co-evolution, and several others. However, in no case have we shown that the validity of these

results extend significantly beyond the particular experiments in which they were achieved.

In order to validate these results under more general sets of circumstances, they either have

to be supported by theory, or by exhaustive experiments under systematically varied conditions

(preferably both). As theoretical analysis of the efficacy of evolutionary algorithms have so far

had a very limited scope (e.g. to the author’s knowledge, there is no convergence proof for an

evolutionary algorithm for any remotely interesting problem), we will have to rely on experi-

mentation in order to validate our results. What needs to be done is first to repeat the relevant

experiments while systematically varying the parameters, e.g. redoing the multi-population

competitive co-evolution experiments while varying population size, selection pressure, muta-

tion rate, etc. Then, the same experiments would have to be re-done in different domains, e.g.

using a board game instead of car racing for competitive co-evolution. Only when this is done,

and the outcomes of the additional experiments corroborate those of the original ones, should

we be prepared to accept the (relatively) general validity of the discovered phenomena.
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