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Abstract

In this paper we present a reinforcement learning (RL) system based on neura
circuits. The neural RL system is benchmarked against a Monte Carlo (MC) RL
algorithm on two tasks. The first task isthe classical n-armed bandit problem and the
second task is path finding in a maze. The neural RL system performs equally well
or better than the MC RL agorithm. The RL system presented is very flexible and

generd; it can easily be incorporated with other neural based systems, e.g. attractor
memories.
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I ntroduction

For many systems the ability to learn is an advantage and also often necessary. The
system can either be an animal that needs to find food and avoid predators or it can be
avacuum cleaning robot that needs to recharge its batteries within constant periods of
time. These kinds of autonomous systems are called agents. Learning gives these
agents the ability to find a near optimal! way of fulfilling their needs or achieving
their tasks in their current environment. So even if the environment changes, i.e. the
food disappears from one place and appears at another or if a sofa is moved, the
agents still will be able to perform their tasksin anear optimal way.

Much work has been done in the area of artificia intelligence (Al) and machine
learning to try and solve these types of learning problems[1, 2]. The methods include
search-trees, heuristics search, dynamic programming and rule based methods. But
these methods have not been able to generate a general system that can solve a diverse
set of problemsin real-time and in areal environment. A real environment means that
the number of possible states is aimost infinite and therefore if each state is treated
separately it requires an infinite amount of computation. The problem with having a
huge number of statesis called the curse of dimensionality. Solving a problem in real-
time puts a constraint on the amount of time you can spend on solving the problem.
The price of getting a quick solution may be that you do not get the optimal solution
and in most cases that is good enough. A good rea-time agorithm should
incrementally generate a better solution as more time is alocated to solving the
problem.

An interesting development in the field of machine learning and Al is
reinforcement learning (RL) [3, 4]. RL means that the agent adopts a trial-and-error
approach to the learning i.e. the agent tries to perform a task and if it is successful it
gets rewarded otherwise it gets punished. The task usually is a series of actions that
the agent has to perform in a certain order to achieve its goal. The trial-and-error
approach is technically highly relevant since training data i.e. classified input-output
mappings are usually scarcely available.

Reinforcement learning is a learning method without a teacher i.e. there is no exact
corrections of the agent’s behaviour. The advantage with a teacher is that the learning
can be very fast, the big disadvantage is that the teacher must know the entire
environment and this is usually never the case in areal world environment. Thereis a
learning paradigm, actor-critic learning [4, 5], that is somewhat in between that of
learning without a teacher and learning with a teacher. RL requires no prior
knowledge about the environments dynamics and does not need a model.

RL agorithms have successfully been applied to a diverse set of different tasks [4]
and most of the times they have performed excellent. The rea-time aspects of
computing is handled relatively well by RL agorithms, since a long computational
time will probably generate a punishment in a real-time environment. But even RL

1 We use the term near optimal behaviour to indicate that it is often not clear what is the
optimal behaviour in areal world and real-time environment.



algorithms suffer from the curse of dimensionality. There have been attempts to solve
this problem by using methods that reduces the number states by generalising [6-8].
One of the best-known attempts is TD-Backgammon [9] where a neura network
(NN) is used to reduce the state space.?

There have been attempts to incorporate RL into the field of NN [5]. These
attempts have taken two approaches. One approach has focused on ways of setting up
the individual weights for a unit or a small group of units with RL e.g. many have
tried to build neural controllers for robots [10, 11]. The problem with these attemptsis
that no general knowledge about learning has been extracted from the systems. The
other approach has been to use a NN to approximate the state-values or action-values
[12]. These systems have not been designed with the intention to build a generalised
learning neural system that implements RL.

In this paper we are interested in building a self-sufficient system, that is biological
plausible, with artificial neurons and which implements RL in a general manner.

Reinforcement Learning

Reinforcement learning (RL) is, as we stated earlier, basically a form of trial-and-
error learning where an agent tries to learn an optimal or at least a near optimal
behaviour in an environment. The learning takes place in discrete steps t. The
environment that the agent perceives is represented by one or several states, se S
where Sisthe set of all possible states. In each state the agent can perform an action,
ac A(s), where A(s) is the set of all possible actions in state s. If the action was
successful the agent might get areward, r.. The reward, ry, is a scalar and it can aso
be negative, i.e. a punishment, if the performed action was bad (Figure 1).

Agent

state s(t) reward r(t) action a(t)

3 v Jo—
s(t+1)

Figure 1 The agent-environment interaction in reinforcement learning. At each step t the agent
performs an action, a(t), in state, s(t). In the next step, t+1, the agent possibly gets a reward and
perceives a new state, s(t+1). The cycle is repeated and between each step the agent has the
opportunity to improve its behaviour in order to maximise its reward.

The goa of the agent is to maximise the amount of reward it gets. In order to
achieve this goal the agent has to build up a bulk of experience about its interaction
with the environment. This experience is accumulated in state-action values or Q-
values. The Q-values, Q(s,a), represents the agent’s knowl edge about how beneficial
an action, a, isin a state, 5. This means that each state may have several Q-values
e.g. in a state where the agent can perform 10 different actions there will be 10
different Q-values.

2 The game of Backgammon has approximately 107 states.



At each step, t, the agent perceives a state, s, and performs an action, a. The
action, a,, is chosen using a policy, m(s,a), where the policy is a probability density
function over the set of possible actions in that state. The policy is derived from the
Q-values by the use of a policy function. A very simple and commonly used policy
function is the greedy function. The greedy function assigns the probability 1 to the
action with the highest Q-value in each state.

After each step the agent gain more and more experience and this results in
updated Q-values that more accurately describes the environment. The agent’s gained
experience enables it to update and improve its policy. The key concept is that the
improvement of the policy can be achieved at the same time as the agent is following
its previously derived policy. This procedure is called generalized policy iteration
(Figure 2).

evaluation

m

T Q

7z — func(Q)

improvement

Figure 2 The idea of generalized policy iteration is that an agent can follow a derived policy in
order to maximise its reward and at the same time improve this policy. The Q-values, Q,, are
updated using the policy m;, and then the policy m., isimproved using the derived Q-values, Q.
The function func is the policy function used to derive the new policy e.g. agreedy function.

A major issue in RL is that of balancing exploration against exploitation [3]. As
stated earlier the goal of the agent is to maximise the amount of reward it receives.
Maximising the reward means that the agent performs those actions that it knows to
yield the highest level of reward i.e. exploiting the currently best policy. But it does
also mean that the agent do not explore the environment, there may be an alternative
policy that yields an even higher level of reward. This means that agents need to
balance the rate of exploration against that of exploitation and it can be done in many
ways. In this paper we use a policy that has a Gibbs distribution, i.e. using a softmax
function.

When the environment is fixed, i.e. during the agent’s life span the environment
does not change, the optimal policy is stationary. But if the environment is dynamic
and changing the optimal policy is no longer fixed, the optimal policy is then non-
stationary and the agent must be capable of relearning. The trade-off between
exploitation-exploration becomes even more intricate when the environment is non-
stationary, e.g. after how long, if ever, should a sub-optimal action betried again [13].

A very complicating property of RL is that the rewards can be delayed. In
associative learning the agent can associate the current state, s, with the current
action, &, if the action resulted in a positive reward. But in RL usually a whole series
of state-action pairs have been perceived before a reward is given. This requires that
the RL agorithm is capable of memorising previous state-action pairs and their effect.



This memory trace is called eligibility trace and it constitutes a crucia part in many
RL algorithms.

We do not consider RL systems with models that perform planning [2] in this
paper. The use of models and planning is closely connected with the modern RL
algorithms since many of these al gorithms use ideas from dynamic programming.

Instead of using Q-values where each action in each state has to be assigned a
value it is often common to use state-values in many RL algorithms [4]. An RL
algorithm that uses state-values only has to assign a single value to each state. The
disadvantage with state-values is that they can only be used when the agent has a
model of the environment and can look one step ahead. Thisis why we are not using
such arepresentation.

The states we are using in this paper have what is called the Markov property i.e. in
each state all necessary information is available to the agent in order for it to decide
on an action. A process of finding a goal in an environment that has states with the
Markov property satisfies the property of a Markov decision process (MDP). If the
state and action spaces are finite then this process has the property of a finite MDP
and these are the type of processes considered in this paper.

A central concept in modern RL is tempora difference (TD) learning. RL
algorithms that implements TD-learning have a value-function. The basic principal of
avalue-function is that it assigns a value to each state and a state near the goal has a
higher value than a state further away. The value-function can either be formed out of
state- or state-action-values. The value-function enables the agent to update its policy
after each step instead of after each epoch. The benefit of TD-learning is faster
learning and it enables the agent to handle very large and complex tasks. In appendix
A we discuss different approaches to TD-learning using the neural RL system we
develop in this paper.

Bayesian Confidence Propagating Neural Network

Neural networks (NNs) constitute a computational paradigm that has its roots in the
early days of the computer history. In the first NNs the units were a form of logical
[14] or linear operators but with time the units have nowadays become genera non-
linear operators [15-17]. NNs are used in a wide range of applications including
classification, clustering, auto associative memory, function approximation, pattern
restoration, noise reduction, and feature extraction only to mention a few.

The idea behind a NN is to have a large number of interconnected units. The
connections between the units have weights. Each unit exhibits a certain level of
activation or for short activity. This activity is a function of the input from other units
in the network. The connections can either be feed-forward or feed-back (recurrent)
connections. A recurrent architecture, a group of units with feed-back connections,
forms the basis of attractor NNs that can be used as auto associative memory.

The most interesting part of NN algorithms is how the value of the weights is
computed. There is a large set of different computational schemes that can be
deployed to compute the weights. We want to use an algorithm that is biological
plausible and effective and hence we have chose to use the Bayesian Confidence
Propagating NN (BCPNN).



The BCPNN agorithm is derived from bayesian satistics [18-20]. A
distinguishing feature of the BCPNN used in this paper is the division of units into
hypercolumns [21, 22]. Each hypercolumn represents an attribute and the units in it
represent the different values of this attribute. To give an example let say that we
want to represent a computer. The computer comes in three different colours and it
can either be fast or dow. To represent these properties use a BCPNN with 5 units
and 2 hypercolumns. The first three units are used in the hypercolumn that represents
the colour and the second two units are used in the hypercolumn that represents the
speed. The attributes, represented by each hypercolumn, are assumed to be
independent. We define a population as set of hypercolumns or equal a set of units.

The weights are computed according to Hebb's principal [23] of strengthening co-
activated units. We define a projection as the computation needed to derive the
weights and biases of the connections between two populations. A projection has a
direction and the weights and biases are included in it.

In the following equations we use N to denote the total number of units in a
population and H as the number of hypercolumns in a population. In a population
with k hypercolumns, each hypercolumn will have U units, which gives N=3; U,.

The differential equations are preferably solved by Euler’s method since it is the
simplest method available. When Euler’ s method is used the differential equations are
transformed into difference equations and the difference step is referred to as the
time-step. These difference equations can also be interpreted as a number of running
averages (RA). These RAs are rate estimators of how frequently a unit is activated
and how frequently it is co-activated with another unit.

The first three equations, eqg. (1)-(3), represents the synaptic trace in a connection
between two units. The function of these three equations is to delay the storage of
correlations. The synaptic trace, stored in the E-variables, is thought to correspond to
the Ca?* influx in a synapse after it has been activated and which is necessary for
synaptic potentiation [24]. The variables § and § are the input activity to which both
the pre- and post-synaptic cells are clamped to during training.

EO_s0-s0)/ )
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If 1e=1 there is no synaptic trace, the input § and § is then instantaneously
propagated to the memory in eq. (4)-(6). If te is smal, dlightly larger than 1, the
synaptic trace is short and if te islarge the synaptic trace is consequently long.

In the following three equations, eg. (4)-(6), the P-variables constitute the memory
of a connection and are thus intended to correspond to the long-term potentiation
(LTP) in a synaptic coupling [24]. When the print signal is activated the information
stored in the state of the synaptic coupling, E-variables, is transferred into the memory
(P-variables) by eq. (4)-(6). The activation of the print signal is thought to correspond
to the release of intercellular neuromodulator substances [25] e.g. dopamine [26]. The
print signal is in the range of (0,0) and a large print signal induces a large change in
the memory.
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If 1p is small the memory is short-term and only a few patterns or correlations are
remembered and if 1p islarge the memory islong-term.

At each time-step the P-variables are used to compute the weights and biases. The
constant A, is used to avoid the logarithm of zero and it can be thought of as the bias
activity or asthe noisein a synapse.

B =RO+4 ()
WO= A ®
(R +4)(P, (1) +4)

The retrieval process is divided into two parts, first the potential is computed then
the new activity. The potential h; is computed by integrating over the support given
from the incoming connections. Before the retrieval process is started the potential is
initialised to zero. The potentia is then integrated, by eqg. (9), until it settles for a
stable set of values. The constant 1¢ is the potential integration factor. It determines
how fast the potential of a unit adapts to new input.

The new activity, o;, is computed by normalising the support in each hypercolumn.
The normalisation is good since it increases the signal-to-noise ratio [27], it ensures
that the total sum of activity remains equal to 1 and it also introduces a non-linearity
that is important for the computational capabilities of the BCPNN. The normalisation
is biologically plausible and it is thought to be facilitated by lateral inhibiting
connections [28].

We define a set C(K) that consists of all units, j, in a hypercolumn k. In the
following two equations we use the set C(k) to describe how the new activity, o, is
computed within each hypercolumn.

%{log(ﬁi(tmilog[ > w(t)o (t)j_h(t)]/rc )
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The characteristic of the BCPNN is determined by the values of 1g, 1o and G. The
values of the two 1 parameters are in the range of (1,.0) and the G parameter isin the
range of [0,e0). The parameter 1¢ is used in eq. (1)-(3) that represent the synaptic trace
(Ei, E;, E;) and the parameter 1p is used in eg. (4)-(6) that represent the memory (P;,
P;, Pj). The gain, G, is used to control the shape of the Gibbs distribution used to
compute the output activity from a population.

If 1c=1 in recurrent networks it may lead to oscillations in the activity. Through out
the paper tc=5 and 1,=0.0001.

Initially all trace and memory variables, E;, E, E;, P, P;, Pjj, are set to their bias
values which for unit i in hypercolumn k and unit j in hypercolumn| is

for each hypercolumnk: o, (t) = (10)



bias =1/U, (11)

bias, =1/U, (12)
and for unit i connected with unit j is:
bias, =1/U,U, (13)
Method
Algorithms

We chose to compare the RL system based on the Bayesian Confidence Propagating
Neural Network, BCPNNRL, with a Monte Carlo RL (MCRL) agorithm. Both of
these two methods based their knowledge acquisition on sample sequences of the
environment i.e. a series of steps or turns. Each sample sequence was called an epoch.
Since both of these two methods were based on sample returns they could only be
used for episodic tasksi.e. tasks that has a well-defined end. Both of the two methods
can do the learning on-line in real-time. Neither of the methods required any prior
knowledge of the environment’s dynamics.

RL agorithms that improve the same policy that they use to make decisions are
called on-policy agorithms. Both the MCRL and BCPNNRL were on-policy?®
methods.

The Monte Carlo Method
Our Monte Carlo RL (MCRL) algorithm used Q-values (state-action values) and it
was an every-visit MCRL algorithm as opposed to a first-visit MCRL algorithm. An
every-visit algorithm estimates the Q-values as the average of the returns that have
followed visits to the state in which the action was selected while a first-visit
a gorithm counts each state only once and the maximum of discounted reward is taken
asthe Q-value.

The problem of balancing exploitation versus exploration was achieved by the use
of a softmax policy. The probability of selecting action a, in state s, was computed by
eg. (14).

GQ(s,a)

< (14)
Z. eGQ(s,i)

P(a) = softmax(s,a,G) «

3 Off-policy agorithms use one policy to make decisions while improving another policy.



Initialize, for al se S, ac A(9)
Q(sa) « 0
Returns(s,a) <« empty list
7(s) « Vsize(A(9)

Repeat forever:
(@) Generate an epoch using &t
(b) For each pair s,a appearing in the epoch:
R « return from s,a
Append R to Returns(s,a)
(c) Fromthelast to the first element in Returns:
if(R=0) N«-Q(s(t) a(t))
ese N—R
Q(s(t-1),a(t-1)) « (1-0)Q(s(t-1),a(t-1))+ oryN
(d) For each sin the epoch:
n(s,a) « softmax (Q(s,a),G)

Table 1 The Monte Carlo reinforcement-learning algorithm with a softmax policy where G is
the gain of the softmax-function, vy is the discount factor and o is the learning rate.

The MCRL agorithm has three parameters; o, y and G. The learning rate is
primarily controlled by o but also to some extent by G. The parameter y regulates the
discount of future rewards.

The BCPNNRL System Architecture

The BCPNNRL system is presented in three steps. First we present the most basic
system possible with only one projection to the action-population, then we extend the
system to incorporate two projections to the action-population and finally we add a
value-projection and value-population to the system.

The most basic BCPNNRL system was designed with two populations of units.
One population was used to represent the current state of the agent, the state-
population. The other population, the action-population, was used to represent the
actions that the agent could perform. Between these two populations was a feed-
forward projection from the state-population to the action-population. Figure 3a
shows the layout of the system used in n-armed bandit problem and Figure 3b shows
the system used to solve the path finding problems in the Gridworld.

Both the state- and action-popul ation were represented with only one hypercolumn.
Each unit in the state-population corresponded to a single state and each unit in the
action-population corresponded to a single, elementary, action. Many biological
realistic models concerned with navigation use a similar state representation [29] and
this form of state representation is thought to exist in the Hippocampally place cells
[24]. As mentioned earlier the activity in a single hypercolumn sum to one and in the
state- and action-populations it is interpreted as a probability density functions (pdf)
over the set of possible states or actions.



The BCPNNRL systems policy function was located to the action-population. The
activity in the action-population was controlled by the softmax parameter G. The
parameter G can solely regulate the exploitation-exploration balance and it may thus
be thought of as a noradrenerigc neuromodulator [30, 31].

The parameter 1 was used to regulate the learning rate. The learning rate and the
balance between exploration-exploitation could in the BCPNNRL system be viewed
as the same thing. Both G and 75 affected the learning rate of the system and could be
used to regulate it, but T was preferably used.

The parameter 1 controlled the length of the eligibility trace. If tz=1 there was no
trace and the system could not handle delayed rewards i.e. go through a series of
states before getting the reward. If 1 was increased above 1 the trace started to grove
long and as the trace grove longer the learning rate became higher. If the trace was
very long the gradient of the trace became very shallow which was not good for the
learning.

This very basic BCPNNRL system, with only one projection, could only handle
positive rewards. A positive reward induced a strengthening in the connection
between states and actions, in the BCPNN algorithm the strength of the print signal
was determined directly by the reward.

action- .
population state-population action-

population

state-population

- o

a b

Figure 3 Two different realisations of the most basic BCPNNRL system. In each population
the active unit represents the current state and action. (a2) The BCPNNRL system used in the n-
Armed Bandit task. The projection between the two populations contains n connections. (b)
The BCPNNRL system used in the Gridworld. The feed-forward projection between the two
populations contains 4n of connections.

projection

B0-08
g

=D

The BCPNNRL system was based on the BCPNN algorithm and each cycle or step
in the agent-environment loop corresponded to a time-step in the network agorithm.
Figure 4 shows the neural activity correlated to the agent-environment interaction.
First the agent perceived its environment and then this information was propagated to
the action-population which generated an action, a(t). After action a(t) had been
performed the agent may have got a positive reward and if so the projection between
the state- and action-populations was modulated in order to enhance the current and
past correlations stored in the trace. The synaptic trace corresponds to the eligibility
trace in regular RL algorithms. After each epoch the synaptic traces (the E-RAS) were
resettled to their bias values.



An important feature of this system was that no external memory or computations
were needed. All processing of information was done within the network of BCPNN
units. If the BCPNN is considered to be biologically reaistic then the BCPNNRL was
biologically plausible structure.

a Activate the [ Propagate the C Enhance the trace
current state activity forward of past correlations
state- action- state- action- state- action-

population populatlon population population populatlon population

if r(t+1) >0
print
projection projection projection

state action reward

Figure 4 The agent-environment interaction correlated to the neural processin the BCPNN. (@)
The current state is activated in the state-population, s(t)=2. (b) The activity in the state-
population is propagated forward to the action-population and an action is generated (a(t)=4).
(c) If the action a(t) in state s(t) generated areward the projection between the state- and action-
populations is modulated in order to enhance the past correlations stored in the trace. The
reward is the input to the print signa, e.g. reward=1 generates a print signal that is 1.

The more advanced BCPNNRL system handled both positive and negative rewards
and it also had the ability to relearn. The system incorporated two projections (Figure
5), one positive and one negative projection. When the system got a positive reward
the positive projection was updated and the negative projection was decayed. The
negative projection was update when the system got a negative reward and then the
positive projection was decayed. The decay was only activated when the agent
received areward.

With this extended, dual projection, BCPNNRL system came a small extension to
the BCPNN a gorithm; synaptic decay (eq. (15)-(17)). The synaptic decay was used to
make the BCPNNRL flexible and capable of relearning. The decay meant that both of
the projections were updated no matter if the print signal was positive or negative. In
eg. (15)-(17) there is a variable print, which was set to the same value as the print
signal. To summarize; the two projections shared the same set of parameters and the
decay was as strong as the update.

a:t(t) print(bias — P (t))/z, (15)

% = print(bias, - P, (t))/ 7, (16)

# = print(bias, — P, (t))/ 7, (17)



A key issue was how the input from the two projections was combined in the
action-population. Here the negative projection was inverted simply by negating the
support values. The result was that the input from the negated projection inhibited the
unitsin the action-population.

state-population action-

population

pos.
projection

T

neg.
projection

=D
O

Figure 5 A BCPNNRL system with both a positive and negative projection to the action-
population. This system was capable of handling both positive and negative rewards as well as
relearning. Both of the projections shared the same set of parameters and when one of the
projections was updated the other one was decayed proportionally.

In order to not only act on reward but also act on the lack of reward we
experimented with a system that had a value-population. The value-population was
only activated when a reward was present and it did not form a value-function but
rather a reward-function®. In appendix A different ideas of how to construct a value-
function with the val ue-popul ation are discussed.

It may seem strange that the value-population had two units instead of just one.
The reason is that we wanted to be able to give the system input that varied in strength
and frequency and the BCPNN algorithm then required that there was at least two
unitsin a hypercolumn.

Previous BCPNNRL system presented in Figure 5 trandated the reward directly
into a print signal that was used to update the two action-projections. The system
presented in Figure 6 computed the print signal based on the knowledge stored in the
value-population, the print signal was then used to update both of the two action-
projections and the value-projection. We denote the two units in the value-population
asp, and p,. If areward, r, was present the print signal was computed as r-p; and then
it was used to update all three projections. The activity of the two units was clamped
to p,=r and p,=1-r during the update of the value-projection.

It was important to note that the value-population perceived much more of positive
updates (p;=1, p,=0) than of negative updates (p;=0, p,=1). This imbalance had to be
corrected in order for the system to maintain its dynamics, therefore the positive
updates of value-projection had only 1/50 of the strength, i.e. print signal was divided
by 50, of negative updates.

4 Instead of assigning a value to each state, a reward-function only stores values in those states
where an absolute reward have been received.
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Figure 6 A BCPNNRL system with a value-population and projection. This system could react
on the lack of expected reward. The information of existence of reward was stored in the value-
population and this population was aso used to compute the print signal when a reward was
encountered. The value-population was only activated when a reward was present.
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Experiments

We chose to benchmark our BCPNNRL system on two tasks. The first task was the n-
armed bandit problem. This was considered to be a simple problem and it did not
require the use of an eligibility trace. The second task was path finding in a maze and
this task required the use of an eligibility trace and was considered to be medium
hard.

Then-Armed Bandit

The n-armed bandit problem is the classical problem of selecting the action with the
highest return. In the context of RL we can formulate this problem as having one state
in which we can perform n different actions and the goal is to find the action that
yields the highest return under the constraint that we want to maximise our total
reward. The basic solution to the problem is to sample the returns from the n different
actions and then chose the most beneficial. The catch is to find this optimal action in
an effective way so that the total reward is maximised. In this problem taking a step,
i.e. performing an action is equal to finishing an epoch.

We were using both a 10- and 2-armed bandit in the experiments. In the case of the
10-armed bandit the rewards were given in alinearly increasing order from0to 9, e.g.
action 5 yielded a reward of 4. We also evaluated the two methods in a stochastic
environment where the reward 9 was given for each action but with different
probabilities, e.g. action 5 yielded areward of 9 with a probability of 0.5.



Gridworld

A simple maze that we called Gridworld (Figure 7 and Figure 8) was used in many of
the experiments. Each grid in the maze corresponded to a state and in each state four
different actions were available; go north, east, south or west. Each performed action
was a step. The task in the Gridworld was to find a reward. When the reward was
found a new epoch was started and the agent was returned to its starting state. The
values of the rewards were in the range of [-1,1]. The agent was alowed to make
moves into a wall or into the out-of-bounds area around the maze, these moves did
not affect the position of the agent but they could affect the reward.

&

Figure 7 A 4x4 Gridworld where the agent was starting in the lower left corner and the goal
was in the upper right corner. There were four actions available to the agent; go north, east,
south or west. The agent was allowed to make moves into the out-of-bound region but it did not
affect the agent’s position.

I

Figure 8 A t-maze constructed in the Gridworld. Initialy the left side gave a reward of 1 and
the right side areward of —1. After 50 epochs the positive and negative rewards switched place
and this was then repeated with an interval of 50 epochs.

We mainly used the 4x4 Gridworld (Figure 7) to evaluate the BCPNNRL and
MCRL methods. In order to evaluate the scaling capabilities of the methods we aso
used a 8x8 maze. A t-maze (Figure 8) was used to study the dynamics of the
BCPNNRL system and its capahilities of relearning. In the t-maze task the left side



reward was initially 1 and the right side reward —1 or0.015. After 50 epochs the
positive and negative rewards switched side, after another 50 epochs they switched
side again and so fourth. The agent had to follow the positive reward as it moved from
side to side in the t-maze and this could only be done by the dual projection
BCPNNRL system.

Results

In the initial experiments the two methods were benchmarked, also some of the
properties of the BCPNNRL system were studied. The single projection BCPNNRL
system was used and the results of these initial experiments would not differ if the
dual projection BCPNNRL system had been used instead since the second projection
was not used.

First we present the basic benchmarks, investigate the effects of different
parameter settings and report on an experiment with a stochastic environment, then
we move on to study the dynamics of the BCPNNRL system and the dual projection
system. Finally we look at how frustration, i.e. expectation of reward, can be
implemented in the BCPNNRL system.

Benchmarks

The first benchmark was done on the 10-armed bandit task. This benchmark, on the
10-armed bandit, showed that both of the algorithms were able to find a good solution
to the problem with the given parameter setting and both of the solutions had similar
characteristics (Figure 9). The reward was given immediately after each action and
therefore no eligibility trace or memory of actions leading up to the reward was
necessary, hence tg=1 and y=1. The two methods were evaluated by the fraction of
maximum reward they received over 100 runs e.g. if a method chose the optimal
action 100 out of 100 times that gave 1.

The first experiment with the Gridworld was to benchmark the two algorithms on a
path-finding problem in a 4x4 maze. The goal was located in the upper right corner
and the starting point was located in the lower left corner (Figure 7). This experiment
was intended to characterize the solutions of the two algorithms when the reward was
delayed. The measure used to evaluate the solutions was the inverse of the path
length, e.g. the optimal path in the 4x4 Gridworld is 6 steps and hence a solution with
6 steps resulted in 1. Figure 10 show that both methods found a very good solution
after approximately 10 epochs (Figure 10).

The two methods were also benchmarked in a stochastic 10-armed bandit
environment (Figure 11). We used a 10-armed bandit where the agent received a
reward of 9 with different probabilities. The BCPNNRL system proved to be dlightly
superior to the MCRL algorithm on this task. It is also noticeable that the results were
very similar to those of the deterministic 10-armed bandit.

5 The reward 0.01 and not 0 is given because it simplifies the implementation of the algorithm;
it has no effect on the BCPNNRL system which of these two values is used.
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Figure 9 The MCRL agorithm and BCPNNRL system solved the 10-armed bandit problem.
The 10 arms (actions) gave a reward ranging from 0 to 9 and the task was to find the arm that
returned the highest reward. The results were averaged over 100 runs. MCRL parameters: y=1,
0=0.02, G=1 BCPNNRL parameters: 1z=1, 17=100, G=1
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Figure 10 The path-finding problem in a 4x4 maze. This task required that the agents could
handle delayed rewards. The result was averaged over 100 runs. MCRL parameters: y=0.99,
0=0.3, G=60 BCPNNRL parameters: 1z=2, tp=5, G=3
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Figure 11 The two methods were benchmarked in a stochastic 10-armed bandit environment.
The reward was constantly 9 but the chance of getting the reward varied between the actions.
Choosing action ag returned a reward 90% of the times, choosing action ag gave a reward 80%
of the times and so forth. Finally choosing action ag never returned any reward. The result was
averaged over 100 runs. MCRL parameters: y=1, a=0.02, G=1 BCPNNRL parameters: t==1,
=100, G=1

Learning Rate

In order to illustrate how the learning rate of the BCPNNRL was affected by different
parameter settings we did four experiments, using the 10-armed bandit, with different
parameter settings (Figure 12). The learning rate of the BCPNNRL system was
controlled by the parameters G and 1. In the upper plot, G was small and the learning
rate was low, in the lower plot G was large and the learning rate was high.

In both the lower and upper plot the effect of 1, was obvious, a small value of 1p
meant a high learning rate and vice versa. This means that an increased value of G has
the same effect as a decreased value of 1, — the learning rate goes up and vice versa.
As mentioned previoudy if the learning rate is very high the agent risks not finding
the optimal solution but on the other hand a slow learning rate is not good in a short-
term perspective.
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Figure 12 The two plots illustrate how the parameters G and 1p affected the learning rate in the
10-armed bandit task. In the upper plot the value of G was small and in the lower plot the value
was large. In both the upper and lower plots two different values of 1 was used, one small and
one large value. The effect of alarge G value was that the learning rate was high, but the effect
of alarge 1p was that the learning rate was low. These two parameters, G and 15, had a very
similar effect on the BCPNNRL system. The result was averaged over 100 runs. Upper plot
BCPNNRL parameters: 1e=1, G=1; Lower plot BCPNNRL parameters: 1==1, G=5

Trace Length

To illustrate the effect of the trace length, the E variable, we ran the BCPNNRL
system with two different trace lengths (values of 1g). One version of the BCPNNRL
had a short trace (1z=2) and the other had a long trace (tz=4). In the small 4x4
Gridworld the solution was not significantly affected by the trace-length (upper plot,
Figure 13). But in the larger 8x8 Gridworld the solution of the BCPNNRL with the
short trace was really hampered by the trace’ s rapid decay (lower plot, Figure 13).

The results in Figure 13 shows that the length of the trace limits the size of the
problem that the BCPNNRL system can solve. If the trace is made longer the
BCPNNRL system can solve larger problems, but the quality of the solutions then
gets poor. A long trace is very flat and it contains less information about the direction
to the goal than a short trace.

It isimportant to point out that when the trace is made longer i.e. the value of 1¢ is
increased the trace also gets shallower which means that the signal-to-noise ratio for
the trace goes down. To compensate for the shallower trace and till attain a stable
solution the G parameter must be increased.
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Figure 13 Two different lengths of the trace was used when solving the path-finding problem.
The upper plot shows the results from a 4x4 Gridworld and the lower plot shows the results
from a 8x8 Gridworld. The results were averaged over 100 runs. BCPNNRL parameters: 1,=40,
G=3

Two Projectionsto the Action-Population

In the following experiments we were using the more advanced BCPNNRL system
with two projections to the action-population. The dual projection system allowed the
agent not only to learn what actions were good but also what actions were poor or
even harmful.

The benefit from a second projection is illustrated with an experiment in a 4x4
Gridworld where a negative reward of -1 was imposed on al moves that lead into a
wall. Figure 14 shows a comparison between a BCPNNRL agent that only gets a
positive reward when it reaches the goal and one agent that also gets the negative
rewards when it hits the walls. The agent that also got negative rewards learned faster
in the beginning because it quickly learnt what movesto avoid.

The most important aspect of the dual projection BCPNNRL system is that it is
capable of dynamical relearning which enables an agent to coup with a non-stationary
environment.

The dynamical capabilities of the dual projection system were evaluated in a t-
maze showed in Figure 5. A reward was placed both in the right (reward=+1) and left
(reward=-1) arm of the t-maze. After 50 epochs the rewards shifted place so that the
right armed contained a negative reward and the left arm had the positive reward. The
rewards then alternated forth and back during 300 epochs. Figure 15 shows the result
from the experiment, the upper plot shows the learning curve for the goal in the left
arm and the lower plot shows the learning curve for the goal in the right arm.
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Figure 14 Comparison of an agent that only got a positive reward when it reached the goal and
one that also got negative rewards when it hit the walls. The result was averaged over 100 runs.
BCPNNRL parameters: 1e=2, 1p=15, G=3
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Figure 15 The agent alternated between two goals. First the agent went to the left in the t—-maze
where the positive reward was located and the corresponding (upper plot) learning curve went
up. When the positive reward was relocated to the right arm of the t-maze the agent unlearned
the old path and then relearned to go right (lower plot). Between each switch 50 epochs were
accomplished. The result was averaged over 100 runs. BCPNNRL parameters; te=2, 15=5, G=3

An important question was if it was possible to get an agent, based on the BCPNNRL
system, to choose an action with a certain frequency. The answer was yes, if the dual



projection BCPNNRL system was used and no if the single projection system was
used.

The experiment in Figure 16 was made on a 2-armed bandit and two approaches
were taken, one deterministic and one stochastic. In the experiment the agent could
chose between two actions, UP and DOWN. The agent’s task was to select the UP
action 70% and the DOWN action 30% of the times?

The deterministic approach with a single projection gave the reward 0.7 when the
UP-action was selected and 0.3 when the DOWN-action was selected (Figure 16,
upper plot — one projection). When the dual projection system was used and the UP-
action selected, areward of 0.7 was given to the positive projection and 0.3 was given
to the negative projection and vice versa when the DOWN-action was selected
(Figure 16, upper plot — two projections).

The stochastic approach was to give the reward 1 with a probability of 70% if the
UP-action was selected and if the DOWN-action was selected a reward of 1 was
given with a probability of 30% (Figure 16, lower plot — one projection). The dual
projection system gave the reward 1 with a probability of 70% and —1 with a
probability of 30% if the UP-action was selected. If the DOWN-action was selected a
reward of 1 was given with a probability of 30% and —1 was given with a 70%
probability (Figure 16, lower plot — two projections).
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Figure 16 The task was to select the UP-action 70% of the times in a 2-armed bandit. A
running average was computed over the actions selected by the agents. Two different
approaches were considered, one deterministic (upper plot) and one stochastic (lower plot). A
BCPNNRL system with one projection could not maintain a constant level of exploration
instead it saturated in both the deterministic and stochastic case to selecting the UP-action. The
results were averaged over 500 runs. BCPNNRL parameters: te=1, 1=15, G=1

The system with only one projection was not able to achieve a constant level of
exploration instead it saturated to only select the UP-action. The dual projection



system chose the UP-action with the correct frequency because the two projections
managed to balance each other.

Estimating Reward

This experiment was intended to show that a BCPNNRL system with a vaue-
population could react not only on reward but aso on the lack of reward. We
compared the results of the BCPNNRL system with those of the MCRL al gorithm.
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Figure 17 A dua projection BCPNNRL system with a value-population performed the t-maze
task with shifting rewards. The upper two plots shows the result when the reward shifted
between 1,-1. The lower two plots shows the result when the reward shifted from 1 to 0.01. The
print signa for the positive value-projection was scaled down with a factor of 0.02. The results
were averaged over 100 runs. BCPNNRL parameters; value prj.: =1, 17=10, G=1, action
prj.: TE:2, Tp:2, G=3.

The experiment was performed in the t-maze where a reward was placed both in
the right and left arm as described in previous section. The two upper plotsin Figure
17 and Figure 18 were made when the rewards shifted between 1 and —1. The two
lower plots in Figure 17 and Figure 18 were made when the rewards alternated
between 1 and 0.01. As previously the rewards shifted side after 50 epochs and this
process continued for 300 epochs.

Although areward of 0.01 was not negative, if this small reward was given after a
period of larger positive rewards the system interpreted it as a punishment i.e. a
negative reward (Figure 17, lower plots).



It proved hard to balance the positive and negative updates of the value-projection
since the agent always tried to maximise its positive updates and therefore avoided the
negative updates. This was especialy critical when we wanted the BCPNNRL system
to react on the lack of reward, i.e. when the rewards alternated between 1 and 0.01. A
factor of 0.02 was used to scale to the print signal to the positive updates of the value-
projection. The balance problem could also somewhat be remedied by imposing
negative rewards on those actions that led into the walls.

The MCRL algorithm was able to perform well on the t-maze task when the
rewards shifted between 1 and 0.01, but when the rewards alternated between 1 and —
1 it failed to find a good solution. When the rewards were 1 and —1 the MCRL
algorithm quickly learnt that neither of the two arms were good and therefore it did
nothing, except running into to the walls. It did not help if a negative reward was put
on the moves that led into the walls.
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Figure 18 The MCRL agorithm performing the same task as the BCPNNRL system in Figure
17. The result was averaged over 100 runs. MCRL parameters: y=0.99, 0=0.3, G=60



Discussion

The experiments show that the BCPNNRL is able to match the performance of the
standard MCRL algorithm. Both of the two methods have the same number of
parameters and use similar policy functions. The two implementations base their
knowledge on sample returns and they are both on-policy methods.

The BCPNNRL algorithm showed to be very versatile and it could easily cope
with a stochastic environment. The BCPNNRL algorithm is based on the BCPNN and
since the BCPNN is derived from statistical considerations it is only natural that the
BCPNNRL handles the stochastic environment well. We did not experiment with
stochastic state representations or partially observable states, i.e. two separate states
that looks the same to the agent. It would also be interesting to study the BCPNNRL
capabilities on a partially observable Markov decision process or POMDP and
compare its performance to learning rules based on hidden Markov models or HMM.

The built in policy function of the BCPNNRL, based on the Gibbs distribution,
proved to be good. The BCPNNRL based agent seeks out the optimal path and the
policy aids it to avoid the worst moves and direct the exploration of the state-space.
We can aso conclude that there is a close relationship between the learning rate and
the policy, by regulating the learning rate you implicitly regulate the policy.

If the parameters of the BCPNNRL system are matched to those of the MCRL
algorithm it is easy to understand that the gain, G, have the same effect in both of the
two methods i.e. regulating the policy. The parameter 1 in the BCPNNRL system
corresponds to o in the MCRL agorithm, these two parameters regulate the learning
rate. Setting o=1 corresponds to having ts=1 and increasing 1t corresponds to
decreasing o.. The connection between t¢ and vy is not obvious but both of these two
parameters are used to regulate the degree of discount put on future rewards. Letting
Tg—oo COrrespondsto letting y—1.

The BCPNNRL parameters 1 and G are somewhat dependent i.e. they have a
similar effect on the solution just as the MCRL parameters o and G. The parameter 1
can in some cases, where the path length is within the scope of the trace length, be
thought of as a constant and the same istrue for the MCRL parameter .

The BCPNNRL system with two projections to the action-population and no value-
population is insensitive to noise and parameter settings. The dual projection system
proved to be able to balance its exploration rate and perform well in a non-stationary
environment.

When a value-population is added to the system it becomes more sensitive to
parameter settings but the system also becomes more powerful. With the value-
population the BCPNNRL system can react on the lack of reward, i.e. be frustrated.

Representing a reward-function with a separate value-population that is not
dependent on the action-population may not be a good thing to do. Especially not if
one want to construct some form TD-learning system. But separating out the value-
function allows a more biologically plausible system since no complicated external
calculations are needed.

Evaluating the performance of the t-maze problem is not straight forward, the
MCRL agorithm fails to find a solution when the rewards are shifted between 1 and



—1. This may not be a bad thing since apparently both of the goals on either side of the
t-maze punish the agent from time to time.

The BCPNNRL system is, as al types of sample return based RL systems, best
suited for small problems. When the problem is large it is very advantageous to use
RL methods that are based on TD-learning.

An important aspect of the BCPNNRL system is that it can be fully implemented
with a BCPNN. No “external” short-term memory is needed and the backup
performed in the MCRL agorithm comes as an intrinsic part of the BCPNN units.
This means that if the BCPNN is considered to be a biologically plausible model then
the BCPNNRL isabiologically plausible system.

Instead of using only one hypercolumn it is possible to have several hypercolumns
in either the state- or action-population. The coding then becomes distributed and this
can increase the noise tolerance in a noisy system. Distributed coding aso simplifies
the pre-processing of input data (used to represent the states) since the input can be
mapped directly from the sensorsinto the BCPNN and the BCPNNRL system.

The populations can have one or several feedback or recurrent projections. This
means that e.g. the states may be represented as attractor memories. It is aso a
conceivable idea to have high order action hierarchies instead of only elementary
actions.

A continuous time implementation of the BCPNN algorithm was not used in the
BCPNNRL system. In a future implementation it would be interesting to make a
stronger connection, use an absolute time, between the time in the agent-environment
and the BCPNN algorithm.

In further studies it would be interesting to investigate how temporal difference
(TD) rewards can be incorporated into the BCPNNRL system. The advantages of TD-
learning are many and a system that uses it has the ability to predict future rewards
and react when these rewards are no longer present. A TD approach also reduces the
importance of the trace-length and would allow a BCPNNRL based system to find
solutions of any size.

The current version of the BCPNNRL system is primarily focused on locating a
single goal i.e. pursuing a single desire. In areal world application an agent probably
has to be able to pursue several goals or desiresi.e. locate both food and water. Such a
system could be constructed by combining several units of the basic BCPNNRL
system. The new, larger, system would have a structure similar to that of the
BCPNNRL system with the difference that the state-space is replaced by the output
from all of the BCPNNRL systems. A difficult problem to solve in the new system is
how to balance the decision making between the BCPNNRL systems constituting it.



Appendix A, Temporal-Difference L earning and BCPNN

A central part of TD-learning is to construct a value-function i.e. assigning each state
avaue based on its relative position to the reward or goal. Here we present two ways
of constructing a value-function and both of these methods are based on the system
with avalue-population (Figure 6). The first approach uses delayed rewards (E-traces)
and the second approach uses future rewards (Z-traces).

Unfortunately neither of these attempts to construct a BCPNNRL system capable
of TD-learning proved successful. A complication that exists in both of these attempts
is that the action-values and state-values are separated and updated independently.
Therefore the GPI cycleis not followed as intended.

Temporal Difference Learning with E-trace

This approach was derived from the reward prediction system. The idea was simply to
add a synaptic trace or E-trace to the value-projection identical to that of the action-
projection. This meant that each state was assigned its own particular value instead of
only letting the end-state, where the reward was located, to have a val ue.

In each state we wrote; p,=1 and p,=0, where the two units p; and p, were located
in the value-population. The print signal was computed by comparing the values of
the p; unit between two consecutive states.

The experiments performed with this model did not give truly positive results. The
system was able to find a single goal in the Gridworld but it was not able to coup with
alternating rewards in the t-maze, especially not when the rewards 1 and 0.01 were
used.

Temporal Difference Learning with Z-trace

We investigated the possibility of adding a Z-trace, which would enable the
construction of a value-function. The Z-trace is formulated in eg. (18) and (19) where
the variables Z; and Z; are intended to replace § and § in eqg. (1)-(3). These two new
equations represents the synaptic potential in the pre- and postsynaptic synapses and
the parameters Tz and Tzp04 are in the range of [1,00).

20 (5 0-2,0) /4 (18)
@ = (S,(0)~Z, (1)) Zyp0n (19)

In each state the values of the two units p; and p, in the value-population was read
and printed (printed in the same state as they were read). The print-signal was, as
earlier described, computed by comparing the values of the p; unit between two
consecutive states. The Z-trace propagated the value of the two p units backwards to
the previous state’ s p unit-val ues.

The resulting system proved to be able to find a single goa in the Gridworld but it
did not manage to follow the aternating positive reward in the t-maze. A possible
reason to the failure of this approach maybe that the GPI paradigmis violated.
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