
Solving efficiently

the 0-1 multi-objective knapsack problem

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten
∗

LAMSADE, Université Paris-Dauphine,

Place du Maréchal de Lattre de Tassigny, 75 775 Paris Cedex 16, France

Fax.: +33 1 44 05 40 91

{bazgan,hugot,vdp}@lamsade.dauphine.fr

∗ corresponding author

Abstract

In this paper, we present an approach, based on dynamic programming, for solving the

0-1 multi-objective knapsack problem. The main idea of the approach relies on the use of

several complementary dominance relations to discard partial solutions that cannot lead

to new non-dominated criterion vectors. This way, we obtain an efficient method that

outperforms the existing methods both in terms of CPU time and size of solved instances.

Extensive numerical experiments on various types of instances are reported. A com-

parison with other exact methods is also performed. In addition, for the first time to our

knowledge, we present experiments in the three-objective case.

Keywords: multi-objective knapsack problem, non-dominated criterion vectors, efficient

solutions, dynamic programming, dominance relations, combinatorial optimization.

1 Introduction

In multi-objective combinatorial optimization, a major challenge is to develop efficient pro-

cedures to generate efficient solutions, that have the property that no improvement on any

objective is possible without sacrificing on at least another objective. The aim is thus to

find the efficient set (which consists of all the efficient solutions) or, more often, a reduced

efficient set (which consists of only one solution for each non-dominated criterion vector). A

survey and an annotated bibliography about multi-objective combinatorial optimization can

be found in [1] and [2].

This paper deals with a particular multi-objective combinatorial optimization problem:

the 0-1 multi-objective knapsack problem. The single-objective version of this problem has

been studied extensively in the literature (see, e.g., [3, 4]). Moreover, in the multi-objective

case, many real-world applications are reported dealing with capital budgeting [5], selection

of transportation investment alternatives [6], relocation issues arising in conservation biology

[7], and planning remediation of contaminated lightstation sites [8].

Several exact approaches have been proposed in the literature to find the efficient set or a

reduced efficient set for the multi-objective knapsack problem. We first mention a theoretical

work [9], without experimental results, where several dynamic programming formulations are

presented. Two specific methods, with extensive experimental results, have been proposed:

the two-phase method including a branch and bound algorithm proposed in [10], and the

method of Captivo et al. presented in [11], based on a transformation of the problem into a

bi-objective shortest path problem which is solved using a labeling algorithm. We can also

mention the recent work of Silva et al. [12]. All these methods have been especially designed

for the bi-objective case. Besides exact methods investigated in this paper, approximation

algorithms [13] and metaheuristics [14, 15, 16] have been proposed.

In this paper, we present a new approach based on dynamic programming. The main idea

of the approach relies on the use of several complementary dominance relations to discard

partial solutions that cannot lead to new non-dominated criterion vectors. Using conjointly

complementary dominance relations, each of which focuses on specific aspects, make the

approach quite efficient. This way, we obtain a method that outperforms the existing methods

both in terms of CPU time and size of solved instances (up to 4000 items in less than 2 hours

in the bi-objective case). In our experiments, we compare our approach with the method

proposed in [11], which is the most efficient method currently known, and with an exact

method based on a commercial Integer Programming solver. In addition, for the first time to

our knowledge, we present experiments in the three-objective case.

This paper is organized as follows. In section 2, we review basic concepts about multi-

objective optimization and formally define the multi-objective knapsack problem. Section 3

presents and establishes the validity of a dynamic programming approach based on several

dominance relations. Section 4 is devoted to implementation issues. Computational experi-

2

ments and results are reported in section 5. Conclusions are provided in a final section.

2 Preliminaries

2.1 Multi-objective optimization

Consider a multi-objective optimization problem with p criteria or objectives where X denotes

the finite set of feasible solutions. Each solution x ∈ X is represented in the criterion space

by its corresponding criterion vector f(x) = (f1(x), . . . , fp(x)). We assume in the following

that each criterion has to be maximized.

From these p criteria, the dominance relation defined on X, denoted by ∆, states that a

feasible solution x dominates a feasible solution x′, x∆x′, if and only if fi(x) ≥ fi(x
′) for i =

1, . . . , p. We denote by ∆ the asymmetric part of ∆. A solution x is efficient if and only if

there is no other feasible solution x′ ∈ X such that x′∆ x, and its corresponding criterion

vector is said to be non-dominated. Thus, the efficient set is defined as E(X) = {x ∈ X :

∀x′ ∈ X, not(x′∆x)}. The set of non-dominated criterion vectors, which corresponds to the

image of the efficient set in the criterion space, is denoted by ND . Since the efficient set can

contain different solutions corresponding to the same criterion vector, any subset of E(X)

that contains one and only one solution for every non-dominated criterion vector is called

a reduced efficient set. Observe that X ′ ⊆ X is a reduced efficient set if and only if it is

a covering and independent set of X with respect to ∆. We recall that, given % a binary

relation defined on a finite set A,

• B ⊆ A is a covering (or dominating) set of A with respect to % if and only if for all

a ∈ A\B there exists b ∈ B such that b%a,

• B ⊆ A is an independent (or stable) set with respect to % if and only if for all b, b′ ∈

B, b 6= b′, not(b%b′).

2.2 The 0− 1 multi-objective knapsack problem

An instance of the 0 − 1 multi-objective knapsack problem consists of an integer capacity

W > 0 and n items. Each item k has a positive integer weight wk and p non negative integer

profits vk
1 , . . . , vk

p (k = 1, . . . , n). A feasible solution is represented by a vector x = (x1, . . . , xn)

of binary decision variables xk, such that xk = 1 if item k is included in the solution and

0 otherwise, which satisfies the weight constraint
∑n

k=1 wkxk ≤ W . The value of a feasible

solution x ∈ X on the ith objective is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instance of

this problem, we aim at determining the set of non-dominated criterion vectors.

3

3 Dynamic Programming and dominance relations

We first describe the sequential process used in Dynamic Programming (DP) and introduce

some basic concepts of DP (section 3.1). Then, we present the concept of multiple dominance

relations in DP (section 3.2). Section 3.3 indicates a manner to use efficiently a dominance

relation.

3.1 Sequential process and basic concepts of DP

The sequential process used in DP consists of n phases. At any phase k we generate the set

of states Sk which represents all the feasible solutions made up of items belonging exclusively

to the k first items (k = 1, . . . , n). A state sk = (sk
1, . . . , s

k
p, s

k
p+1) ∈ Sk represents a feasible

solution of value sk
i on the ith objective (i = 1, . . . , p) and of weight sk

p+1. Thus, we have

Sk = Sk−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤ W, sk−1 ∈ Sk−1} for k =

1, . . . , n where the initial set of states S0 contains only the state s0 = (0, . . . , 0) corresponding

to the empty knapsack. In the following, we identify a state and its corresponding feasible

solution. As a consequence, relation ∆ defined on X is also valid on Sk, and we have sk∆s̃k

if and only if sk
i ≥ s̃k

i , i = 1, . . . , p.

Definition 1 (Completion, extension, restriction) For any state sk ∈ Sk (k < n), a

completion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} such that sk
p+1+

∑
j∈J wj ≤

W . We assume that any state sn ∈ Sn admits the empty set as unique completion. A state

sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n) if and only if there exists a completion J of

sk such that sn
i = sk

i +
∑

j∈J vj
i for i = 1, . . . , p and sn

p+1 = sk
p+1 +

∑
j∈J wj . The set of

extensions of sk is denoted by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restriction at

phase k of state sn ∈ Sn if and only if sn is an extension of sk.

3.2 Dominance relations in Dynamic Programming

The efficiency of DP depends crucially on the possibility of reducing the set of states at each

phase. For this purpose, dominance relations between states are used to discard states at any

phase. A dominance relation is defined as follows.

Definition 2 (Dominance relation between states) A relation Dk on Sk, k = 1, . . . , n,

is a dominance relation, if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k),∃sn ∈ Ext(sk), sn∆s̃n (1)

Although dominance relations are not transitive by definition, they are usually transitive by

construction. This is the case, indeed, with the three relations used in our implementation

(see Section 4.2). Observe also that if Dk is a dominance relation then its transitive closure

D̂
k

is a dominance relation. Finally, if Dk
i , i = 1, . . . ,m, are dominance relations then

4

Dk =
⋃m

i=1 Dk
i is also a dominance relation, which is generally non-transitive even if relations

Dk
i are transitive.

In an efficient implementation of DP, it is desirable to make use of multiple dominance

relations Dk
1 , . . . ,D

k
m (m ≥ 1) at phase k (k = 1, . . . , n) since each dominance relation Dk

i

(i = 1, . . . ,m) focuses on specific considerations. We introduce now a way of using multiple

dominance relations in Algorithm 1. At each phase k, Algorithm 1 generates a subset of

states Ck ⊆ Sk. This is achieved by first creating from Ck−1 a temporary subset Ck
0 ⊆ Sk.

Then, we apply dominance relations Dk
1 , . . . ,D

k
m sequentially. This is done by retaining for

i = 1, . . . ,m, Ck
i which can be any covering set of Ck

i−1 with respect to Dk
i .

Algorithm 1: Dynamic Programming with multiple dominance relations

C0 ← {(0, . . . , 0)};1

for k ← 1 to n do2

Ck
0 ← Ck−1 ∪ {(sk−1

1 + vk
1 , . . . , sk−1

p + vk
p , sk−1

p+1 + wk)|sk−1
p+1 + wk ≤W : sk−1 ∈ Ck−1};3

for i← 1 to m do determine Ck
i any covering set of Ck

i−1 with respect to Dk
i ;4

Ck ← Ck
m;5

return Cn;6

The following result characterizes the set Ck
m obtained at the end of each phase k.

Proposition 1 For any dominance relations Dk
1 , . . . ,D

k
m (m ≥ 1) on Sk, the set Ck

m obtained

by Algorithm 1 at each phase is a covering set of Ck
0 with respect to Dk =

⋃̂m
i=1 Dk

i (k =

1, . . . , n).

Proof : Considering sk ∈ Ck
0 \C

k
m, it has been removed when selecting a covering set at an

iteration of step 4. Let i1 ∈ {1, . . . ,m} be the iteration of step 4 such that sk ∈ Ck
i1−1\C

k
i1

.

Since Ck
i1

is a covering set of Ck
i1−1 with respect to Dk

i1
, there exists s̃k

(1) ∈ Ck
i1

such that

s̃k
(1)D

k
i1

sk. If s̃k
(1) ∈ Ck

m then the covering property holds, since Dk
i1
⊆ Dk. Otherwise, there

exists an iteration i2 > i1, corresponding to the iteration of step 4 such that s̃k
(1) ∈ Ck

i2−1\C
k
i2

.

As before, we establish that there exists s̃k
(2) ∈ Ck

i2
such that s̃k

(2)D
k
i2

s̃k
(1). Since Dk

i2
⊆ Dk,

we get that s̃k
(2)D

ks̃k
(1)D

ksk and by transitivity of Dk, we ensure that s̃k
(2)D

ksk. By repeating

this process, we establish the existence of a state s̃k ∈ Ck
m, such that s̃kDksk. �

We give now conditions under which Algorithm 1 generates the set ND of non-dominated

criterion vectors.

Theorem 1 For any family of dominance relations Dk
i (i = 1, . . . ,m; k = 1, . . . , n), Algo-

rithm 1 returns Cn which is a covering set of Sn with respect to ∆. Moreover, if at phase

n we use at least one relation Dn
i = ∆ and impose that the selected covering set Cn

i is also

independent with respect to Dn
i then Cn represents the set ND of non-dominated criterion

vectors.

5

Proof : Considering s̃n ∈ Sn\Cn, all its restrictions have been removed when retaining a

covering set with respect to Dk =
⋃̂m

i=1 Dk
i during phases k ≤ n. Let k1 be the highest

phase where Ck1
0 still contains restrictions of s̃n, which will be removed by applying one

of the relations Dk1
i (i = 1, . . . ,m). Consider any of these restrictions, denoted by s̃k1

(n).

Since s̃k1

(n) ∈ Ck1
0 \C

k1 , we know from Proposition 1, that there exists sk1 ∈ Ck1 such that

sk1Dk1 s̃k1

(n). By (1), since Dk is a dominance relation, we have that for all extensions of s̃k1

(n),

and in particular for s̃n, there exists sn1 ∈ Ext(sk1) such that sn1∆s̃n. If sn1 ∈ Cn, then

the covering property holds. Otherwise, there exists a phase k2 > k1, corresponding to the

highest phase where Ck2
0 still contains restrictions of sn1, which will be removed by applying

one of the relation Dk2
i (i = 1, . . . ,m). Consider any of these restrictions, denoted by sk2

(n1)
. As

before, we establish the existence of a state sk2 ∈ Ck2 such that there exists sn2 ∈ Ext(sk2)

such that sn2∆sn1. Transitivity of ∆ ensures that sn2∆s̃n. By repeating this process, we

establish the existence of a state sn ∈ Cn, such that sn∆s̃n.

In addition, by selecting a set Cn
i that is independent with respect to Dn

i = ∆, this

property remains valid for Cn
m which is a subset of Cn

i . Thus Cn, which corresponds to a

reduced efficient set, represents the set of non-dominated vectors. �

The previous theorem only requires that one of the n.m covering sets is independent with

respect to its corresponding dominance relation. Even if all other sets Ck
i can be any covering

sets, practical efficiency of Algorithm 1 induces to select covering sets of minimal size.

This can be easily achieved when dominance relations Dk
i are transitive, by selecting, at

step 4 of Algorithm 1, covering sets Ck
i that are independent with respect to Dk

i . It is well-

know indeed that a covering and independent set (i.e. a kernel) with respect to a transitive

relation does exist and is a covering set of minimal size (see, e.g., [17]).

3.3 Generating covering and independent sets

We present now in Algorithm 2 a way of of producing Ck
i a covering and independent set of

Ck
i−1 with respect to a transitive relation Dk

i (step 4 of Algorithm 1).

Proposition 2 For any transitive dominance relation Dk
i on Sk, Algorithm 2 returns Ck

i a

covering and independent set of Ck
i−1 with respect to Dk

i (k = 1, . . . , n; i = 1, . . . ,m).

Proof : Clearly, Ck
i is independent with respect to Dk

i , since we insert a state sk into Ck
i at

step 12 only if it is not dominated by any other state of Ck
i (step 5) and all states dominated

by sk have been removed from Ck
i (steps 6 and 10).

We show now that Ck
i is a covering set of Ck

i−1 with respect to Dk
i . Consider s̃k ∈ Ck

i−1\C
k
i .

This occurs either because it did not pass the test at step 5 or was removed at step 6 or 10.

This is due respectively to a state s̄k already in Ck
i or to be included in Ck

i (at step 12) such

that s̄kDk
i s̃

k. It may happen that s̄k will be removed from Ck
i at a later iteration of the for

6

Algorithm 2: Compute Ck
i a covering and independent set of Ck

i−1 with respect to a

transitive relation Dk
i

/* Assume that Ck
i−1 = {sk(1), . . . , sk(r)} */

Ck
i ← {s

k(1)};1

for h← 2 to r do2

/* Assume that Ck
i = {s̃k(1), . . . , s̃k(ℓh)} */

dominated ← false ; dominates ← false ; j ← 1;3

while j ≤ ℓh and not(dominated) and not(dominates) do4

if s̃k(j)Dk
i sk(h)

then dominated ← true5

else if sk(h)Dk
i s̃k(j)

then Ck
i ← Ck

i \{s̃
k(j)} ; dominates ← true;6

j ← j + 1;7

if not(dominated) then8

while j ≤ ℓh do9

if sk(h)Dk
i s̃k(j)

then Ck
i ← Ck

i \{s̃
k(j)};10

j ← j + 1;11

Ck
i ← Ck

i ∪ {s
k(h)};12

return Ck;13

loop (at step 6 or 10) if there exists a new state ŝk ∈ Ck
i−1 to be included in Ck

i , such that

ŝkDk
i s̄

k. However, transitivity of Dk
i ensures the existence, at the end of phase k, of a state

sk ∈ Ck
i such that skDk

i s̃
k. �

Algorithm 2 can be improved since it is usually possible to generate states of Ck
i−1 =

{sk(1), . . . , sk(r)} according to a dominance preserving order for Dk
i such that for all ℓ < j

(1 ≤ ℓ,j ≤ r) we have either sk(ℓ)Dk
i s

k(j) or not(sk(j)Dk
i s

k(ℓ)). The following proposition gives

a necessary and sufficient condition to establish the existence of a dominance preserving order

for a dominance relation.

Proposition 3 Let Dk be a dominance relation on Sk. There exists a dominance preserving

order for Dk if and only if Dk does not admit cycles in its asymmetric part.

Proof : ⇒ The existence of a cycle in the asymmetric part of Dk would imply the existence

of two consecutive states sk(j) and sk(ℓ) on this cycle with j > ℓ, a contradiction.

⇐ Any topological order based on the asymmetric part of Dk is a dominance preserving order

for Dk. �

We give in section 4.3.1 an example of a dominance preserving order. If states of Ck
i−1

are generated according to a dominance preserving order for Dk
i , step 6 and loop 9-11 of

Algorithm 2 can be omitted.

7

4 Implementation issues

We first present the order in which we consider items in the sequential process (section 4.1).

Then, we present three dominance relations that we use in DP (section 4.2) and the way of

applying them (section 4.3).

4.1 Item order

The order in which items are considered is a crucial implementation issue in DP. In the single-

objective knapsack problem, it is well-known that, in order to obtain a good solution, items

should usually be considered in decreasing order of value to weight ratios vk/wk (assuming

that ties are solved arbitrarily) [3, 4]. For the multi-objective version, there is no such a

natural order.

We introduce now three orders Osum, Omax, Omin that are derived by aggregating orders

Oi induced by the ratios vk
i /wk for each criterion (i = 1, . . . , p). Let rℓ

i be the rank or

position of item ℓ in order Oi. Osum denotes an order according to increasing values of

the sum of the ranks of items in the p orders Oi (i = 1, . . . , p). Omax denotes an order

according to the increasing values of the maximum or worst rank of items in the p orders Oi

(i = 1, . . . , p), where the worst rank of item ℓ in the p orders Oi (i = 1, . . . , p) is computed

by maxi=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to discriminate items with the same maximum rank.

Omin denotes an order according to the increasing values of the minimum or best rank of

items in the p orders Oi (i = 1, . . . , p), where the best rank of item ℓ in the p orders Oi

(i = 1, . . . , p) is computed by mini=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to discriminate items with

the same minimum rank.

In the computational experiments, in Section 5.2.1, we show the impact of the order on

the efficiency of our approach.

4.2 Dominance relations

Each dominance relation focuses on specific considerations. It is then desirable to make use of

complementary dominance relations. Moreover, when deciding to use a dominance relation,

a tradeoff must be made between its potential ability of discarding many states and the time

it requires to be checked.

We present now the three dominance relations used in our method. The first two relations

are very easy to establish and the last one, although more difficult to establish, is considered

owing to its complementarity with the two others.

We first present a dominance relation based on the following observation. When the

residual capacity associated to a state sk of phase k is greater than or equal to the sum of

the weights of the remaining items (items k + 1, . . . , n), the only completion of sk that can

possibly lead to an efficient solution is the full completion J = {k + 1, . . . , n}. Thus, in this

8

context, it is unnecessary to generate extensions of sk that do not contain all the remaining

items. We define thus the dominance relation Dk
r on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
r s̃

k ⇔






s̃k ∈ Sk−1,

sk = (s̃k
1 + vk

1 , . . . , s̃k
p + vk

p , s̃k
p+1 + wk), and

s̃k
p+1 ≤W −

∑n
j=k wj

The following proposition shows that Dk
r is indeed a dominance relation and gives additional

properties of Dk
r .

Proposition 4 (Relation Dk
r)

(a) Dk
r is a dominance relation

(b) Dk
r is transitive

(c) Dk
r admits dominance preserving orders

Proof : (a) Consider two states sk and s̃k such that skDk
r s̃

k. This implies, that sk∆s̃k.

Moreover, since sk
p+1 = s̃k

p+1 + wk ≤ W −
∑n

j=k+1 wj , any subset J ⊆ {k + 1, . . . , n} is a

completion for s̃k and sk. Thus, for all s̃n ∈ Ext(s̃k), there exists sn ∈ Ext(sk), based on the

same completion as s̃n, such that sn∆s̃n. This establishes that Dk
r satisfies condition (1) of

Definition 2.

(b) Obvious.

(c) By Proposition 3, since Dk
r is transitive. �

This dominance relation is rather poor, since at each phase k it can only appear between

a state that does not contain item k and its extension that contains item k. Nevertheless, it

is very easy to check since, once the residual capacity W −
∑n

j=k wj is computed, relation Dk
r

requires only one test to be established between two states.

We present now dominance relation Dk
∆ that is a generalization to the multi-objective

case of the dominance relation usually attributed to Weingartner and Ness [18] and used in

the classical Nemhauser and Ullmann’s algorithm [19]. This second dominance relation is

defined on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
∆s̃k ⇔

{
sk∆s̃k and

sk
p+1 ≤ s̃k

p+1 if k < n

Observe that the condition on the weights sk
p+1 and s̃k

p+1 ensures that every completion for s̃k

is also a completion for sk. The following proposition shows that Dk
∆ is indeed a dominance

relation and gives additional properties of Dk
∆.

Proposition 5 (Relation Dk
∆)

9

(a) Dk
∆ is a dominance relation

(b) Dk
∆ is transitive

(c) Dk
∆ admits dominance preserving orders

(d) Dn
∆ = ∆

Proof : (a) Consider two states sk and s̃k such that skDk
∆s̃k. This implies, that sk∆s̃k.

Moreover, since sk
p+1 ≤ s̃k

p+1, any subset J ⊆ {k + 1, . . . , n} that is a completion for s̃k is

also a completion for sk. Thus, for all s̃n ∈ Ext(s̃n), there exists sn ∈ Ext(sn), based on the

same completion as s̃n, such that sn∆s̃n. This establishes that Dk
∆ satisfies condition (1) of

Definition 2.

(b) Obvious.

(c) By Proposition 3, since Dk
∆ is transitive.

(d) By definition. �

Relation Dk
∆ is a powerful relation since a state can possibly dominate all other states of

larger weight. This relation requires at most p + 1 tests to be established between two states.

The third dominance relation is based on the comparison between specific extensions of a

state and an upper bound of the extensions of another state. An upper bound for a state is

defined as follows in our context.

Definition 3 (Upper bound) Criterion vector u = (u1, . . . , up) is an upper bound for a

state sk ∈ Sk if and only if for all sn ∈ Ext(sk) we have ui ≥ sn
i , i = 1, . . . , p.

We can derive a general type of dominance relations as follows: considering two states sk, s̃k ∈

Sk, if there exists a completion J of sk and an upper bound ũ for s̃k such that sk
i +

∑
j∈J vj

i ≥

ũi, i = 1, . . . , p, then sk dominates s̃k.

This type of dominance relations can be implemented only for specific completions and

upper bounds. In our experiments, we just consider two specific completions J ′ and J ′′

obtained by a simple greedy algorithm as follows. After relabeling items k+1, . . . , n according

to order Osum (respectively, Omax), completion J ′ (respectively, J ′′) is obtained by inserting

sequentially the remaining items into the solution provided that the capacity constraint is

respected.

To compute u, we use the upper bound presented in [3] for each criterion value. Let us

first define W (sk) = W − sk
p+1 the residual capacity associated to state sk ∈ Sk. We denote

by ci = min{ℓi ∈ {k + 1, . . . , n} :
∑ℓi

j=k+1 wj > W (sk)} the position of the first item that

cannot be added to state sk ∈ Sk when items k + 1, . . . , n are relabeled according to order

Oi. Thus, according to [3, Th 2.2], when items k + 1, . . . , n are relabeled according to order

10

Oi, an upper bound on the ith criterion value of sk ∈ Sk is for i = 1, . . . , p:

ui = sk
i +

ci−1∑

j=k+1

vj
i + max

{⌊
W (sk)

vci+1
i

wci+1

⌋
,

⌊
vci

i − (wci −W (sk))
vci−1
i

wci−1

⌋}
(2)

Finally, we define Dk
b a particular dominance relation of this general type for k = 1, . . . , n

by:

for all sk, s̃k ∈ Sk, skDk
b s̃

k ⇔






sk
i +

∑
j∈J ′ v

j
i ≥ ũi, i = 1, . . . , p

or

sk
i +

∑
j∈J ′′ v

j
i ≥ ũi, i = 1, . . . , p

where ũ = (ũ1, . . . , ũp) is the upper bound for s̃k computed according to (2).

The following proposition shows that Dk
b is indeed a dominance relation and gives addi-

tional properties of Dk
b .

Proposition 6 (Relation Dk
b)

(a) Dk
b is a dominance relation

(b) Dk
b is transitive

(c) Dk
b admits dominance preserving orders

(d) Dn
b = ∆

Proof : (a) Consider states sk and s̃k such that skDk
b s̃

k. This implies that there exists

J ∈ {J ′, J ′′} leading to an extension sn of sk such that sn∆ũ. Moreover, since ũ is an upper

bound of s̃k, we have ũ∆s̃n, for all s̃n ∈ Ext(s̃k). Thus, by transitivity of ∆, we get sn∆s̃n,

which establishes that Dk
b satisfies condition (1) of Definition 2.

(b) Consider states sk, s̃k, and s̄k such that skDk
b s̃

k and s̃kDk
b s̄

k. This implies that, on the

one hand, there exists J1 ∈ {J
′, J ′′} such that sk

i +
∑

j∈J1
vj
i ≥ ũi (i = 1, . . . , p), and on the

other hand, there exists J2 ∈ {J
′, J ′′} such that s̃k

i +
∑

j∈J2
vj
i ≥ ūi (i = 1, . . . , p). Since ũ is

an upper bound for s̃k we have ũi ≥ s̃k
i +

∑
j∈J2

vj
i (i = 1, . . . , p). Thus we get skDk

b s̄
k.

(c) By Proposition 3, since Dk
b is transitive.

(d) By definition. �

Dk
b is harder to check than relations Dk

r and Dk
∆ since it requires much more tests and

state-dependent information.

Obviously, relation Dk
b would have been richer if we had used additional completions

(according to other orders) for sk and computed instead of one upper bound u, an upper

bound set using, e.g., the techniques presented in [20]. Nevertheless, in our context since

we have to check Dk
b for many states, enriching Dk

b in this way would be extremely time

consuming.

11

4.3 Implementing with multiple dominance relations

In order to be efficient, we will use the three dominance relations presented in section 4.2 at

each phase. As underlined in the previous subsection, dominance relations require more or

less computational effort to be checked. Moreover, even if they are partly complementary, it

often happens that several relations are valid for a same pair of states. It is thus natural to

apply first dominance relations which can be checked easily (such as Dk
r and Dk

∆) and then

test on a reduced set of states dominance relations requiring a larger computation time (such

as Dk
b).

We describe now the details of the implementation of these dominance relations. Algo-

rithm 3, which computes, at each phase k, the subset of candidates Ck from subset Ck−1

(k = 1, . . . , n), replaces step 3 to step 4 of Algorithm 1.

The use of relation Dk
r and Dk

∆ is first described (steps 1-8) and then the use of relation

Dk
b (steps 9-24). This algorithm uses two subprocedures: procedure MaintainNonDominated,

which removes states Dk
∆-dominated, and procedure KeepNonDominated, which is used during

the application of relation Dk
b .

4.3.1 Generation of Ck
0 and dominating preserving order

Generating a priori Ck
0 and, then, trimming it using dominance relations in order to produce

Ck would be inefficient. Instead, we generate and trim Ck
0 progressively, which requires

generating new states of Ck
0 according to a dominance preserving order for Dk

∆.

Let relation ∆lex denote the lexicographic relation defined on Sk by: for all sk, s̃k ∈ Sk,

sk∆lexs̃
k ⇔ sk

j > s̃k
j where j = min{i ∈ {1, . . . , p} : sk

i 6= s̃k
i } or sk

j = s̃k
j , j = 1, . . . , p.

Its asymmetric part is denoted by ∆lex. Let relation ≥lex denote the lexicographic relation

defined on Sk by: for all sk, s̃k ∈ Sk, sk ≥lex s̃k ⇔ sk
p+1 < s̃k

p+1 or (sk
p+1 = s̃k

p+1 and sk∆lexs̃
k).

Its asymmetric part is denoted by >lex.

Proposition 7 The decreasing order with respect to ≥lex is a dominance preserving order

for Dk
∆.

Proof : Consider a set H = {sk(1), . . . , sk(h)} ⊆ Sk ordered according to decreasing order

with respect to ≥lex, i.e. such that sk(i) ≥lex sk(j) for all i < j (1 ≤ i, j ≤ h). Suppose

that H is not ordered according to a dominance preserving order for Dk
∆. There exists thus

sk(i), sk(j) ∈ H (i < j, 1 ≤ i, j ≤ h) such that sk(j)Dk
∆sk(i) and not(sk(i)Dk

∆sk(j)). Then, we

have either s
k(j)
p+1 < s

k(i)
p+1 or (s

k(j)
p+1 = s

k(i)
p+1 and sk(j)∆lexsk(i)). This implies that sk(j) >lex sk(i),

which contradicts that H is ordered according to decreasing order with respect to ≥lex. �

Observe also that ≥lex is trivially a dominance preserving order for Dk
r .

Our implementation maintains set Ck, k = 1, . . . , n, sorted according to decreasing order

with respect to ≥lex. Considering indeed that, at phase k, Ck−1 is sorted according to

12

j
Ck−1:

Generate only ex-

tensions with item k

(states Dk
r -dominated)

Generate both exten-

sions: with item k and

without item k

Generate only exten-

sions without item k

(extension with item k

is not feasible)

Figure 1: Extensions of Ck−1 (sorted according to ≥lex)

decreasing order with respect to ≥lex, we generate progressively states of Ck
0 according to this

dominance preserving order, and thus maintain Ck sorted according to the same order.

4.3.2 Application of the three relations

We present now a detailed description of the application of each dominance relation Dk
r ,

Dk
∆, and Dk

b . Generating Ck
1 from Ck

0 using Dk
r , then reducing Ck

1 to Ck
2 using Dk

∆, and

finally reducing Ck
2 to Ck

3 using Dk
b would not be computationally efficient. Instead, since

Dk
r -dominated states can be identified in Ck−1, we generate directly Ck

2 using Dk
∆ and reduce

Ck
2 to Ck

3 using Dk
b . In the following, we shall not distinguish sets Ck

i , i = 0, . . . , 3, but instead

refer to a current set Ck which is progressively reduced.

Application of relation Dk
r : The order of states in Ck−1 allows us to find easily j, the

index of the first state that is not Dk
r -dominated (step 2). Thus, it is unnecessary to generate

the extension without item k for all states sk−1(1), . . . , sk−1(j−1) since they are Dk
r -dominated

by their respective extensions with item k. Figure 1 shows the extensions generated for each

state of Ck−1, due to Dk
r on the one hand, and to infeasibility on the other hand.

Application of relation Dk
∆: Since states are generated progressively according to a dom-

inance preserving order for Dk
∆, we never remove states from Ck. Indeed, by definition of a

dominance preserving order, a state candidate to be added in Ck cannot Dk
∆-dominate states

already included in Ck.

In order to test efficiently Dk
∆-dominance within Ck, we maintain Mk ⊆ Ck, the subset

of non-dominated states of Ck with respect to profit values only. Indeed, since states are

generated according to a dominance preserving order for Dk
∆, a new state sk can be Dk

∆-

dominated in Ck if and only if there exists a state in the current set Mk that ∆-dominates

sk considering that all states already generated have smaller or equal weight than sk. This

property is useful since Mk is much smaller than Ck (in the worst case, cardinality of Ck

is in O(|Mk| ×W)). We impose that set Mk is sorted according to decreasing order with

13

Algorithm 3: Computing Ck from Ck−1 at each phase k (k = 1, . . . , n)

In : Ck−1 = {sk−1(1), . . . , sk−1(r)} such that sk−1(i) ≥lex sk−1(j) for all i < j (1 ≤ i, j ≤ r)

Out: Ck in which states are sorted according to decreasing preference with respect to ≥lex

/* Application of relations Dk
r and Dk

∆ */

Ck ← ∅ ; Mk ← ∅ ; i← 1 ; j ← 1 ;1

/* Identification of j, index of the first state that is not Dk
r-dominated */

while j ≤ r and s
k−1(j)
p+1 +

∑n

ℓ=k wℓ ≤W do j ← j + 1 ;2

while i ≤ r and s
k−1(i)
p+1 + wk ≤W do3

sk ← (s
k−1(i)
1 + vk

1 , . . . , s
k−1(i)
p + vk

p , s
k−1(i)
p+1 + wk);4

while j ≤ r and sk−1(j) ≥lex sk do5

MaintainNonDominated(sk−1(j),Mk,Ck) ; j ← j + 1 ;6

MaintainNonDominated(sk,Mk,Ck) ; i← i + 1;7

while j ≤ r do MaintainNonDominated(sk−1(j),Mk,Ck) ; j ← j + 1;8

/* Application of relation Dk
b on Mk × Ck */

if k = n then Cn ←Mn
9

else10

F ← ∅;11

/* Generation of extensions J ′ and J ′′ for each state of Mk */

for order O in {Osum,Omax} do12

foreach sk ∈Mk do13

Relabel items k + 1, . . . , n according to order O ; sn ← sk;14

for j ← k + 1 to n do15

if sn
p+1 + wj ≤W then sn ← (sn

1 + vj
1, . . . , s

n
p + vj

p, s
n
p+1 + wj);16

F ← KeepNonDominated(sn,F);17

/* Assuming that Ck = {sk(1), . . . , sk(c)} and that Fn = {sn(1), . . . , sn(h)} such that

sn(i)∆lexsn(j) for all i < j (1 ≤ i, j ≤ h) */

i← 1 ; remove← true;18

while i ≤ c and remove do19

Compute an upper bound u for sk(i) according to (2);20

j ← 1 ; remove← false;21

while j ≤ h and sn(j)∆lexu and not(remove) do22

if sn(j)∆u then remove ← true else j ← j + 1;23

if remove then Ck ← Ck\{sk(i)} ; i← i + 1 ;24

return Ck
25

14

respect to ∆lex. The order of Mk is maintained easily by updating the sorted structure at

each insertion.

Procedure MaintainNonDominated(sk,Mk,Ck)

/* Assume that Mk = {s̃k(1), . . . , s̃k(ℓ)} such that s̃k(i)∆lexs̃k(j) for all i < j (1 ≤ i, j ≤ ℓ) */

i← 1 ; dominated ← false;1

while i ≤ ℓ and s̃k(i)∆lexsk and not(dominated) do2

if s̃k(i)∆sk
then dominated ← true else i← i + 1;3

if not(dominated) then4

Ck ← Ck ∪ {sk} ; // Insertion at the end of Ck
5

Mk ←Mk ∪ {sk}; // Insertion at the ith position in Mk
6

while i ≤ ℓ do7

if sk∆s̃k(i)
then Mk ←Mk\{s̃k(i)};8

i← i + 1;9

In the bi-objective case, based on the idea of [21], using an AVL tree for storing states

of Mk also leads to a significant improvement of the running time. The AVL tree allows

us to perform each search, insertion or deletion in O(log |Mk|). With this structure the

while loop 2-3 of procedure MaintainNonDominated reduces to the search of the largest value

i⋆ ∈ {1, . . . , ℓ} such that s̃
k(i⋆)
1 ≥ sk

1 . Then variable dominated is false if and only if s̃
k(i⋆)
2 < sk

2 .

Moreover, the while loop 7-9 of procedure MaintainNonDominated reduces to removing, from

Mk, state s̃k(i⋆) if s̃
k(i⋆)
1 = sk

1 and states with index i⋆ + 1 to j⋆ − 1 where j⋆ ∈ {i⋆, . . . , ℓ} is

the smallest value such that s̃
k(j⋆)
2 > sk

2.

Thus, in the bi-objective case, the running time of procedure MaintainNonDominated

can be bounded by O(z × log |Ck
0 |) where z represents the number of states that have to be

removed from Mk. For p > 2, a linked list has to be used for storing Mk and the running

time can be bounded by O(|Ck
0 |) only. Since in the worst case at most |Ck

0 | states have to be

inserted in Mk and at most |Ck
0 |−1 states have to be deleted from Mk in the entire execution

of Algorithm 3, the execution time of all calls of procedure MaintainNonDominated, during

phase k, is in O(|Ck
0 | log |C

k
0 |) for p = 2 and in O(|Ck

0 |
2) for p > 2.

Application of relation Dk
b : Relation Dk

b is applied after relations Dk
r and Dk

∆ to reduce

the set Ck. The purpose of using this relation is to remove states of Ck with small weight

since Dk
r and Dk

∆ are not efficient to remove these states (for instance using Dk
∆ we will never

remove the empty knapsack). Thus, we test if states of small weight are Dk
b -dominated. We

apply relation Dk
b between states of Mk, which contains states with non-dominated criterion

vectors, and the current Ck. A state sk(i) of Ck is removed if there exists a state sk 6= sk(i)

in Mk such that skDk
bs

k(i). To do that, we generate two extensions for all states of Mk with

respect to orders Osum and Omax and keep only the non-dominated extensions in F . This

is done by procedure KeepNonDominated that is not detailed here since it is just a simplified

15

version of procedure MaintainNonDominated where F replaces Mk and step 5 is removed.

Then sk(i) is Dk
b -dominated by a state of Mk, if there exists sn ∈ F such that sn∆u, where

u is the upper bound associated to sk(i). Since computing the upper bound for each state is

time consuming, we stop checking relation Dk
b as soon as we identify a state of Ck that is not

Dk
b -dominated by a state of Mk.

Special case of phase n First observe that, since Dn
∆ = Dn

b = ∆, it is unnecessary to

apply both relations. Thus, due to the order of application of these relations (Dk
∆ followed

by Dk
b), we do not apply relation Dk

b at phase n.

Second, at phase n it should be noticed that Mn corresponds to the non-dominated

criterion vectors of Sn and thus we take Cn equal to Mn (step 9).

5 Computational experiments and results

5.1 Experimental design

All experiments presented here were performed on a bi-Xeon 3.4GHz with 3072Mb RAM.

All algorithms are written in C++. In the bi-objective case (p = 2), the following types of

instances were considered:

A) Random instances: vk
1 ∈R [1, 1000], vk

2 ∈R [1, 1000] and wk ∈R [1, 1000]

B) Unconflicting instances, where vk
1 is positively correlated with vk

2 : vk
1 ∈R [111, 1000] and

vk
2 ∈R [vk

1 − 100, vk
1 + 100], and wk ∈R [1, 1000]

C) Conflicting instances, where vk
1 and vk

2 are negatively correlated: vk
1 ∈R [1, 1000], vk

2 ∈R

[max{900 − vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [1, 1000]

D) Conflicting instances with correlated weight, where vk
1 and vk

2 are negatively correlated,

and wk is positively correlated with vk
1 and vk

2 : vk
1 ∈R [1, 1000], vk

2 ∈R [max{900 −

vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [vk
1 + vk

2 − 200; vk
1 + vk

2 + 200].

where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these instances, we set

W = ⌊1/2
∑n

k=1 wk⌋.

Most of the time in the literature, experiments are only made on instances of type A.

Sometimes, other instances such as those of type B, which were introduced in [11], are studied.

However, instances of type B should be viewed as quasi single-criterion instances since they

involve two non conflicting criteria. This aspect can be seen in Figure 2. Nevertheless, in a

bi-objective context, considering conflicting criteria is a more appropriate way of modeling

real-world situations. For this reason, we introduced instances of types C and D for which

criterion values of items are conflicting. In this case, items are located around the line

y = −x + 1000. In instances of type D, wk is positively correlated with vk
1 , vk

2 . These

16

instances were introduced in order to verify if positively correlated instances are harder than

uncorrelated instances as in the single-criterion context [4].

For three-objective experiments, we considered the generalization of random instances of

type A where vk
i ∈R [1, 1000] for i = 1, . . . , 3 and wk ∈R [1, 1000] and the generalization

of conflicting instances of type C where vk
1 ∈R [1, 1000], vk

2 ∈R [1, 1001 − vk
1], and vk

3 ∈R

[max{900 − vk
1 − vk

2 ; 1},min{1100 − vk
1 − vk

2 ; 1001 − vk
1}], and wk ∈R [1, 1000].

For each type of instances and each value of n presented in this study, 10 different instances

were generated. In the following, we denote by pTn a p criteria instance of type T with n

items. For example 2A100 denotes a bi-objective instance of type A with 100 items.

Figure 2: Repartition in the criterion space of values of items for one instance of each type

5.2 Results in the bi-objective case

The goals of the experiments in the bi-objective case are:

(a) to determine the best order to sort items in our approach (section 5.2.1)

(b) to evaluate the cardinality of the set of non-dominated criterion vectors on different types

of instances (section 5.2.2)

(c) to analyze the impact of using dominance relations Dk
∆, Dk

b , and Dk
r (section 5.2.3)

(d) to analyze the performance of our approach on large size instances (section 5.2.4)

(e) to compare our approach with other exact methods (section 5.2.5)

17

5.2.1 Item order

Table 1: Impact of different orders of items in our approach (Average CPU time in seconds)

Type n Omax Osum Omin Random

A 300 84.001 (−53%) 100.280 (−44%) 94.598 (−47%) 178.722

B 600 1.141 (−99%) 1.084 (−99%) 1.403 (−98%) 77.699

C 200 59.986 (−44%) 60.061 (−44%) 85.851 (−20%) 107.973

D 90 20.795 (−34%) 23.687 (−25%) 35.426 (+12%) 31.659

The increase or the decrease (expressed in percent) of CPU time compared to the CPU time obtained when

items are selected randomly is given in brackets.

The way of ordering items has a dramatic impact on the CPU time, has shown in Table 1. We

compare, on 10 instances of each type, the results obtained using the three orders presented

in section 4.1 (Omax, Osum, and Omin) and results obtained with a random order of objects.

Table 1 shows clearly that order Omax is significantly better for all types of instances. Thus,

in the following, items are sorted and labeled according to Omax.

5.2.2 Cardinality of the set of non-dominated criterion vectors

Figure 3 shows the evolution of the average cardinality of the set of non-dominated criterion

vectors for 10 instances of each type. As expected, instances of type B are quasi single-

objective instances and have very few non-dominated criterion vectors. Even if instances of

type A have more non-dominated criterion vectors than instances of type B, the conflicting

instances (type C and D) have many more non-dominated criterion vectors than the other

types of instances.

Figure 3: Average cardinality of the set of non-dominated criterion vectors as a function of n

18

5.2.3 Impact of each dominance relation

We compare, in Table 2, the average CPU time obtained using dominance relation Dk
∆ alone,

relations Dk
r and Dk

∆, relations Dk
∆ and Dk

b , and finally relations Dk
r , Dk

∆, and Dk
b all together.

Table 2 shows clearly that it is always better to use these three relations together, due to their

complementarity. Thus, in the following experiments, we always apply these three relations

together.

Table 2: Complementarity of dominance relations Dk
r , Dk

∆, and Dk
b in our approach (Average

CPU time in seconds)

Type n Dk
∆ Dk

r and Dk
∆ Dk

∆ and Dk
b Dk

r , Dk
∆, and Dk

b

A 300 272.628 157.139 (−42.4%) 85.076 (−68.8%) 84.001 (−69.2%)

B 600 230.908 174.015 (−24.6%) 1.188 (−99.5%) 1.141 (−99.5%)

C 200 122.706 63.557 (−48.2%) 61.696 (−49.7%) 59.986 (−51.1%)

D 90 46.137 24.314 (−47.3%) 23.820 (−48.4%) 20.795 (−54.9%)

The decrease (expressed in percent) of CPU time compared to the CPU time obtained when using only

relation Dk
∆ in our approach is given in brackets.

To illustrate further the impact and complementarity of each dominance relation, we

indicate, in Table 3, the number of states respectively removed by relations Dk
r , Dk

∆, and Dk
b

for one instance (with p = 2, and n = 20) of each type. In addition, the number of non-

feasible states obtained at each phase and the cardinality of Ck is given. For instance 2B20,

the most efficient relation in terms of removed states is relation Dk
b . This is not surprising,

since the values of the non-dominated extensions of a state sk are not spread, and thus the

upper bound for sk, which is an upper bound on the ideal point associated to the extensions

of sk, is very close to the values of the extensions of sk. However, even if this relation removes

many states in all others instances, the most efficient relation, for the others instances, is

relation Dk
∆. It removes up to 4609 states in instance 2D20, whereas relations Dk

r and Dk
b

remove respectively 504 and 1990 states, that is less states than the feasibility condition.

For all instances, relation Dk
r is the least efficient. Nevertheless, this relation is extremely

unexpensive in terms of CPU time. For instances of type C and D, even if relations Dk
∆ and

Dk
b remove the majority of the states, relation Dk

r removes a non negligible number of the

states.

5.2.4 Results on large size instances

We present, in Table 4, results of our approach on large size instances of each type. The

largest instances solved here are those of type B with 4000 items and the instances with the

largest number of non-dominated criterion vectors are those of type D with 250 items for

which the cardinality of the set of non-dominated criterion vectors is in average of 8154.7.

19

Table 3: Impact of Dk
r , Dk

∆, and Dk
b on one instance of type A, B, C and D for n = 20

One instance 2A20 where |ND | = 21

States

Phase Removed by non in

CkDk
r Dk

∆ Dk
b feasible

1 0 0 0 0 2

2 0 0 0 0 4

3 0 0 2 0 6

4 0 0 1 0 11

5 0 3 5 0 14

6 0 10 1 0 17

7 0 6 3 0 25

8 0 16 3 0 31

9 0 22 3 0 37

10 0 22 0 0 52

11 0 36 0 0 68

12 0 37 0 0 99

13 0 75 0 4 119

14 0 29 25 12 172

15 0 128 7 36 173

16 5 67 63 33 178

17 0 88 32 51 185

18 0 80 44 82 164

19 5 38 112 108 65

20 14 3 - 51 21

Total 24 660 301 377 -

One instance 2B20 where |ND| = 1

States

Phase Removed by non in

CkDk
r Dk

∆ Dk
b feasible

1 0 0 1 0 1

2 0 0 1 0 1

3 0 0 1 0 1

4 0 0 1 0 1

5 0 0 1 0 1

6 0 0 1 0 1

7 0 0 0 0 2

8 0 0 2 0 2

9 0 0 2 0 2

10 0 0 1 0 3

11 0 0 0 0 6

12 0 3 0 2 7

13 0 0 2 2 10

14 0 0 7 6 7

15 0 2 2 3 7

16 0 0 4 7 3

17 0 0 0 3 3

18 0 0 0 3 3

19 0 0 2 3 1

20 0 0 - 1 1

Total 0 5 28 30 -

One instance 2C20 where |ND | = 31

States

Phase Removed by non in

CkDk
r Dk

∆ Dk
b feasible

1 0 0 0 0 2

2 0 0 0 0 4

3 0 1 0 0 7

4 0 3 1 0 11

5 0 4 1 0 16

6 0 8 3 0 22

7 0 16 0 0 27

8 0 19 2 0 34

9 0 16 3 0 51

10 0 32 1 0 66

11 0 36 0 0 93

12 0 67 3 0 116

13 0 77 0 10 144

14 5 85 39 23 170

15 29 83 20 18 189

16 21 88 19 54 189

17 30 143 30 32 166

18 31 46 66 71 145

19 47 64 111 35 108

20 50 36 - 58 31

Total 213 824 299 301 -

One instance 2D20 where |ND | = 189

States

Phase Removed by non in

CkDk
r Dk

∆ Dk
b feasible

1 0 0 0 0 2

2 0 0 0 0 4

3 0 0 0 0 8

4 0 0 0 0 16

5 0 10 0 0 22

6 0 3 0 0 41

7 0 9 0 0 73

8 0 51 0 0 95

9 0 24 0 0 166

10 0 46 0 1 285

11 1 66 1 7 495

12 8 243 0 13 726

13 29 356 67 59 941

14 16 415 60 84 1307

15 60 575 241 180 1558

16 19 1157 198 269 1473

17 131 699 412 379 1325

18 59 599 425 508 1059

19 113 308 586 446 665

20 68 48 - 597 189

Total 504 4609 1990 2543 -

20

We can observe that the results of Figure 3 concerning the size of the set of non-dominated

criterion vectors are confirmed on large instances. The average maximum cardinality of Ck,

which is a good indicator of the memory storage needed to solve the instances, can be very

huge. This explains why we can only solve instances of type D up to 250 items.

Table 4: Results of our approach on large size instances

Type n
Time in s. |ND | Avg

Min Avg Max Min Avg Max maxk{|C
k|}

A

100 0.152 0.328 0.600 98 159.3 251 17134.7

200 6.768 12.065 21.025 416 529.0 729 209198.9

300 57.475 84.001 101.354 905 1130.7 1651 898524.7

400 243.215 307.093 369.999 1308 1713.3 2101 2230069.4

500 677.398 889.347 1198.190 2034 2537.5 2997 5120514.7

600 1833.080 2253.421 3116.670 2792 3593.9 4746 9983975.8

700 4046.450 5447.921 7250.530 3768 4814.8 5939 18959181.7

B

1000 4.328 8.812 15.100 105 157.0 218 134107.2

2000 139.836 251.056 394.104 333 477.7 630 1595436.1

3000 1192.190 1624.517 2180.860 800 966.9 1140 6578947.2

4000 4172.530 6773.264 8328.280 1304 1542.3 1752 18642759.0

C

100 1.564 2.869 4.636 406 558.2 737 103921.5

200 43.834 59.986 93.541 1357 1612.8 2018 918162.6

300 311.995 373.097 470.429 2510 2893.6 3297 3481238.4

400 1069.290 1390.786 1670.500 3763 4631.8 5087 9400565.3

500 2433.320 4547.978 6481.970 5111 7112.1 9029 21282280.5

D

100 36.450 40.866 54.267 1591 1765.4 2030 1129490.3

150 235.634 265.058 338.121 2985 3418.5 3892 4274973.9

200 974.528 1145.922 1497.700 4862 5464.0 6639 12450615.5

250 2798.040 3383.545 3871.240 7245 8154.7 8742 26999714.8

5.2.5 Comparison with other exact methods

The results of a comparative study, in the bi-objective case, between the exact method of

Captivo et al. [11], an exact method based on a commercial Integer Programming (IP) solver,

and our approach using Dk
r , Dk

∆, and Dk
b are presented in Table 5.

The Labeling Approach (LA) of Captivo et al. [11] was selected since it is the most efficient

method currently known. An exact method, of the ε-constraint type [22], using a commercial

IP solver was also considered for two major reasons. First, it is relatively easy to implement.

Second, it has much less storage problems than the two other methods, since each efficient

solution is found by solving one new 0-1 linear program. This ε-constraint method basically

consists of optimizing the first criterion while moving iteratively a constraint on the second

criterion. More precisely, in order to eliminate weakly efficient solutions, a slightly perturbed

objective function is used relying on the fact that the criterion vectors are integer valued (see

Algorithm 5). Cplex 9.0 is used as an IP solver in Algorithm 5 which is written in C++.

21

Algorithm 5: ε-constraint

Generate y one optimal solution of maxx∈X f1(x) ; Generate z one optimal solution of maxx∈X f2(x);1

Generate x1 one optimal solution of max{f2(x) : x ∈ X, f1(x) ≥ f1(y)};2

X⋆ ← X⋆ ∪ {x1} ; j ← 1;3

while f2(x
j) < f2(z) do4

/* optimize the function associated to the line passing through (f1(x
j), f2(x

j)) and

(f1(x
j)− 1, f2(z)) subject to a restriction on the second objective */

Generate xj+1 one optimal solution of5

max{(f2(z)− f2(x
j))f1(x) + f2(x) : x ∈ X, f2(x) ≥ f2(x

j) + 1};

X⋆ ← X⋆ ∪ {xj+1} ; j ← j + 1;6

return X⋆;7

The three methods have been used on the same instances and the same computer. For

LA, we used the source code, in C, obtained from the authors. Table 5 presents results, in the

bi-objective case, for instances of type A, B, C, and D for increasing size of n while LA can

solve all instances of the series considered. Due to storage requirements, LA can only solve

instances of type A up to 300 items, of type B up to 800 items, of type C up to 200 items,

and of type D up to 100 items. As a comparison, we recall (see Table 4) that our approach

can solve much larger size instances, respectively up to 700, 4000, 500, and 250 items.

Table 5: Comparison between the Labeling Approach (LA) of Captivo et al. [11], ε-constraint

method and our approach.

Type n
Avg time in s. Avg

LA ε-constraint Our approach |ND|

A

100 2.476 5.343 (+116%) 0.328 (−87%) 159.3

200 37.745 57.722 (+53%) 12.065 (−68%) 529.0

300 163.787 285.406 (+74%) 84.001 (−49%) 1130.7

B

600 27.694 27.543 (−1%) 1.141 (−96%) 74.3

700 47.527 29.701 (−38%) 2.299 (−95%) 78.6

800 75.384 68.453 (−9%) 5.280 (−93%) 118.1

C
100 12.763 208.936 (+1537%) 2.869 (−78%) 558.2

200 114.171 6584.012 (+5667%) 59.986 (−47%) 1612.8

D 100 127.911 23126.926 (+17980%) 40.866 (−68%) 1765.4

The decrease or increase (expressed in percent) of CPU time compared to the CPU time obtained with the Labeling

Approach (LA) of Captivo et al. [11] is given in brackets.

Considering CPU time, we can conclude that our approach is always faster than LA

and ε-constraint on the considered instances. Moreover, when the number of non-dominated

criterion vectors increases, CPU time becomes prohibitive for ε-constraint (about 6.5 hours

in average for instances 2D100), while storage limitations become restrictive for LA.

5.3 Results in the three-objective case

The goals of the experiments in the three-objective case are:

22

Figure 4: Evolution of the average cardinality of the set of non-dominated criterion vectors

for instances of type A and C in the bi-objective and three-objective cases in function of n

(a) to evaluate the size of the set of non-dominated criterion vectors (see Figure 4 and Table 6)

(b) to analyze the performance of our approach on large instances (see Table 6)

We compare, in Figure 4, the evolution of the cardinality of the set of non-dominated criterion

vectors in the bi-objective case and in the three-objective case for instances of type A and

C. We can observe that the addition of one criterion leads to an explosion of the average

cardinality of the set of non-dominated criterion vectors for both types of instances. For

example, for n = 50 the increase is about a factor 8.5 for instances of type A and about 20.5

for instances of type C.

Table 6: Results of our approach on instances of types A and C in the three-objective case.

type n
Time in s. |ND| Avg

Min Avg Max Min Avg Max maxk{|C
k|}

A

10 <1ms <1ms <1ms 4 8.3 18 20.9

30 <1ms 0.012 0.028 31 112.9 193 1213.2

50 0.112 0.611 1.436 266 540.6 930 12146.5

70 4.204 16.837 44.858 810 1384.4 2145 64535.4

90 80.469 538.768 2236.230 2503 4020.3 6770 285252.1

110 273.597 3326.587 11572.700 3265 6398.3 9394 601784.6

C

10 <1ms <1ms 0.004 5 17.7 32 53.4

20 0.004 0.030 0.184 80 300.2 1270 1557.8

30 0.016 0.431 2.076 72 649.1 2064 6861.1

40 1.008 3.684 12.336 1167 1538.9 2740 23837

50 4.840 83.594 316.811 1282 3650.9 6566 92155.4

60 73.704 2572.981 13607.100 3698 9647.9 22713 328238.8

We present, in table 6, results of our approach concerning large size instances of types

A and C in the three-objective case. Observe that the number of non-dominated criterion

23

vectors varies a lot. This explains the variation of the CPU time which is strongly related

with the number of non-dominated criterion vectors. Table 6 confirms for the three-objective

case that instances of type A are easier to solve than instances of type C, as in the bi-objective

case.

6 Conclusions

The purpose of this work has been to develop and experiment a new dynamic programming

algorithm to solve the 0 − 1 multi-objective knapsack problem. We showed that by using

several complementary dominance relations, we obtain a method which outperforms exper-

imentally the existing methods. In addition, our method is extremely efficient with regard

to the other methods on the conflicting instances that model real-world applications. Lastly,

this method is the first one to our knowledge that can be applied for knapsack problems with

more than two objectives and the results in the three-objective case are satisfactory.

While we focused in this paper on the 0− 1 multi-objective knapsack problem, we could

envisage in future research to apply dominance relations based on similar ideas to other

multi-objective problems, admitting a direct dynamic programming formulation, such as the

multi-objective shortest path problem or some multi-objective scheduling problems.

References

[1] M. Ehrgott and X. Gandibleux. A survey and annoted bibliography of multiobjective

combinatorial optimization. OR Spektrum, 22(4):425–460, 2000.

[2] M. Ehrgott. Multicriteria optimization. LNEMS 491. Springer, Berlin, 2005.

[3] S. Martello and P. Toth. Knapsack Problems. Wiley, New York, 1990.

[4] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, 2004.

[5] M. J. Rosenblatt and Z. Sinuany-Stern. Generating the discrete efficient frontier to the

capital budgeting problem. Operations Research, 37(3):384–394, 1989.

[6] J. Teng and G. Tzeng. A multiobjective programming approach for selecting

non-independent transportation investment alternatives. Transportation Research-B,

30(4):201–307, 1996.

[7] M. M. Kostreva, W. Ogryczak, and D. W. Tonkyn. Relocation problems arising in

conservation biology. Computers and Mathematics with Applications, 37(4-5):135–150,

1999.

[8] Larry Jenkins. A bicriteria knapsack program for planning remediation of contaminated

lightstation sites. European Journal of Operational Research, 140(2):427–433, 2002.

24

[9] K. Klamroth and M. Wiecek. Dynamic programming approaches to the multiple criteria

knapsack problem. Naval Research Logistics, 47(1):57–76, 2000.

[10] M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch

and bound procedures to solve the bi-objective knapsack problem. Journal of Global

Optimization, 12(2):139–155, 1998.

[11] M. E. Captivo, J.C.N. Cĺımaco, J.R. Figueira, E.Q.V. Martins, and J. L. Santos. Solving

bicriteria 0-1 knapsack problems using a labeling algorithm. Computers and Operations

Research, 30(12):1865–1886, 2003.

[12] C.G. Da Silva, J.C.N. Cĺımaco, and J.R. Figueira. Core problems in the bi-criteria {0,1}

knapsack: new developments. Research Report 12, INESC-Coimbra, 2005.

[13] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knapsack prob-

lems. Management Science, 48(12):1603–1612, 2002.

[14] X. Gandibleux and A. Freville. Tabu search based procedure for solving the 0−1 multiob-

jective knapsack problem: the two objectives case. Journal of Heuristics, 6(3):361–383,

2000.

[15] C.G. Da Silva, J.C.N. Cĺımaco, and J.R. Figueira. A scatter search method for bi-criteria

{0-1}-knapsack problems. European Journal of Operational Research, 169(2):373–391,

2006.

[16] C.G. Da Silva, J.C.N. Cĺımaco, and J.R. Figueira. Integrating partial optimization

with scatter search for solving bi-criteria {0-1}-knapsack problems. European Journal of

Operational Research, 177(3):1656–1677, 2007.

[17] C. Berge. Graphs. North Holland, 1985.

[18] H.M. Weignartner and D.N. Ness. Methods for the solution of the multi-dimensional 0/1

knapsack problem. Operations Research, 15(1):83–103, 1967.

[19] G.L. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital allocation.

Management Science, 15(9):494–505, 1969.

[20] M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization

problems. Computers and Operations Research, 34(9):2674–2694, 2007.

[21] H.T. Kung, F. Luccio, and F.P. Preparata. On finding the maxima of set of vectors.

Journal of the Association for Computing Machinery, 22(4):469–476, 1975.

[22] V. Chankong and Y. Y. Haimes. Multiobjective decision making. Elsevier Science Pub-

lishing, New York (USA), 1983.

25

