
Designing Application-Speci�c NeuralNetworks using the Structured GeneticAlgorithm.�Dipankar Dasgupta and Douglas R. McGregor.dasgupta@cs.strath.ac.uk and douglas@cs.strath.ac.ukDepartment of Computer ScienceUniversity of StrathclydeGlasgow G1 1XHU. K.AbstractWe present a di�erent type of genetic algorithm called the Structured Genetic Al-gorithm (sGA) for the design of application-speci�c neural networks. The novelty ofthis new genetic approach is that it can determine the network structures and theirweights solely by an evolutionary process. This is made possible for sGA primarily dueto its redundant genetic material and a gene activation mechanism which in combina-tion provide a multi-layered structure to the chromosome. In this paper, we focus onthe use of this learning algorithm for automatic generation of a complete applicationspeci�c neural network. With this approach, no a priori assumptions about topologyare needed and the only information required is the input and output characteristics ofthe task. The empirical studies show that sGA can e�ciently determine the networksize and topology along with the optimal set of connection weights appropriate fordesired tasks, without using back-propagation or any other learning algorithm.1 IntroductionThe use of genetic algorithms (GA)(Holland, 1975; Goldberg, 1989) for designing the neu-ral networks encompasses three major features. (1) It automatically discovers (by globalsearch) the optimized network architecture for performing given tasks in which researchershad otherwise manually carry out trial- and- error processes to �nd near-optimal networkarchitecture. (2) It is similar to biological process in that the blue print is encoded in the�In Proceedings of COGANN-92 (International Workshop on Combinations of Genetic Algorithms andNeural Networks), June 6, 1992, USA. Editors: L.D. Whitley and J.D. Scha�er. Publisher : IEEE ComputerSociety Press. 1



chromosome. This is modi�ed through evolutionary process, and the expressed phenotypebased on information encoded in the chromosome represents a neural network structure.(3) Genetic algorithms make almost no assumptions about the problem space it is search-ing (e.g. it does not require any gradient information for neural network learning). Thecombination of genetic search and connectionist computation seems to be a very naturalone, which has already become popular and exhibits some success in di�erent applications.However, most of the genetic-neural work so far has usually taken one of the two forms:� the overall designing of neural network architectures using genetic algorithms (Harpet al., 1989; Whitley et al., 1990; Harp et al., 1990; Miller et al., 1989; Mari�ci_c andNikolov, 1990) that employ backpropagation(BP) learning algorithm for �nding set ofconnection weights of the architecture to perform speci�c tasks.� the determining of an optimal set of connection weights using genetic algorithms,namely, versions of GENITOR, GENESIS etc. (Whitley and Hanson, 1989; Whit-ley and Starkweather, 1990; Montana and Davis, 1989; Chalmers, 1990; de Garis,1990) for �xed predetermined network structures (i.e. de�ned number of nodes andtheir connectivities). Moreover, Kitano used GA-BP(Kitano, 1990b) for neural net-work weight optimization. Speci�cally, he used GA to locate a point in weight-biasspace which is a near-optimal solution; then the backpropagation algorithm was usedto conduct an e�cient local search for �ne-tuning of weights and biases.Recently there have been a few studies on the use of genetic algorithms for designingneural networks without using back propagation (Marti, 1992; Hintz and Spo�ord, 1990;Koza and Rice, 1991). Our method is an alternative approach with distinct following feature.The Structured Genetic Algorithm (Dasgupta and McGregor, 1992d) de�nes the networkcon�guration and its connection weights in its chromosome and both the sets of parametersare optimized simultaneously in single evolutionary process. So the Structured GeneticAlgorithm, while searching for optimal topology, simultaneously searches for set of optimalconnection weights in the population in every generation, resulting in smaller networks.2 Structured Genetic Algorithm(sGA)The central feature of sGA is its use of genetic redundancy and quasi-hierarchical structure inits genotype. The primary mechanism for eliminating the con
ict of redundancy is throughregulatory genes (as in biological systems) which act as switching operators to turn set ofgenes on and o� respectively.The sGA uses haploid genetic model, the chromosome is represented as a set of (bi-nary) strings. The model also uses conventional genetic operators and the survival of the�ttest criterion to evolve increasingly �t individual o�spring. However, it di�ers considerablyfrom Simple GAs in encoding genetic information in the chromosome, and in its phenotypicinterpretation in following ways: 2



� sGA utilises chromosomes with a largely hierarchical directed graph genetic structure.As an example, sGA's having a two-level hierarchy directed graph structure of genes areshown in �gure 1(a), and chromosomal representations of these structures are shownin �gure 1(b).� Genes at any level can be either active or passive .� High level genes activate or deactivate sets of lower level genes. So the dynamic be-havior of genes at any level (i.e whether they will be expressed phenotypically or not)is governed by higher leverage genes.
Figure (a).    A   2-level  structure  of  sGA.
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Figure (b).   A  string  formation  of  sGA.
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2 31 1211 13 21 22 23 31 32 33Figure 1: A Representation of the Structured Genetic Algorithm.Thus a single change at higher level represents multiple changes at lower levels in termsof genes which are active and it produces an e�ect on the phenotype that could only beachieved in simple GA by a sequence of many random changes. However, genes which arenot active (passive genes) do not disappear, they remain in the chromosome structure andare carried in a neutral and apparently redundant form to subsequent generations with theindividual's string of genes for future potential use. So genetic operations (crossover andmutation) altering high-level genes result in changes in the active elements of the directedgraphs and hence control the development of �tness of the phenotype. Thus the StructuredGenetic model allows large variations in the phenotype while maintaining high viability. Itintroduces a new type of intra-chromosome operation which allows coordinated multiple bitchanges in the active genes in a single generation. It is therefore able to function well incomplex environments.Further information on sGA and a simplemathematicalmodel with some empirical resultsmay be found elsewhere (Dasgupta and McGregor, 1992d; Dasgupta and McGregor, 1992c).3 Network design using sGAFigure 2 shows the working principle of sGA for designing an application speci�c neuralnetwork architectures (Dasgupta and McGregor, 1992a).3
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Figure 3: A two-level sGA representating neural network.For representing high level portion of genotype, we have used a connectivity matrixrepresentation (Kitano, 1990a; Miller et al., 1989) as shown in �gure 3, and encoded genesare arranged in row-major fashion. Each bit in the high level of the chromosome representsan individual connection which can take the value `1' or `0', the value `1' meaning that theconnection is established. Accordingly column j represents the fan-in of connections to unit4



j and row i represents fan-out of connections from unit i.A feedforward network is one whose topology has no closed paths. Its input nodes arethe ones with no arcs to them and its output nodes have no arcs away from them. Since weare examining here only feed-forward networks, we need only a upper-right triangle of theconnectivity matrix (Kitano, 1990a) as shown in �gure 3, but the complete matrix would berequired to generate recurrent networks.The de�nition of neural network performance depends on the application. If the applica-tion requires good generalization capabilities, the results of testing on (appropriately chosen)non-training data are important. If a network capable of real-time learning is required, thelearning rate must be maximized. Low connectivity is similarly bene�cial. In most applica-tions several such criteria must be considered. In the sGA approach, these important aspectsof application-speci�c network design may be included in the evaluation function.4 Fitness function and reward scheme.In every generation, each chromosome is decoded into its phenotype (a network structurewith its weights), and its �tness is evaluated by taking into account the feasibility of thestructure and its ability to learn a set of training signals. More speci�cally, since sGA isused to �nd both an optimal architecture and the synapse weights, the evaluation func-tion must include not only a measure of sum-square-error (e.g., MSE), but also a feasibilitymeasure of network structure and its complexity (i.e., number of nodes and their connectiv-ities). The higher the �tness of an individual, the more stable the topology (no high-levelchanges) and greater the probability of its being selected as parent in the subsequent gen-erations. In a randomly-generated initial population there are likely to be a large numberof individuals which show poor performance due to two reasons: �rst, they have a infea-sible network structure i.e., improper connectivity pattern; and second, arbitrary values ofweight-bias parameters, may be far from optimum (even though the structure is feasible).A network structure is infeasible if there exists no path from input nodes, and/or to outputnodes, if there is fan-in to a hidden node but no fan-out or vice versa, if any unreachablesubstructure etc. The infeasibility measures quanti�es the amount by which an individualstructure is having deformation (congenital defects). In our �tness criterion, if an individ-ual decodes to a feasible structure, it is rewarded such that its high-level portion remainsstable during subsequent generations, while only the weight-bias space is explored. Also thefeasible individuals which have fewer nodes and links get a selection advantage for repro-duction relative to the competing feasible individuals with more complex structures. Sincewe are rewarding only the feasible structures, there is no chance of an individual structuregetting reward by pruning all its connections and nodes so as to become infeasible. Thismeans that networks with fewer nodes and links are given more learning opportunities overother feasible structures, similar to that used in (Whitley et al., 1990). The individualsdecoding to infeasible structures are penalized according to their deformation and undergo ahigher mutation probability in their high-level, the structural portion of their genome whenselected for reproduction. They thus also have the chance to reproduce by changing their5



connectivity pattern (which may result in feasible o�spring) and become stable membersof the population. Exploration of new feasible structures and evolution of weights of theexisting stable networks continues until the optimized network architecture evolves or wholepopulation converges to a feasible network architecture. We have used a ranking selectionscheme (Baker, 1985) in which a viable individual receives an expected number of o�springwhich is based on the rank of performance and not on its magnitude.5 ExperimentsAs a preliminary study, we have conducted the following two experiments often used fortesting and benchmarking network design techniques. The �rst problem is the well-knownexclusive-or (XOR) function which is not linearly separable and requires the use of hiddenunits to learn the task. The second problem is a 4 by 4 encoder/decoder problem. Forthese application-speci�c network designs, we used the training set that contains all pos-sible input patterns, and also de�ned a number of input/output nodes (for �rst problem2-X-1 and second problem 4-X-4, where X represents number of hidden nodes which is alsoa determining factor). sGA starts with a random initial population of network con�gura-tions and reliably discovers a combination of connections of optimal network structures byexploring the space of possible connectivities (removing or introducing connections throughgenetic operations) that enhance learning ability. We used the logistic transfer function inall the nodes, except the output nodes, where sigmoid function is used, as it is useful thatthe error on the output nodes be continuous (Whitley et al., 1990), not just discrete, sinceit allows the genetic algorithm to better discriminate between the performance of di�erentstrings representing di�erent solutions. Our experiments have the following parameters. Thepopulation size was 100 and each weight-bias space is encoded with 10 bits in the range of-2 to +2. Two di�erent size (8 and 16) of connectivity matrix were used for the problems.Di�erent GA parameter sets (e.g population size, crossover and mutation probabilities) andselection schemes were also tested. The experiments here used a two point crossover opera-
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AVGFigure 4: Convergence of population resulting in the evolution of neural networks.tor with probability of 70%; both varying and adaptive mutations (Kitano, 1990a; Whitleyand Hanson, 1989; Whitley et al., 1990) are used in two-levels of sGA respectively. The6



0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

FI
T

N
E

SS
  F

U
N

C
T

IO
N

 EXCLUSIVE-OR  PROBLEM

G E N E R A T I O N S

MAX
AVGFigure 5: Using Mixed encoding in sGA for solving XOR problem.results reported here averaged over 10 independent runs. The performance of the sGA indesigning optimal neural networks for solving the two problems are shown in �gure 4(a)and 4(b) respectively. For both the problems, feasible structures were evolved (�tness of0.5) within 100 (7000 recombinations) generations and an optimal solution was produced forXOR in 200 generations and for encoder problem in 350 generations. However, some moregenerations were required to converge the whole population.Despite solving the problems with binary encoding of both search spaces, it could notscale up properly as the network size increases (Whitley et al., 1990).We then used a mixed encoding technique, where the high level portion of the chromosomeis a binary-coded representing connectivity and the low level is a real-valued space encodingweight-bias (Menczer and Parisi, 1992; Hintz and Spo�ord, 1990; Montana and Davis, 1989).Each weight-bias space is represented by a single real-value and recombination can onlyoccur between weights. A higher level of mutation is used (Whitley et al., 1990; Whitleyand Bogart, 1990; Davis, 1991) and the mutation is such that a random value (range -0.1to +0.1 here) is added to the existing weight rather than replacing it. This mixed encodingapproach exhibits rapid convergence and improved results (shown in �gure 5).The algorithm is implemented on a sparc workstation in unix environment. The resultsdemonstrate the e�ectiveness of using the structured genetic algorithm in evolving optimalneural networks in comparison to the simple genetic algorithms and other optimizationtechniques.6 Discussion and further workWe are currently investigating a three-level sGA, where the top level de�nes the number ofnodes, the middle level de�nes connectivity, and low level de�nes weight-bias space.In dealing with larger network sizes, encoding a long chromosomal string, a genetic search�nds di�culty, since the genetic algorithm exploits schemata representing hyperplanes: in-7



creasing the size of the encoding increases the exploration of con
icting schemata and repre-sentations in order to �nd good schemata (Whitley and Hanson, 1989). The success of GAin neural network application depends on an ability to scale up from small networks and low-dimensional `toy' problems to networks of thousands or millions of nodes of high-dimensionalreal-world problems (Rogers, 1990).For solving small neural network problems, direct encoding of connectivity informationin the higher level of chromosome proves e�cient. But in dealing with the larger networkarchitectures (currently under investigation) it may be useful to use a graph grammaticalencoding as mentioned by (Kitano, 1990a) for determining optimal connectivity. Since sGAsimultaneously explores structure and weight-space, a dynamic parameter encoding tech-nique(DPE) (Schraudolph and Belew, 1992) may be useful to focus the search on thoseregions with least variability for �ne tuning of connection weights. We have not yet ex-plored the above modi�cations. However, there may be other possible ways of implementingthe Structured Genetic Model, such as incorporating the idea of Cellular Encoding (Gruau,1992).The Structured Genetic Approach o�ers the following advantages:� It requires neither the assumption of any �xed architecture nor any gradient informa-tion technique (like backpropagation) at any level of its network evolving process.� It is able to evolve reasonably small application speci�c network architectures.� The mixed encoding scheme ensures better scalability and speed of convergence.� For large problems, it may be able to learn quickly (compared to existing methods)when evolve in highly parallel machines e.g. Super Node of Transputers (Bessiere,1991).� Most modi�cations applicable to simple genetic algorithms may be equally applicableto sGA (in its di�erent layers) for further enhancing its performance.� Biological plausibility is one of the most attractive points of this model.Of course, much work remains to be done to draw any �rm conclusion. Our previousexperimental results of sGA for non-stationary (Dasgupta and McGregor, 1992c) and multi-modal (Dasgupta and McGregor, 1992b) function optimizations exhibited that it is superiorwhen compared with simple genetic algorithms. We feel that the application of sGA toneural network training and design is a much more open area of research.AcknowledgementsThe �rst author gratefully acknowledges the support given by the Government of Assam(India) for awarding the State Overseas Scholarship. We also acknowledge the help of ourcolleagues in the Intelligent Knowledge Base System (IKBS) Research Group.8
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