Designing Application-Specific Neural
Networks using the Structured (Genetic
Algorithm.”

Dipankar Dasgupta and Douglas R. McGregor.
dasgupta@cs.strath.ac.uk and douglas@cs.strath.ac.uk
Department of Computer Science
University of Strathclyde
Glasgow G1 1XH
U. K.

Abstract

We present a different type of genetic algorithm called the Structured Genetic Al-
gorithm (sGA) for the design of application-specific neural networks. The novelty of
this new genetic approach is that it can determine the network structures and their
weights solely by an evolutionary process. This is made possible for sGA primarily due
to its redundant genetic material and a gene activation mechanism which in combina-
tion provide a multi-layered structure to the chromosome. In this paper, we focus on
the use of this learning algorithm for automatic generation of a complete application
specific neural network. With this approach, no a priori assumptions about topology
are needed and the only information required is the input and output characteristics of
the task. The empirical studies show that sGA can efficiently determine the network
size and topology along with the optimal set of connection weights appropriate for
desired tasks, without using back-propagation or any other learning algorithm.

1 Introduction

The use of genetic algorithms (GA)(Holland, 1975; Goldberg, 1989) for designing the neu-
ral networks encompasses three major features. (1) It automatically discovers (by global
search) the optimized network architecture for performing given tasks in which researchers
had otherwise manually carry out trial- and- error processes to find near-optimal network
architecture. (2) It is similar to biological process in that the blue print is encoded in the

“In Proceedings of COGANN-92 (International Workshop on Combinations of Genetic Algorithms and
Neural Networks), June 6, 1992, USA. Editors: L.D. Whitley and J.D. Schaffer. Publisher : IEEE Computer
Society Press.

chromosome. This is modified through evolutionary process, and the expressed phenotype
based on information encoded in the chromosome represents a neural network structure.

(3) Genetic algorithms make almost no assumptions about the problem space it is search-
ing (e.g. it does not require any gradient information for neural network learning). The
combination of genetic search and connectionist computation seems to be a very natural
one, which has already become popular and exhibits some success in different applications.
However, most of the genetic-neural work so far has usually taken one of the two forms:

e the overall designing of neural network architectures using genetic algorithms (Harp
et al., 1989; Whitley et al., 1990; Harp et al., 1990; Miller et al., 1989; Marici¢c and
Nikolov, 1990) that employ backpropagation(BP) learning algorithm for finding set of
connection weights of the architecture to perform specific tasks.

o the determining of an optimal set of connection weights using genetic algorithms,
namely, versions of GENITOR, GENESIS etc. (Whitley and Hanson, 1989; Whit-
ley and Starkweather, 1990; Montana and Davis, 1989; Chalmers, 1990; de Garis,
1990) for fixed predetermined network structures (i.e. defined number of nodes and
their connectivities). Moreover, Kitano used GA-BP(Kitano, 1990b) for neural net-
work weight optimization. Specifically, he used GA to locate a point in weight-bias
space which is a near-optimal solution; then the backpropagation algorithm was used
to conduct an efficient local search for fine-tuning of weights and biases.

Recently there have been a few studies on the use of genetic algorithms for designing
neural networks without using back propagation (Marti, 1992; Hintz and Spofford, 1990;
Koza and Rice, 1991). Our method is an alternative approach with distinct following feature.

The Structured Genetic Algorithm (Dasgupta and McGregor, 1992d) defines the network
configuration and its connection weights in its chromosome and both the sets of parameters
are optimized simultaneously in single evolutionary process. So the Structured Genetic
Algorithm, while searching for optimal topology, simultaneously searches for set of optimal
connection weights in the population in every generation, resulting in smaller networks.

2 Structured Genetic Algorithm(sGA)

The central feature of sGA is its use of genetic redundancy and quasi-hierarchical structure in
its genotype. The primary mechanism for eliminating the conflict of redundancy is through
regulatory genes (as in biological systems) which act as switching operators to turn set of
genes on and off respectively.

The sGA uses haploid genetic model, the chromosome is represented as a set of (bi-
nary) strings. The model also uses conventional genetic operators and the survival of the
fittest criterion to evolve increasingly fit individual offspring. However, it differs considerably
from Simple GAs in encoding genetic information in the chromosome, and in its phenotypic
interpretation in following ways:

o sGA utilises chromosomes with a largely hierarchical directed graph genetic structure.
As an example, sGA’s having a two-level hierarchy directed graph structure of genes are
shown in figure 1(a), and chromosomal representations of these structures are shown

in figure 1(b).
e Genes at any level can be either active or passive .

o High level genes activate or deactivate sets of lower level genes. So the dynamic be-
havior of genes at any level (i.e whether they will be expressed phenotypically or not)
is governed by higher leverage genes.

& Q

/N /N /N

a, 4, a; & &, &, 8 8, a3 level 2

level 1

Figure(@). A 2-level structure of sGA.

(al a8, a,a,a;a, a,a,a; a, a;) -achromosome
Figure(b). A string formation of sGA.

Figure 1: A Representation of the Structured Genetic Algorithm.

Thus a single change at higher level represents multiple changes at lower levels in terms
of genes which are active and it produces an effect on the phenotype that could only be
achieved in simple GA by a sequence of many random changes. However, genes which are
not active (passive genes) do not disappear, they remain in the chromosome structure and
are carried in a neutral and apparently redundant form to subsequent generations with the
individual’s string of genes for future potential use. So genetic operations (crossover and
mutation) altering high-level genes result in changes in the active elements of the directed
graphs and hence control the development of fitness of the phenotype. Thus the Structured
Genetic model allows large variations in the phenotype while maintaining high viability. It
introduces a new type of intra-chromosome operation which allows coordinated multiple bit
changes in the active genes in a single generation. It is therefore able to function well in
complex environments.

Further information on sGA and a simple mathematical model with some empirical results
may be found elsewhere (Dasgupta and McGregor, 1992d; Dasgupta and McGregor, 1992c).

3 Network design using sGA

Figure 2 shows the working principle of sGA for designing an application specific neural
network architectures (Dasgupta and McGregor, 1992a).

training

nput

genetic
operation

. New A
popul ati on popul ation optim zed
of network of networkl-1----» network
t opol ogy t opol ogy structure

Evol uti onary process

Figure 2: Designing process of neural network.

For the empirical studies here we have considered a two-level Structured Genetic Algo-
rithm. Fach individual is composed of two-segments of strings which represent the two-level
of genomic structure; the higher level defines the connectivity, the lower encodes the connec-
tion weights and biases. The high level of sGA searches the connectivity space of N units (to
evolve a minimal network structure), while the low-level searches for optimized connection
weights of the network. The fitness of each individual is determined by the combination of
its two components, i.e., each individual is treated as a single complete network. A set of
individuals (population) is generated randomly to initialize the evolution-learning process.

connectivity l
12345678/E:;2;t13rmz:d @
1 0000110 net wor k
. 2 0N000110
unit from 5 5 o N0 0000
4 00010000 () (D
5 00011\ 00
6 00000 0N 1
7011010 (8)
801000001 I

(a) Connectivity matrix (b) A defined network.

hi gh- 1 evel [ow | evel
|0 0001100001 ====11| 1000110101011121110000 = = = = = = = = = OOlllOOOOOlllq
connectivity definition wei ght - bi as space

(c) Chronosomal representation of a network topology in sGA

Figure 3: A two-level sGA representating neural network.

For representing high level portion of genotype, we have used a connectivity matrix
representation (Kitano, 1990a; Miller et al., 1989) as shown in figure 3, and encoded genes
are arranged in row-major fashion. Each bit in the high level of the chromosome represents
an individual connection which can take the value ‘17 or ‘0’, the value ‘1" meaning that the
connection is established. Accordingly column j represents the fan-in of connections to unit

4

7 and row ¢ represents fan-out of connections from unit ¢.

A feedforward network is one whose topology has no closed paths. Its input nodes are
the ones with no arcs to them and its output nodes have no arcs away from them. Since we
are examining here only feed-forward networks, we need only a upper-right triangle of the
connectivity matrix (Kitano, 1990a) as shown in figure 3, but the complete matrix would be
required to generate recurrent networks.

The definition of neural network performance depends on the application. If the applica-
tion requires good generalization capabilities, the results of testing on (appropriately chosen)
non-training data are important. If a network capable of real-time learning is required, the
learning rate must be maximized. Low connectivity is similarly beneficial. In most applica-
tions several such criteria must be considered. In the sGA approach, these important aspects
of application-specific network design may be included in the evaluation function.

4 Fitness function and reward scheme.

In every generation, each chromosome is decoded into its phenotype (a network structure
with its weights), and its fitness is evaluated by taking into account the feasibility of the
structure and its ability to learn a set of training signals. More specifically, since sGA 1is
used to find both an optimal architecture and the synapse weights, the evaluation func-
tion must include not only a measure of sum-square-error (e.g., MSE), but also a feasibility
measure of network structure and its complexity (i.e., number of nodes and their connectiv-
ities). The higher the fitness of an individual, the more stable the topology (no high-level
changes) and greater the probability of its being selected as parent in the subsequent gen-
erations. In a randomly-generated initial population there are likely to be a large number
of individuals which show poor performance due to two reasons: first, they have a infea-
sible network structure i.e., improper connectivity pattern; and second, arbitrary values of
weight-bias parameters, may be far from optimum (even though the structure is feasible).
A network structure is infeasible if there exists no path from input nodes, and/or to output
nodes, if there is fan-in to a hidden node but no fan-out or vice versa, if any unreachable
substructure etc. The infeasibility measures quantifies the amount by which an individual
structure is having deformation (congenital defects). In our fitness criterion, if an individ-
ual decodes to a feasible structure, it is rewarded such that its high-level portion remains
stable during subsequent generations, while only the weight-bias space is explored. Also the
feasible individuals which have fewer nodes and links get a selection advantage for repro-
duction relative to the competing feasible individuals with more complex structures. Since
we are rewarding only the feasible structures, there is no chance of an individual structure
getting reward by pruning all its connections and nodes so as to become infeasible. This
means that networks with fewer nodes and links are given more learning opportunities over
other feasible structures, similar to that used in (Whitley et al., 1990). The individuals
decoding to infeasible structures are penalized according to their deformation and undergo a
higher mutation probability in their high-level, the structural portion of their genome when
selected for reproduction. They thus also have the chance to reproduce by changing their

connectivity pattern (which may result in feasible offspring) and become stable members
of the population. Exploration of new feasible structures and evolution of weights of the
existing stable networks continues until the optimized network architecture evolves or whole
population converges to a feasible network architecture. We have used a ranking selection
scheme (Baker, 1985) in which a viable individual receives an expected number of offspring
which is based on the rank of performance and not on its magnitude.

5 Experiments

As a preliminary study, we have conducted the following two experiments often used for
testing and benchmarking network design techniques. The first problem is the well-known
exclusive-or (XOR) function which is not linearly separable and requires the use of hidden
units to learn the task. The second problem is a 4 by 4 encoder/decoder problem. For
these application-specific network designs, we used the training set that contains all pos-
sible input patterns, and also defined a number of input/output nodes (for first problem
2-X-1 and second problem 4-X-4, where X represents number of hidden nodes which is also
a determining factor). sGA starts with a random initial population of network configura-
tions and reliably discovers a combination of connections of optimal network structures by
exploring the space of possible connectivities (removing or introducing connections through
genetic operations) that enhance learning ability. We used the logistic transfer function in
all the nodes, except the output nodes, where sigmoid function is used, as it is useful that
the error on the output nodes be continuous (Whitley et al., 1990), not just discrete, since
it allows the genetic algorithm to better discriminate between the performance of different
strings representing different solutions. Our experiments have the following parameters. The
population size was 100 and each weight-bias space is encoded with 10 bits in the range of
-2 to +2. Two different size (8 and 16) of connectivity matrix were used for the problems.
Different GA parameter sets (e.g population size, crossover and mutation probabilities) and
selection schemes were also tested. The experiments here used a two_point crossover opera-

(3) EXCLUSIVE-OR PROBLEM (b) ENCODER / DECODER PROBLEM

1) 1l
pd 2
8 5
E 08| E 08|
zZ P4
5 06 > 06|
4 04| g 04|
4
- L MAX —— = L MAX ——
T 02 AVG —— T 02 AVG —s—

O L L L O 1 1 L

0 100 200 300 400 0 150 300 450 600
GENERATIONS GENERATIONS

Figure 4: Convergence of population resulting in the evolution of neural networks.

tor with probability of 70%; both varying and adaptive mutations (Kitano, 1990a; Whitley
and Hanson, 1989; Whitley et al., 1990) are used in two-levels of sGA respectively. The

EXCLUSIVE-OR PROBLEM

08

06 1

04t

MAX ——

0.2 AVG ——

FITNESS FUNCTION

0 50 100 150 200
GENERATIONS

Figure 5: Using Mixed encoding in sGA for solving XOR problem.

results reported here averaged over 10 independent runs. The performance of the sGA in
designing optimal neural networks for solving the two problems are shown in figure 4(a)
and 4(b) respectively. For both the problems, feasible structures were evolved (fitness of
0.5) within 100 (7000 recombinations) generations and an optimal solution was produced for
XOR in 200 generations and for encoder problem in 350 generations. However, some more
generations were required to converge the whole population.

Despite solving the problems with binary encoding of both search spaces, it could not
scale up properly as the network size increases (Whitley et al., 1990).

We then used a mixed encoding technique, where the high level portion of the chromosome
is a binary-coded representing connectivity and the low level is a real-valued space encoding
weight-bias (Menczer and Parisi, 1992; Hintz and Spofford, 1990; Montana and Davis, 1989).
Each weight-bias space is represented by a single real-value and recombination can only
occur between weights. A higher level of mutation is used (Whitley et al., 1990; Whitley
and Bogart, 1990; Davis, 1991) and the mutation is such that a random value (range -0.1
to 0.1 here) is added to the existing weight rather than replacing it. This mixed encoding
approach exhibits rapid convergence and improved results (shown in figure 5).

The algorithm is implemented on a sparc workstation in unix environment. The results
demonstrate the effectiveness of using the structured genetic algorithm in evolving optimal
neural networks in comparison to the simple genetic algorithms and other optimization
techniques.

6 Discussion and further work

We are currently investigating a three-level sGA, where the top level defines the number of
nodes, the middle level defines connectivity, and low level defines weight-bias space.

In dealing with larger network sizes, encoding a long chromosomal string, a genetic search
finds difficulty, since the genetic algorithm exploits schemata representing hyperplanes: in-

creasing the size of the encoding increases the exploration of conflicting schemata and repre-
sentations in order to find good schemata (Whitley and Hanson, 1989). The success of GA
in neural network application depends on an ability to scale up from small networks and low-
dimensional ‘toy’ problems to networks of thousands or millions of nodes of high-dimensional
real-world problems (Rogers, 1990).

For solving small neural network problems, direct encoding of connectivity information
in the higher level of chromosome proves efficient. But in dealing with the larger network
architectures (currently under investigation) it may be useful to use a graph grammatical
encoding as mentioned by (Kitano, 1990a) for determining optimal connectivity. Since sGA
simultaneously explores structure and weight-space, a dynamic parameter encoding tech-
nique(DPE) (Schraudolph and Belew, 1992) may be useful to focus the search on those
regions with least variability for fine tuning of connection weights. We have not yet ex-
plored the above modifications. However, there may be other possible ways of implementing
the Structured Genetic Model, such as incorporating the idea of Cellular Encoding (Gruau,
1992).

The Structured Genetic Approach offers the following advantages:

o [t requires neither the assumption of any fixed architecture nor any gradient informa-
tion technique (like backpropagation) at any level of its network evolving process.

e It is able to evolve reasonably small application specific network architectures.
e The mixed encoding scheme ensures better scalability and speed of convergence.

e For large problems, it may be able to learn quickly (compared to existing methods)
when evolve in highly parallel machines e.g. Super Node of Transputers (Bessiere,

1991).

e Most modifications applicable to simple genetic algorithms may be equally applicable
to sGA (in its different layers) for further enhancing its performance.

e Biological plausibility is one of the most attractive points of this model.

Of course, much work remains to be done to draw any firm conclusion. Our previous
experimental results of sGA for non-stationary (Dasgupta and McGregor, 1992¢) and multi-
modal (Dasgupta and McGregor, 1992b) function optimizations exhibited that it is superior
when compared with simple genetic algorithms. We feel that the application of sGA to
neural network training and design is a much more open area of research.

Acknowledgements

The first author gratefully acknowledges the support given by the Government of Assam
(India) for awarding the State Overseas Scholarship. We also acknowledge the help of our
colleagues in the Intelligent Knowledge Base System (IKBS) Research Group.

References

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In J.J.Grefenstette.,
editor, Proceedings of an International Conference on Genetic Algorithms and their
Applications., pages 101-111, Carnegie-Mellon University,Pittsburgh.

Bessiere, P. (1991). Genetic algorithms applied to formal neural networks. Imag-lgi/lasco3,
Institute of IMAG-Lab. of Cognative Science, France.

Chalmers, D. J. (1990). The evolution of learning: An experiment in genetic connectionism.
In Proceedings of the 1990 Connectionist Models Summer School. Morgan Kaufmann.

Dasgupta, D. and McGregor, D. R. (1992a). Designing Neural Networks using the Structured
Genetic Algorithm. In Proceedings of the International Conference on Artificial Neural
Networks(ICANN), Brighton, U K.

Dasgupta, D. and McGregor, D. R. (1992b). Engineering Optimizations using the Struc-
tured Genetic Algorithm. In Proceedings of European Conference on Artificial Intelli-
gence(ECAIT), Vienna, Austria.

Dasgupta, D. and McGregor, D. R. (1992¢). Nonstationary function optimization using the
Structured Genetic Algorithm. In In Proceedings of Parallel Problem Solving From
Nature (PPSN-2), Brussels, 28-30 September.

Dasgupta, D. and McGregor, D. R. (1992d). A Structured Genetic Algorithm: The model
and the first results. Presented at AISB PG-Workshop, January. (Tech Report NO.
[KBS-2-91).

Davis, L. (1991). Handbook of Genetic Algorithms. Von Nostrand Reinhold, New York., first

edition.

de Garis, H. (1990). Genetic programming: Modular neural evolution for darwin machines.

In Intenational Joint conference on Neural Network(IJCNN)., pages 194-197.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley., first edition.

Gruau, F. C. (1992). Cellular encoding of genetic neural networks. Technical Report 92-21,
Institut IMAG, Grenoble, France.

Harp, S. A., Samad, T., and Guha, A. (1989). Towards the genetic synthesis of neural
networks. In Schaffer, J. D., editor, Proceedings of third International conference on
Genetic Algorithms, pages 360-369, George Mason University, USA. Morgan Kaufmann.

Harp, S. A., Samad, T., and Guha, A. (1990). Designing application-specific neural networks
using the genetic algorithm. Advances in Neural Information Processing Systems, 2:447—

454.

Hintz, K. J. and Spofford, J. J. (1990). Evolving a neural network. In et. al., A. M., editor,
Proceedings 5th IEEE International symposium on Intelligent Control, pages 479-484,
Los Alamitos California, U S A. IEEE Computer Society Press. Volume-I.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
press, Ann Arbor.

Kitano, H. (1990a). Designing neural networks using genetic algorithms with graph genera-
tion system. Complex Systems, 4:461-476.

Kitano, H. (1990b). Empirical studies on the speed of convergence of neural network training
using genetic algorithms. In Proceedings of AAAL

Koza, J. R. and Rice, J. P. (1991). Genetic generation of both the weights and architecture
for a neural network. In Intenational Joint conference on Neural Network(IJCNN).

Mariéic, B. and Nikolov, Z. (1990). GENNET - system for computer aided neural network
design using genetic algorithm. [JCNN, 1:102-105.

Marti, L. (1992). Genetically generated neural networks II: Searching for an optimal repre-
sentation. CAS/CNS-TR-92 015, Boston University, Center for Adaptive Systems.

Menczer, F. and Parisi, D. (1992). Evidence of hyperplanes in the genetic learning of neural
networks. Biological Cybernetics, 66(3):283-289.

Miller, G. F., Todd, P. M., and Hegde, S. U. (1989). Designing neural networks using genetic
algorithms. In Schaffer, J. D., editor, Proceedings of third International conference on
Genetic Algorithms, pages 379-384.

Montana, D. J. and Davis, L. (1989). Training feed forward networks using genetic algo-
rithms. In Proceedings of International Joint Conference on Artificial Intelligence.

Rogers, D. (1990). Predicting Weather Using a Genetic Memory: a combination of Kanerva’s
sparse distributed memory with Holland’s Genetic Algorithms. Advances in Neural
Information Processing Systems, 2:455-464.

Schraudolph, N. N. and Belew, R. K. (1992). Dynamic parameter encoding for genetic
algorithms. Machine Learning, 9(1):9-22.

Whitley, D. and Bogart, C. (1990). The evolution of connectivity: Pruning neural networks
using genetic algorithms. In Proceedings of International Joint Conference on Neural
Networks, pages 134-137.

Whitley, D. and Hanson, T. (1989). Optimizing neural networks using faster, more accurate
genetic search. In Schaffer, J. D.; editor, Proceedings of third International conference
on Genetic Algorithms, pages 391-396.

Whitley, D. and Starkweather, T. (1990). Optimizing small neural networks using a dis-
ributed genetic algorithm. In Intenational Joint conference on Neural Network(IJCNN).,
pages 206-209.

10

Whitley, D., Starkweather, T., and Bogart, C. (1990). Genetic algorithms and neural net-
works: optimizating connections and connectivity. Parallel Computing, 14:347-361.

11

