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1 What does GA look like?

We now assume to solve a problem which includes n variables. That is, our task is to
determine an optimal set of n variables. Then we design GA as:

• Represent a series of xi as a population of strings. Each of these strings is refered
to as chromosome or sometimes called individual.

.........x1 x2 x3 x4 x5 xn

• Define a fitness evaluation by “How good is each individual?”

Then we start an evolution as follows, expecting better solutions from generation to
generation.

1. (Initialization) Generate an initial population of p individuals at random.

2. (Fitness Evaluation) Evaluate fitness of each chromosome and sort the chromo-
somes according to its fitness from the best to the worst.

3. (Selection) Select two chromosomes

– Here, from the best half of the population at random, which is called a Truncate
Selection.

4. (Reproduction) Produce a child by the following two operations:

– Uniform Crossover, for example

+

– Mutation

5. Create the next generation by repeating the steps from 3 to 4 n times.

6. Repeat the steps from 2 to 5 until (near) optimal solution is obtained.



(Contemporary Intelligent Information Techniques) 3

2 How we select parents?

Hopefully, the better the fitness the more likely to be selected.

• Threee different versions of Selection.

� Truncation Selection (Simplest of the three):

· Select parents from the best some-percentage of the population.

� Roulette Wheel Selection (or Fitness Proportionate Selection):

· Select such that the probability to be selected is proportional to the fitness
value.

For example,

individual #1

fitness

individual #2

individual #3

individual #4

individual #5

#1

0.375

#2#3

#4

#5
0.125

0.125

0.125

0.250

To be more specific, sort the individual from low to high and calculate cumu-
lative value of fitness as follows:

individual after sort cumulative value of fitness
#2 0.125
#3 0.250
#4 0.375
#5 0.625
#1 1.000

Then create a random number r from 0 to 1 if r < 0.125 then select #1, else
if r < 0.250 then select #2 , else if r < 0.375 then select #3 and so on.

� Tournament Selection

· Assume we have the original μ parents and their μ children. The fitness
value of each of the 2μ individuals are compared to those of q individuals
which are chosen randomly from the whole 2μ points at every time of the
comparison Then the 2μ individuals are ranked according to the number
of wins, and the best μ individuals survive (q-tournament selection).
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Note that even the worst fitness individual have a chance to be selected under Roulette
Selection however few it might be, while under Trancate Selection worse individual have
no chance to be selected. Tornament Selection could also select a worse individual except
for the worst q individuals. We can control the probability of selecting worse individual
by changing q.
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3 How parents produce a child?

3.1 Cross-over

So-called crossover is exproited for the reproduce children. Here, we see three different
versions of crossover bellow.

One-point Crossover

8<
8<

8< 8< 8< 8< 8< 8<

8< 8< 8< 8< 8< 8<

Multi-point Crossover

Uniform Crossover

3.2 Mutation

We should give a mutation to introduce new genes. This is to avoid for individuals in the
population to be trapped into a local minimum. The probabability for mutation to occur
is small — typically 1/number-of-genes. To be more specific,

If a randomly generated number from 0.0 to 1.0 is smaller than the mutation
rate then mutate otherwise do nothing.
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4 Commonly Used Test Functions

Let’s challange an already known solution by a GA

Bellow we study two multi-dimensional test-functions whose location of the global mini-
mum was already known. It is, therefore, useful to explore this test-function to learn how
evolution works inside the PC.

4.1 Sphere model

Probably the simplest one is

y =

n∑
i=1

x2
i (1)

which is difined, for example, on each xi ∈ [−5.12, 5.12] (i = 1, 2, · · · , n). This function
is an extention of well known y = x2 to its n-dimensional version. The unique global
minimum is located on the Origin and no local minimum. Hence, this might be a good
start to try a GA.

4.2 Shcwefel function

The function bellow is called Schwefel function and enormous amount of local minimum
and the only unique global minimum at the Origin. Search for the global minimum when
the function is difined on, say, xi ∈ [−500, 500].

y =
n∑

i=1

(xi sin(|xi|)) (2)

You might try to explore this hyper-surface by setting n to 20, for example. Then the

surface is defiened on 20-dimensional Eucledean space. If, however, you want to know the

image of the hyper-surface, see a two dimensional version of this function. The graph of

y = x sin(|x|) (3)

is shown in Figure 1.

4.3 The other Test Functions:

� Rastrigin’s Function F6:

y = nA +

n∑
i=1

(x2
i − A cos(2πxi)), xi ∈ [−5.12 − 5.12].
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Figure 1: A two-dimensional version of the Schwefel’s Function’s graph.

· Ruggedness might be controlled by modifying the value of A.

· A two dimensional example (n = 1):

y = 3 + x2 − 3 cos(2πx).
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Figure 2: A 2-D version of Rastrigin function

� Griewangk’s Function F8:

y =
n∑

i=1

x2
i /4000 −

n∏
i=1

cos(xi/
√

i) + 1, xi ∈ [−600, 600].

· A two dimensional example:

y = x2/4000 − cos x + 1.

� Ackley’s Function F9:

y = −20
n∑

i=1

exp (−0.2
√

x2
i /n) − exp ((

n∑
i=1

cos 2πxi)/n) + 20 + e,

xi ∈ [−30, 30].
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Figure 3: A 2-D version of Griewangk function
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· A two dimensional example:

y = −20 exp (−0.2
√

x2) − exp (cos 2πx) + 20 + e.
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Figure 4: A 2-D version of Ackley function
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5 What about a simple 2-Diminsional function

We now think of more simple function defined on just x – one dimensional variable, and
let’s observe the behavior of chromosomes if the function has two minima, one is a local
minimum and the other the global minimum. Example is,

y = x4 − 5x3 − 6x2 + 8x + 15

when difined on x ∈ [−2, 5]

0
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25

-2 -1 0 1 2 3 4 5

Figure 5: Yet another test function: y = x4 − 5x3 − 6x2 + 8x + 15 with x ∈ [−2, 5]. Try
to make evolutionary algorithm search for minimum y.
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6 Neural Networks for XOR

This is probably a simplest examples. We now try the below.
Assuming McCulloch-Pitts neurons which take the state 1 or 0, the output Y of the
neuron which receives weighted-sum of the signals Xi from other N neurons is usually
specified as:

Y = sgn(
N∑

i=1

wiXi − θ),

where sgn(x) = 1 if x ≥ 0 and 0 otherwise, and wi and θ are called weight and threshold,
respectively. Here, we assume neurons take binary state but -1 or 1, instead of 0 or 1.
Hence the equation is modified as

Y = 2sgn(
N∑

i=1

wiXi − θ) − 1.

6.1 NN to solve AND & OR

To start let’s search for a neural network which solve AND & OR Boolean function.

w1 1 w1 2

1

Y

X 2X

AND
1X 2X Y

-1 -1 -1

-1 +1 -1

+1 -1 -1

+1 +1 +1

OR
1X 2X Y

-1 -1 -1

-1 +1 +1

+1 -1 +1

+1 +1 +1

These tasks are so easy that even we can assing an appropriate configuration of weiths.
For example, w1 = 0.5, w2 = 0.5 and θ = 0.5 for AND logic, and w1 = 0.5, w2 = 0.5 and
θ = 0.5 for OR.

But why don’t we try to test the capability of an evolutionary computation.

6.2 NN to solve XOR

Well, how about NN to solve XOR? In this case, it is known that we need one more layer,
called a hidden layer. The reason is ...

Exercise 1 Obtain six weights values so that the above NN function as XOR.

Exercise 2 Create Pseudo code for EC to obtain the six weights above.

6.3 Larger & more sofisticated NN

Let’s extend the scale of NN. For example N parity problem
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w6 

1

Y

X 2X

XOR
1X 2X Y

-1 -1 -1

-1 +1 +1

+1 -1 +1

+1 +1 +1

w5 

w1 

w2

w4 
w3 

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(1, 1)(0, 1)

wx =  θ1 wx2+

wx =  θ1 wx2+

x1 x1

x2

x1

x2 x2

1 1 0 1 0 0 0 1 1 0 0 1

1
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7 NP-complete Combinatorial Problem

7.1 Knapsack Problem

This is one of the most popular NP-complete Combinatorial Optimization problems.

We now assume n items whose i-th item has weight wi and profit pi, then we pick up xi

of the i-th item i = 1, 2, · · · , n and xi is non-negative integer. The goal is to maximizes

n∑
i=1

xipi. (4)

such that

n∑
i=1

xiwi < C (5)

where C is the capacity of the knapsack.

GA implementation is quite simple. Our chromosomes are in the form

(x1x2x3 · · ·xn) (6)

with each xi being the number of item i to be in the knapsack.

7.2 Kill infeasible chromosomes

One important aspect is if a chromosome does not fulfill the condition of Eq.(5), simply
kill the choromosome and repeat the procedure which resulted in the infeasible child chro-
mosome (cross-over, mutation, or whatever.) untill creating a feasible child chromosome.

a candidate individual
or

a created offspring

feasible?

kill

survive

NO

YES
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7.3 Bin-packing

8 Combinatorial Optimization II

8.1 Linear Assignment Problem (LAP)

8.2 Quadrapul Assignment Problem (QAP)

8.3 Traveling Salse-person Problem (TSP)

Asuuming N cities all of whose cordinate are given. Traveling Salse-person Problem
(TSP) is a problem in which a sales-person should visit all of these cities once but only
once and objective is to look for the shortest tour.

I found that 13,509 real cities in USA are given with their cordinates in the web-page
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95. Why don’t we
try this very challenging problem by ourselves. The plotted these cities are shown in
Figure 3.

Figure 6: An example of 13509 real cities’ location in US. Plotted with the data taken
from http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

The question is how we design our chromosome representing a tour? If we represent a
candidate solution with a list of cities to be visited in order, such as the chromosome of
the tour A-C-F-D-G-E-B is

(ACFDGEB) (7)
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Are the the results of crossover and mutation feasible? The answer is No! For example,
the possible child of two parent (ACFDGEB) and (AGBFCDE) by one-point-crossover
could be (ACFFCDE) and this is not a feasible tour because C and F are visited twice
and B is not visited. Or, if we give a standard mutation to (ACFDGEB), for example,
by replacing 4th gene with other randomly chosen city, such as (ACFAGEB), which is
not a feasible tour either.

Then, in order for the result of crossover and mutation to be feasible what representations
are possible?

One idea is

Step-1. Set i = 1.

Step-2. If i-th gene is n then n-th city in the list is the city to be currently visited.

Step-3. Remove the city from the list.

Step-4. Set i = i + 1 and repeat Step-2 to Step-4 while i ≤ n.

For example, when the list of cities is

{A, B, C, D, E, F, G, H, I }
chromosome: (112141311) is the tour:

A-B-D-C-H-E-I-F-G.

Try some one-point crossover on two parents (112141311) and (515553321).

Then next, how we design mutation? How about, for example, specifying two points at
random and reverse the gene order?

Finally, when, on earth, we stop a run? We don’t know the optimum. The answer is
let’s observe the evolution of fitness. We can expect the run converges to the optimum or
near-optimum.

Here we explore the TSP by an GA. But there seems to be more direct way of computation
called Ant Colony Optimization (ACO). ACO is an optimization technique we borrowed
the metaphore of an intelligence of ant society as their collective behaviour. Ants are
good at seeking a shortest path from their nest to a food when one of their colleagues
finds it he communicates with others by using a chemical called pheromon. If we have a
time we will study ACO later.
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Figure 7: An example of three cities. Though rivial because we have only one tour.
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Figure 8: An example of four cities. Still trivial, but which do you think is the shortest
tour?
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Figure 9: An example of fourteen cities and its one option of tour.
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9 Robot Navigation in GridWorld

Assume now that we want to make an agent, or a robot, in a gridworld, a possible
chromosome can be made up of integer gene from 1 to 4 where 1, 2, 3, and 4 correspond
to one cell movement of the agent to north, south, east and west. Take a look at the
below as an example.

start

goal

Figure 10: An example of shortest path finding without any obstacle.

start

goal

obstacle

Figure 11: An example of shortest path finding with an obstacle of wall.
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Our chromosome is made up of 4 different genes move (i) up, (ii) down, (iii) to right ,
and (iV) to left. See an example below.

(13333114114411141322422223)

start

goal

Figure 12: An example of a chromosome and the path represented by it.

We now take a look at two such problems more specifically in the next subsection.

9.1 Exploration of a gridworld with a limited energy

Search for a path of minimum Manhattan distance

.

96x96 grid 178 steps 96x96 grid 48 steps

Figure 13: In the grid-world of 96 starting from (24,24) a robot walks aiming the goal
at (72,72) of which the robot had no a-priori information. Left: The path of minimum
length among 100 trials by random walk. Right: Minimal path the robot found after an
evolutionary learning as shown in Fig. 3. (Marginal area is omitted.)
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Search for a path to the start point after a maximum exploration

It would be not so difficult for us human to find such a route. But how about a computer?
The question now would be, “How we designed fitness function?”

We will return this topics of “multiple fitness functions later.

9.2 Jeep Problem

– From “A camel in a Desert” to Landrover in the Mars”

Assume we have a Jeep at the base which locates at the edge of a desert. The Jeep
has a tank which can be filled with a maximum of one-unit of gasoline. With one unit
of gasoline, the jeep can move one unit of distance. The Jeep can only fill gasoline at
the base.The jeep can carry containers to put its gasoline on the desert for a future use,
Assume the tour should be on the strait line in the desert. 1

The question is “How far the jeep can penetrate in to the desert on the straight road
when n unit of gasoline is available at the base.

For example when n = 2, the best strategy is to start the base with one unit of gasoline
in its tank and go 1/3 unit distance (it has spent 1/3 unit of gasoline to reach the point,
then put 1/3 unit of gasoline in the container there (now jeep has 1/3 unit of gasoline
in the tank) and go back to the base. Exactly when the jeep arrive to base all gasoline
filled at the start was spent. Then geep fill the 2nd unit of gasoline given, go 1/3 unit
fill the gasoline he had put before and the tank is again full, then go forward until all the
gasoline in the tank will be spent. Therefore the maximum distance the jeep can go is
4/3 unit of distance.

Guess the maximum distance when n = 2. We already know the maximum distance with
n unit ofgasoline is Dn is expressed as the recursive relation Dn = Dn−1 + 1/(2n − 1).

Our interest is on whether an evolutionary computation can find a almost best strategy,
say, n = 5 in which maximum distance is 1323/945=1.4. (If my calcuration is correct.
Try it by yourself).

1The problem first appeared as “a camel carrying grain in a desert” as the 52nd problem in the
“Propositions ad acuendos inventes” (in Latin) attributed to Alcuin of York (around in B.C. 732–804).
And now a jeep in a dessert, further, landrver in the Mars.
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10 Sorting Network

– How many minimum comprisons are necessary?

Which is clever? – Human or Computer?

When we write an algorithm, we often come accross a necessity to sort a set of items in
the order of some criteria. How, for example, do we create codes for sorting 16 integer
inputs in ascending order? We pick up 2 items from one item to the next, compare, and
swap them if the order is not the preferable one

Algorithm 1 (A Sorting Algorithm) Now we assume to sort N numerical items from
the smallest to the largest.

• For i = 1 to N-1

� For j = i+1 to N

· If item(i) < item (j) Then swap item(i) and item(j)

Now let us represent the sorting above by a graphics in the following way.

Figure 14: A typical network for sorting, not very efficient though.

The total number of comparison in this case is 120, though this is not a very efficient way.
Then problem is what is the minimum number of comparisons with which any arbitrary
set of 16 inputs are correctly sorted. That is,

Problem (Sorting Network) The task is to sort n items. For the purpose, the i-th and
j-th element are compared and swap if necessary. and the goal is to find an algorithm
which correctly sorts all n items with the minimum number of comparisons.
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It might be interesting to overview a little history of this topic. In 1960’s, in a comu-
nity of computer algorithms, there was a competion of what is the minimum number of
comparisons when, say, (n = 16)? The result was

� 65 comparisons Bose and Nelson (1962).

� 63 by Batcher and by Floyd and Knuth (1964).

� 62 by Shapiro (1969)

� 60 by Green (1969)

See the Figure bellow.

Batcher Sort: 63 comparisons by Knuth (1973)

Comparisons in the same column can be made in parallel.

Figure 15: Batcher’s proposition of sorting network with 63 comprisons (1964)

Up to now, however, we have had no proof for this optimality. Then let’s make an
Evolutionary Computation surch for this nimimum number. Would it work better than by
human? Hillis (1992) challenged this. Hillis’s innovations was that he employed Diploidy
Chromosome as follows. We will show this more in detail later. Here, we show a simple
version of GA implementation.

Now assume one chromosome corresponding to one sorting network is made up of 140
genes each of which takes an integer value from 01 to 16 permitting overlaps, such as

(12 01 05 04 16 12 04 14 01 02 06 ...... 07 15 08 10)

where an odd number gene and the next righthand side even number genes represent a
comparison. In the example above
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12 <=> 01; 05 <=> 04; 16 <=> 12; ......; 08 <=> 10)

Then one chromosome include 70 comparisons at most. Why at most? Because it could
include a same comparison multiple time. Hence, the minimum number of comparison is
one, which is very unlikly though.
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11 Evolving Strategy — Iterated Prisonner’s Dilemma

So, To be or not to be? — That is the question. Not only Shakespere but in many
literarture works dilemma is their theme. The Opera “Tosca” by Puccini is one of those
typical examples.2

11.1 When dilemma happens?

Assume n person are in the following game. Each of these n pearson is in the separate
booth, where communication would not be available and not visible with each other. In
each of those boothes button are fascilitated. You all are in the booth for one minute.
If no one does not push the button, all of you will be given 100$ each. If, on the other
hand, someone push the button, or more people do so, the first one who push the button
will be given 10$ and other will not be given any money. What would you do, if you were
one of these n people?

11.1.1 Condition to be a dilemma

What if the money given in case all do not touch button is 10$ and otherwise the first
person who push the button will be given 100$? In this case no dilemma will be arosen.
Push the button immediately without hesitation.

In the community of Game Theory we have the problem called Prisoner’s Dilemma3 which
is formulated as follows.

Problem (Prisoner’s Dilemma) Two newly arrested prisoners A and B are offered a
deal:

· If A confesses and B does not, A will be reliesed and B will get 5 years in jail, and
vice versa.

· If both confess, then both will get 4 years in jail.

2Matt Ridley once wrote in his book, “The Origin of Virtue – Human Instincts and the Evolution of
Cooperation.” Penguin Books (1996) about this opera. It reads: In Puccini’s opera Tosca, the heroine
is faced with a terrible dilemma. Her lover Cavaradossi has been condemned to death by Scarpia, the
police chif, but Scarpia has offered her a deal. If Tosca will sleep with him, he will save her lover’s life
by telling the firing squad to use blanks. Tosca decides to deceive Scarpia by agreeing to his request, but
then stabbing him dead after he has given the order to use blanks. She does so, but too late discovers that
Scarpia chose to deceive her too. The firing squad does not use blanks: Cavaradossi dies. Tosca commits
suicide, and all three end up dead. The book is regarding a Game Theory. The author continues: Though
they did not put it this way, Tosca and Scarpia were playing a game, indeed the most famous game in
all of game theory, an esoteric branch of mathematics that provides a strange bridge between biology and
economics. The game has been central to one of the most exiting scientific discoveries of recent years:
nothing less than an understanding of why people arenice to each other. Moreover, Tosca and Scarpia
each played the game in the way that game theory predicts they should, despite the disastrous outcome
for each. How can this be?

3Proposed by Merrill Flood and Melvin Dresher in the 1950’s
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· If both do not they will each get 2 years.

Cleary, “0 year in prison” would be the best reward, then “2 years” would be the second
best, then “4 years” and “1 year” would be the worst case, unless you expected the prison
as a ”free hotel.”

Here, let’s assume those reward as 15, 10, 6 and 0, respectively. Then rewards are:

A recieves B recieves
A confess & B silent 15 0
A confess & B confess 6 6
A silent & B silent 10 10
A silent & B confess 0 15

Here, A might get “15” with a possible risk of getting only “6” so A could choose “10”
which is larger than “6” but possibly “0” at the worst case. This raises a dilemma

We now think of another case. Will the following case raise a dilemma?

A recieves B recieves
A confess & B silent 15 0
A confess & B confess 10 10
A silent & B silent 6 6
A silent & B confess 0 15

The answer is “No.” Prisoner would get either 15 (at best) or 10 (at least) by confessing
while 6 or 0 by being silent. Hence no dilemma. Confess immediately! This guaranttees
larger reword than being silent regardless of opponent’s reaction.

So what is a condition to raise a dilemma? We now assume:

A recieves B recieves
A confess & B silent γ3 γ2

A confess & B confess γ4 γ4

A silent & B silent γ1 γ1

A silent & B confess γ2 γ3

Then, from the above mentioned two examples, we can say

γ3 > γ1 > γ4 > γ2. (8)
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A recieves B recieves
A confess & B silent 15 0
A confess & B confess 3 3
A silent & B silent 6 6
A silent & B confess 0 15

Then what about the following case?

This follows the above condition. But does this raise dilemma? Seems not. So, we need
yet another condition:

2γ1 > γ2 + γ3 (9)

If you don’t agree, then think of more extreme case:

A recieves B recieves
A confess & B silent 15 0
A confess & B confess 1 1
A silent & B silent 2 2
A silent & B confess 0 15

Not a good idea being silent isn’t it?

However dilemma is not so serious like Hamlet’s ““To be or not to be? That is a problem.””
It’s better to always confess.

If the game is to be iterated, on the other hand, we have to see the game differently. Like
any negotiation it’s likely to have a dilemma – corporate or betray?

11.1.2 Iterated Prisoner’s Dilemma

The next question then is how about if the game is repeated? This is called the Iterated
Prisoner’s Dilemma (IPD). In this case strategy to get a higher award as a result arises:
What would be the optimal next action? For example, Always Defect strategy, or Tit-for-
Tat strategy where the player cooperates on the first play, and afterward the same action
as the opponent in the previous game.

Here, strategy determins the next action based on three previous moves of the two players
in a raw. Number of all possible previous three games is 26 = 64 — 64 combination of
Cooperate and Defect. Namely, all those possible combinations of 6 previous moves can
be represented with a 64 bit binary chromosome. For example, if a history of 6 previous
actions of opponent and the player is C-d-D-d-C-d we express the history by the binary
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number 100010 where “C” and “c” are expressed by 1 and “D” and “d” are expressed
by 0 and uppercase “C” and “D” are opponent’s and lowercase “c” and “d” is playere’s
Cooporation and Defection, respectively.

Then the next action when the hisory was (000000) is put on the 1st bit with 0 being
defection and 1 being cooperation. The same is repeated, that is, the next action when
the history was (000001) is put on the 2nd bit and so on. No need to repeat but, the 3rd
bit is the action after the history of (000010) and the 64-th bit, the last bit, is when the
history was (111111) Thus we can represent a strategy with a 64-bit binary chromosome.

Then each individual (chromosome) competes with each of other randomly chose p indi-
viduals, and the number of it wins against others is counted. This number of wins is the
fitness value of the individual, which is called a p-tournament selection.
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12 Visualization of high-dimensional space

Visualization of data in a high-dimensional space is important. Maybe you have already
learned such methds like Kohonen’s Self Organizing Map (SOM) or Principal Components
Analysis (ICA).

12.1 Why we need to reduce the dimension?

We, human, couldn’t imagine the world of more than 3-dimensional space. In many
scientic field, however, it is crucially important to grasp an image in high dimensional
space. This is not only in scientic fields but also in real world around us.

Let me show an example. We now assume to assign newly employed soldires to appropriate
mission according to their examination, say, of Mathematics and English.

A B C D E F G H I J K L M
Mathematics 95 32 89 52 12 20 3 99 42 91 26 95 60

English 92 90 21 48 14 5 11 97 50 92 89 13 55

Table 1: A fictitious result of 2 examinations given to newly employed soldires.

The task of this classifiyng soldiers will be easier if you visualize the data.
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Figure 16: A visualization. It’s easy to classify soldires into 5 groups.

What if, then, we have one additional score for each soldier, say, phisical examination.
In order to make a task like an espionage, it would be better to have a strong phisical
capability. In this situation we have to classify them with 3-dimensional data, or on
3-dimensional space if we want make it like the above mentioned 2-dimansuional case.
Moreover, to be more practical, assume we have a set of scores of 10 different examinations.
In this case, we cannot visualize any more in a usual sence.
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So, visualization of high-dimensional space, or dimension reduction technique is very
important topic, and so far many such techniques has been proposed, among which Ko-
honen’s Self Organizing Map is very popular above all.

12.2 Sammon Mapping by GA

Here we learn about Sammon Mapping. Sammon Mapping is a mapping a set of points
a in high-dimensional space to the 2-dimensional space with the distance relation being
preserved as much as possible, or equivalently, the distances in the n-dimensional space
are approximated by distances in the 2-dimensional distance with a minimal error.

This method was proposed in 1980’s as an optimization problem to which they approached
by Operations Research technique suchas Steepest Descend, which is not so simple. Here,
on the other hand, we employ Evolutionary Computatins which is quite simple. Let’s see
now what is the original Sammon Mapping look like.

Algorithm (Sammon Mapping)

1. Assume N points are given in the n-D space.

2. Calculate distance matrix R (N × N) whose i-j element is the Euclidean distance
between the i-th and j-th point.

3. Also think of a tentative N points in the 2-D space that are located at random at the
beginning.

4. The distance matrix Q is calculated in the same way as R.

5. Then the error matrix P = R − Q is defined.

6. Search for the locations of N points in the 2-D space that minimizes the sum of
element P .

This is an optimization problem which we now can solve quite simply by using EC. That
is, by creating N points in 2-D space each of which corresponding N points in the n-D
space with the distance relation being preserved as much as possible, or equivalently, such
that the n-D distances are approximated by 2-D distances with a minimal error.

In an actual GA implementation of Sammon Mapping, chromosomes might be made up of
n genes each of which corrisonds to x−y coordinate of a candidate solution of n optimally
distributed points in 2-dimensional space. Uniform crossover is employed and from time
to time mutation is given by replacing one gene with other random x− y coordinate. See
the Figure 2. See also the Figure bellow.
Examples in 492 = 2401 dimensional space:
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Chromosome:

(x y1 1 ), (x y2 2 ), (x y3 3 ), (x yN N ),.........

Recombination with Uniform Crossover:

(x y1 1 ), (x y2 2 ), (x y3 3 ), (x yN N ),.........

(x y1 1 ), (x y2 2 ), (x y3 3 ), (x yN N ),.........

Figure 17: A chromosome representation and uniform crossover
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Figure 18: Six Examples of Mapping from 2401-dimensional space to the 2-dimensional
space. Further explanations are shown in the text.
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13 Sorting Network Revisited

13.1 Let’s be more biological — Exploitation of Diploidy
Chromosomes

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

Figure 19: An example of Hillis’s set of diploidy chromosomes.

- Each individual consists of 15 pairs of 32-bit chromosomes.

- Each chromosome consists of eight 4-bit strings (called codons).

(0001 0010 0101 1000 0000 0100 1111 1001)
(0011 0100 0101 1000 1101 1100 1111 1001)

- Each codon represents an integer between 0 and 15 indicating which item is to be
compared out of 16 items. That is, the above example is interpreted as.

(01 02 05 08 00 04 15 09)
(03 04 05 08 13 12 15 09)

- Each adjacent pair of codons in a chromosome specifies a comparison between two
elements. Thus each chromosome encodes four comparisons, e.g.,

(09 08 10 13 14 04 14 03)

indicates the four comparisons below.
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Figure 20: Four comparisons specified by the chromosome (09 08 10 13 14 04 14 03).

- The chromosome pairs is read off from left to right.

- If these adjacent two codons are identical at the same corresponding two positions
of the chromosome pair – this is called homozygous – then only one pair of numbers
is inserted in the phenotype. If it encodes different pairs of numbers – heterozygous
– then both pairs are inserted in the phenotype. So in the previous example:

(01 02 05 08 00 04 15 09)
(03 04 05 08 13 12 15 09)

means the following six comparisons:

01⇔02, 03⇔04, 05⇔08, 00⇔04, 13⇔12, 15⇔09

- Thus 15 pairs of chromosomes produce a phenotype with 60-120 comparisons. The
more homozygous positions, the fewer comparisons.

- When two individuals are selected, one-point-crossover takes place within each chro-
mosome pair inside each individual.

- For each of the 15 chromosome pairs, a crossover point is chosen at random and a
single chromosome (called gamete) is formed.

- Thus 15 gametes from each parent are created.

- Each of the 15 gametes from the first parent is then paired with the gamete of the
corresponding position from the second parent to form one offspring.
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13.2 Pressure to homozygousity

Homezygous pair is more likely to survive than heterozygous pair, that is, two genes at the
same location in a pair of chromosome will be more likely to the same one after evolution.

For example, the probability of (1, 1) pair to be (1, 1) is 1/2, while the probability of (1,
0) pair to be (1, 0) is 1/4. The former is calculated as

1 × ((1/4) × (1/2) + (1/4) × (1/2) + (1/4) × 0),

while the latter as

(1/2) × ((1/4) × (1/2) + (1/4) × (1/2) + (1/4) × 0).

Hence, we can expect a more homozygous gene pair after a longer evolution, If, in our
context, all the pair become to have the same chromosome, it implies the number of
comparison is 60.
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14 Evolving Finite State Machine (FSM)

14.1 What is FSM?

We human being are living with our feeling, which let’s call a STATE, always changing
according to input from sensor like eyes, and then output some ACTION. For example,
when my STATE is unhappy, an INPUT of “vodka” from one of my sensor – mouth
changes my STATE into happiness, and I began to sing as an ACTION.

Thus, in the same way, FSM is defined as a three-tuple state, input, action. That is starting
with a specific state, input changes it state and aut put an action. This is one step. this
procedure of

(1) transition of state according to input;

(2) output an action

are repeated, and produce some behavior of the FSM.

14.2 A task as an example

start

8910

40

80

70

goal

Figure 21: The John Muir trail in 32 × 32 toroidal grid.
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14.2.1 NN Aproach

14.2.2 FSM Aproach

An example of FSA with 4 states.
The strategy used by this FSA is to move forward whenever it sees a square of trail;

when it comes to a point where it does not see the trail in the next square ahead, it turns
right (without moving) and checks for trail there. If it finds trail, it moves ahead and
continues, but if not, it turns right again. The FSA will turn right a total of 4 times
looking trail. After that, it is facing the original direction, and will move forward anyway,
even though there is no trail, and will again be prepared to search in all 4 directions again.

input: 0 / action: G

satate: 0

input: 1 / action: R

Figure 22: An exapmle of simplest FSM.

input: 0 / action: G

satate: 0 satate: 1

input: 0 / action: R

input: 1 / action: R

input: 1 / action: G

Figure 23: Yet another example of FSM. How do you think its behavior?

Table 2: An example of how to encode transition table into chromosome.

Old State Input New State Action
00 0 00 01
00 1 01 11
01 0 01 01
01 1 11 11
10 0 10 10
10 1 11 11
11 0 10 10
11 1 10 11
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Figure 24: A result of emerging FSM after evolution

14.2.3 Hidden Markov Model (HMM)

From FAM which is deterministic to HMM which is indeterministic.
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15 Multi Modal Problem

What if we have multiple meaningful different solutions?

In Traveling Salesperson Problem, we are interested in the result of minimum path, even
if we have multiple possible paths. However, we sometimes are interested in all of possible
solutions at a time in a run. For example, when we want a set of fuzzy rules for designing
a fuzzy controller. The topic of this section is regarding this problem. Let’s start with a
simple mathematical functions.

15.1 Yet another Testfunction

A 2-D function but multi peaks

The question is how we design our chromosomes. In the multi-dimensional function
y = f(x1, x2, · · · , xn) our genes might be continuos value each of which corresponds to
the independent variable xi (i = 1, 2, · · · n), that is, our chromosomes are made up of n
genes. On the other hand how should we design our chromosomes when the number of
independent variable is only one. A chromosome with only one gene? How we crossover
two parents?

O.K. we usually use binary chromosome in this situation. Any (decimal) real-valued
variable xi ∈ [a, b] could be encoded by n-bit binary strings where a and b is represented
by (00 · · · 0) and (11 · · · 1), respectivley, and therfore accuracy (or granularity) is (b −
a)/(2n−1). For example, if our concern is the above x ∈ [0, 1] then 10 bit of binary strings
from 0000000000 to 1111111111 are expresses decimals with the precision of 1/1024. Or
you might use and comapre Gray Code where gray-code a1a2 · · · an is tlanslated from
binary number b1b2 · · · bn as

ai =

{
bi if i = 1
bi−1 ⊕ pi otherwise

(10)

where ⊕ is addition modulo 2. In gray code a pair of adjusent decimals are different only
with Hamming distance 1, while in the standard binary encode this does not hold.

The test-functions we studied in Section. 4 are what evolutionary computations are es-
pecially good at, since we can treat high dimensional function whatever large it may be,
simply by setting the number of genes in a chromosome to the dimensionality.

Then what should we do, if we are interested in a 2-D function? For example,

y = sin6(5πx) (11)

or
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y = −2((x − 0.2)/0.8)2 sin6(5πx) (12)

are interesting functions in order for us to observe how randomly created chromosomes
in the 1st generation evolve to find peaks. See Figure 2.
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Figure 25: A multi-peak 2-D function and its variation

15.2 Multi-modal Optimization.

Sometimes we have multiple solutions. But EC usually converges only one solution out of
them. Hence, to get those multiple solution we run the algorithm multiple time. Here we
learn the technique in which individual construct niches and each species found a different
solution at a run.

For the purpose, multiple species will be created and maintained in a population. These
species independently search for a peak (hopefully an optimum solution), construct their
niche and stay around the peak during a run.

In comparatively early days, essentially the following three methods were proposed. So-far
proposed methods are

• Fitness sharing (Goldberg & Richardson, 1987)

· Similar individuals share fitness with each other.

• Crowding (De Jong, 1975)

· Similar individuals are replaced with random individuals

• Species Method.
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· Mating is restricted to among similar individuals.

These days, IMHO, the following two are popular among others.

• Detterministic Crowding (Mahfoud, 1992)

• Sequential Niching

Let’s see some of the aspects more in detail.

Fitness Sharing Fitness of each individual is derated by an amount related to the number
of similar individuals in the population. That is, shared fitness Fs(i) of the individual i is

Fs(i) =
F (i)

μ∑
j=1

s(dij)

where F (i) is fitness of individual i; dij is distance between individual i and j; Typically
dij is Hamming distance if in genotypic space Euclidean distance if in phenotypic space
and s(·) is called sharing function and defined as:

s(dij) =

{
1 − (dij/σshare)

α if dij < σshare
0 otherwise

where σshare is interpreted as size of niche, and α determines the shape of the function.
The denominator is called niche count. You see shape dependency of s(dij) on α in
Figure 15.2.
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σ share
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1

Figure 26: A shape dependency of s(dij) on α.
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To be short (not so short though): Similar individual should share fitness. The number
of individuals that can stay around any one of peaks (niche) is limited.
The number of individuals stay near any peak will theoretically be proportional to the
hight of the peak

Deterministic Crowding: If the parents will be replaced or not with their childeren
will be determined under a criteria of the distance between parents and children,
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Figure 27: A typical two cases of distance between parents and children.

Algorithm Assuming crossover, mutation and fitness function are already defiened

1. Choose two parents, p1 and p2, at random, with no parent being chosen more than
once.

2. Produce two children, c′1 and c′2.

3. Mutate the children yielding c1 and c2, with a crossover.

4. Replace parent with child as follows:

- IF d(p1, c1) + d(p2, c2) > d(p1, c2) + d(p2, c1)

∗ IF f(c1) > f(p1) THEN replace p1 with c1

∗ IF f(c2) > f(p2) THEN replace p2 with c2

- ELSE

∗ IF f(c2) > f(p1) THEN replace p1 with c2

∗ IF f(c1) > f(p2) THEN replace p2 with c1

where d(ζ1, ζ2) is the Hamming distance between two points (ζ1, ζ2) in pattern configuration
space. The process of producing child is repeated until all the population have taken part
in the process. Then the cycle of reconstructing a new population and restarting the search
is repeated until all the global optima are found or a set maximum number of generation
has been reached.
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Sequential Niche: Single run is repeated sequentially, keeping the best individual at
each run.

Algorithm

1. Define niche radius r.

2. Define modified-fitness function m(x) by equating it to the original fitness function
f(x) here at the start.

3. Run the GA and pick up the best individual at the end of the run.

4. Update m(x) as 4

mn+1(x) = mn(x) · g(x, sn) (14)

where n is the number of so-far run, sn is the best individual in the n-th run and

g(x, sn) =

{
(dxs/r)

α if dxs < r
1 otherwise

(15)

is called derating function where dxs is a distance between x) and sn) while m0 is
the original raw fitness function of each individual.

5. Run the GA using the modified fitness function and keep the best individual found
in the run,

6. Update the modified fitness function

7. If the raw fitness of the best individual exceeds the solution threshold, (See also below)
then display this as a solution.

8. If all solutions have not been found, then return to step 5.

4This is called a Power Derating Function when we think of another alternative called Exponential
Derating Function:

ge(x, s) =
{

exp((log m(x, s)) · (r − dxs/r)) if dxs < r
0 otherwise (13)
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• Solution Threshold is

· Lower fitness limit for maxima of interest, assuming we know how many peaks.
If it’s not of the case, set the threshold to zero.

Excersize Like Figure 15.2, draw a graph of y = (x/r)α with r = 1 and α = 0.5, 1, 2, 4, 8
to know what g(x, sn) looks like.

It would be interesting to try a multi-modal EC to the following two test functions.

(1) y = sin6(5πx)

(2) y = −2((x − 0.2)/0.8)2 sin6(5πx)
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16 Multi Objective Genetic Algorithm (MOGA)

So far we have learned how to get the possible solution(s) which fulfills one objective
function for the problem, that is, the goal is maximize the fitness function. In real
world problem, however, we have usually multiple objectives or criteria to be fulfilled
simultaneously.

Those objectives sometimes conflict with each other. Like “time” and “money”: The more
we want to earn money, the less time to spent the money; or “reliability” of the product
and “cost” to produce it in a manufactural factory. Or, suppose an Opera Company trys
to employ one Soprano singer. The criteria is voice, beauty-or-not), slim-or-not, language-
capability (Italian, German, etc). However God tend not to give us two talents at a time,
alas.

Then, first of all, when we have multiple objective function, we must define an important
concept of parate optimal or equvalently non-dominated solution.

Definition (Parate Optimal or Non-dominated Solution) A candidate solution is
called a non-dominated iff there is no ohter better solution w.r.t. all the objectives.

To be more specific, assume we have n objective functions;

f1(x), f2(x), f3(x), · · · fn(x)

where x is a candidate solution. Now if a new candidate solution y improves all the
objetives for x, i.e.,

fi(y) > fi(x) for ∀i

we say

“y dominate x.”

When no such y exists, we say

“x is non-dominated” or “Parete Optimum.”

A toy example: We now assume the two objective functions as follows.
{

f1(x) = x2

f2(x) = (x − 2)2
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· x=0 is optimum w.r.t. f1 but not so good w.r.t. f2.

· x=2 is optimum w.r.t. f2 but not so good w.r.t. f1.

· Any other point in between is a compromise or trade-off and is a Pareto-optimum.

· But the solution x=3, e.g., is not a Pareto-optimum since this point is not better
than the solution x = 2 w.r.t. either objective.

· If we plot in the f1-f2 space, an increase in f1 in some reagion means a decrease in
f2, or vice versa which implys that the solutions in the region are Parete optimum,
while in other region an increase in f1 make f2 increas (decrease). See Figure ??.
This f1-f2 space is called a Trade-off Space.
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Figure 28: Trade-off space for f1(x) = x2 and f2(x) = (x − 2)2.

Thought Experiment: What if we plot all individuals of generation 0 and, say, gener-
ation 100?

How an implementation goes? Evolution is rather similar more or less to a GA with
single fitness function. The main difference is we have multiple objective function. Hence
we merge these multiple objective function into one fitness function. So far many ideas
have been proposed. Among all:

• Weighted sum approach.
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· The fitness function is caluculated as

f(x) =
N∑

i=1

wifi(x) (16)

where wi expresses an importance of the i-th objectives.

· Note that for any set of weight > 0, the optimum is always a non-dominated
solution but opposite is not always true.

• The minimax approach

· The fitness function is caluculated by minimizing the maximum of n objective
functions.

• Target vector approach

· The fitness function is caluculated by minimizing the vector

(f1, f2, f3, · · · , fn)

from a pre-difined goal.

• Median/Average ranking approach

· The rank r(xi) of each individual xi in the population w.r.t. i-th objective
function is calculated. Then the fitness is defined as median/average of these
ri (i = 1, · · · , n).

• Parete ranking approach

· Ranking is according to “how many individuals in the population they are dom-
inated by.

We now take a look at a typical implemetation of MOGA.

Algorithm (A Multi Objective GA)

1. Initialize the population.

2. Select individuals uniformly from population.

3. Perform crossover and mutation to create a child.

4. Calculate the rank of the new child.

5. Find the individual in the entire population that is most similar to the child. Replace
that individual with the new child if the child’s ranking is better, or if the child
dominates it. 5

5Step 5 implies that the new child is only inserted into the population if it dominates the most similar
individual, or if it has a lower ranking, i.e. a lower degree of dominance.

The restricted replacement strategy also constitutes an extreme form of elitism, as the only way of
replacing a non-dominated individual is to create a child that dominates it.

The similarity of two individuals is measured using a distance function.
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6. Update the ranking of the population if the child has been inserted.

7. Perform steps 2-6 according to the population size.

8. If the stop criterion is not met go to step 2 and start a new generation.

16.1 Robot Navigation Revisit
– Mars Lover’s Exploration
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17 Evolution of Sturcture

— From a Simple Structure to Complex Ones

17.1 Finite State Machine

Figure 29: Trade-off space for f1(x) = x2 and f2(x) = (x − 2)2.

18 Messy Genetic Algorighm (m-GA)

So far our chromosome has a fixed length. It is good to manipulate chromosomes of fixed
length, but some time we want to be more flexible. So, in this section we are going to try
to expand so-far-studied fixed length chromosome to exploit arbitrary lengh chromosome.
Now we assume a binary chromosome such as

(1 0 0 1 1)

In the m-GA this chromosome is translated into

((1,1) (2,0) (3,0) (4,1) (5,1))

18.1 Gene location is not important any more.

As you easily guess, each gene is made up of a pair of (1) location of the gene and (2) its
value. For example the first gene (1, 1) means the value of 1st gene is 1 and (2, 0) means
the value of 2nd gene is 0 and so on. Now that we have information of location of the
genes the order of genes in m-GA is not important. So, we assume

((2,0) (4,1) (1,1) (5,1) (3,0)) & ((4,1) (1,1) (5,1) (2,0) (3,0))

are equivalent.

18.2 Cut & Splice

Then crossover in m-GA is made by cutting the parent chromosom at any location on
both parents, while in the one point crossover we have so far used we cut the both parent
at the same position. Then those are crossed and spliced and create two chromosomes.
For example, assuming we have two parents

((4,1) (1,1) (5,1) (2,0) (3,0)) & ((3,0) (5,0) (4,1) (1,0) (2,0))

Then, in m-GA, if we cut the 1st parents between 1st and 2nd gene and 2nd parent
between 4th and 5th gene, then this will result in the two children

((4,1) (2,0)) & ((3,0) (5,0) (4,1) (1,0) (1,1) (5,1) (2,0) (3,0))
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18.3 Over-specification & Under-specification

As the previous two chromosomes, some location of gene will be missing and some will
appear multitple time. The former called under-specification and the latter Usually, over-
specification case are treated as first-come-first-serve way, like McDonald Restaurant.
That is,

((3,0) (5,0) (4,1) (1,0) (1,1) (5,1) (2,0) (3,0))

is interpreted as

((3,0) (5,0) (4,1) (1,0) (2,0)).

If we interpret this in the standard simple GA it will be

(0 0 0 1 0).

In the case of under-specification, one way is giving the missing genes at random. Or,
sometimes it will be a good way to neglect the missing genes depending on applications
thouth.

18.4 Examples

18.4.1 Rule-base

18.4.2 Knap-sack Problem — revisited

18.4.3 Advantage on what?

18.5 Growing NN structure by m-GA

Let’s assume each of our messy-genes is made up of for sub-genes like

(· · · , ((6) (8, 0.28, 1)) ((7) (12, -0.28, 0)) · · · ).
Let’s assume the two genes shown in the above example chromosome implies

• 6th gene should be connected to 8th gene with synapse whose weight is 0.28, and
the connection is active.

• 7th gene should be connected to 12th gene with synapse whose weight is -0.73, but
the connection is not active.

To be more specific, n-th gene describes (1) to which neuron the n-th neurons is to be
connected; (2) the weight value of the connection; (3) enable or not
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19 EP and ES — variation of GP but older than it

20 Genetic Programming (GP)

The title of this section suggests Genetic Programming suggests Evolution of Program.
What we want here is when we have specific task and need a program to solve the task,
we start with a population of random programs and then evolve them. We expect from
generation to generation a better programs than previous ones and perfect programeven-
tually emerges.

As previous evolution, (i) we create a population of random chromosomes; (ii) evaluate
fitness of each chromosome; (iii) select chromosomes so that better two are more likely to
be selected; (iv) produce children by crossover and mutation (v) repeat (iii) to (iV) until
the next generation includes the same number of chromosomes as previous generation;
(vi) repeat (ii) to (v) until fitness saturates or pre-determined generations are repeated.

But here, chromosome is not a string like so far, but tree.

20.1 How we create random tree, and how we evolve trees.

We, first of all, prepare for function set and terminal set. Then we follow the below.

(1) Choose one function from the Function Set at ramdom, and assign it to the root
node.

(2) Assign each of arcs a function or a terminal chosen at random from Function Set or
Terminal Set.

(3) If the node is a terminal, then the node will not grow any more, but instead become
a leave. Oterwise repeat (2).

(4) These are repeated until all the end nodes are terminal set.
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20.2 Evolution of program.

Like the program language LISP, some programming languages have a tree-structure.

20.2.1 An Example of Tree represantation of a program

Program in LISP can be represent by a tree. The following is a simple example of one
instruction from LISP program and its tree structure.

+

IF1 2

> 3 4

time 10

(+ 1 2 (IF (> time 10) 3 4))

20.2.2 Crossover and Mutation

We now look at how we crossover and mutate two trees. See the figure below.

x =

->

crossover

mutation
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20.3 Eolution of hardware

20.3.1 Even-n-parity

Sometimes, we need automatic error-detection coding. Assume we need (n − 1) binary
bits for our encoding. Then in order to detect an accidental assignment of a code we add
one additioanl bit called parity-check-bit. 0 or 1 will be assigned so that total number of
bit 1 becomes even. Hence we can know the incorrectly coded line, though some lucky
mistake can avoid this detection.

EQXORXORx1

x3 x2x3

y1 y2

y3

EQXOR

XORx2

x3

y1

y2

y3x1

x1
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21 Fitness Landscape

In Figure reffig:fitness-l a Concept of Fitness Landscape is plotted on also fictiteous do-
main of 2-dimensional space. For all the possible points in search space, fitness value is
calculated and plotted. If the domain is more than 3-dimensional, we could not visualize
it, but we could imagin it as a hyper-surface. This (hyper-)surface is called a fitness land-
scape, usually include peaks and the top of the highest peak corresponds to the global
solution, and top regeon of other lower peaks correspond to local optima.

w 1

w 2

How good is the performance?
(fitness)

Figure 30: A conceptual plot of fitness value defined on a fictitious 2-dimensional space.

21.1 Hill-climbing

— Random Mutation Hill-climbing (RMHC)—

(1) choose a string at random and call this current-hilltop

(2) choose a locus at random to flip. If the flip leads to an equal or higher fitness then
set current-hilltop to the resulting string

(3) goto step (2) until an optimum string has been found or until a maximum number
of evaluations have been performed.

(4) return the current-hilltop
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(cont’d)

— Steepest Ascent Hill-climbing (SAHC) —

(1) choose a string at random and call this current-hilltop

(2) going from left to right, flip each bit recording the fitness

(3) if any of the resulting strings give a fitness increase then set current hilltop to the
resulting string giving the highest fitness increase (ties are decided at random)

(4) if there is no fitness increase, then save current hilltop and goto (1), otherwise to
(2) with the new current-hilltop.

— Next Ascent Hill-climbing (NAHC) —

(1) choose a string at random and call this current-hilltop

(2) same as SAHC except that as soon as a fitness increase is found go to step (2)
without evaluating any more bit flips with the new current-hilltop and with the bit
position being the one where the previous fitness increase was found

(3) if no such increases goto (1)

21.2 A population of hill-climbers

21.2.1 Evolutionary Programming (EP)

21.2.2 Evolution Strategy (ES) – aiming more effectiveness.

21.3 Peculiar Landscapes

However, what if a landscape doesn’t have such gradiant information?

21.4 even-n-parity revisit

It is known that an even-n-parity constructed using only XOR and EQ have fitness 0.0,
0.5 or 1.0. That is to say...

22 A Needle in a Haystack Problem

Most banks nowadays facilitate their ATM (automated teller machine) in which we may
have a personal account to which we can access with PIN-code, usually four digits of
decimal numeral. For security reason, if we failed to enter the PIN correctly more than
three times in a row, the PIN would loose its validity thereafter. Then what we are curious
is, “How many trials would be needed for random challenges to reveal the secret PIN if
an infinite number of trials were permitted?” Let’s formalize this problem.
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22.0.1 Breaking a PIN

Assuming p-bit octal 6numeral is employed to construct a PIN, only one out of those 8p

possible combinations is the secret PIN. No one except for the owner of the PIN knows
it. Then question is, “How many average trials-and-errors will be needed for a non-owner
to know the PIN under a specific strategy?”

This might be reminiscent of the famous problem called a needle in a haystack which
was originally proposed by Hinton & Nowlan in 1987 [?]. The needle in the proposal was
exactly the one configuration of 20-bit binary string, that is, the search space is made up
of 220 points and only one point is the needle to be searched for. No information such as
how close is a currently searching point to the needle, or how likely is a searching point
to be the needle. See Figure 1.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

5 10 15 20 25

Number of trials needed until the needle was found

Number of bits

Random search

Figure 31: Search will explode exponentially as nuber of bits grows.

22.1 A-tiny-islnd-in-a-huge-lake

That is to say, if the peak is like a mesa which has a flat reagion, extremely steep sidewall,
and anywhereelse is totally flat land of fitness zero — we (personally) call it “A-Tiny-Flat-
Island-in-a-Huge-Lake”. Or, in extreme case, what if only one point in the search space
has the fitness one and all other points have fitness zero — This is called a “A-Needle-in-a
Haystack”, like in Figure

6You will see the reason why “octal” not “decimal” later in the sub-section concerning “intron” in the
section EXPERIMENTS.
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Figure 32: Conceptual figure of a needle in a haystack.

23 Why Giraffe has a long neck?

— Lamarckian Inheritance & Baldwin Effect

23.1 A Needle in a Haystack — The most difficult problem.

Once Hinton & Nowlan proposed a very interesting experiment to search for A-needle-in-
a-haystack. Their needle and haystack is as follows.

• A-needle ⇒ Only one configuration of 20 bits of binary string.

• Haystack ⇒ 220 − 1 search points.

For example, (11111111110000000000) is assigned fitness one, while others are fitness zero.
Conceptually, we could assume that given a black box to detect a needle like and our task

0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0

yes/no

a needle detector

Figure 33: A conceptual black-box to detect a needle.

is to search for the 20-bit binary input which return “YES”. We have only one such string
out of all the possible 220 inputs.

What Hinton & Nowlan proposed is a learning of each individual during its lifetime. In
a biological evolution, if the result affects the next generation, this is called a Baldwin
Effect. In the Hinton & Nowlan’s proposal this is as follows:

• lifetime learning of each individual (Baldwin Effect).
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– about 25% are “1”, 25% are “0”, and the rest of the 50% are “?” .

– They are evaluated with all the “?” position being assigned “1” or “0” at ran-
dom ⇒ learning.

– Each individual repeats the learning up to 1000 times ⇒ lifetime learning.

– If it reaches the point of fitness one at the n-th trial, then the degree to which
learning succeeded is calculated as

1 + 19 · (1000 − n)/1000.

24 Fuzzy Logic

24.1 Fuzzy Controller

An example of our goals.

We now assume x is speed of my car, y is distance to the car in front, and z is how
strongly we push brake-pedal. Then let’s controll my car with a set of rules, like

• IF x is high and y THEN z should be strong

• IF x is medium and y is long THEN z should be medium

• IF x is medium low or x is medium and y is long THEN z should be weak

• IF x is low or x is medium low and y is short or y is medium hort THEN z should
be medium weak

• etc.

Then the results will be plotted like in the Figure below.

How strongly push break pedal?

Distance from the car in front

p
d

e e
of

our car

S

Figure 34: An example of the goal of Fuzzy controller

For example, what should we react when x = 80km/h and y = 40m?
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Fuzzy set vs. Crisp set

• 0 < x < 10

• x=12

• {x is much smaller than 10}
• {x is close to 12}
• Beer is either of {very-cold, cold, not-so-cold, warm}

Membership function

How x is likely to be A is expressed by a function called membership function μA(x).
{x is close to 12}

μ(x) =
1

1 + (x − 12)2
(17)

0
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{all real much smaller than 10}
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)
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Figure 35: Examples of membership function {x is much smaller than 10} (right) and {x
is close to 12} (left).

AND and OR in Fuzzy Logic

A

B

A and B A or B

A

B

Figure 36: AND and OR in crisp set.
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In Fuzzy Logic, the membership of AandB and AorB are specified in various way, but
most popular is as

μAandB(x) = min{μA(x), μB(x)} (18)

A

B

A and B A or B

A

B

Figure 37: AND and OR in crisp set.

and

μAorB(x) = max{μA(x), μB(x)}, (19)

respectively.
Then, how we visualize membership function unles the function is defined more than one
as above two examples?

• Very cold or cold beer.

(μ is defined on temperature)
Let’s try ...

looks strange isn’t it? So, many another defenition has been proposed so far, e.g. Lu-
casiewics

μAandB(x) = max{1, μA(x) + μB(x)} (20)

and

μAorB(x) = min{1, μA(x) + μB(x)}, (21)

respectively.
bullet Young and tall.

1. 3-D graphic (z = μ is defined on x = age and y = height) 2. Matrix representation
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IF-Then rule in Fuzzy Logic

In Fuzzy Logic, the membership of IF A Then B is specified also in many way. Here, let’s
take it as

Mamdani’s proposal

μA→B(x) = min{μA(x), μB(x)} (22)

Larsen’s proposal

μA→B(x) = μA(x) × μB(x) (23)

24.1.1 Towards controlling a machine

Example 1
IF x = HIGH then z = STRONG

μ (x)

x

40 80

1

0

FAST
μ (y)

y

2.5 4.5

1

0

STRONG

(km/hour)
(kg)

Figure 38: Examples of membership function {x is much smaller than 10} (right) and {x
is close to 12} (left).

2.5 3.0 3.5 4.0 4.5
40
50
60
70
80

0.0 0.0 0.0 0.0 0.0
0.0 0.5 0.5 0.5 0.0
0.0 0.5 1.0 0.5 0.0
0.0 0.5 0.5 0.5 0.0
0.0 0.0 0.0 0.0 0.0

x
y

Figure 39: Examples of membership function {x is much smaller than 10} (right) and {x
is close to 12} (left).

Example 2 ... two rules of 1 element
R1: IF x = slow then z = high
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R2: IF x = midium then z = midium

Example 2 ... abain 1 rule but 2 elements
R1: IF x = slow AND y = medium THEN z = high

no more possible graphical or matrics but...
output fuzzy set when x = 40 is like ...

It’s not normal

24.2 Fuzzy and GA

evalving membership function

• Triangle membership functions

• Gaussian

chromosome corresponding to rule

25 Swarm Inteligence

25.1 Ant Colony Optimization

25.1.1 Application to Data-mining
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Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.65 0.80 0.20 0.08 0.89 0.73 0.68 0.56 0.80 0.75 0.87 1.00
0.62 0.68 0.20 0.08 0.81 0.73 0.65 0.60 0.73 0.61 0.74 0.76
0.59 0.73 0.19 0.08 0.87 0.70 0.71 0.60 0.90 0.68 0.86 0.84
0.58 0.70 0.22 0.08 0.70 0.52 0.58 0.52 0.80 0.66 0.81 0.72
0.63 0.82 0.20 0.08 0.82 0.64 0.67 0.60 0.82 0.68 0.84 0.88
0.68 0.89 0.25 0.16 0.72 0.64 0.65 0.52 0.96 0.68 0.96 0.84
0.58 0.77 0.20 0.12 0.80 0.75 0.68 0.64 0.62 0.57 0.65 0.68
0.63 0.77 0.22 0.08 0.62 0.55 0.48 0.40 0.92 0.66 0.91 0.72
0.56 0.66 0.20 0.08 0.84 0.66 0.67 0.52 0.85 0.57 0.84 0.72
0.62 0.70 0.22 0.04 0.66 0.61 0.57 0.56 0.91 0.82 0.88 1.00
0.68 0.84 0.22 0.08 0.63 0.45 0.51 0.40 0.82 0.73 0.74 0.80
0.61 0.77 0.23 0.08 0.75 0.68 0.61 0.60 0.81 0.61 0.77 0.76
0.61 0.68 0.20 0.04 0.76 0.50 0.58 0.40 0.86 0.68 0.80 0.84
0.54 0.68 0.16 0.04 0.77 0.66 0.68 0.56 0.72 0.57 0.72 0.80
0.73 0.91 0.17 0.08 0.71 0.66 0.52 0.52 0.73 0.64 0.74 0.96
0.72 1.00 0.22 0.16 0.85 0.70 0.64 0.56 0.81 0.73 0.77 0.92
0.68 0.89 0.19 0.16 0.71 0.68 0.65 0.60 0.82 0.68 0.80 0.72
0.65 0.80 0.20 0.12 0.73 0.61 0.59 0.40 0.97 0.86 0.97 0.88
0.72 0.86 0.25 0.12 0.78 0.50 0.65 0.60 0.97 0.59 1.00 0.92
0.65 0.86 0.22 0.12 0.71 0.57 0.57 0.44 0.76 0.50 0.72 0.60
0.68 0.77 0.25 0.08 0.75 0.73 0.70 0.72 0.87 0.73 0.83 0.92
0.65 0.84 0.22 0.16 0.77 0.64 0.58 0.52 0.71 0.64 0.71 0.80
0.58 0.82 0.14 0.08 0.80 0.57 0.71 0.60 0.97 0.64 0.97 0.80
0.65 0.75 0.25 0.20 0.77 0.64 0.68 0.48 0.80 0.61 0.71 0.72
0.61 0.77 0.28 0.08 0.81 0.66 0.62 0.52 0.85 0.75 0.83 0.84
0.63 0.68 0.23 0.08 0.84 0.68 0.64 0.56 0.91 0.73 0.87 0.72
0.63 0.77 0.23 0.16 0.86 0.64 0.70 0.56 0.78 0.64 0.70 0.72
0.66 0.80 0.22 0.08 0.85 0.68 0.72 0.68 0.77 0.68 0.71 0.72
0.66 0.77 0.20 0.08 0.76 0.66 0.65 0.60 0.81 0.64 0.81 0.84
0.59 0.73 0.23 0.08 0.72 0.59 0.51 0.40 0.91 0.68 0.84 0.64
0.61 0.70 0.23 0.08 0.70 0.55 0.55 0.44 0.94 0.64 0.88 0.76
0.68 0.77 0.22 0.16 0.70 0.55 0.54 0.40 1.00 0.86 0.93 0.80
0.66 0.93 0.22 0.04 0.73 0.61 0.57 0.48 0.81 0.64 0.81 0.88
0.70 0.95 0.20 0.08 0.76 0.61 0.74 0.64 0.80 0.64 0.74 0.60
0.62 0.70 0.22 0.04 0.68 0.68 0.65 0.60 0.77 0.59 0.81 0.56
0.63 0.73 0.17 0.08 0.76 0.77 0.65 0.64 0.97 0.68 0.88 0.92
0.70 0.80 0.19 0.08 0.85 0.70 0.68 0.60 0.80 0.77 0.81 0.96

(to be cont’d to the next page)



(Contemporary Intelligent Information Techniques) 61

(cont’d)

Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.62 0.70 0.22 0.04 0.80 0.52 0.64 0.52 0.81 0.70 0.80 0.72
0.56 0.68 0.19 0.08 0.71 0.68 0.59 0.52 0.76 0.68 0.70 0.72
0.65 0.77 0.22 0.08 0.70 0.57 0.58 0.52 0.87 0.70 0.78 0.84
0.63 0.80 0.19 0.12 0.70 0.59 0.64 0.48 0.85 0.70 0.81 0.96
0.57 0.52 0.19 0.12 0.77 0.68 0.67 0.56 0.87 0.70 0.74 0.92
0.56 0.73 0.19 0.08 0.73 0.59 0.58 0.48 0.73 0.61 0.74 0.76
0.63 0.80 0.23 0.24 0.63 0.52 0.48 0.40 0.86 0.73 0.86 0.92
0.65 0.86 0.28 0.16 0.71 0.61 0.61 0.52 0.85 0.75 0.83 1.00
0.61 0.68 0.20 0.12 0.72 0.68 0.61 0.48 0.85 0.68 0.75 0.92
0.65 0.86 0.23 0.08 0.72 0.66 0.61 0.52 0.80 0.57 0.72 0.76
0.58 0.73 0.20 0.08 0.78 0.66 0.62 0.52 0.82 0.68 0.75 0.80
0.67 0.84 0.22 0.08 0.65 0.57 0.43 0.44 0.78 0.77 0.78 0.92
0.63 0.75 0.20 0.08 0.72 0.64 0.59 0.52 0.75 0.68 0.74 0.72

25.2 Job Shop Scheduling Problem (JSSP)

We assume we have m machines M1, · · · , Mm and n jobs J1, · · · , Jn Each job Ji is made up
of nj operations Oij(i = 1, · · · nj) which have to be processed in the order O1j , O2j , · · ·Onj .
Operation Oij has to be processed without preemption on a dedicated machine μij ∈
M1, · · ·Mm for timu duration pij .

Each task must be processed on a single specified machine, and each job visits each
machine exactly once. There is a predefined ordering of the tasks within a job. A machine
can process only one task at a time. There are no set-up times, no release dates and no
due dates. The makespan is the time from the beginning of the first task to start to the
end of the last task to finish. The aim is to find start times for each task such that the
makespan is minimised.

The operation Ojr requires the exclusive use of Mr for an uninterrupted period of time
pjr

25.2.1 An example

25.3 Artificial Honey Bee Colony

Option of the bee who returns with a nector from flower

• Decide the site was not good. Hence, do not try dance but observe other dances
and choose and follow.
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• Continue to explore the same flower without giving dance and hence no followers.

• Dance & recruite followers.

The dance is called Waggle dance. It includes the information about (i) quality of flowers;
(ii) distance to the flowers; (ii) direction to the flowers.

26 Reinforcement Learning

Reinforcement Learning is a machine learning approach to solve goal-oriented problems
in which agent repeats a decision making by choosing one of the pre-defiened action
according to the situatin which the agent come accross from one to the next.
To simply put, might not so simply though, Reinforcement Learning is how the agent learn
to attain the goal by after sequential stochastic decisions, that is, by repeating changing
situation and deciding aciton.

State, Action, Policy, and Reward/Penalty

Thus, the Reinforcement Learning is made up of (i) situation – more frequently called a
state, that is, a state of environment; (ii) action; (iii) policy – a mapping from situation
to action; (iv) reward/penalty which is given to the agent according to the acciton chosen
in the next situation.

In the lecture chess, cart-pole problem, car-on-the-hill problem, jeep problem and so on
will be given as examples.

Value of state

Each state has a value called a value of state which is is defined as the sum of the
reinforcements received when starting in that state and following some fixed policy to a
terminal state.

Value Function

The value function is a mapping from states to state values
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Optimal Policy

Then the optimal policy would therefore be the mapping from states to actions that max-
imizes the sum of the reinforcements when starting in an arbitrary state and performing
actions until a terminal state is reached.

The goal of the agent is to find a policy that maximizes the total reward received over
time To obtain such a policy, let’s define expected discounted future reward starting in
state s taking action a and following π,

Qπ(s, a) = Eπ〈rt+1 + γ · rt+2 + γ2 · rt+3 + · · · |st = s, at = a〉. (24)

And Optimal Q is defined as:

Q�(s, a) = max
π

Qπ(s, a). (25)

The question is how we obtain the optimul value of Q(s, a). We now look at popular two
options. The first one is called Q-learning and renewed according to

Q(st, at) := Q(st, at) + α{rt+1 + γ · max
a′∈A

Q(st+1, a
′) − Q(st, at)}. (26)

The second option is called SALSA, and renewal is by:

Q(st, at) := Q(st, at) + α{rt+1 + γ · Q(st+1, at+1) − Q(st, at)} (27)

in both of which the action at at each step t is chosen at random with probability ε , and
the action with highest Q-Value with probability 1 − ε. This is called an ε-greedy choice
of action.


