
p1 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Kohonen Nets : Unsupervised Learning
MLPs and RBFs require ‘supervisor’: tells network error
A Kohonen network learns for itself : it is unsupervised

Neocognitron and ART are also unsupervised methods.
Self organising behaviour allows the network to discover

significant features of the input data without a supervisor
Idea: repeatedly present a set of input data & update network

weights via SOM (Self Organising Map) training algorithm,
until the net reaches some stable final configuration.

Often the SOM is 2 dimensional: its final configuration is a 2D
topographic representation of the k-dimensional input data.

Hence, one application is data dimension reduction
Similar inputs to trained net excite similar regions of the SOM

p2 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Biological Justification

Kohonen first developed scheme as a biologically plausible
neural architecture modelled on the human cortex, which
consists of a thin layer with rich lateral interconnections

Interconnectivity strengths defined by ‘Mexican Hat ‘
Mexican Hat describes inhibitory and excitory connections
between neurons as a function of separation distance.

But, normally computationally efficient networks are used.

‘mexican hat’

eg sinc(x)

weights

distance

p3 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Schematic Kohonen Network

Input N dimensions (normalised as calculating distances)
Each Neuron has N weights – initialise small random values
Input is connected to associated weight of ALL Neurons
Neurons normally as 2D rectangle (or hexagonally mapped)
Competitive learning used – node ‘nearest’ input wins!

(connected to all neurons)Input

neurons

p4 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Learning in a Kohonen Network
Initialise neuron weights to small random values.
Keep presenting inputs to the network;
For each presentation

Find the focus, c: the node whose ‘weights’ are closest to input
For all nodes i within Neighbourhood of c, Nc

Wm
i (t+1) = Wm

i (t) + α (t) (Xi (t) – Wm
i (t))

Note learning rate α (t) should decrease with time
as should Neighbourhood Nc.

Finding focus … find Euclidean distance of data point and
each node (ie n-dimensional Pythagoras on Data and Wi)

As want smallest distance, for efficiency, use distance squared

p5 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Topological Preservation
As network ‘learns’, nodes near each other ‘learn’ similar vals
This is a consequence of the neighbourhood
This leads to the so-called ‘topology preservation’ property of

Kohonen nets, which is demonstrated by having
a 2D Kohonen network
2D data comprising random variables well spread over the
range 0..1

Then as the network learns, so its weight vectors will ‘self-
organise’ into a regular lattice.

Next slide plot Weight 1 vs Weight 2 of each node, and draw
lines between each node and its neighbours N S E W

p6 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

p7 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Function kn_learn
function net = kn_learn(net, ins, neigh, lrate, epochs);
% NET = KN_LEARN (NET, INS, NEIGH, LRATE, EPS);
% Do EPS times: Present each input in INS to network NET
% Find node nearest input and adjust it, and others in

NEIGHbourhood, using learning rate LRATE
% NET is r*c*w array - r rows c cols and w weights; w vals in

each row in INS
Called by following
>> net = rand (6,7,2); % for 6*7 map, 2 inputs
>> ins = rand(200,2); % 200 pairs of input values
>> neigh = [4 3 2 1 1 1 1 1]; % define shrinking neighbourhood
>> lrate = [0.5 0.4 …etc] ; % learning rate at each epoch
>> for ct=1:9 net = kn_learn(net, ins, neigh(ct), lrate(ct), 40); end

p8 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Function kn_output
kn_output finds relationship between input and each node
It returns, for each node,
either a) the distance squared between input and the node
or b) the sigmoid (on weighted sum of inputs) of the node
function netout = kn_output(net, ins, how);
% NETOUT = KN_OUTPUT (NET, INS, HOW)
% HOW = 0, NetOut = Sigmoid(Weighted Sum of INS)
% HOW = 1, NetOut = Distance(Squared) from INS

p9 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Application - Speech Recognition
Extract phoneme spectral data using FFT on input signal
FFT is logarithmically filtered to produce a 15 element input

vector. Typically in the range [200Hz .. 5KHz].
Input vector elements are averaged and normalised.
During learning each neuron begins to respond strongly to a

specific phoneme.
In use (speaker dependent 92-97% transcription accuracy):

At each sample period a specific neuron is most active.
If this is constant over a given time window, eg. 4 samples

out of 7, then that phoneme is said to be active.
A word is identified as a recognisable trajectory over the

feature map – moving from one phoneme to another

p10 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Part of (Hexagonal) Feature Map

Here are some nodes, and their phoneme labels.
Works very well in Finnish – but it is a phonetic language

a a ah h ae

o a

ae

r

o

o

a

a

o

o m

r g

r

ae

la h

rr

r

r m

p11 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Kohonen Maps & Dimension Reduction
A series of n-dimensional input vectors can be mapped,

(classified), onto a say, two, dimensional feature map.
Network itself organises classification - no external direction.
Data could have 5 variables, 2D Map in effect has only 2!
Further reduction possible – by ‘clustering’
eg. A Kohonen student classifier may have n different inputs

corresponding to marks in particular subjects, amount of
time spent working etc. and m output neurons.
After training it would be able to classify students into one

of m groups!
Practical use – identifying gases in transformer & associating

each region of SOM with particular fault or correct operation

p12 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Another Example
Example from Haykin. 16 animals

Dove, Hen, Duck, Goose, Owl, Hawk, Eagle, Fox
Dog, Wolf, Cat, Tiger, Lion, Horse, Zebra, Cow

For each there are 13 attributes (next slide) saying
whether is small, medium or big

has 2 legs, 4 legs, hair, hooves, mane of feathers
likes to hunt, run, fly, swim.

Each ‘input’ to network has these 13 attributes plus 16
numbers being all zeros except nth number of nth input is
0.2 (ie input specifies what the animal is.

Data are normalised so each vector has ‘length’ 1.

p13 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
Med 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
2 leg 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
4 leg 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
Feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
Run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
Fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
Swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

p14 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Experiment
A Kohonen Network of 10*10*29 is initialised
The network is trained for 2000 epochs. Two outputs found
First Output is where take each item in data set and find the

one node which is closest to the input and that node is
labelled according to animal associated with that input.

Second, do ‘simulated electrode penetration’
Here take each node in the network and find which input is

closest to it, and then label that node according to the
associated input

The result is a ‘contextual map’
You will note that similar animals are adjacent …

p15 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

First Table … Shows ‘Winners’

Fox Dog Tiger
Cat Wolf

Eagle Lion

Hen
Dove clash Horse

Goose
Duck Cow Zebra

p16 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Contextual Map ….
Cat Cat Fox Fox Dog Dog Wolf Wolf Lion Tiger

Cat Cat Fox Fox Dog Dog Wolf Wolf Lion Tiger

Cat Cat Cat Eagle Eagle Eagle Wolf Wolf Lion Lion

Cat Cat Cat Eagle Eagle Eagle Eagle Lion Lion Lion

Hen Hen Hen Eagle Eagle Eagle Eagle Hawk Lion Lion

Hen Hen Dove Dove Dove Hawk Hawk Hawk Horse Horse

Hen Hen Dove Dove Dove Hawk Hawk Hawk Horse Horse

Goose Goose Dove Dove Dove Hawk Hawk Hawk Horse Horse

Goose Goose Duck Duck Cow Cow Cow Zebra Zebra Zebra

Goose Goose Duck Duck Cow Cow Cow Cow Zebra Zebra

Note, for inst, Zebra near Horse …. Lion near Tiger

p17 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Application Determining Input Variables
Kohonen maps can be used to give an indication of whether

different variables affect an output variable.
This can be useful in deciding which variables to analyse

when forecasting data, for instance.
Here all variables (including output) are fed to network.
The network is trained as usual
Then each plane is shown suitable colour coded

Plane (n) is the value of the nth weight of each neuron
Weights are in range 0..1; colours are mapped to this range.

Look at planes for ‘output’ and each input: if have similar
areas (normally diff. colours), worth using that input

p18 RJM 12/09/05 CYMN2 – Neural Networks – 8 – Kohonen Nets
© Dr Richard Mitchell 2005

Example Electricity Demand

Looks like temperature, illumination and (to lesser
extent) cos(timeofday) are best indicators of demand
NB _std at end of variable names indicates each has
been normalised using its std.

Temp_std Illum_std Demand_std

Time_std Sin(Time*2π/24) Cos(Time*2π/24)

	Kohonen Nets : Unsupervised Learning
	Biological Justification
	Schematic Kohonen Network
	Learning in a Kohonen Network
	Topological Preservation
	Function kn_learn
	Function kn_output
	Application - Speech Recognition
	Part of (Hexagonal) Feature Map
	Kohonen Maps & Dimension Reduction
	Another Example
	Experiment
	First Table … Shows ‘Winners’
	Contextual Map ….
	Application Determining Input Variables
	Example Electricity Demand

