
Parceptron

Akira Imada

Most recently renewed on

March 22, 2010

1 Single Parceptron

Assume we have 10 inputs x1, x2, · · · , x10 and one output y. Also assume each input is
binary 1 or −1. All the input is connected to output with synapse whose weight is wi

(i = 1, 2, · · ·10). If w1x1 + w2x2 + · · · + w10x10 is larger than a threshold θ then y = 1,
otherwise y = −1. That is,

y = sgn(
10∑

i=1

wixi − θ). (1)

Figure 1: Schematic diagram of Single Parceptron.

Task 1 (A Framework) Assigning random weight value from -1 to 1, create a program
which accepts M binary inputs from keyboard, calculate y, and display 10 input and output
with their color being green if the value is 1 or red if the value is -1. Also show weighted
sum of the inputs

∑10
i=1 wixi on the screen like the following Figure.

1



(Practice at BSTU in fall 2006 – Parceptron) 2

IBM

w=
0.12 0.36 -0.12 0.74 -0.15 0.19 0.45 -0.75 0.42 0.11

Σ w x = 5.26

Figure 2: An example of display of the task.

Examples of how can it work.

One of the most typical example is to realise a Boolean function. For example, output is
1 if and only if all the input is 1, otherwise −1.

Table 1: An example of Boolean Function assuming 4 inputs case. Note that we call this
AND logic when the number of input is 2.

x1 x2 x3 x4 x5 x6 x7 y
-1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 1 -1

· · · · · · · · · · · · · · · · · · · · · · · ·
1 1 1 1 1 1 1 -1
1 1 1 1 1 1 1 1

Task 2 (Extended AND) Discover a set of weights and threshold so that y = 1 if and
only if input are all 1, otherwise y = −1.

Task 3 (Extended OR) Discover a set of weights and threshold so that y = 1 if at least
one input is 1 and y = −1 if all input is −1.

Task 4 (EVEN PARITY) What about the case where y = 1 if the number of 1 is odd,
otherwise y = −1?



(Practice at BSTU in fall 2006 – Parceptron) 3

2 Perceptron Learning

Assume now we have m input and n output wij is a weight value from input j to output
neuron i. Xp is p-th input vector for training, that is,

Xp = (xp
1, x

p
2, x

p
3, ...x

p
n),

Ŷ p is target output vector when p-th training input Xp is given, that is,

Ŷ p = (ŷp
1, ŷ

p
2, ŷ

p
3, · · · , ŷp

m)

Y p is actual output vector, that is,

Y p = (yp
1, y

p
1, y

p
1, · · ·yp

m)

Then we can describe a learning of weights as

wij(t + 1) = wij(t) + η(Ŷ p − Y p)(Xp)t.

Note that (Ŷ p − Y p)(Xp)t is an inner product of two vectors, that is,

(ŷp
1 − yp

1)x
p
1 + (ŷp

2 − yp
2)x

p
2 + (ŷp

3 − yp
3)x

p
3 + · · ·+ (ŷp

m − yp
m)xp

m.

η is a learning coefficient set to a small real number ranging (0 < η < 1. The learning is
repeated until the change in weight value becomes neglectable. In other words, we have
to preset p enough a large number so that wij(t + 1)−wij(t + 1) becomes almost 0, after
repeating above ptimes. This is also called Widrow-Hoff Learning Algorithm



(Practice at BSTU in fall 2006 – Parceptron) 4

3 Multi-layer Parceptron

Figure 3: Schematic diagram of Multi-layer Parceptron.


