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ABSTRACT

The earliest network models of associative memory were based on correlations betwee
input and output patterns of activity in linear processing units. These models have sever.
features that make them attractive: The synaptic strengths are computed from informatic
available locally at each synapse in a single trial; the information is distributed in a larg
number of connection strengths, the recall of stored information is associative, and the ne
work can generalize to new input pattems that are similar to stored pattems. There are als
severe limitations with this class of linear associative matrix models, including interferenc
between stored items, especially between ones that are related, and inability to make dec
sions that are contingent on several inputs. New neural network models and neural networ
leaming algorithms have been introduced recently that overcome some of the shortcoming
of the associative matrix models of memory. These learning algorithms require many train
ing examples to create the internal representations needed to perform a difficult task and gen
eralize properly. They share some properties with human skill acquisition.

L. INTRODUCTION

Processing in neurons can be vety complex, though within the basic limitations ot
speed and accuracy imposed by the biophysical properties of ions and membranes. Integra-
tion of information in dendrites is often nonlinear. There are many types of neurons that
have highly specific patterns of connectivity; some are primarily inhibitory, others are pri-
marily excitatory, and synaptic strengths are variable on many time scales. Finally, the ner-
vous system has many different nuclei and many cortical areas that have different structural
motifs as well as different functions. How much of the details of neural processing must be
included in a model? This depends on the level under investigation (Churchiand et at.,
1988). Biophysical properties may be crucial when modeling synaptic plasticity, but only a
general rule for modification may be needed to model information storage at the circuit level.
The style of processing and memory, such as the degree to which information is localized or
distributed in the network, could well be general properties while the actual codes used are
probably specific to the detailed circuits.

As a first step teward understanding real neural networks, we study network models
constructed from simple processing units that have only the most basic propesties of neurons
and attempt to explore their computational capabilities: What are the possible ways to
fepresent sensory information in a collection of these units? What are the computational
capabilities of different patterns of connectivity in the network? What computations can the
network not perform? Even the simplest networks have complex behaviors that are not easy
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to describe analytically, so much of the research is empirical and exploratory. Also, there are
so many architectures — the number of layers, feedback between layers, and local pattems
of connectivity — that much guidance is needed from the general organization of cortical
circuits, such as the columnar organization of cerebral cortex and the hierarchical arrange-

ments of cortical mappings (Sejnowski, 1986).

2. ASSOCIATIVE MATRIX MODELS

The goal of linear associative matrix models (Steinbuch, 1961; Anderson, 1970;
Kohonen, 1972) was to perforin content-addressable recall of infonmation stored as vectors.
Given an input vector 1, and an associated output vector 0, the correlation matrix is defined

as:
w;; =€0;1; M

where ¢ is the strength of the association and w;; represents a linear transformation between
input vectors and output vectors. If ; is identified with the rate of firing of the jth presynap-
tic element and o; is identified with rate of firing of the ith postsynaptic element, then K;;
can be computed after modifying the synapses between the input and output neurons accord-
ing to the leaming rule suggested by Hebb (1949), which states that a plastic synapse should
increase in strength whenever there is a simultaneous presynaptic spike and a postsynaptic
spike. An important property of the correlation matrix is that it depends only on information
that is avaitable locally at a synapse. Nonlocal modification rules that require information
from disparate parts of a network are more difficult to implement.

Hebbian synaptic plasticity is probably the simplest local rule that can be used for asso-
ciative storage and Tecall of information. Evidence supporting Hebbian plasticity has
recently been found in the hippocampus (Kelso, et al., 1986) and detailed correlation matrix
models of the hippocampus are now being explored (Lynch, 1986; Rolls, 1986). However,
there are many other uses for Hebbian synaptic plasticity, such as plasticity during develop-
ment (Linsker, 1986), unsupervised learning (Sutton & Barto, 1981; Tesauro, 1986; Finkel &
Edelman, 1985), and very rapid changes in the topology of a network (von der Malsburg &
Bienenstock, 1986). As a consequence, experimental evidence for Hebbian modification of
synaptic strength does not necessarily imply associative storage.

Numerous variations have been proposed. on the conditions for Hebbian plasticity
(Levy, et al., 1984). One problem with any synaptic modification rule that can only increase
the strength of a synapse is the eventual saturation of the synaptic strength at its maximum
value. Nonspecific decay is one solution to this problem. Sejnowski (1977a, 1977b) has sug-
gested that specific decreases in the strength of a plastic synapse should be considered, and
proposed that the change in strength of a plastic synapse should be proportional to the
covariance between the presynaptic firing and postsynaptic firing:

w;; =E(0; —0,) (1 —1;) @

where 6,- is the average firing rate of the output neuron and {; is the average fis:: ; rate of the
input neuron. (See also Chauvet, 1986) According to this modification rule, the strength of
the synapse should increase if the firing of the presynaptic and postsynaptic elements are
positively correlated, decrease if they are negatively correlated, and remain unchanged if
they are uncorrelated. Evidence for a decrease in the strength of synapses in the hippo-
campus under the predicted conditions has recently been reported by Levy, et al. (1983).
Similar modification rules have also been suggested for plasticity during development
(Cooper et al., 1979; Bienenstock et al., 1982).
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) Improvements have recently been made to associative matrix models by introduc
feedback connections, so that they are autoassociative, and by making them nonlit
(Anderson & Mozer, 1981; Sejnowski, 1981; Hopfield, 1982; Kohonen, 1984: Golden, 19
’I"oulouse et al., 1986). However, this class of models still has a severe compl;tational ,llm
tion in that all the processing units in the network are constrained by either the inputs or
outputs, so that there are no free units that could be used to form new internal represer
tions. What representations should be used for the input units and output units if the netw:
is deeply buried in association cortex? Some other principles must be specified for form:
internal representations. Nevertheless, given that good representations already exist,

associative matrix model is still a viable one for the fast stora i
' ge of novel events and ite:
(Hinton & Anderson, 1981).

3. NONLINEAR NETWORKS

The output of the model neuron introduced by McCulloch and Pitts (1943) could ot
take on the values of 0 or 1, like the all-or-none action potential. This binary model does r
take into account the graded responses of neurons, which can be expressed as an average r:
of firing. There are two ways make the output of the processing unit graded. First, the o1
put of the processing unit can be made probabilistic, with a probability proponio;lal to
average rate of firing. Secondly, the output of a processing unit can be made a real numb
between 0 and 1. Both of these possibilities will be discussed in this chapter.

The ﬁn‘ng rate of neuron as a function of injected current has a threshold and saturat
at some maximum firing rate. A simple model for this function is the sigmoid:
— 1

=2 Wi ’
1+e¢ /
where 5; is the o ] i il i j ] i
where i N output of the ith unlf, and w;; is the weight from the jth to the ith unit. Th

ghis can have positive or negative real values, representing an excitatory or inhibitor

influence. .In addition to the weights connecting them, each unit also has a threshold and
some leaming algorithms the thresholds can vary.

5= P(E;)= €

In a network of processing units, a subset receives information from outside the net
work while another subset provides the output from the network. The networks that we ca
study are small and should be considered small circuits embedded in a larger system. Pat
tems of activity in the group of input units are transformed into patterns of activity .in the
output units by direct connections and through connections with additional intermal units tha
play the role of interneurons. In general, it is very difficult to analyze the performance an'«
com.pl{tationaj capabilities of nonlinear network models. By making restrictions on the con
nectivity it is possible to make progress.

In a network with feedback the output units may reverberate without settling down to o
stable output. In some cases oscillations may be desirable, but otherwise special provisions
must be made to suppress the them. One method that has been thoroughly explored is thr;=
use of symmetric connectivity. Networks with reciprocal symmetric connections, first i;’]ll'O-
du?ed by Hopfield (1982) in the context of binary-valued processing units, were ,the \stanin
point for the study of learning algorithms in Boltzmann machines by H'mt‘on and Sejnowskgi
(1983). Another method, extensively studied by Grossberg (1983), is the use of lateral

shunting inhibition. But it is easiest to avoid illati ideri
. R oscillations by not considerin
connections. Y B sy fecdback

In a feedforward network there is no dynamic feedback so that information can only
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flow from the input layer to the output layer. The simplest class of feedforward networks are
ones that have no internal or "hidden" units. In this case each output unit acts independently
in response to input patterns in its "receptive field", defined here as the group of input units
which drive the output unit, in analogy with the concept of a receptive field for sensory neu-
rons. The output unit is most strongly driven by patterns of activity in its receptive field that
are congruent with the excitatory connections and that avoid the inhibitory ones.

A very simple leaming procedure exists for automatically determining the weights in a
single-layer feedforward network. It is an incremental learning procedure that requires a
teacher to provide the network with examples of typical input patterns and the correct out-
puts; with each example the weights in the network are slightly altered to improve the perfor-
mance of the network. If a set of weights exists that can solve the classification problem, then
convergence theorems guarantee that such a set of weights will be found. These leaming
procedures are error-correcting in the sense that only information about the discrepancy
between the desired outputs provided by the teacher and the actual output given by the net-
work is used to update the weights. The LMS algorithm of Widrow and Hoff (1960) applies
to units that have continuous-valued outputs, and the perceptron leaming algorithm of
Rosenblatt (1959) applies to binary-valued units. These error correction algorithms require
that the weight from input unit s; to the i th output unit should be altered by

AH-‘U =€ (S,'* - S,') Yl )

where s,-'r is the desired output, 5; is the actual output, and € is the rate of learning. On each
learning step the squared error averaged over all input pattems is reduced.

There is an interesting relationship between this error-comrecting procedure and the
Rescorla-Wagner theory for classical conditioning. Rescorla and Wagner (1972) state that:
"Organisms only leamn when events violate their expectations. Certain expectations are built
up about the events following a stimulus complex; expectations initiated by the complex and
its component stimuli are then only modified when consequent events disagree with the com-
posite expectation.” Thus it is the difference between the expected and actual outcomes that
determine whether strengths are modified. Sutton and Barto (1981) have shown that the
mathematical formalism introduced by Rescorla and Wagner is identical to the Widrow-Hoff
LMS algorithm.

Recently, Gluck and Bower (1987) have applied the LMS algorithm to category learn-
ing in humans. In three experiments, subjects learned to categorize diseases in hypothetical
patients from pattemns of symptoms. The adaptive network model was a better predictor of
human performance than probability matching, exemplar retrieval, or simple prototype
matching. The model correctly predicted a counterintuitive phenomenon called "base-rate
neglect” that has been frequently observed in studies of liklihood judgments: When one
disease is far more likely than another, the model predicts that subjects will overestimate the
diagnostic value of the more valid symptom for the rare disease. Thus, the subjects con-
sistently overestimated the degree to which evidence that was representative -or typical of a
rare event was actually predictive of it (Kahneman & Tversky, 1972).

The patterns that can be correctly classified with a one-layer network are limited to
those that are geometrically equivalent to regions of a vector space bounded by a plane (Min-
sky & Papert, 1969). Single-layer networks are severely limited in the difficulty of the prob-
lem that they can solve, but this deficiency can be partially overcome by preprocessing the
inputs through a layer of units that serve as feature detectors so that the information needed
to solve the problem is made explicitly available (Rosenblatt, 1959; Gamba, et al., 1961).
The required features may be different for each problem.
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One problem with single-layer networks is the lack of internal degrees of freedom. Can
the learning algorithm be generalized to networks with more than one layer of weights? If
so, then the need to hand-code the features for each problem would be alleviated, and much
more difficult problems could be solved by the same type supervised leaming paradigm. It
had been thought for many years that such a leaming algorithim was not possible for mul-
tilayered networks (Minsky and Papert, 1969, p. 232; see also Arbib, 1987).

4. NETWORK MODELS WITH HIDDEN UNITS

Adding a single intermediate layer of hidden units between the input and output layers
suffices to perform any desired transformation (Palm, 1979). However, the number of hid-
den units required may be very large. In practice, only a small subset of all possible transfor-
mations are ever needed and only a small number of hidden units are available. The chal-
lenge is to find the appropriate set of hidden units for each problem. One possibility is to
have the network discover the proper features without supervision from a teacher. There are
several unsupervised leaming procedures that can automatically model structure from the
environment (Kohonen, 1984; Grossberg, 1976; Rumelhart & Zipser, 1985; Pearimutter &
Hinton, 1986). One problem with unsupervised leamning is that all the hidden units may dis-
cover the same features. Competition through mutual inhibition is one solution that enforces
diversity (Feldman, 1982). Another problem is that not all the structure in the inputs may be
relevant to the solution of a particular problem. Feedback of information from the environ-
ment about the desired performance is needed.

One class of supervised leaming algorithms for multilayered networks uses reinforce-
ment signals from a teacher that tell the network whether or not the output is correct (Sutton
& Barto, 1981; Barto, 1986; Klopf, 1986; Tesauro, 1986; Gluck & Thompson, 1986). This is
the minimum amount of information needed to help direct the hidden units toward good
features, but there is so little information that the networks improve slowly and hesitatingly.
Recently a new class of algorithms have been discovered that directly generalize the class of
error-correcting leaming procedures to multilayered networks. Two examples will be
reviewed here: The Boltzmann machine and back-propagation. [See also Arbib (1987) for a
review that includes a valuable historical perspective on earlier work.]

Boltzmann machines. Hinton & Sejnowski (1983, 1986) introduced a stochastic net-
work architecture, called the Boltzmann machine, for solving optimization problems (Marr
& Poggio, 1976; Ballard et al., 1983; Hopfield & Tank, 1986). The processing units in a
Boltzmann machine are binary and are updated probabilistically using the output function in
Eq. 1 to compute the probabilities. As a consequence, the internal state of a Boltzmann
machine fluctuates even for a constant input pattern. The amount of fluctuation is controlled
by a parameter that is analogous to the temperature of a thermodynamic system. Fluctuations
allow the system to escape from local traps into which it would get stuck if there were no
noise in the system. All the units in a Boltzmann machine are symmetrically connected: this
allows an "energy” to be defined for the network and insures that the network will relax to an
equilibrium state which minimizes the energy (Hopfield, 1982). Smolensky (1983) has stu-
died the same architecture using "harmony” as the global function, which is the negative of
energy.

The Boltzmann machine has been applied to a number of constraint satisfaction prob-
lems in vision, such as figure-ground separation in image analysis (Sejnowski & Hinton,
1987; Kienker et al., 1986), and generalizations have been applied to image restoration
(Geman & Geman, 1984) and binocular depth perception (Divko & Schulten, 1986). The
number of times that the network must be updated to reach an optimal solution can be very




296

large when the units are stochastic; architectures with continuous-valued units can converge
to near optimal solutions much more quickly (Hopfield, 1984; Hopfield & Tank, 1985,
Hopfield & Tank, 1986).

Boltzmann machines have an interesting learning algorithm that allows “energy
landscapes” to be created through training by example. Leaming in a Boltzmann machine
has two phases. In the training phase a binary input pattem is imposed on the input group as
well as the correct binary output pattern. The system is allowed to relax to equilibrium at a
fixed "temperature” while the inputs and outputs are held fixed. In equilibrium, the average
fraction of the time a pair of units is on together, the co-occumence probability pi}”, is com-
puted for each connection. In the test phase the same procedure is followed with only the
input units clamped, and the average co-occurrence probabilities, p;;, are again computed.
The weights are then updated according to:

AM’,'j =€ (p,f - P,,— )v (5)

where € controls the rate of leaming. A co-occursence probability is related to the correla-
tion between the firing or activation of the presynaptic and postsynaptic units and can be
implemented by a Hebb synapse. In the second phase, however, the change in the synaptic
strengths is anti-Hebbian since it must decrease with increasing correlation. Notice that this
procedure is also error- correcting, since no change will be made to the weight if the two pro-
habilities are the same. The perceptron leaming procedure follows as a special case of the
Boltzmann leaming algorithm when there are no hidden units and the probability function
reduces to a step function.

The Boltzmann leamning algorithm has been applied to a variety of problems, such as
the bandwidth compression (Ackley, Hinton & Sejnowski, 1985), leaming symmetry groups
(Sejnowski et al., 1986), and speech recognition (Prager, Harrison & Fallside, 1986). One of
the practical limitations of simulating a Boltzmann machine on a conventional digital com-
puter is the excessive time required to come to equilibrium and collect statistics. A special-
purpose VLSI chips is being designed to speed up the leaming (Alspector & Allen, 1986).
Recently, a mean-field theory for the Boltzmann machine has been introduced for which
learning is an order of magnitude faster (Anderson, 1987).

Back-propagation. Another error-correcting leaming procedure, called error back-
propagation, generalizes the Widrow-Hoff algorithm to multilayered feedforward architec-
tures (Rumelhart, et al., 1986; Parker, 1986; Le Cun, 1985). The back-propagation leamning
algorithm has been applied to many problems, including knowledge representation in seman-
tic networks (Hinton, 1986), text-to-speech (Sejnowski & Rosenberg, 1987), sonar target
identification (Gonman & Sejnowski, 1987), backgammon (Tesauro & Sejnowski, 1986), and
predicting the secondary structure of globular proteins (Qian & Sejnowski, 1988).

Neither the Boltzmann machine nor the error back-propagation scheme are meant as
titeral models of real neural circuitry. They are also quite different from each other — The
Boltzmann machine uses binary stochastic units in a symmetric network while back-
propagation uses real-valued deterministic units in a feedforward netwotk — but both archi-
tectures have learning algorithms that depend on gradient descent in the space of weights,
which can have a very high dimensionality. The class of gradient descent algorithms for
learning in large networks may have general properties that are already preSent in the sim-
plest members. Other more elaborate gradient descent leaming algorithms, which are more
biologically plausible, are also being explored.
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5. CONCLUSIONS

Error correction learing procedures such as the Boltzmann machine learning algorithm
and error back-propagation require many repetitions of the training examples. It also takes
long practice to become an expert in domains such as playing chess, proving mathematical
theorems, and 17th century intellectual history. Slow leaming allows efficient internal
representations to be built up amongst the hidden units. Once these representations have
been formed, they can be used to perform fast associative storage and recall of facts that are
domain specific and use the structure of the domain for analogical reasoning about other
fi({mains. Leaming systems will need a variety of adaptive mechanisms for storing, reorgan-
1zing, and retrieving experiences.

Ac.knuwledgments: Preparation of this chapter was supported by grants from the National
Science Foundation, Seaver Institute, and the Air Force Office of Scientific Research.
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