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NEURAL NETWORK LEARNING ALGORI'I'IIMS 

Terrence J. Sejnowski 
Department of Biophysics 
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ABSTRACT 

The earliest network models of associative memory were based on correlations betwec 
input and output patterns of activity in linear processing units. These models have sever 
features that m'ake them attractive: The synaptic strengths are computed from informatir 
available locally at each synapse in a single trial; the information is distributed in a larp 
number of connection strengths, the recall of stored infom~ation is associative, and the ne 
work can generalize to new input pattems that are similar to stored patterns. There are als 
severe limitations with this class of linear associative matrix models, including interferenc 
between stored items, especially between ones that are related, antl inability to make decl 
sions that are contingent on several inputs. New neural network nlotlels .and neural networ 
leanling algorithrns have been introduced recently that overcome some of the shortcoming 
of the associative matrix models of memory. These learning algorithms require many train 
ing examples to create the internal representations needed to perform a difficult task and gen 
eralize properly. They share some properties with human skill acquisition. 

Processing in neurons can be very complex, though within the basic limitations 01 

speed and accuracy imposed by the biophysical properties of ions and membranes. Integra- 
tion of infonnation in dendrites is often nonlinear. There are many types of neurons that 
have highly specific patterns of connectivity; some are primarily inhibitory, others are pri- 
marily excitatory, and synaptic strengths are variable on many time scales. Finally, the ner- 
vous system has many different nuclei and many cortical areas that have different structural 
motifs as well as different functions. How much of the details of neural processing must be 
included in a model? This depends on the level under investigation (Churchland et al., 
1988). Biophysical properties may be crucial when modeling synaptic plasticity, but only a 
general rule for modification may be needed to model infonnation storage at the circuit level. 
The style of processing and memory, such as the degree to which information is localized or 
distributed in the network, could well be general properties while the actual codes used are 
prohably specific to the detailed circuits. 

As a first step teward understanding real neural networks, we study network models 
constructed from simple processing units that have only the most basic properties of neurons 
antl nttetnpt to explore their computationd capabilities: What are the possible ways to 
represent sensory infonnation in a collection of these units? What are the conlputational 
cnpabilities of different pattems of connectivity in the network? What computations can the 
network not perfonn? Even the simplest networks have complex behaviors that are not easy 
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to describe analytically, so much of the research is empirical and exploratory. Also, there are 
so many architectures - the number of layers, feedback between layers, and local patterns 
of connectivity - that much guidance is needed from the general organization of cortical 
circuits, such as the columnar organization of cerebral cortex and the hierarchical arrange- 
ments of cortical mappings (Sejnowski, 1986). 

2. ASSOCIATIVE MATRIX MODELS 
The goal of linear associative n~atrix models (Steinbuch, 1961; Anderson, 1970; 

Kohonen, 1972) was to perfonn content-addressable recall of infonnation stored as vectors. 
Given an input vector b and an associated output vector o,, the correlation matrix is defined 
as: 

Wjj = E 0;tj (1) 

where E is the strength of the association and wjj represents a linear transformation between 
input vectors and output vectors. If t j  is identified with the rate of firing of the jth presynap- 
tic element 'and oj is identified with rate of firing of the i th postsynaptic element, then Kjj 
can be computed after modifying the synapses hetween the input and output neurons accord- 
ing to the leanling rule suggested by Hehb (1949). which states that a plastic synapse should 
increase in strength whenever there is a sin~ult.meous presynaptic spike and a postsynaptic 
spike. An important property of the correlation matrix is that it depends only on infonnation 
that is available locally at a synapse. Nonlocal modification rules that require infonnation 
from disparate parts of a network are more difficult to implement. 

Hebbian synaptic plasticity is probably the simplest local rule that can be used for asso- 
ciative storage and rec:dl of infonnation. Evidence supporthlg Hehbian plasticity has 
recently been found in the hippocanpus (Kelso, et al., 1986) and detailed correlation matrix 
models of the hippocan~pus are now being explored (Lynch, 1986; Rolls. 1986). However. 
there are many other uses for Hebbian synaptic plasticity, such as plasticity during develop- 
ment (Linsker, 1986), unsupervised learning (Sutton & B.uto, 1981; Tesauro, 1986; Finkel & 
Edelman, 1985), and very rapid changes in the topology of a network (von der Malsburg & 
Bienenstock, 1986). As a consequence, experimental evidence for Hebbian modification of 
synaptic strength does not necessarily imply associative storage. 

Numerous variations have been proposed on the conditions for Hebbian plasticity 
(Levy, et al., 1984). One problem with any synaptic modification rule that can only increase 
the strength of a synapse is the eventual saturation of the synaptic strength at its maximum 
value. Nonspecific decay is one solution to this problem. Sejnowski (1977~1, 1977b) has sug- 
gested that specific decreases in the strength of a plastic synapse should be considered, and 
proposed that the change in strength of a plastic synapse should be proportional to the . - 
covariance between the presynaptic firing and postsynaptic firing: 

- - 
where oj is the average firing rate of the output neuron and ti is the average fii; .s rate of the 
input neuron. (See also Chauvet, 1986) According to this nlodification rule, the strength of 
the synapse should increase if the firing of the presywptic and postsynaptic elements are 
positively correlated, decrease if they are negatively correlated, and remain unchanged if 
they are uncorrelated. Evidence for a decrease in the strength of synapses in the hippo- 
campus under the predicted conditions has recently been reported by Levy. et ill. (1983). 
Similar modification rules have also been suggested for plasticity during development 
(Cooper et al., 1979; Bienenstock et al., 1982). 

Improvements have recently been made to associative matrix models by introduc 
feedback connections, so that they are autoassociative, and by making them nonlir 
(Anderson & Mozer, 1981; Sejnowski, 1981; Hopfield, 1982; Kohonen, 1984; Golden, 19 
Toulouse et al., 1986). However, this class of models still has a severe computational lim 
tion in that all the processing units in the network are constrained by either the inputs or 
outputs, so that there are no free units that could be used to form new internal represer 
tions. What representations should be used for the input units and output units if the netw, 
is deeply buried in association cortex? Some other principles must be specified for form 
internal representations. Nevertheless, given that good representations already exist, I 

associative matrix model is still a viable one for the fast storage of novel events and ite~ 
(Hinton & Anderson, 1981). 

3. NONLINEAR NETWORKS 
The output of the model neuron introduced by McCulloch and Pitts (1943) could or 

take on the values of 0 or 1, like the all-or-none action potential. This binary model does r 
t'ake into account the graded responses of neurons, which can be expressed as an average r: 
of firing. There are two ways make the output of the processing unit graded. First, the 01 

put of the processing unit can be made probabilistic, with a probability proportional to 
average rote of firing. Secondly, the output of a processing unit can be made a real numb 
hetween 0 and I.  Both of these possibilities will be discussed in this chapter. 

The firing rate of neuron as a function of injected current has a threshold and saturat, 
at some maximum firing rate. A simple model for this function is the sigmoid: 

where s, is the output of the it11 unit, and n;, is the weight from the jth to the I th unit. Th 
weights can have positive or negative real values, representing an excitatory or inhibitor 
influence. In addition to the weights connecting them, each unit also has a threshold and i 
some learning algorithms the thresholds can vary. 

In a network of processing units, a subset receives information from outside the nel 
work while another subset provides the output from the network. The networks that we cal 
study are small and should be considered small circuits embedded in a larger system. Pat 
terns of activity in the group of input units are transformed into patterns of activity in t b  
output units by direct connections and through connections with additional internal units thn 
play the role of interneurons. In general, it is very difficult to analyze the performance an( 
computational capabilities of nonlinear network models. By n l l i n g  restrictions on the con 
nectivity it is possible to make progress. 

In a network with feedback the output units may reverberate without settling down to a 
stable output. In some cases oscillations may be desirable, but otherwise special provisions 
must be made to suppress the them. One n~ethocl that has been thoroughly explored is the 
use of symmetric connectivity. Networks with reciprocal syrnn~etric connec~ions, first intro- 
duced by Hopfield (1982) in the context of binary-valued processing units, were the starting 
point for the study of le,mling algorithms in Boltzmann machines by Hinton and Sejnowski 
(1983). Another method, extensively studied by Grossberg (1983), is the use of lateral 
shunting inhibition. But it is easiest to avoid oscillations by not considering arly feedback 
connections. 

In a feedforward network there is no dynamic feedback so that information can only 



flow from the input layer to the output layer. The simplest class of feedforward networks are 
ones that have no internal or "hidden" units. In this case each output unit acts independently 
in response to input patterns in its "receptive field", defined here as the group of input units 
which drive the output unit, in analogy with the concept of a receptive field for sensory neu- 
rons. The output unit is most strongly driven by patterns of activity in its receptive field that 
are congruent with the excitatory connections and that avoid the inhibitory ones. 

A very simple learning procedure exists for automatically determining the weights in a 
single-layer feedforward network. It is an incremental learning procedure that requires a 
teacher to provide the network with examples of typical input patterns and tlle correct out- 
puts; with each example the weights in the network are slightly altered to improve tlle perfor- 
mance of the network. If a set of weights exists that can solve the classification problem, then 
convergence theorems guarantee that such a set of weights will be found. These learning 
procedures are error-correcting in the sense that only infonnation about the discrepancy 
between the desired outputs provided by the teacher and the actual output given by the net- 
work is used to update the weights. The LMS algorithm of Widrow and Hoff (1 960) applies 
to units that have continuous-valued outputs, and tlie perceptron learning algorithm of 
Rosenblatt (1959) applies to binary-valued units. These error correction algorithms require 
that the weight from input unit s, to the i th output unit should be altered by 

where s: is the desired output, s; is the actual output, and E is the rate of learning. On each 
learning step the squared error averaged over all input panerns is reduced. 

There is an interesting relationship between this error-correcting procedure and the 
Rescorla-Wagner theory for classical conditioning. Rescorla and Wagner (1972) state that: 
"Organisms only lean1 when events violate their expectations. Certain expectations are built 
up about the events following a stimulus complex; expectations initiated by the complex and 
its component stimuli are then only modified when consequent events disagree with the com- 
posite expectation." Thus it is the difference between the expected and actual outcomes that 
determine whether strengths are modified. Sutton and Barto (1981) have shown that the 
mathematical formalism introduced by Rescorla and Wagner is identical to the Widrow-Hoff 
LMS algorithm. 

Recently, Gluck and Bower (1987) have applied the LMS algorithm to category learn- 
ing in humans. In three experiments, subjects learned to categorize diseases in hypothetical 
patients from patterns of symptoms. The adaptive network model was a better predictor of 
human perforniance than probability matching, exemplar retrieval, or simple prototype 
matching. Tlie model correctly predicted a counterintuitive phenomenon called "base-rate 
neglect" that has been frequently observed in studies of liklil~ootl judgments: When one 
clise;ise is far more likely t1i:m another, the ~notlel predicts that suhjects will overestimate tlie 
tliognostic value of the more valid sytnptom for tlie rare disease. Thus, the subjects con- 
sistently overestimated the degree to which evidence that was representative-or typical of a 
rare event w : ~  actnally predictive of it (Kalineman & Tversky, 1972). 

The patterns that can be correctly classifietl with a one-layer network are limited to 
those that are geometrically equivalent to regions of a vector space bounded by a pkane (Min- 
sky & Papert, 1969). Single-layer networks are severely limited in the difficulty of the prob- 
lem that they can solve, but this deficiency can be partially overcome by preprocessing the 
inputs tluough a layer of units that serve as feature detectors so that the infonnation needed 
to solve the problem is made explicitly available (Rosenblatt, 1959; Gamba, et al., 1961). 
The required features may be different for each problem. 

One problem with single-layer networks is the lack of internal degrees of freedom. Can 
the learning algorithm be generalized to networks with more than one layer of weights? If 
so, then the need to hand-code the features for each problem would be alleviated, and much 
more difficult problems could be solved by the same type supervised leaniing paradigm. It 
had been thought for many years that such a leamhig algorithm was not possible for mul- 
tilayered networks (Minsky and Papert, 1969, p. 232; see also Arbib, 1987). 

4. NE'I'WORK MOIIELS WIT11 IIIDDEN UNITS 

Adding a single intennediate layer of hidden units between the input and output layers 
suffices to perform any desired transformation (Palm, 1979). However, the number of hid- 
den units required may be very large. In practice, only a small subset of all possible transfor- 
mations are ever needed and only a small number of hidden units are available. The chal- 
lenge is to find tlie appropriate set of hidden units for each prohlem. One possibility is to 
have tlle network discover the proper features without supervision from a teacher. There are 
several urlsupervised learning procedures that can automatically lnotlel structure from the 
environment (Kolionen, 1984; Grossberg, 1976; Rumelhart & Zipser. 1985; Pe;irlmutter & 
Hinton, 1986). One problem with unsupervised leaniing is that all the hitlden units may dis- 
cover tlie same features. Competition through mutual inhibition is one solution that enforces 
diversity (Feltlmm, 1982). Another problem is that not all the structure in the inputs may be 
re1ev:uit to the solution of a particular prohlem. Feedback of information from the environ- 
ment about the desired perfonnance is needed. 

One class of supervised learning algorithms for multilayered networks uses reinforce- 
ment signals from a teacher that tell the network whether or not the output is correct (Sutton 
& Barto, 198 1 ; Barto, 1986; Klopf, 1986; Tesauro, 1986; Gluck & Thompqon, 1986). This is 
tlle rninimitm amount of information needed to help direct the hidden units toward good 
features, but there is so little information that the networks improve slowly and hesitatingly. 
Recently a new class of algorithms have been tliscoveretl that directly generalize the class of 
error-correcting leaming procedures to multilayered networks. Two examples will be 
reviewed here: The Boltzmann machine and back-propagation. [See also Arbib (1987) for a 
review that includes a valuable historical perspective on earlier work.] 

Boltzntann machines. Hinton & Sejnowski (1983, 1986) introduced a stochastic net- 
work architecture, called the Boltzmann machine, for solving optimization problems (Marr 
& Poggio, 1976; Ballard et al., 1983; Hopfield & Tank, 1986). The processing units in a 
Boltzrnann machine are binary and are updated probabilistically using the output fimction in 
Eq. 1 to compute the probabilities. As a consequence, the internal state of a Boltzmann 
machine fluctuates even for a constant input pattern. The amount of fluctuation is controlled 
hy a pacuneter that is ;~nnlogous to the temperature of a therniotlyn:unic system Fluctuations 
allow the system to escape from 1oc:d traps into which it would get stuck if there were no 
noise in the system. All the units in a Boltzmnnn machine :Ire symmetrically connectetl: this 
allows an "energy" to he defined for the network and insures that the network will relax to an 
equilibrium state which ~ninimizes the energy (Hopfield, 1982). Smolensky (1983) has stu- 
died the same architecture using "hannony" as the global function. which is tlie negative of 
energy. 

The Boltzmann machine has been applied to a number of constraint satisfaction prob- 
lems in vision, such as figure-ground separation in image analysis (Sejnowski & Hinton, 
1987; Kienker et al., 1986). and generalizations have been applied to image restoration 
(Geman & Genian, 1984) and binoculw depth perception (Divko & Schulten, 1986). The 
number of tunes that the network must be updated to reach an optimal solution cam be very 



large when the units are stochastic; architectures with continuous-valued units can converge 
to near optimal solutions much more quickly (Hopfield, 1984; Hopfield & Tank, 1985, 
Hopfield & Tank, 1986). 

Boltzmann machines have a11 interesting learning algorithm that allows "energy 
landscapes" to he created through training by example. Leanling in a Boltzn~ann machine 
has two phases. In the training phase a binary input pattem is imposed on tlie input group as 
well as the correct binary output pattern. The system is allowed to relax to equilibrium at a 
fixed "temperature" while the inputs and outputs .are held fixed. In equilibrium, the average 
fraction of the thne a pair of units is on together, the co-occurrence probability pi;, is com- 
puted for each connection. In the test phase the same procedure is followed with only the 
input units clamped, and the average co-occurrence probabilities, pi;, are again computed. 
The weights are then updated according to: 

where E controls the rate of leanling. A co-occurrence probability is related to tlie correla- 
tion between the firing or activation of the presynaptic and postsynaptic units and can be 
inlplemented by a Hehb synapse. In the second phase, however, the change in the synaptic 
strengths is wti-Hehbian since it must decrease with increasing correlation. Notice that this 
procedure is also error- correcting, since no change will be made to the weight if the two pro- 
hahilities :ire tlie same. The perceptron learning proceclure follows as a special case of the 
Boltm.ann leaming algorithni when there are no hitlden units and tlie prohahilily function - - 

reduces to a step function. 

The Boltzmann learning algorithm has been applied to a variety of problems, such as 
the bandwidth compression (Ackley, Hinton & Sejnowski, 1985). learning symmetry groups 
(Sejnowski et al., 1986), a id speech recognition (Prager, Harrison & Fallside, 1986). One of 
the practical lintitations of simulating a Boltzmann machine on a conventional digital com- 
puter is the excessive time required to come to equilibrium and collect statistics. A special- 
purpose VLSI chips is being designed to speed up the learning (Alspector & Allen, 1986). 
Recently, a mean-field theory for the Boltzmann machine has been introduced for which 
learning is an order of magnitude faster (Anderson, 1987). - 

Back-propagation. Another error-correcting leaming procedure, called error back- 
propagation, generalizes the Widrow-Hoff algorithm to nlultilayered feedforward architec- 
tures (Rumelhart, et al., 1986; Parker, 1986; Le Cun, 1985). The back-propagation leaming 
algorithm has been applied to many problems, including knowledge representation in seman- 
tic networks (Hinton, 1986), text-to-speech (Sejnowski & Rosenberg, 1987), sonar target 
identification (Gonnan & Sejnowski, 1987). backgammon (Tesauro & Sejnowski, 1986), and 
predicting the secontl.uy structure of glohul;u proteins (Qian & Sejnowski, 1988). 

Neitlier tlie Boltztnrnn machine nor the error back-propagation scheme are meant as 
literd models of real neural circuitry. They are also quite different from each other - The 
Boltzmann machine uses binary stochastic units hi a symmetric network while back- 
propagation uses real-valued deterministic units in a feedforward network - but both archi- 
tectures have leaming ;dgoritlinls that depend on gradient descent in the space of weights, 
which can have a very high din~e~isionality. The class of grrtlieltt descent ;tlgorithms for 
learning in large networks may have general properties that are already present in the sim- 
plest members. Other more elaborate gradient descent leaming algorithms, which are more 
biologically plausible, are also being explored. 

5. CONCLUSIONS 
Error correction learning procedures such as the Boltzmann machine learning algorithm 

and error back-propagation require many repetitions of the training examples. It also takes 
long practice to become an expert in domains such as playing chess. proving mathematical 
theorems, and 17th century intellectual history. Slow leaming allows efficient internal 
representations to be built up amongst the hidden units. Once these representations have 
been fonned, they can be used to perform fast associative storage and recall of facts that are 
domain specific and use the structure of the domain for analogical reasoning about other 
domains. Learning systems will need a variety of adaptive mechanisms for storing, reorgan- 
izing, and retrieving experiences. 
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