Diploma Practice Report
lvanov Kirill

Brest State Technical University (BSTU) 2006

Contents

L INtrodUCHiON. ... e 3
2. Applicationsof TSP........ccoiiii i, 4
2.1 FOrmMUIationS. .. .c.vee et i e e e 5
2.2, AlQOrIthMS. .. e 6
2.3 APPHICAIONS. ..ot 8
2.3.1. OVEIVIBWS. .\ ettt et et vaeeaeeaeereeaeaaeeeeeeeseeneeees 8
2.3.2. Morein detail somereal world application examples......... 9
3. Why GATOr TSP? .. e 13
3.1. Evolution and optimization..........covvveiiiiiiiiee e ee e, 13
3.2. Evolution and Genetic Algorithms..........ccovviiiiiiieenenenenn. 14
3.3. Functioning of aGenetic Algorithm..................cceeeen e, 15
3.4. Adaptation and Selection : the scaling problem................... 16
3.5, CONCIUSION. . ettt e e e e e e e e e e e e e e e 17
4. Thedeveloped GA for TSP......oviiii e, 18
4.1. GA desCriptionccove i e 18
A.2. B OIS, ..ot 18
4.3. “52 real towns locationin Berlin®cccvviviiiiinnnn... 18
5. CONCIUSIONS.o e e e e 19
6. REFEIENCES. ..., 20

1. Introduction

According to this diploma practice | have to develop a new genetic algorithm (GA) for Traveling
Sales-person Problem (TSP) (you may see the algorithm in part “The developed GA for TSP” of this
report paper).

I had to apply the developed algorithm for real city coordinates.

| had to develop the algorithm to try to get more optimal results with the GA. About my resultsin
part: “ The developed GA for TSP”.

And about the report in brief. It consists of the parts:

1. Introduction: the goal of this report.

2. The developed GA for TSP: 1) the developed genetic algorithm for TSP; 2) about results of the
developed GA for TSP.

3. Applications of TSP: 1) about TSP; where apply TSP.

4. Why GA for TSP?: 1) why | choosed GA; 2) what is GA in brief.

5. Conclusions: overviews of the diploma practice.

2. Applications of TSP

Much of the work on the TSP is not motivated by direct applications, but rather by the fact that
the TSP provides an ideal platform for the study of general methods that can be applied to awide
range of discrete optimization problems. This is not to say, however, that the TSP does not find
applications in many fields. Indeed, the numerous direct applications of the TSP bring life to the
research area and help to direct future work.

The TSP naturally arises as a subproblem in many transportation and logistics applications, for
example the problem of arranging school bus routes to pick up the children in aschool district. This
bus application is of important historical significance to the TSP, since it provided motivation for
Merrill Flood, one of the pioneers of TSP research in the 1940s. A second TSP application from the
1940s involved the transportation of farming equipment from one location to another to test soil,
leading to mathematical studiesin Bengal by P. C. Mahalanobisand in lowa by R. J. Jessen. More
recent applications involve the scheduling of service calls at cable firms, the delivery of mealsto
homebound persons, the scheduling of stacker cranes in warehouses, the routing of trucks for
parcel post pickup, and a host of others.

Although transportation applications are the most natural setting for the TSP, the smplicity of
the model has led to many interesting applications in other areas. A classic example is the
scheduling of amachineto drill holesin acircuit board or other object. In this case the holes to be
drilled are the cities, and the cost of travel is the time it takes to move the drill head from one hole to
the next. The technology for drilling varies from one industry to another, but whenever the travel
time of the drilling device is asignificant portion of the overall manufacturing process then the TSP
can play arole in reducing costs.

The traveling salesman problem (TSP) is one which has commanded much attention of
mathematicians and computer scientists specifically becauseit is so easy to describe and so difficult
to solve. The problem can simply be stated as: if a traveling salesman wishes to visit exactly once
each of alist of m cities (where the cost of traveling from city i to city j iscij) and then return to the
home city, what is the least costly route the traveling salesman can take? A complete historical
development of this and related problems can be found in Hoffman and Wolfe (1985).

The importance of the TSP is that it is representative of a larger class of problems known as
combinatorial optimization problems. The TSP problem belongs in the class of combinatoria
optimization problems known as NP-complete. Specifically, if one can find an efficient algorithm
(i.e., an algorithm that will be guaranteed to find the optimal solution in a polynomia number of
steps) for the traveling salesman problem, then efficient algorithms could be found for all other
problems in the NP-complete class. To date, however, no one has found a polynomial-time
algorithm for the TSP. Does that mean that it is impossible to solve any large instances of such
problems? Many practical optimization problems of truly large scae are solved to optimality
routingly. In 1994, Applegate, et. a. solved a traveling salesman problem which models the
production of printed circuit boards having 7,397 holes (cities), and, in 1998, the same authors
solved a problem over the 13,509 largest citiesin the U.S. So, although the question of what it is that
makes a problem "difficult" may remain open, the computational record of specific instances of TSP
problems coming from practical applicationsis optimistic.

How are such problems tackled today? Obviously, one cannot consider a brute force approach. In
one example of an 16 city traveling salesman problem -- the problem of Homer's Ulysses attempting
to visit the cities described in The Odyssey exactly once -- there are 653,837,184,000 distinct routes,
(Grotschel and Padberg, 1993)! Enumerating all such roundtrips to find a shortest one took 92 hours
on a powerful workstation. Rather than enumerating all possibilities, successful algorithms for
solving the TSP problem have been capable of eliminating most of the roundtrips without ever
explicitly considering them.

2.1. Formulations

The first step to solving instances of large TSPs must be to find a good mathematical
formulation of the problem. In the case of the traveling salesman problem, the mathematical
structure is a graph where each city is denoted by a point (or node) and lines are drawn connecting
every two nodes (called arcs or edges). Associated with every lineis a distance (or cost). When the
salesman can get from every city to every other city directly, then the graph is said to be complete. A
round-trip of the cities corresponds to some subset of the lines, and is called atour or a Hamiltonian
cyclein graph theory. The length of atour isthe sum of the lengths of the lines in the round-trip.

Depending upon whether or not the direction in which an edge of the graph is traversed matters,
one distinguishes the asymmetric from the symmetric traveling salesman problem. To formulate
the asymmetric TSP on m cities, one introduces zero-one variables

{f if theedge 1— jizintheiour

Xy =
O atherwise

and given the fact that every node of the graph must have exactly one edge pointing towards it
and one pointing away from it, one obtains the classic assignment problem. These constraints alone
are not enough since this formulation would allow "subtours”, that is, it would allow digoint loops
to occur. For this reason, a proper formulation of the asymmetric traveling salesman problem must
remove these subtours from consideration by the addition of "subtour elimination” constraints. The
problem then becomes

ﬂﬁnZ’}hZ}’iqug
3.t X xy = 1 fori=1,..m
g&l}ﬁj:l forj=1,...,m

Tk Zerxg S [E[-1 foral K {1, m}

z=Jor 1 for all 1, 5

where K is any nonempty proper subset of the cities 1,...,m. The cost cij is allowed to be different
from the cost cji. Note that there are m(m-1) zero-one variables in this formulation.

To formulate the symmetric traveling salesman problem, one notes that the direction traversed is
immaterial, so that cij = ¢ji. Since direction does not now matter, one can consider the graph where
there is only one arc (undirected) between every two nodes. Thus, we let xj e {0,1} be the decision
variable where j runs through all edges E of the undirected graph and ¢j is the cost of traveling that
edge. To find atour in this graph, one must select a subset of edges such that every nodeis contained
in exactly two of the edges selected. Thus, the problem can be formulated as a 2-matching problem
in the graph Gv having m(m-1)/2 zero-one variables, i.e. half of the number of the previous
formulation. Asin the asymmetric case, subtours must be eliminated through subtour elimination
constraints. The problem can therefore be formulated as:

min 1/ 2 35 ¥ oy ox

5.t Xy miEk = 2 for all 1=1,....m

ey xj S| K|-1 foral E C{l,., m}

zj=Uorl for all 1 £E,

where J(j) is the set of all undirected edges connected to node j and E(K) is the subset of al
undirected edges connecting the citiesin any proper, nonempty subset K of all cities. Of course, the
symmetric problem is a special case of the asymmetric one, but practical experience has shown that
algorithms for the asymmetric problem perform, in general, badly on symmetric problems. Thus,
the latter need a special formulation and solution treatment.

2.2. Algorithms

Exact approaches to solving such problems require algorithms that generate both alower bound
and an upper bound on the true minimum value of the problem instance. Any round-trip tour that
goes through every city exactly onceis afeasible solution with a given cost which cannot be smaller
than the minimum cost tour. Algorithms that construct feasible solutions, and thus upper bounds for
the optimum value, are called heuristics. These solution strategies produce answers but without any
quality guarantee as to how far off they may be from the optimal answer. Heuristic algorithms that
attempt to find feasible solutions in a single attempt are called constructive heuristics while
algorithms that iteratively modify and try to improve some given starting solution are called
improvement heuristics. When the solution one obtains is dependent on the initial starting point of
the algorithm, the same algorithm can be used multiple times from various (random) starting points.
For an excellent survey of randomized improvement heuristics, see Junger, Reinelt and Rinadi
(1994). Often, if one needs a solution quickly, one may settle for awell-designed heuristic algorithm

that has been shown empirically to find "near-optimal™ tours to many TSP problems. Research by
Johnson (1990), and Junger, Reinelt and Rinaldi (1994) describes algorithms that find solutions to
extremely large TSPs (problems with tens of thousands, or even millions of variables) to within 2%
of optimality in very reasonable times. For genetic algorithmic approaches to the TSP, see Potvin
(1996), for simulated annealing approaches see Aarts, et al. (1988), for neural net approaches, see
Potvin (1993), and for tabu search approaches, see Fiechter (1990). Performance guarantees for
heuristics are given in Johnson and Papadimitriou (1985); probabilistic analysis of heuristics are
discussed in Karp and Steele (1985); and the development and empirical testing of heuristics is
reported in Golden and Stewart (1985).

In order to know about the closeness of the upper bound to the optimum value, one must also
know a lower bound on the optimum value. If the upper and lower bound coincide, a proof of
optimality is achieved. If not, a conservative estimate of the true relative error of the upper bound is
provided by the difference of the upper and the lower bound divided by the lower bound. Thus, one
needs both upper and lower bounding techniques to find provably optimal solutions to hard
combinatorial problems or even to obtain solutions meeting a quality guarantee.

So how does one obtain and improve the lower bound? A relaxation of an optimization problem
is another optimization problem whose set of feasible solutions properly contains all feasible
solution of the original problem and whose objective function value is less than or equal to the true
objective function value for points feasible to the original problem. Thus we replace the "true"
problem by one with a larger feasible region that is more easily solvable. This relaxation is
continually refined so as to tighten the feasible region so that it more closely represents the true
problem. The standard technique for obtaining lower bounds on the TSP problem is to use a
relaxation that is easier to solve than the origina problem. These relaxations can have either discrete
or continuous feasible sets. Several relaxations have been considered for the TSP. Among them are
the n-path relaxation, the assignment relaxation, the 2-matching relaxation, the 1-tree relaxation,
and the linear programming relaxation. For randomly generated asymmetric TSPs, problems having
up to 7500 cities have been solved using an assignment relaxation which adds subtours within a
branch and bound framework and which uses an upper bounding heuristic based on subtour
patching, (Miller and Pekny, 1991). For the symmetric TSP, the 1-tree relaxation and the
2-matching relaxations have been most successful. These relaxations have been embedded into a
branch-and-cut framework.

The process of finding constraints that are violated by a given relaxation, is called a cutting plane
technique and all successes for large TSP problems have used cutting planes to continuously tighten
the formulation of the problem. It isimportant to stress that all successful computational approaches
to the TSP utilize facet-defining inequalities as cutting planes. General-type cutting planes of the
integer programming literature that use the smplex basis-representation to obtain cuts, such as
Gomory or intersection cuts, have long been abandoned because of poor convergence properties.

One of the ssimplest cuts that have been shown to define facets of the underlying TSP polytope
are the subtour eimination cuts. Besides these constraints, comb inequalities, clique tree
inequalities, path, wheelbarrow and bicycle inequalities, ladder inequalities and crowns have aso
been shown to define facets of this polytope. The underlying theory of facet generation for the
symmetric traveling salesman problem is provided in Grotschel and Padberg (1985) and Junger,
Reinelt and Rinaldi (1994). The agorithmic descriptions of how these are used in cutting plane

approaches are discussed in Padberg and Rinaldi (1991) and Junger, Reinelt and Rinaldi (1994).
Parallel processing implementations are presented in Christof and Reinelt (1995) and A pplegate, et
al. (1998). Cutting plane procedures can then be embedded into a tree search referred to as branch
and cut. Some of the largest TSP problems solved have used parallel processing to assist in the
search for optimality. As our understanding of the underlying mathematical structure of the TSP
problem improves, and with the continuing advancement in computer technology, it is likely that
many difficult and important combinatorial optimization problems will be solved using a
combination of cutting plane generation procedures, heuristics, variable fixing through logical
implications and reduced costs and tree search.

2.3. Applications

2.3.1. Overviews

One might ask, however, whether the TSP problem is important enough to have received all of
the attention it has. Besides being a "polytope" of a difficult combinatorial optimization problem
from a complexity theory point of view, there are important cases of practica problems that can be
formulated as TSP problems and many other problems are generalizations of this problem. Besides
the drilling of printed circuits boards described above, problems having the TSP structure occur in
the analysis of the structure of crystals, (Bland and Shallcross, 1987), the overhauling of gas turbine
engines (Pante, Lowe and Chandrasekaran, 1987), in material handling in awarehouse (Ratliff and
Rosenthal, 1981), in cutting stock problems, (Garfinkel, 1977), the clustering of data arrays,
(Lenstraand Rinooy Kan, 1975), the sequencing of jobs on a single machine (Gilmore and Gomory,
1964) and the assignment of routes for planes of a specified fleet (Boland, Jones, and Nemhauser,
1994). Related variations on the traveling salesman problem include the resource constrained
traveling salesman problem which has applications in scheduling with an aggregate deadline (Pekny
and Miller, 1990). This paper aso shows how the prize collecting traveling salesman problem
(Balas, 1989) and the orienteering problem (Golden, Levy and Vohra, 1987) are special cases of the
resource constrained TSP. Most importantly, the traveling salesman problem often comes up as a
subproblem in more complex combinatoria problems, the best known and important one of which
is the vehicle routing problem, that is, the problem of determining for a fleet of vehicles which
customers should be served by each vehicle and in what order each vehicle should visit the
customers assigned to it. For relevant surveys, see Christofides (1985) and Fisher (1987).

2.3.2. Morein details some real world application examples

Genome Sequencing

— MaRN3

— ——D135340

— D133333

Researchers at the National Institute of Health have used Concorde's TSP solver to construct
radiation hybrid maps as part of their ongoing work in genome sequencing. The TSP provides a
way to integrate local maps into a single radiation hybrid map for a genome; the cities are the local
maps and the cost of travel is a measure of the likelihood that one local map immediately follows
another. A report on the work is given in the paper "A Fast and Scalable Radiation Hybrid Map
Construction and Integration Strategy”, by R. Agarwala, D.L. Applegate, D. Maglott, G.D. Schuler,
and A.A. Schaffler.

This application of the TSP has been adopted by a group in France developing a map of the
mouse genone. The mouse work is decribed in "A Radiation Hybrid Transcript May of the Mouse
Genome", Nature Genetics 29 (2001), pages 194--200.

Starlight I nterferometer Program

A team of engineers at Hernandez Engineering in Houston and at Brigham Y oung University
have experimented with using Chained Lin-Kerninghan to optimize the sequence of celestia objects
to beimaged in a proposed NASA Starlight space interferometer program. The goal of the study it
to minimize the use of fuel in targeting and imaging maneuvers for the pair of satellitesinvolved in
the mission (the citiesin the TSP are the celestial objects to be imaged, and the cost of travel isthe
amount of fuel needed to reposition the two satellites from one image to the next). A report of the
work is given in the paper "Fuel Saving Strategies for Separated Spacecraft Interferometry”.

Scan Chain Optimization

A semi-conductor manufacturer has used Concorde's implementation of the Chained
Lin-Kernighan heuristic in experiments to optimize scan chainsin integrated circuits. Scan chains
are routes included on a chip for testing purposes and it is useful to minimize their length for both
timing and power reasons.

Genome Sequencing

An old application of the TSP is to schedule the collection of coins from payphones throughout a
givenregion. A modified version of Concorde's Chained Lin-Kernighan heuristic was used to solve
avariety of coin collection problems. The modifications were needed to handle 1-way streets and
other features of city-travel that make the assumption that the cost of travel from x toy isthe same as
fromy to x unrealistic in this scenario.

Touring Airports

10

Concorde is currently being incorporated into the Worldwide Airport Path Finder web site to
find shortest routes through selections of airports in the world. The author of the site writes that
users of the path-finding tools are equally split between real pilots and those using flight simulators.

USA Trip

Thetravel itinerary for an executive of a non-profit organization was computed using Concorde's
TSP solver. The trip involved a chartered aircraft to visit cities in the 48 continental states plus
Washington, D.C. (Commercia flights were used to visit Alaska and Hawaii.) It would have been
nice if the problem was the same as that solved in 1954 by Dantzig, Fulkerson, and Johnson, but
different cities were involved in this application (and somewhat different travel costs, since flight
distances do not agree with driving distances). The data for the instance was collected by Peter
Winker of Lucent Bell Laboratories.

Designing Sonet Rings

An early version of Concorde's tour finding procedures was used in atool for designing fiber
optical networks at Bell Communications Research (now Telcordia). The TSP aspect of the
problem arises in the routing of sonet rings, which provide communications links through a set of

11

sitesorganized in aring. The ring structure provides a backup mechanism in case of alink failure,
since traffic can be rerouted in the opposite direction on the ring.

Power Cables

Modules from Concorde were used to locate cables to deliver power to electronic devices
associated with fiber optic connections to homes. Some general aspects of this problem area are
discussed in the paper "Powering the Last Milee An Alternative to Powering FITL".

12

3. Why GA for TSP?

A salesman wantsto visit n cities cyclically. He wantsto visit each city once and return to the city
where he starts. In which way should he visit the cities so that the distance traveled by him will be
minimum?

Thisis asimple combinatorial problem. For asmall value of n, one can easily find the solution by
having a permutation of the cities which is the minimum distance tour. But for larger n, it would be
impracticable as there are (n-1)!/2 ways to visit the cities.

Many approaches have been proposed for the problem. Of these, Genetic Algorithms can
produce reasonable solutions in a short span of time.

Physics, Biology, Economy or Sociology often have to deal with the classical problem of
optimization. Economy particularly has become specialist of that fieldl. Generally speaking, alarge
part of mathematical development during the XVIlIth century dealt with that topic (remember those
always repeated problems where you had to obtain the derivative of afunction to find its extremes).

Purely analytical methods widely proved their efficiency. They nevertheless suffer from a
insurmountable weakness : Redlity rarely obeys to those wonderful differentiable functions your
professors used to show you.

Other methods, combining mathematical analysis and random search have appeared. Imagine
you scatter small robots in a Mountainous landscape. Those robots can follow the steepest path they
found. When a robot reaches a peak, it claims that it has found the optimum. This method is very
efficient, but there's no proof that the optimum has been found, each robot can be blocked in alocal
optimum. This type of method only works with reduced search spaces.

What could be the link between optimization methods and artificial life ?

3.1. Evolution and optimization.

We are now 45 millions years ago examining a Basilosaurus :

Figure 2: Basilosaurus

The Basilosaurus was quite a prototype of awhale. It was about 15 meters long for 5 tons. It still
had a quasi-independent head and posterior paws. He moved using undulatory movements and
hunted small preys3. Its anterior members were reduced to small flippers with an elbow articulation.

Movements in such a viscous element (water) are very hard and require big efforts. People
concerned must have enough energy to move and control its tragjectory. The anterior members of
basilosaurus were not realy adapted to swimming4. To adapt them, a double phenomenon must

13

occur : the shortening of the "arm” with the locking of the elbow articulation and the extension of
the fingers which will constitute the base structure of the flipper.

Figure 3: Tursiops flipper

The image shows that two fingers of the common dolphin are hypertrophied to the detriment of
the rest of the member.

The basilosaurus was a hunter, he had to be fast and precise. Through time, subjects appeared
with longer fingers and short arms. They could move faster and more precisely than before, and
therefore, live longer and have many descendants.

Meanwhile, other improvements occurred concerning the general aerodynamic like the
integration of the head to the body, improvement of the profile, strengthening of the cauda fin ...
finally producing a subject perfectly adapted to the constraints of an aqueous environment.

This process of adaptation, this morphological optimization is so perfect that nowadays, the
similarity between a shark, a dolphin or a submarine is striking. But the first is a cartilaginous fish
(Chondrichtyen) originating in the Devonian (-400 million years), long before the apparition of the
first mammal whose Cetacean descend fromb.

Darwinian mechanism hence generate an optimization processt, Hydrodynamic optimization for
fishes and others marine animals, aerodynamic for pterodactyls, birds or bats. This observation is
the basis of genetic algorithms.

3.2. Evolution and Genetic Algorithms

John Holland, from the University of Michigan began his work on genetic algorithms at the
beginning of the 60s. A first achievement was the publication of Adaptation in Natural and Artificial
System? in 1975.

Holland had a double aim : to improve the understanding of natural adaptation process, and to
design artificial systems having properties similar to natural systems8.

The basic idea is as follow : the genetic pool of a given population potentialy contains the
solution, or a better solution, to a given adaptive problem. This solution is not "active" because the
genetic combination on which it relies is split between several subjects. Only the association of
different genomes can lead to the solution. Simplistically speaking, we could by example consider
that the shortening of the paw and the extension of the fingers of our basilosaurus are controlled by
2 "genes'. No subject has such a genome, but during reproduction and crossover, new genetic
combination occur and, finally, a subject can inherit a"good gene" from both parents : his paw is
now aflipper.

14

Holland method is especialy effective because he not only considered the role of mutation
(mutations improve very seldom the algorithms), but he also utilized genetic recombination,
(crossover)9 : these recombination, the crossover of partial solutions greatly improve the capability
of the algorithm to approach, and eventually find, the optimum.

3.3. Functioning of a Genetic Algorithm

As an example, we're going to enter aworld of simplified genetic. The "chromosomes' encode a
group of linked features. "Genes" encode the activation or deactivation of afeature.

Let us examine the globa genetic pool of four basilosaurus belonging to this world. We will
consider the "chromosomes" which encode the length of anterior members. The length of the " paw"
and the length of the "fingers' are encoded by four genes : the first two encode the "paw" and the
other two encode the fingers.

In our representation of the genome, the circle on blue background depict the activation of a
feature, the cross on green background depict its deactivation. The ideal genome (short paws and
long fingers) is:

4]]
The genetic pool of our population is the following one :

Subject Genotne
O | <] <] -]
B EAIENEN
C o M
NN <] <] -]

We can notice that A and B are the closest to their ancestors ; they've got quite long paws and
short fingers. On the contrary, D is close to the optimum, he just needs a small lengthening of his
fingers.

This is such a peculiar world that the ability to move is the main criteria of survival and
reproduction. No female would easily accept to marry basilosaurus whose paws would look like A's.
But they all dream to meet D one day.

We can then see that the principle of genetic algorithmsissimple:

Encoding of the problem in a binary string.

Random generation of a population. This one includes a genetic pool representing a group of
possible solutions.

Reckoning of a fitness value for each subject. It will directly depend on the distance to the
optimum.

Selection of the subjects that will mate according to their share in the population global fitness.

Genomes crossover and mutations.

And then start again from point 3.

15

The functioning of a genetic algorithm can also be described in reference to genotype (GTY PE)
and phenotype (PTY PE) notions10.

Select pairs of GTY PE according to their PTY PE fitness.

Apply the genetic operators (crossover, mutation...) to create new GTY PE.

Develop GTY PE to get the PTY PE of a new generation and start again from 1.

Crossover is the basis of genetic algorithms, there is neverthel ess other operators like mutation.
In fact, the desired solution may happen not to be present inside a given genetic pool, even alarge
one. Mutations allow the emergence of new genetic configurations which, by widening the pool
improve the chances to find the optimal solution. Other operators like inversion are also possible,
but we won't deal with them here.

3.4. Adaptation and Selection : the scaling problem

We saw before that in a genetic algorithm, the probability of reproduction directly depends on the
fitness of each subject. We simulate that way the adaptive pressure of the environment.

The use of this method neverthel ess set two types of problems:

A "super-subject” being too often selected the whole population tends to converge towards his
genome. The diversity of the genetic pool is then too reduced to allow the genetic algorithm to
progress.

With the progression of the genetic algorithm, the differences between fitness are reduced. The
best ones then get quite the same selection probability as the others and the genetic algorithm stops
progressing.

In order to palliate these problems, it's possible to transform the fitness values. Here are the four
main methods :

1- Windowing : For each subject, reduce its fitness by the fitness of the worse subject. This
permits to strengthen the strongest subject and to obtain a zero based distribution.

2- Exponential : This method, proposed by S.R. Ladd11, consistsin taking the square roots of the
fitness plus one. This permits to reduce the influence of the strongest subjects.

3- Linear Transformation : Apply alinear transformation to each fitness, i.e. f ' = af + b. The
strongest subjects are once again reduced.

4- Linear normalization : Fitness are linearized. For example over a population of 10 subjects, the
first will get 100, the second 90, 80 ... The last will get 10. Y ou then avoid the constraint of direct
reckoning. Even if the differences between the subjects are very strong, or weak, the difference
between probabilities of reproduction only depends on the ranking of the subjects.

To illustrate these methods, let's consider a population of four subjects to check the effect of
scaling. For each subject, we give the fitness and the corresponding sel ection probability.

16

Subjects || 1 | 2 | 3 | 4 |
Fough Fitness |[50/50%) 25/25%)| 15/15%] 10/10%]

S 40¢

Windowing | =, | 15/25%) 5/8.3%| 0/0%
Evoonential | 14 | 31| 40| 332
= 26.5% | 26.1% | 20.5% || 16.9%
. 533 || 33.3/ 13.3/

Linear transfo. aa a0 || 27 504 20167 11,154
Linear |4 ova004| 301309 20r20%] 101109

neormalization

Windowing eliminates the weakest subject - the probability comes to zero - and stimulates the
strongest ones (the best one jumps from 50 % to 67 %).

Exponentia flattens the distribution. It's very useful when a super-subject induces an excessively
fast convergence.

Linear transformation plays dlightly the same role than exponential.

At last, linear normalization is neutral towards the distribution of the fitness and only depends on
the ranking. It avoids as well super-subjects as atoo homogeneous distribution.

3.5. Conclusion

Genetic algorithms are original systems based on the supposed functioning of the Livingl2.

The method is very different from classical optimization algorithms13.

Use of the encoding of the parameters, not the parameters themselves.

Work on a population of points, not a unique one.

Use the only values of the function to optimize, not their derived function or other auxiliary
knowledge.

Use probabilistic transition function not determinist ones.

It's important to understand that the functioning of such an algorithm does not guarantee success.
We arein astochastic system and a genetic pool may be too far from the solution, or for example, a
too fast convergence may halt the process of evolution. These algorithms are neverthel ess extremely
efficient, and are used in fields as diverse as stock exchange, production scheduling or programming
of assembly robots in the automotive industry.

17

4. The developed GA for TSP

According to this diploma practice | had to execute the next tasks:

1) develop new GA for TSP (4.1);

2) check the algorithm for 6 cities which already has the optimal defined tour and to find if the
algorithm works correctly and if it needs to correct it (4.2);

3) apply the algorithm for the task of “52 real towns' location in Berlin” (4.3);

4) give the examples of application of TSP in rea world fields (givenin 2.3).

4.1. GA description

The amount of citiesisN.
The number of city isi (will call it smply city).
The number of current populationisg.

GENE: i;

CHROMOSOME: g + 1; at every iteration we take the best chromosome (the shortest tour) of last
population and copy it to the first chromosome of the next population.

POPULATION: g + 1; then add the next city (its number is the number of the generation) there and
copy it to the next chromosome of the next population. But there exchange the last gene with its
(last -1) friend. And all this copy to the next chromosome. Then exchange (last -1) gene with (last
-2) one. And vice versa until exchanging the second gene with the first one. With such way we
create a new population.

SELECTION: The shortest tour of the population

GENERATIONS: N

After creating N generations we continue predefined number times:

CROSSOVER: 1 point crossover (but here we get a new chromosome by exchanging the halves of
the given one). We crossover 50% best chromosome and create the same number of new ones.

MUTATION: Exchanging two random genes for one chromosome. Mutate all chromosomes.
SELECTION: The shortest tour of the population.

4.2. 6 cities

The algorithm was checked using optimal tour for 6 cities. For any 6 cities it performs. So it
neededn’t to correct my algorithm.

4.3.“52 real towns' location in Berlin”

And | was advised (by my diploma leader professor Akiralmada) to take these coordinates from the
web-site page:

http: //mwwwv.iwr .uni-heidel ber g.de/gr oups/comopt/softwar e/ TSPLI B9S,.

18

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

Thereislist of fileswith real coordinates of different geographical places of the world (for internet
download). According to my diplomatask | had to take the file berlin52.tsp which has the coordinates
of 52 towns’ location of Berlin (seefigure 1).

Figure 1: An example of 52 real towns' location in Berlin. Ploted with the data taken from

And to check my results there is the file berlin52.tour on the same web-page which stores the
optimal tour for the coordinates for file berlin52.tsp.

S0 here the situation is the next: it performs only 80-90% correctly.

19

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

5. Conclusions

20

6. References

1 The main paradigm of Economy (neo-classical) is largely just a wonderful ode to optimization
mathematics.

2 That's what the recent "non linearity" revolution learned us.
3-SJ. Gould et d., Lelivredelavie, Seuil, Science ouverte, 1993, pp.186 ss.

4- It is said that basilosaurus reproduced on earth. In that case, posterior members were useful.
Harrison R, Bryden M.M. dir., Baleines, dauphins et marsouins. Bordas, 1989.

5- This avery common phenomenon. In that case, we could also speak of the Ichthyosaure, marine
reptile of the Mesozoic era whose morphology was closed to shark and dolphin.

6- It'simportant to understand that Darwinian process doesn't have to lead to optimum. It improves
fitness but has nothing to do with optimum.

7- Holland J.H., Adaptation in natural and artificial system, Ann Arbor, The University of Michigan
Press, 1975.

8- Goldberg D., Genetic Algorithms, Addison Wesley, 1988.

9- Emmeche C., Garden in the Machine. The Emerging Science of Artificial Life, Princeton
University Press, 1994, pp. 114 ss.

10- Heudin J.C., LaVieArtificielle, Hermes, 1994, pp. 91 ss.

11- SR. Ladd, Genetic Algorithm in C++, 1999-2000. Downloadable book.

12- "Biological programming" is not limited to AG, another well-known case is neural networks.

13- Goldberg D, idem, pp. 8 ss.

21

http://www.coyotegulch.com

