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Abstract- This paper describes the research 

towards the use of an artificial immune system (AIS) 
for network intrusion detection. Specifically, we focus 
on one significant component of a complete AIS, 
static clonal selection with a negative selection 
operator, describing this system in detail. Three 
different data sets from the UCI repository for 
machine learning are used in the experiments. Two 
important factors, the detector sample size and the 
antigen sample size, are investigated in order to 
generate an appropriate mixture of general and 
specific detectors for learning non-self antigen 
patterns. The results of series of experiments suggest 
how to choose appropriate detector and antigen 
sample sizes. These ideal sizes allow the AIS to 
achieve a good non-self antigen detection rate with a 
very low rate of self antigen detection. We conclude 
that the embedded negative selection operator plays 
an important role in the AIS by helping it to maintain 
a low false positive detection rate. 

1 Introduction 

The biological immune system is successful at 
protecting the human body against a vast variety of 
foreign pathogens (Tizard, 1995). A growing number of 
computer scientists have carefully studied the success of 
this competent natural mechanism and proposed 
computer immune models for solving various problems 
including fault diagnosis, virus detection, and mortgage 
fraud detection (Dasgupta, 1998).   

Among these various areas, intrusion detection is a 
vigorous research area where the employment of an 
artificial immune system (AIS) has been examined 
(Dasgupta, 1998; Somayaji, et al, 1997). The main goal 
of intrusion detection is to detect unauthorised use, 
misuse and abuse of computer systems by both system 
insiders and external intruders. Currently many network-
based intrusion detection systems (IDS’s) have been 
developed using diverse approaches (Mykerjee et al, 
1994). Nevertheless, there still remain unresolved 
problems to build an effective network-based IDS (Kim 
and Bentley, 1999a). As one approach of providing the 
solutions of these problems, previous work (Kim and 
Bentley, 1999a) identified a set of general requirements 
for a successful network-based IDS and three design 

goals to satisfy these requirements: being distributed, 
self-organising and lightweight. In addition, Kim and 
Bentley (1999a) introduced a number of remarkable 
features of human immune systems that satisfy these 
three design goals. It is anticipated that the adoption of 
these features should help the construction of an 
effective network-based IDS. 

An overall artificial immune model for network 
intrusion detection presented in (Kim and Bentley, 
1999b) consists of three different evolutionary stages: 
negative selection, clonal selection, and gene library 
evolution. This model can be differentiated from the 
previous work performed by Hofmeyr and Forrest 
(2000), which also developed the AIS for network 
intrusion detection. While their AIS mainly relies on 
negative selection to generate immature detectors, Kim 
and Bentley’s model emphasises the integration of three 
significant components1. The previous work (Kim and 
Bentley, 2000) showed severe scaling problems to cope 
with a vast amount of network traffic data when only 
negative selection is applied to a network intrusion 
detection problem. Although Hofmeyr obtained 
promising results from the adoption of negative 
selection for network intrusion detection, Kim and 
Bentley (2000) argued that his promising results were 
gained only when the negative selection was employed 
to a small subset of network traffic data. The random 
search feature of negative selection led it to fail in the 
detection of various network intrusions which require 
the scrutinisation of immense amounts of network traffic 
data. Thus this approach is only able to detect a limited 
number of network intrusions. 

This paper investigates the use of the niching strategy 
provided by a clonal selection algorithm within an AIS. 
In order to solve the scaling problem of an independent 
negative selection algorithm, the artificial immune 
system described in this paper adopts a clonal selection 
algorithm which embeds a negative selection operator 

                                                        
1  Hofmeyr and Forrest’s final system employs some other 
extensions to support the operation of AIS under a real network 
environment. Even though it may conform to human immune 
systems more closely, this approach requires excessive 
computation time to generate the immature detector set, with 
no guarantee that the initial detectors are useful when they are 
distributed to other hosts.  



within it. While our previous work applied real network 
traffic data to investigate the feasibility of negative 
selection, this paper uses three different data sets from 
the UCI repository for machine learning algorithm. The 
paper is organised as follows: section 2 briefly describes 
the AIS for network intrusion detection proposed by 
Kim and Bentley (1999b) and outlines anomaly 
detectors and misuse detector which are two important 
components of IDS’s. Section 3 introduces a clonal 
selection algorithm with a negative selection operator 
and shows how this is employed for network intrusion 
detection. Then, in section 4, detailed implementation 
points including genotypes, phenotypes, genetic 
operators and fitness functions are provided. Section 5 
describes two series of experiments performed for this 
work and an analysis of the results. Finally, conclusions 
are drawn from this work. 

2 Artificial Immune Systems for Network 
Intrusion Detection  

While various artificial immune models have been 
suggested for diverse purposes (Dasgupta, 1998), 
previous work (Kim and Bentley, 1999a) introduced the 
salient functions of the human immune system with 
respect to network intrusion detection. In this work, we 
view the normal activities of monitored networks as self 
and their abnormal activities as non-self and design an 
AIS for distinguishing normal network activities from 
abnormal network activities.  
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Figure 1 Architecture of the AIS for network intrusion 
detection. 

Based on this view, we proposed a novel AIS for 
network intrusion detection (Kim and Bentley, 1999b), 
see figure 1. The AIS for network intrusion detection 
consists of a primary IDS and secondary IDS’s. For the 
AIS, the primary IDS, which we view as being 
equivalent to the bone marrow and thymus within the 
human body, generates numerous detector sets. Each 
individual detector set describes abnormal patterns of 
network traffic packets and common patterns of network 
traffic packets when network intrusion occurs. This 
unique detector set is transferred to a monitored single 
local host. We view local hosts as secondary lymph 
nodes, detectors as antibodies and network intrusions as 

antigens. At the local hosts (secondary IDS’s), detectors 
are background processes which monitor whether non-
self network traffic patterns are observed from network 
traffic patterns profiled at the monitored local host. The 
primary IDS and each secondary IDS have 
communicators to allow the transfer of information 
between each other, see figure 1.  

For the proposed AIS, several sophisticated 
mechanisms of the human immune system are 
embedded in three evolutionary stages: gene library 
evolution, negative selection and clonal selection. These 
processes allow the AIS to satisfy the identified the main 
goals for designing effective network-based IDS’s  (Kim 
and Bentley, 1999a). This paper focuses on two of these 
stages: clonal selection and negative selection. 

2.1 Anomaly Detection VS Misuse Detection  
An IDS is usually comprised of two main components: 
an anomaly detector and a misuse detector (Mykerjee et 
al, 1994). The anomaly detector establishes the profiles 
of normal activities of users, systems, system resources, 
network traffic and/or services and detects intrusions by 
identifying significant deviations from the normal 
behaviour patterns observed from profiles. The misuse 
detector defines suspicious misuse signatures based on 
known system vulnerabilities and a security policy. This 
component probes whether these misuse signatures are 
present or not in the auditing trails.  

One difficulty in developing an effective misuse 
detector is the creation and update of intrusion signature 
rules. The work performed in this paper therefore 
investigates the use of a clonal selection algorithm to 
provide a more efficient way to build a misuse detector. 
Clonal selection allows the antibodies of human immune 
systems to evolve toward existing antigens. This feature 
is suitable for creating and updating the intrusion 
signature rules of a misuse detector in an easier way. 

3 Related Work 

There are many AIS’s that have been applied to various 
fields. Among them, the clonal selection algorithm with 
negative selection developed for this work is especially 
motivated by the work performed by Forrest et al (1993) 
and Smith et al (1993). 

Forrest et al (1994; 1997) proposed and used a 
negative selection algorithm for various anomaly 
detection problems. This algorithm defines ‘self’ by 
building normal behaviour patterns of a monitored 
system. It generates a number of random patterns that 
are compared to each self pattern defined. If any 
randomly generated pattern matches a self pattern, this 
pattern fails to become a detector and thus it is removed. 
Otherwise, it becomes a ‘detector’ pattern and monitors 
subsequent profiled patterns of the monitored system. 
During the monitoring stage, if a ‘detector’ pattern 
matches any newly profiled pattern, it is then considered 
that new anomaly must have occurred in the monitored 
system.  



In contrast, Forrest et al (1993) presented the niching 
strategy of their AIS which follows the analogy of the 
clonal selection of human immune systems. They 
explored whether it is able to i) detect common patterns 
of randomly presented antigens and ii) to discern and 
maintain the diverse antigen population. In this model, 
they created one population of antibodies and one 
population of antigens randomly. They used the GA to 
evolve the antibody population under a constant antigen 
population. Conforming to the niching strategy of the 
human immune system, for each generation, their 
modified GA selects a random sample of arbitrary size 
from the antibody population and a single random 
antigen from the antigen population. After each antibody 
in the sample is matched against a selected antigen, the 
fitness score of only one antibody showing the highest 
match score is increased while the fitness scores of the 
others remain the same.  

Using this algorithm, Forrest et al (1993) showed 
antibodies evolved to be generalists that match most 
antigens to some extent. Their analysis of this result 
showed that antibodies evolved towards finding 
common schemata that are shared among many 
antigens. Through various experiments, they observed 
that this algorithm could sustain multiple different 
antibody patterns, which appear as multiple peaks in a 
search space, and the similarity among antigens does not 
affect this capability. Moreover, they compared this 
niching strategy of the artificial immune system with the 
fitness sharing algorithm (Smith et al, 1993). From this 
comparison, they reported that as the result of the 
antibody sampling mechanism, the niching strategy of 
the AIS controls its generality via the antibody sample 
size. To be more precise, when the sample size 
decreases, the selective pressures are moved towards 
generating a population of more general antibodies. 
Recent work used this algorithm successfully for 
scheduling (Hart, 1999) and Potter and De Jong (1998) 
employed clonal selection for a concept learning 
problem.  

4 A Clonal Selection Algorithm with a 
Negative Selection Operator 

As described in the previous section, this work aims to 
provide an automated way of building a misuse detector. 
When network traffic data is gathered under two cases 
where intrusions are simulated and not simulated, the 
AIS should generate detectors containing non-self 
patterns without overlapping self patterns in the data. 
This is achieved by the clonal selection algorithm, 
which lets detectors evolve towards the non-self patterns 
hidden in the collected non-self data. 
4.1 Algorithm Description 
The AIS for network intrusion detection introduced in 
this paper adopts the niching strategy of Smith et al’s 
(1993) AIS. Their algorithm used a genetic algorithm to 
construct the AIS. This work modifies this algorithm to 

be more appropriate for the network intrusion detection 
problem. Three major modifications were made to the 
AIS developed in this work. The first modification is the 
use of different detector genotype and phenotype 
representations. Secondly, the fitness and matching 
functions are altered as the result of detector 
representation change. Finally, the negative selection 
stage is embedded in the clonal selection algorithm as an 
operator. The details of these modifications will be 
described in the following sections. Figure 2 provides an 
overview of the system developed during this research. 
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Figure 2 Overview of AIS. 

4.2 Providing Self and Non-Self Antigens     
As shown in figure 2, when the AIS starts, data is fed 
into the system. In human immune systems, antigens can 
be divided into two groups: self antigens (our own cells) 
and non-self antigens (invading pathogens). The clonal 
selection performed by human immune systems lets 
antibodies evolve to detect the existing non-self antigens 
without the detection of any self antigen. The data given 
to the AIS in this work needs to be divided into a self 
and a non-self set. Since the clonal selection algorithm 
employed in this work is used for generating an initial 
detector set, we assume that the self or non-self class 
label is already assigned to each antigen data item. In 
the case when the data has more than two classes, a 
single class is predefined as the self and the other classes 
are regarded as non-self. The self and non-self antigens 
are then processed by a discretiser before they are 
passed to the clonal selection module of the AIS. 

4.3 Discretiser 
The antigen data used in this work consists of a number 
of attributes. These attributes have continuous and 
discrete values. Specifically, the continuous attribute 
values often show a wide range of values. Since the 
detectors generated in the AIS employs the binary 
genotypes, a discretisation algorithm is needed. The 
details of detector genotypes will be discussed in the 



next section. 
There are many discretisation algorithms available 

and each algorithm has different features (Dougherty et 
al, 1995). The AIS uses the recursive minimal entropy 
discretisation algorithm developed by Fayyad and Irani 
(1993). This algorithm uses the minimal description 
length theory to minimise the entropy between 
recursively generated intervals. It improved the 
classification accuracy of c4.5 and Naive-Bayes 
algorithms on various data sets and it has been known as 
one of the best general techniques for a supervised 
discretisation (Witten and Frank, 2000).  

Therefore, the continuous value of an attribute for 
any antigen data will have been clustered into a number 
of intervals after the discretiser is applied. The range of 
each interval and the total number of generated intervals 
are controlled by the discretisation algorithm. 

4.4 Genotypes and Phenotypes 
The clonal selection algorithm evolves detectors and 
these detectors exist as a form of classification rules, 
which classify non-self from self. A natural expression 
of classification rules is as a set of disjunctive normal 
form (DNF) rules. The if-part of each rule is a 
conjunction of one or more conditions to be tested and 
the then side of the rule describes the class label 
assigned to the rule. In the context of this research, the 
single detector generated will have a conjunctive rule as 
its phenotype (Fig 3). Therefore, the universal set of 
non-self patterns that are detected by the detectors is a 
disjunction of these conjunctive rules.  

The AIS uses simple binary genotypes in order to 
encode the conjunctive rule detectors. The AIS 
initialises a detector population by seeding with random 
genotypes. The detector genotypes consist of a number 
of genes where each gene represents an attribute of the 
detector phenotype. The total number of attributes of the 
given antigen data determines the total number of 
corresponding genes in the detectors. Each gene is 
comprised of nucleotides and the existing attribute 
values determine the number of nucleotides. For 
instance in figure 3, in the case of Attribute 1, its valid 
values are tcp, udp and imcp. Each nucleotide is a 
binary bit whose value of one represents the inclusion of 
the corresponding attribute value in the condition part of 
a classification rule and whose value of zero indicates 
the omission of the value (see, figure 3). When all bits 
are zero, the gene is mapped to a value of NULL.2 This 
kind of genotype representation allows a single attribute 
of each detector rule to have more than one value, which 
are combined by an “OR” operator. In addition, the 
                                                        
2 The first bit of each gene has a special meaning: when it has 
a value of one, the genotype to phenotype mapping treats the 
genotype gene as if it is all ones. If it is zero, the remaining 
bits are used as described. Note that this aspect of the 
representation was only partially active during tests for vote 
data, described later, possibly resulting in a slightly degraded 
TP rate and FP rate. The overall trends were unaffected. 

existing genes of a detector rule are combined by an 
“AND” operator.3 
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Figure 3 Detector Genotype and Phenotype. 

4.5 The Matching Function 
Phenotypes mapped from evolved genotypes are 
represented in the form of detector patterns. As shown in 
figure 3, an attribute of a detector phenotype is 
represented by an interval having a lower bound and a 
higher bound while an attribute of an antigen phenotype 
is described by one specific value. 

Hence, the first step of checking whether a given 
antigen and a detector match is the comparison of their 
corresponding attributes. When an antigen attribute 
value is not within any of the corresponding intervals of 
a detector phenotype, these two attributes are not 
matched. For an attribute of nominal type, two genes 
match when an antigen attribute value is identical to one 
of the detector phenotype values of its corresponding 
gene. In order for a given antigen and a detector to 
match, all the existing genes of the antigen and the 
detector should match. 

4.6 Fitness Scoring 
While the generation of detectors and application of 
genetic operators are performed at the genotype level, 
the evaluation of evolved detectors operates at the 
phenotype level. This is another difference between 
most work using a negative selection algorithm and 
clonal selection algorithm (Forrest, et al, 1997; 
Dasgupta, 1998). Such work usually performed this 
evaluation procedure on a genotype level using a simple 
r-contiguous bit matching rule. In contrast, here 
phenotypes mapped from evolved genotypes are 
represented in a form of detector rules. These detector 
phenotypes are evaluated by the following fitness 
scoring procedure. For a non-self antigen set and its 
corresponding detector set: 
 

                                                        
3 This kind of genotype representation was proposed by De 
Jong et al (1993) to use the GA for concept learning. 



1. D detector rules have their fitness values initialised 
with zeroes. 

2. A sample of D detector rules is randomly selected 
from the generated initial P detector rules. 

3. A sample of A non-self antigens are randomly 
selected from the non-self antigen set. 

4. Each detector in the sample is mapped to its 
phenotype. 

5. Each detector phenotype is compared to the selected 
non-self antigens and the number of matching non-
self antigens is counted. This number is defined as a 
match count for each selected detector. 

6. The fitness value of the single detector from the 
sample that shows the largest match count is 
increased by the value of the match count. The fitness 
values of other detectors remain the same. If more 
than one detector has the largest match count, the 
fitness value is divided by the number of these tied 
detectors and their fitness values are increased by the 
divided fitness value. 

7. The processes 2-5 are repeated (for typically three 
times the number of detectors (Smith et al, 1993) ).  

As seen in section 3.4, this fitness scoring procedure 
provides the niching strategy for the AIS. It controls the 
generality of each detector according to a detector 
sample size.  

4.7 Reproduction and a Negative Selection Operator 
After the evaluation of detectors in the detector 
population, the AIS selects parent detectors for the 
reproduction of detector offspring. The AIS uses 
population overlapping where the worst W% detectors 
are replaced by the best B% detectors from the newly 
generated offspring. In addition, a negative selection 
operator is applied to assure the validity of offspring. 
This whole reproduction process is described in figure 4. 

As shown in figure 4, the offspring detectors are 
generated by applying crossover and mutations to two 
parents randomly selected from the fittest B% detector 
rules. The generated offspring are compared to given 
self antigens. When the offspring matches any self 
antigen, this offspring is discarded. This kind of invalid 
offspring can be created because either the parent 
detectors originally contain some invalid genes or the 
mutations distort the valid genes of parent detectors. It is 
not ideal for the AIS to ignore the important and valid 
genetic information of parents unless it is certain that 
this kind of bad effect originates from the poor genes of 
parents. Therefore, when an invalid offspring is 
produced, the AIS attempts to generate a new offspring 
by applying the genetic operators to the same pair of 
parents until the number of failures to generate valid 
offspring is less than a predefined negative selection 
threshold, Nt. When the number of failures to generate 
valid offspring is more than Nt, the AIS selects a new 
pair of detector parents and produces new offspring. 
Offspring generation with negative selection continues 

until it fills up the empty space of the detector 
population after the worst W% detectors are deleted. 
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Figure 4 Reproduction and Negative Selection 

4.8 Genetic Operators 

The clonal selection algorithm presented in this work 
applies two genetic operators: crossover and mutation. 
Since a fixed number of nuclotides represents a 
genotype, a simple one-point crossover is applied by 
selecting a random crossover point between genes or 
nucleotides. Furthermore, the following five different 
types of mutations are introduced: 

• Classic mutation: this mutation is a conventional gene 
flip mutation.  

• Generalisation mutation: designed to increase the 
generality of detectors, it increases the detector 
generality by causing a new disjunct to be added next 
to an existing one in the detector phenotype.  

• Specialisation mutation: this mutation specialises 
detectors. This is achieved by causing a random 
disjunct to be dropped from detector phenotypes.  

• Shift Mutation: this shifts all the bits of all the genes 
to the left or the right direction. The direction to shift 
is randomly determined.  

• Delete Mutation: this mutation flips the first bit of the 
attribute, changing its corresponding attribute value 
to ‘ANY VALUE’ when ‘1’, and back to normal 
when ‘0’.  

These new mutations are mainly introduced to 
generalise and specialise detectors. This is because the 
degree of pattern detection of DNF rules is mainly 
controlled by doing so.4  

                                                        
4 These mutations are similar to De Jong’s adding and 
dropping mutations (De Jong et al, 1993). 



 Cancer Data Vote Data 
D TP FP TP-FP TP FP TP-FP 
1 93.48 (0.17) 5 (0.26) 88.48 (0.20) 79.43 (0.74) 2.35 (0.09) 77.67 (0.50) 
5 94.57 (0.16) 5.83 (0.28) 88.73 (0.36) 88.03 (0.42) 5.29 (0.27) 82.74 (0.84) 
10 95.65 (0.12) 5.41(0.58) 90.23 (0.66) 92.49 (0.40) 3.57 (0.25) 88.93 (0.39) 
20 95.43 (0.15) 8.33 (0.73) 87.10 (0.52) 94.02 (0.31) 5.29 (0.27) 88.72 (0.47) 
30 95.65 (0.13) 6.25 (0.20) 89.40 (0.27) 93.26 (0.33) 5.92 (0.23) 87.34 (0.62) 
60 95.87 (0.13) 9.17 (0.53) 86.70 (0.55) 94.40 (0.28) 5.96 (0.15) 88.45 (0.39) 
90    95.16 (0.22) 6.65 (0.26) 88.61 (0.57) 

240 96.52 (0.097) 10 (0.548) 86.52 (0.7) 95.55 (0.3) 7.13 (0.3) 88.41 (1.07) 

Table 1 The mean and variance of true positive rates (TP), false positive rates (FP), and TP-FP rates when an antigen sample size = 1 
for various detector sample sizes (D). The mean values are followed by the variances in parentheses. 

 

 IRIS Setosa IRIS Versicolor IRIS Virginia 
D TP FP TP-FP TP FP TP-FP TP FP TP-FP 
1 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 4 (8.889E-03) 91 (0.0289) 95 (0.011) 1 (0.0111) 94 (0.044) 
5 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 4.8 (0.0196) 90.2 (0.0573) 95.8 (0.0036) 0.012 (1.44E-04) 94.8 (0.019) 
10 99.8 (4E-03) 1.2 (0.064) 98.6 (0.063) 95 (0.011) 5 (0.0111) 90 (0.0444) 95.6 (7.11E-03) 1 (0.0111) 94.6 (0.0271) 
20 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 5 (0.0111) 90 (0.044) 95.6 (7.11E-03) 1 (0.0111) 94.6 (0.027) 
30 100 (0) 0 (0) 100 (0) 95 (0.011) 5 (0.0111) 90 (0.044) 95.6 (7.11E-03) 1 (0.0111) 94.6 (0.027) 
60 100 (0) 0 (0) 100 (0) 95 (0.011) 5 (0.0111) 90 (0.044) 95.8 (4E-03) 1 (0.0111) 94.8 (0.0196) 

240 100 (0) 0.6 (0.036) 99.4 (0.036) 95 (0.011) 4.6 (0.0271) 90.4 (0.0693) 95.4 (9.33E-03) 1 (0.0111) 94.4 (0.0338) 

Table 2 The mean and variance of TP, FP, TP-FP rates when an antigen sample size = 1 for various detector sample sizes (D). The 
mean values are followed by the variances in parentheses. IRIS class label in each column indicates the assigned self class. 

 

 Cancer Data Vote Data 
A TP FP TP-FP TP FP TP-FP 
1 95.65 (0.12) 5.42 (0.58) 90.23 (0.66) 92.49 (0.40) 3.57 (0.25) 88.93 (0.39) 
5 94.35 (0.18) 3.75 (0.40) 90.6 (0.31) 92.14 (0.44) 3.54 (0.07) 88.59 (0.42) 

10 95 (0.16) 5.42 (0.39) 89.58 (0.35) 89.56 (0.39) 2.94 (0.17) 86.62 (0.75) 
MAX 93.91 (0.24) 5.42 (0.31) 88.5 (0.24) 85.47 (1.63) 3.57 (0.17) 81.90 (2.17) 

Table 3 The mean and variance of TP, FP, TP-FP rates when a detector sample size = 10 for various antigen sample sizes (A). The mean 
values are followed by the variances in parentheses. 

 

5 Experiments 

This section describes a series of experiments performed 
to investigate the effects of different detector and 
antigen sample sizes on the detection rates of the AIS. 

5.1 Objective 
As introduced in section 3, the detector sample size 
controls the generality of detectors generated by the 
clonal selection algorithm. The appropriate mixture of 
general detectors and specific detectors is critical in 
order to develop a competent network-based IDS. 
Detectors should have the maximum level of generality, 
detecting as many non-self antigen patterns as possible 
without detecting any self antigen patterns. Furthermore, 
an ideal detector set should contain detectors showing 
high specificity that will detect specific antigen patterns 
found only in a small number of antigens. For these 
reasons, an ideal detector set should have an appropriate 
mixture of general detectors and specific detectors. It 
has been known that the generality of generated 
detectors is controlled by the detector sample size and 
the antigen sample size (Forrest et al, 1993; Smith et al, 
1993). With these features of AIS in mind, our 
experiments were performed to understand how best to 
choose good detector and antigen sample sizes. 

5.2 Data and Parameter Setting 
This work aims to understand the nature of clonal 
selection with a negative selection operator. The 

experiments performed in this paper did not use real 
network traffic data sets because such sets are typically 
vast and are not practically suitable for this type of 
benchmarking work. Instead three different data sets 
from the UCI repository for machine learning algorithm 
benchmark work were used (ftp://ftp.ics.uci.edu/pub/ 
machine-learning-databases).  

The first data set was Wisconsin breast cancer data. 
It consists of 699 examples with two classes: 
‘Malignant’ and ‘Benign’. 241 examples belong to 
‘Malignant’ and the rest 458 examples belong to 
‘Benign’. We defined ‘Benign’ as a self class and 
‘Malignant’ as a non-self class. The detectors generated 
by the AIS detected ‘Malignant’ and any data which was 
not detected by the detectors was regarded as ‘Benign’. 
This set had ten continuous attributes and total 16 
missing values. The missing values were filled with 
random values.   

The second data set was the ‘vote’ data set. This data 
set is a collection of voting records and each voting 
record is classified by one of two parties: ‘Republican’ 
and ‘Democrat’. It consists of 267 democrat and 168 
republican examples. Each vote record has 16 voting 
issues as its attributes and each voting issue has one of 
three values: yes, no, abstain. 

The iris data was used as the final set. It is the most 
popular data set used in the literature as a pattern 
recognition test set. It has total of 150 examples with 
three classes: ‘setosa’, ‘virginia’ and ‘versicolour’. Each 



class has 50 examples and every example has four 
continuous attributes. We prepared three different data 
sets from this original data set by taking one set as a self 
set and the rest as a non-self set.  

A tenfold cross-validation method was employed to 
prepare a training set for the AIS to evolve and a test set 
to detect previously unseen non-self patterns. The 
tenfold cross-validation method is known as the most 
robust method from nfold cross-validations (Witten and 
Frank, 2000). A detector population size of 300 was 
used and best B% detector offspring were selected to 
replace the worst W% detectors from parent detectors. 
80 was used for both values of B and W. All mutations 
occurred with a probability of 0.001 per gene. Each 
experiment was run for a maximum 50 generations 
unless it satisfied a termination condition. The 
termination condition was set as the non-self pattern 
detection rate for 100% and the self pattern detection for 
0%. The threshold of the negative selection operator, Nt, 
was set as 5. These parameters were chosen after 
performing preliminary experiments, although the 
system seemed relatively insensitive to the setting of 
these parameters. 

5.3 Experimental Results  
Two series of experiments were performed by varying 
the number of detector sample sizes and the number of 
antigen sample sizes. Other literature suggests that the 
generality of detectors is controlled by these two factors 
(Hart, 1999). The experiments investigated whether the 
conclusions of the previous work followed our problem: 
non-self antigen pattern learning from a collected data 
set. 

5.3.1 Varying Detector Sample Size 
Table 1 and Table 2 present the results of the first series 
of experiments, where the number of antigen samples 
was fixed and the number of detector samples was 
varied. The detection rate of the system was described by 
a True Positive (TP) rate and a False Positive (FP) rate. 
TP was "non-self" detection rate and FP was the rate at 
which “self” was mistakenly detected by a generated 
detector set. The desired system should have a high TP 
and a low FP. The tables show the means and variances 
of 10 experiments. 

For three data sets, the average TP rates generally 
showed a good level of accuracy, i.e. more than 93%. For 
the iris data set the best TP rate reached 100%. There 
were only a couple of cases showing less than a 90% TP 
rate. The average FP rate was consistently lower than 
10% for all cases, but this figure decreased to around 5-
6% when D was less than 60 for both the cancer and the 
vote data sets. For the iris data set, the worst FP average 
rate was only 1%. 

As table 1 explains, the TP rate increased as the 
detector sample size D increased. From three data sets, 
the results of the vote data set showed this tendency most 
clearly. In order to confirm this result, paired sample t-

tests were performed on the vote data results. To find the 
point at which the difference between TP rates becomes 
statistically significant, t-tests were performed on the 
pairs of results and each pair was made by taking two 
adjacent detector sample sizes. The t-test showed that the 
difference between the TP rates of D = 1 and D = 5 was 
statistically significant with 95% confidence. A two-
sided t-test of means produced a p-value of 4.3216%. 
The t-tests of the rest of pairs produced much larger p-
values ranging from 14.7285% to 75.385%. In addition, 
these p-values became larger as the pair was made from 
larger sample sizes. These results of the t-tests imply that 
the difference between the average TP rates with varying 
detector sample sizes converged as the detector sample 
size increased. Even though the difference of the TP-rate 
for different sample sizes was very small for the cancer 
data, the same kind of tendency was observed. However, 
for the iris data, no results for any D showed any 
significant difference, see table 2. 

 In addition, the FP rate increased as D increased. 
The paired sample t-tests were performed on the 
different pairs which were made in the same way as 
previous paired sample t-tests. The t-tests showed that D 
= 1 and D = 5 was statistically significant with 94.7% 
confidence. A two-sided t-test of the means produced a 
p-value of 5.2177%. Much larger p-values were 
produced when the t-tests were performed on the rest of 
pairs, ranging from 35.7729% to 98.7759%. These 
results also show that the FP rate increased as the 
detector sample size increased but that it stabilised to a 
certain point. 

5.3.2 Analysis 
The observed results were expected. When a detector 
sample size is one, no niching mechanism can happen. 
Since there is no chance for a selected detector to 
compete with other detectors to gain a fitness score, 
each detector will increase its fitness score by one as 
long as it matches a given antigen (when A=1). Thus, 
the generalist detector, which detects the largest number 
of non-self antigens during the fitness scoring procedure, 
will have the highest fitness score (assuming that each 
detector is selected with the same probability). 
Conversely, more specific detectors will gain much 
lower fitness scores in the same generation since they 
will detect much fewer non-self antigens. Thus, the 
generalist detectors will dominate in a detector 
population after a certain number of generations. 

This kind of phenomenon resulted in rather poor 
results for the cancer and vote data when D = 1. 
However, the detector sample size did not affect average 
TP rates for the iris data at all. This is perhaps because 
the given problem of iris data is relatively easier and 
thus the minimum sample size is good enough to show a 
good detection rate. In other words, fairly general 
detectors can detect all existing non-self antigen patterns 
in the iris data set. 



When the detector sample size is more than one, the 
selected sample detectors compete with each other. In 
our tests, this led the winner detectors from sampled 
detector groups to form niches, which match separate 
peaks of a fitness landscape. In the extreme case, when 
the detector sample size is the largest possible (the 
detector population size), every detector participates in a 
competition to detect a given antigen. This gives a 
chance for very specific detectors to increase their 
fitness scores because some specific non-self antigen 
patterns can only be detected by these kinds of detectors. 
Therefore, these specific detectors will have fitness 
scores that are large enough not to be excluded from the 
parent population through selection. In other words, both 
the general detectors and specific detectors have fair 
chances to win and thus they both will remain in the 
final detector population. 

However, when a detector sample size is the largest 
possible, it can cause an overfitting problem. The 
specific non-self antigen pattern may not be 
representative of the data as a whole. So a detector 
evolved to match this exceptional antigen pattern might 
not truly distinguish between “self” and “non-self”, 
resulting in higher false-positive rates. This overfitting 
problem is clearly observed from our experiment results. 
For both data, cancer data and vote data, the FP rate 
increases as the detector sample size increases, see table 
1.  

5.3.3 Varying Antigen Sample Size 
We next compared the results when the detector sample 
size was fixed but the antigen sample size changed. The 
last series of experiments were performed with D = 10 
and various antigen sample sizes. As seen in table 3, no 
significant difference between TP’s and FP’s was 
evident, except for the case where the antigen sample 
size was the maximum. 

5.3.4 Analysis 
These results are also readily explainable. When the 
antigen sample size is small, even a potentially general 
detector does not have enough opportunity to detect a 
large number of antigens and thus both a general 
detector and a specific detector will be compared only 
for whether they can detect a given small number of 
antigens. Thus, the difference of fitness scores is not 
large. However, as the antigen sample size increases, the 
general detector starts to have enough chances to beat 
the specific detector by detecting a larger number of 
antigens. Thus, the general detectors have more chances 
to be selected as the parents for the next generation. So 
larger antigen sample sizes can also cause domination of 
general detectors during evolution.  

5.3.5 Performance of Negative Selection Operator 
Finally, we observed that the negative selection operator 
played an important role which helped to reduce the FP 
rate. When evolution terminated at the maximum 
generation and the detectors were tested on a training 

data set, no case showed any mistake, ie, FP was always 
0% on the training data set. For the test set, the observed 
FP rate was up to about 10%.  

As discussed before, the FP rate is mainly controlled 
by a detector sample size and an antigen sample size. 
Therefore, the rather higher FP rates resulted not 
because of inappropriate behaviours of the negative 
selection operator but because of the improper choices of 
detector sample sizes and antigen samples sizes. 
However, we have not investigated how the threshold 
size of negative selection operator will affect the TP and 
FP rate. Too small a threshold size might lead to prevent 
the generation of some general detectors because it will 
eliminate detectors matching very small number of self 
antigens. However, these self antigens can be noise. 
Similarly, too large a threshold size can make the AIS to 
generate the detectors which are so general that they 
detect too many self antigens. Thus, the effect of 
negtative selection threshold size should be investgated 
as the future work. 

5.4 Ideal Detector and Antigen Sample Sizes 
Since an ideal IDS should show a high TP rate and low 
FP rate, we analysed TP-FP rates to take into account 
these two rates together. As shown in table 1, for cancer 
data, these rates did not show significant differences for 
any case.  For the vote data, it stabilised after a detector 
sample size reached 10. These results advise that the 
detector sample size does not have to be the largest one 
to get the most ideal result. Instead, we can set a detector 
sample size that is not too small but is large enough to 
gain the good TP-FP rate. To be more precise, we 
suggest that the detector sample size should be set as the 
largest size which is affordable by given system 
resources. As future work, an adaptive sample size 
determined through evolution can also be investigated. 

As long as the detector sample size is properly set, 
the antigen sample size is not critical. Since our 
experiment results show that the generality of detectors 
can be controlled by the detector sample size, the 
smallest antigen sample size (A = 1) is recommended. 
This is because the minimum antigen size saves 
computation time. 

6 Conclusions 

This paper has investigated the use of a static clonal 
selection algorithm with a negative selection operator as 
one component of the AIS for network intrusion 
detection. This component was especially developed for 
the purpose of building a misuse detector in a more 
efficient way. In order to adapt the available clonal 
selection algorithm for a network intrusion detection 
problem, three major modifications were made: i) new 
genotype and phenotype representations, ii) new 
matching function and fitness score function and iii) 
introduction of a negative selection operator.  



Three different data sets from the UCI repository for 
machine learning were used in the series of experiments. 
These experiments were performed by varying a 
detector sample size and an antigen sample size. These 
aimed to investigate their effects on performance. The 
first series of experiments proved that both the TP rate 
and the FP rate increases as the detector sample size 
increases. The second series of experiments also showed 
that the significant differences of TP and FP rates were 
observed only for the case that the antigen sample size is 
the maximum. Furthermore, the negative selection 
operator embedded in the clonal selection algorithm 
performs well from the two sets of experiments.  

As the result of these experiments, this paper 
suggests that the largest detector sample size should be 
selected from the sample size range affordable by given 
system resources. Moreover, the antigen sample size is 
not critical as long as the detector sample size is 
properly set and thus the smallest size, which is one, will 
be ideal to save computation time. 
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