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Outline

1. Review: Markov Models, HMM, Forward
2. Backward algorithm
3. Viterbi algorithm

4. Baum-Welch estimation algorithm
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Markov Models

e Observable states:
1,2,...,N
e Observed sequence:
g1y q2y+-+5qty.--54T
e First order Markov assumption:
P(q; = jlgi-1 =1, qi—2 = k,...) = P(q; = j|gqs—1 = 1)
e Stationarity:

P(q: = jlgi—1 = i) = P(qt+1 = JlGt+1-1 = 1)
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Markov Models

~

e State transition matrix A :

aipx Qi2 -°°* QAij

az1 Q22 -°°* QA2j

A;1 Qg2 o Qg

where
a;; = P(Qt — j|Qt—1 — i)

e Constraints on a;; :
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Hidden Markov Models

e States are not observable
e Observations are probabilistic functions of state

e State transitions are still probabilistic

~
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Urn and Ball Model

e NN urns containing colored balls
e M distinct colors of balls

e Each urn has a (possibly) different distribution of

colors
® Sequence generation algorithm:
1. Pick initial urn according to some random pro-

cess.

2. Randomly pick a ball from the urn and then

replace it

3. Select another urn according a random selec-

tion process associated with the urn

4. Repeat steps 2 and 3
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The Trellis
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Elements of Hidden Markov Models
e N — the number of hidden states
e (Q — set of states Q = {1,2,...,N}
e M — the number of symbols
e V —set of symbols V = {1,2,..., M}
e A — the state-transition probability matrix.
a;; — P(CIt+1 = j|Qt = ’l) 1<12,5, <N
e B — Observation probability distribution:
Bj(k) = Ploy=klgs=j) 1<k<M
e m — the initial state distribution:
mi=P(ga=1) 1<i<N
e \ — the entire model A = (A, B, )
%
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Three Basic Problems

1. Given observation O = (01, 02,...,0r) and model
A = (A, B, ), efficiently compute P(O|\).
e Hidden states complicate the evaluation

e Given two models A\; and \,, this can be used

to choose the better one.

2. Given observation O = (01, 02,...,0r) and model

A find the optimal state sequence ¢ = (q1,q2,- - -, 4qT)-

e Optimality criterion has to be decided (e.g.
maximum likelihood)
e “Explanation” for the data.

3. Given O = (01,02,...,07), estimate model pa-

rameters A = (A, B, ) that maximize P(O|}\).
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Solution to Problem 1

e Problem: Compute P(01,03,...,07|\)
e Algorithm:

— Let ¢ = (q1,q2,-..,qr) be a state sequence.

— Assume the observations are independent:

T
P(Olq,\) = H P(o¢|qs, M)

1=1

= by, (01)bg,(02) + - - bgr(071)

— Probability of a particular state sequence is:
P(q|A) = 74,04,4:8q5q5 * * * Car_sar
— Also, P(O,q|A) = P(Ol|g,A)P(q|A)
— Enumerate paths and sum probabilities:
P(O|A) =3 P(Olq, M) P(q|})

e NT state sequences and O(T) calculations.

Complexity: O(TNT) calculations.
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Forward Algorithm: Intuition
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Forward Algorithm

e Define forward variable oy(2) as:
() = P(01,02,...,04qs = i|A)

e o,(7) is the probability of observing the partial
sequence (01,03 ...,0:) such that the state g, is <.
e Induction:
1. Initialization: a(z) = m;b;(01)
2. Induction:
. N .
aiy1(g) = [;1 at("’)aij] bj(0¢+41)
3. Termination:
N .
P(OIN) = £ ax(i)

e Complexity: O(N?T).




HMM Tutorial-1I/ Tapas Kanungo—13

Backward Algorithm
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Backward Algorithm

e Define backward variable 3,(z) as:
Bi(i) = P(0t41,0¢425 -+ -, 07|qt = i)y A)

e 3:(¢) is the probability of observing the partial
sequence (0¢y1,0¢12-..,0r) such that the state g;
is 1.

e Induction:

1. Initialization: Br(¢) =1
2. Induction:
. N
Be(t) = ,21 aijb;j(0t+1)Be+1(t),
]:
1<17<N,

t=T—1,...,1
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Solution to Problem 2

e Choose the most likely path

e Find the path (q1,q;,...,qr) that maximizes the
likelihood:

P(qla g2y ..., QTloa )‘)

e Solution by Dynamic Programming

e Define:

6:(2) = qu.aax P(q1,q25+-+5q; = 1,01, 02,...,0:|)

® 0;(¢) is the highest prob. path ending in state 2

e By induction we have:

Ot+1(7) = max[d;(i)as;] - bj(0s11)
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Viterbi Algorithm
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Viterbi Algorithm

e Initialization:

0:(2) = mbi(01), 1<i< N

e Recursion:

0(3) = max[0—1(i)ai;]bj(or)
¥i(j) = arg max [0;—1(?)aj]

2<t<T,1<3<N
e Termination:

P* = max[or(i)]

gy = arg max [y ()]

e Path (state sequence) backtracking:

q::¢t+1(q:_|_1)7 t:T—l,T—Z,...,l
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Solution to Problem 3

e Estimate A = (A, B, ) to maximize P(O|\)

e No analytic method because of complexity — iter-

ative solution.

e £(2,7) is the probability of being in state ¢ at time
t and in state 3 at time t + 1.

at(2)aijb;(0t41)Be+1(7)
P(O[N)
at(2)aijb;(0t+1)Be+1(7)
oA Zévzl at(2)aijb;(0t+1)Bi+1(7)

5("'9.7) —
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Baum-Welch Algorithm
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Baum-Welch Algorithm

e Define ~;(2) as prob. of being in state 7 at time ¢,

given the observation sequence.
. N . .
Y:(2) = '21 §(,7)
J:

e =7  ~(?) is the expected number of times state ¢

is visited.

o x1-1¢£(i,7) is the expected number of transitions

from state ¢z to state 3.

e m; = expected frequency in state ¢ at time (t = 1)
= 71(%).

® a;; = (expected number of transition from state ¢
to state j)/ (expected nubmer of transitions from

state 7):
e ZSt(iaj)
LA ()
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e bj(k) = (expected number of times in state j and
observing symbol k) / (expected number of times

in state j:
Zt,OtIk 7t(z)
St y(2)

bj(k) =

~
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Properties

e Covariance of the estimated parameters

e Convergence rates

~
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Types of HMM

e Continuous density
e Ergodic

e State duration
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Implementation Issues

e Scaling
e Initial parameters

e Multiple observation
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Comparison of HMMs

e What is a natural distance function?

e If p(A1, A2) is large, does it mean that the models

are really different?

~




