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Abstract—An overview of statistical and information-theoretic in many applications. HMPs are closely related to mixture
aspects of hidden Markov processes (HMPs) is presented. Anprocesses, switching autoregressive processes, dynamical sys-
HMP is a discrete-time finite-state homogeneous Markov chain tams jn the sense of control theory, Markov-modulated Poisson

observed through a discrete-time memoryless invariant channel. . o
In recent years, the work of Baum and Petrie on finite-state POCESSES, composite sources, and unifilar sources. HMPs are

finite-alphabet HMPs was expanded to HMPs with finite as well fairly general processes that are amenable to mathematical
as continuous state spaces and a general alphabet. In particular, analysis.

statistical properties and ergodic theorems for relative entropy HMPs have been widely studied in statistics. An HMP is
densities of HMPs were developed. Consistency and asymptoticy;ia\ved as a discrete-time bivariate parametric process. The un-

normality of the maximum-likelihood (ML) parameter estimator derlvi . finite-state h Mark hai
were proved under some mild conditions. Similar results were es- erlying process Is a hinite-state homogeneous Markov chain.

tablished for switching autoregressive processes. These processe$ his process is not observable and is often referred to as the
generalize HMPs. New algorithms were developed for estimating regime The second process is a sequence of conditionally inde-
the state, parameter, and order of an HMP, for universal coding pendent random variables given the Markov chain. At any given
and classification of HMPs, and for universal decoding of hidden time, the distribution of each random variable depends on the
I\(I]garkov channels. These and other related topics are reviewed in MarI;ov chain only through its value at that time. This distribu-
this paper. ST . . ' ' .
tion is time-invariant and it may be a member of any parametric

Index Terms—Baum-—Petrie algorithm, entropy ergodic theo- ¢y The sequence of conditionally independent random vari-

rems, finite-state channels, hidden Markov models, identifiability, bles is oft f dt thb fi
Kalman filter, maximum-likelihood (ML) estimation, order esti- ables Is often reterred 1o as serva |0rse_quence._
mation, recursive parameter estimation, switching autoregressive ~ HMPs are commonly encountered in information theory.

processes, Ziv inequality. Markov chains are common models for information sources
with memory, and memoryless invariant channels are among
the simplest models for communication channels. The hookup
of Markov chains with memoryless channels yields a family
hidden Markov procestHMP) is a discrete-time finite- of processes that are far more complex than the Markov chain
state homogeneous Markov chain observed through a disurces. For example, there is no closed-form single-letter
crete-time memoryless invariant channel. The channel is chexpression for the entropy rate of an HMP. Also, the method of
acterized by a finite set of transition densities indexed by tligpes does not apply to HMPs unless they are unifilar sources.
states of the Markov chain. These densities may be memberghé state sequence of a unifilar source depends deterministi-
any parametric family such as Gaussian, Poisson, etc. The initially on the observation sequence and the initial state.
distribution of the Markov chain, the transition matrix, and the In recent years, the theory of HMPs has been substantially
densities of the channel depend on some parameter that chaanced and a wealth of new results was developed. In addi-
acterizes the HMP. The process is said to dmite-alphabet tion, numerous new applications have emerged. In the statis-
HMP if the output alphabet of the channel is finite. It is said t@ical literature, the main focus has been on HMPs with finite-
be ageneralHMP when the output alphabet of the channel iss well as continuous-state spaces and a general alphabet. Iden-
not necessarily finite. tifiability of an HMP, consistency and asymptotic normality of
HMPs are more commonly referred to h&lden Markov the maximum likelihood (ML) parameter estimator, as well as
models The term HMP was chosen since it emphasizes tagyorithms for estimating the state, parameter, number of states,
process itself rather than its use as a model. HMPs compriged the Fisher information matrix, were developed. The number
a rich family of parametric processes that was found usefoll states of an HMP is called thader. In information theory,
the main focus has been on finite-state finite-alphabet HMPs
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sections of the paper require some background in probability
theory. To facilitate reading, we have collected preliminary mea-

sure-theoretic material in one section. This manuscript is di-

vided into fifteen sections. The plan for each of the remaining vill.
sections is outlined below.
II. A Brief History. Provides a brief history of HMPs and IX

VI.

VII.

a review of the main theoretical results developed in
recent years.

Preliminaries Sets up the notation and provides some
preliminary background material.

Statistical PropertiesDefines HMPs and their rela-
tions to mixture processes, switching autoregressive
processes, dynamical systems, Markov-modulated
Poisson processes, composite sources, and unifilar
sources. Also defines hidden Markov channels.
Summarizes statistical properties of HMPs such asX.
stationary, mixing, and ergodic properties. These
properties are inherited from the Markov chains.
Provides ergodic theorems for the sample entropy and

relative entropy densities of HMPs. XI

State Estimation Presents numerically stable and
computationally efficient recursions for prediction,
filtering, and fixed-interval smoothing of the state se- Xl
guence of the HMP. The recursions coincide with the *
Kalman filter and smoother, respectively, under linear
Gaussian assumptions. The recursions are naturallyXlll.
stable, and they differ from those traditionally used

in signal processing and communication applications
such as automatic speech recognition and decoding of
turbo codes, respectively.

ML Parameter EstimatianDeals with several aspects XIV.
of ML parameter estimation. Provides conditions for
identifiability of an HMP. States theorems for consis-
tency and asymptotic normality of the ML parameter
estimator of an HMP with a finite as well as contin-
uous-state space and a general alphabet. Provides S"TB'(V
ilar theorems for switching autoregressive processes.”
Outlines the principles of the Baum algorithm for local
ML parameter estimation, and Louis’s formula for es-
timating the Fisher information matrix. States the Ziv
inequality which provides a tight upper bound on the
maximum value of the likelihood function fany fi-
nite-alphabet HMP.
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guence and parameter, and asymptotic properties of the
estimator.

Order EstimationPresents consistent estimators for a
finite-alphabet HMP, and an estimator which does not
underestimate the order of a general HMP.

Dynamical System Approaciihe HMP is seen as a
dynamical system in the sense of control theory, and
its parameter is estimated using the expectation—-max-
imization algorithm. Conditional mean estimators of
several statistics of the HMP, required by the expecta-
tion—maximization algorithm, are developed using the
generalized Bayes rule. The approach is demonstrated
for HMPs with Gaussian densities. The approach is
particularly useful for continuous-time HMPs but this
extension is not reviewed here.

Recursive Parameter EstimatiorDescribes algo-
rithms for recursive estimation of the parameter of an
HMP. A consistent asymptotically normal estimator is
provided.

Signal ClassificationDeals with several classification
problems involving HMPs including universal classi-
fication.

Signal EstimationThe HMP is seen as a desired signal
and its estimation from a noisy signal is discussed.

Hidden Markov ChannelfReviews some properties of
finite-state channels such as capacity and the channel
coding theorem. Presents the Lapidoth—Ziv asymptot-
ically optimal universal decoding algorithm for finite-
state channels.

Selected Applications Briefly describes selected
applications in communications, information theory,
and signal processing. Also presents special forms of
HMPs and non-ML parameter estimation procedures
which were found useful in practice.

Concluding Remarks

Il. A BRIEF HISTORY

HMPs were introduced in full generality in 1966 by Baum
and Petrie [25] who referred to them@®sbabilistic functions of
Markov chainsindeed, the observation sequence depends prob-

Joint State and Parameter Estimatidfocuses on joint abilistically on the Markov chain. During 1966—1969, Baum

estimation of the state sequence and parameter of @md Petrie studied statistical properties of stationary ergodic fi-
HMP. Presents the Baum-Viterbi algorithm and its resite-state finite-alphabet HMPs. They developed an ergodic the-
lations to the Baum algorithm and to the generalizesrem for almost-sure convergence of the relative entropy den-
Lloyd algorithm for designing vector quantizers. Thesity of one HMP with respectto another. In addition, they proved
algorithm is useful when a sufficiently long vector ofconsistency and asymptotic normality of the ML parameter esti-
observations is generated from each state. Otherwisaniator [25], [251]. In 1969, Petrie [251] provided sufficient con-
does not provide a consistent estimate of either the pditions for identifiability of an HMP and relaxed some of the
rameter or the state sequence. Describes a noniteragsumptions in [25]. In 1970, Baum, Petrie, Soules, and Weiss
algorithm for global maximization of the joint likeli- [28], [29] developed forward—backward recursions for calcu-
hood function of states and observations of a left-righating the conditional probability of a state given an observation
HMP. Discusses Bayesian estimation of the state ssequence from a general HMP. They also developed a compu-
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tationally efficient iterative procedure for ML estimation of the HMPs are also related to a number of random processes com-
parameter of a general HMP using the forward—backward recamenly encountered in engineering, statistics, and econometrics.
sions. This procedure is the well-knowrpectation—maximiza- We first point out the obvious relation to mixture processes
tion (EM) algorithm of Dempster, Laird, and Rubin [80] applied212], [109], [232], [266], [301]. Each observation of an HMP
to HMPs. Local convergence of the algorithm was establishbds a mixture distribution, but contrary to mixture processes,
in [28], [29]. The algorithm is often referred to as the Baum aHMP observations need not be statistically independent. HMPs
gorithm, or the Baum—Petrie algorithm, or the Baum—-Welch are special cases of switching autoregressive processes with
gorithm in honor of LIoyd Welch [311]. Similar forward—back-Markov regimes [156, Ch. 22]. These are autoregressive pro-
ward recursions were developed earlier by Chang and Hancaglsses whose dynamics at each time instant depend on the state
[56] in their work on optimal decoding of intersymbol interfer-of a Markov chain at that time. When the autoregressive order
ence channels. is zero, the switching autoregressive process degenerates to an
Prior to the introduction of probabilistic functions of MarkovHMP. HMPs may be cast as dynamical systems in the sense
chains, deterministic functions of Markov chainsere ex- of control theory. When the state space is finite or countably
tensively studied. They are often referred to aggregated infinite, each state is represented by a unit vector in a Euclidean
Markov processes the statistical literature since a functionspace. Another relation is to Markov-modulated Poisson
may collapse several states of the Markov chain onto a singlecesses [117], [273], [276]. These are Poisson processes
letter. Deterministic and probabilistic functions of finite-statevhose rate is controlled by a nonobservable continuous-time
Markov chains are related when the alphabet of the HMP Ndarkov chain. A Markov-modulated Poisson process may be
finite. Any deterministic function of a Markov chain can beviewed as a Markov renewal process and as an HMP. In both
described as a trivial finite-alphabet HMP, and any finite-atases, a discrete-time Markov chain is defined by sampling
phabet HMP can be described as a deterministic functitimee continuous-time chain at the Poisson event epochs, and the
of Markov chain with an augmented state space [25], [251bservation sequence is given by the interevent time durations.
[116]. Deterministic functions of Markov chains were used One of the earliest applications of HMPs was to automatic
by Shannon in 1948 [290] as models for information sourcesharacter recognition. Raviv [265] studied the problem in 1967
Ash [14, p. 185] refers to them ddarkov sourcesbut the atthe IBM T. J. Watson Research Center. The characters of the
term has more often been associated with unifilar sourcesguage were represented by states of the Markov chain and
introduced by Gallager [133, Sec. 3.6]. Shannon developed the measurements constituted the observation process. Recog-
fundamental ergodic theorem for convergence in probability oftion in the minimum character error rate sense was performed.
the sample entropy of a stationary ergodic Markov chain [29(or that purpose, Raviv developed a new recursion for the con-
The theorem was proved for stationary ergodic finite-alphabditional probability of a state given the observations.
processes, fol.! and almost sure convergence, by McMillan In the mid-1970s, another major application of HMPs was
and Breiman, respectively. It is commonly referred to as thaking place at the IBM T. J. Watson Research Center. Jelinek
Shannon-McMillan—-Breiman theorem or as tagmptotic [172], Baker [21], Jelinek, Bahl, and Mercer [171], Bahl and
equipartition property [152, Ch. 3]. The theorem applies tdelinek [18], along with their coworkers, developed a phonetic
any stationary ergodic finite-alphabet HMP. Deterministispeech recognition system that relies on hidden Markov mod-
functions of Markov chains were also intensively studied in thaing of speech signals. The model for each word in the vocab-
statistical literature, notably by Blackwell [41], Blackwell andulary was composed of individual phonetic models which were
Koopmans [42], Burke and Rosenblatt [52], Gilbert [136], Fodesigned using the Baum algorithm. Linguistic decoding of an
[125], Dharmadhikari [83]-[86], Heller [160], and Carlyle [54],acoustic utterance was performed using the Viterbi algorithm
who investigated identifiability and conditions for deterministi¢308], [124], [285] or the Stack graph-search algorithm of Je-
functions of Markov chains to be Markov chains. linek [170]. In the early 1980s, applications of HMPs to auto-
HMPs comprise a rich family of parametric random promatic speech recognition were further studied primarily by Fer-
cesses. In the context of information theory, we have alreagyson and his colleagues at the Institute for Defense Analysis
seen that an HMP is a Markov chain observed through[Hl5], [256], and by Rabiner and his group at AT&T Bell Lab-
memoryless channel. More generally, consider a finite-stadeatories [262]. These studies popularized the theory of HMPs
channel [133, Sec. 4.6]. The transition density of the channehich have since become widespread in many applications. In
depends on a nonobservable Markov chain. This channelFsrguson [115], probabilistic functions of Markov chains were
sometimes called kidden Markov channeAn HMP observed probably first referred to asidden Markov models
through a finite-state channel is an HMP with an augmentedIin recent years, HMPs have been widely studied by statis-
state space. The Gilbert—Elliott channel is an important eticians and information theorists. Significant progress has
ample of a finite-state channel [137], [97], [14], [243], [204]been made in the theory of HMPs where the work of Baum
This channel introduces a binary additive hidden Markaand Petrie on finite-state finite-alphabet HMPs was expanded
noise process which is independent of the input process. TtheHMPs with finite as well as continuous-state spaces and
Gilbert-Elliott channel is a good model for fading channels general alphabet. In particular, new ergodic theorems for
Finite-state channels are also knownsaschastic sequential relative entropy densities of HMPs were developed by Leroux
machinegSSMs) orprobabilistic automatg250]. A subclass [214], Finesso [116], Le Gland and Mevel [210], and Douc
of SSMs is formed bypartially observable Markov decisionand Matias [90]. Consistency and asymptotic normality of
processe$242]. the ML estimator of the parameter of an HMP was proved
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by Leroux [214], Bickel, Ritov, and Rydén [36], Le Glandsarily an HMP. Large-deviations properties of the Lempel-Ziv
and Mevel [210], Jensen and Petersen [174], and Douc aadorithm for HMPs were developed by Merhav [236]. Sig-
Matias [90]. The ergodic theorems and asymptotic optimalityificant progress in universal classification of Markov chains
of the ML parameter estimator were also proved for switchingf any order using empirically observed sequences was made
autoregressive processes with Markov regime by Francq amd Ziv [328], Gutman [155], and Zeitouni, Ziv, and Merhav
Roussignol [127], Krishnamurthy and Rydén [198], and Dou{325]. Universal classification of HMPs using empirically
Moulines, and Rydén [91]. Similar results were developed fobserved training sequences was developed by Merhav [235],
a Markov-modulated Poisson process by Rydén [273], [27@®]lerhav and Ephraim [238], and Kieffer [187]. A universal
Exponential forgetting and geometric ergodicity in HMPs werdecoding algorithm for finite-state channels was developed
studied by Le Gland and Mevel [210] and Douc and Matidsy Ziv [327], and Lapidoth and Ziv [204]. An algorithm for
[90]. A complete solution to identifiability of deterministic decoding unknown intersymbol interference channels using the
functions of nonstationary Markov chains was given by It@aum algorithm was developed by Kaleh and Vallet [179].
Amari, and Kobayashi [167]. Conditions for identifiability Along with the advances in the theory of HMPs, numerous
of a general HMP were developed by Leroux [214] andew applications of HMPs have emerged in recent years in areas
Rydén [274], [277]. Conditions for identifiability of a Markov such as neurophysiology, biology, economics, control, spectral
modulated Poisson process were given by Rydén [278]. Nestimation, radar, sonar and image signal processing, fault de-
stable recursions for prediction, filtering, and fixed-intervaiection, computer vision, robotics, and metrology.

smoothing of the state sequence from an observation sequence

were developed by Lindgren [219] and Askar and Derin ll. PRELIMINARIES

[15]. These recursions provide conditional mean filters and

smoothers for Markov chains observed through channels thatn this section, we provide some preliminary background ma-
are not necessarily Gaussian [203]. terial. We also describe the notation that we use throughout the

&panuscript. Some additional notation will be introduced in Sec-

In addition to expanding the work of Baum and Petrie, oth . .
approaches to HMPs were developed in recent years. A colf!! V-A where the specifics of the HMP are discussed.

prehensive dynamical system approach to general HMPs was o
developed by Elliott, Aggoun, and Moore [99]. In particular, fiA- General Definitions
nite-dimensional recursions for conditional mean estimators ofAll random variables in a given discussion are defined on a
statistics of a general HMP were developed, and used in ML e&mmon probability spacg?, F, P). We use capital letters to
timation of the parameter of the process. HMPs with discretdenote random variables, lower case letters to denote realiza-
as well as continuous-time state and observation processes, fidaiks of random variables, and script letters to denote sets within
have finite or continuous alphabet, were studied in [99]. Infowhich the random variables take values. For example, a random
mation-theoretic approaches for strongly consistent order @ariableX takes valuegz} in A'. We write P(F') to denote the
timation of a finite-alphabet HMP were developed by Finesgsrobability of an event’ € F. We also writeP(X = z) to
[116], Kieffer [187], and Liu and Narayan [223]. An order esedenote the probability of the evefit € : X(w) = z}.
timator for a general HMP that does not underestimate the trueA random variableX defined on the underlying probability
order was developed by Rydén [277]. A consistent asymptgpace induces a probability spac¥, By, Px). The random
ically normalrecursiveestimator for the parameter of a genvariableX takes values in the sample spateTheo-field By
eral HMP was developed by Rydén [279]. A Gibbs samplingenotes the Boret-field of open subsets ot with respect to
Bayesian approach for estimating the parameter of a geneialiven metric. The probability measuRs denotes thelistri-
HMP was developed by Robert, Celeux, and Diebold [269]. butionof X. UsuallyX is the real lineR or a subset of the real

In communications and information theory, several aspedise. The probability spacet’, B, Px) isreferred to as thas-
of HMPs were studied in recent years. Minimum symbdaociated probability spacef X [152, p. 11]. We shall usually
error-rate decoding of convolutional and linear codes usingprk with this probability space rather than with the underlying
the forward—backward recursions of Chang and Hancock [S8jobability space. The sample spatanay also be referred to
was proposed by Bahl, Cocke, Jelinek, and Raviv [17]. Tlees thealphabetof X and members o’ may be referred to as
algorithm has since been referred to as the BCJR algorithlettersof the alphabet. We assume that all distributions are ab-
and a stabilized version of the recursions is commonly usedlutely continuous with respect to somdinite measure, say
in decoding turbo codes [32], [33Jurbo codesuse several p, and hence possedensitiesor Radon—Nikodym derivatives
concatenated convolutional codes and a feedback mechanj38) Theorem 32.2]. We denote absolute continuity’gf with
that allow iterative reduction of the bit error rate. They almosespect tou by Px < u. We denote the density dPx with
achieve the Shannon capacity in communication over menespect tq, by p(x). We shall not stress the role &f in the no-
oryless Gaussian channels. Propertiexcamposite sources, tation of the density and ug€zx) instead ofpx (x). When the
which are generalizations of HMPs, were studied by Fontadaminating measure is the Lebesgue measure we may refer to
[119], and Fontana, Gray, and Kieffer [120]. The Lempel-Zithe density as the probability density function (pdf). When the
universal data compression algorithm introduced in 1978 [326dminating measurg is the counting measure we may use the
is applicable to universal coding of finite-alphabet HMPs. Thigerm probability mass function (pmf) instead of density. These
algorithm asymptotically outperforms any finite-state codintyvo dominating measures are of particular interest in applica-
scheme in compressing sequences from any source, not netieas of HMPs.
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A discrete-time random process, s&), is denoted by All logarithms in a given discussion are taken to the same arbi-
{X:, t € T} where7 is theindex sebr a subset of all integers. trarily chosen base. The most common choices are the natural
For one-sided random processé&s,is usually the set of all basee and the base.
positive integers. In some discussiorns,is more naturally
chosen to be the set of all nonnegative integers. For two-sid@d Entropy
random processeg, is the set of all integers. When the index cgnsider a random procegs(,, ¢ > 1} with parametric
set is clear from the context, we use the simpler notation gfsiribution Py, ¢° € . Let p(z™; ¢°) be the inducech-
{X:}. Assume that, € A’ for all # € 7. The random process dimensional density of the process with respectfowhere
is defined on the underlying probability spa@e, 7, P) and |, is someo-finite measure. The sample entropy is defined
has an associated measurable product space BY). We for finite-alphabet processes. Suppogeis the counting
are particularly interested in a random process defined measure. Then, theample entropyof {X,} is defined as
a distribution on(X7, BY) which is a member of a given —,—11og p(X"; ¢°) [152, p. 58]. The relative entropy density
parametric family. Letp € & denote theparameterof the s defined for processes with finite as well as continuous
process distribution where is the parameter setUsually alphabet. Supposg is any o-finite measure which could
® C R% whereR* is a dy-dimensional Euclidean space.possibly be the Lebesgue measure. Téiative entropy density
Let P, denote the parametric distribution of the process. The {X,} is defined adogp(X™; ¢¥) [152, p. 150]. We shall
associatedequence probability spacé the random process isuse this term fotog p(X™; ¢) as well, wherep € & may be
(X7, BL, P,). We denote bys° € ® thetrue parameter used different from the true parametet’. These quantities have
to generate a given realizatidn,, ¢ € 7} of the process. well-defined limits for HMPs whem — oo. The limits and

A sequence of random variables of the processpnditions for their existence are given in Section IV-D.
{Xi,...,Xn}, m > [, is denoted byX;". A realization
of X" is denoted by:}*. Most commonly, we will consider a C. Martingale Difference Sequence

sequence of, random variablesX7*, which, for simplicity, we Let X be a random variable on the probability space
denote byX™. Let qu") denote ther-dimensional distribution (7, P), and letG be a subs-field of . The conditional
of X™ induced byP,. For eachn, the distribuionP{" is mean E{X|G} exists if E{|X|} < oo [154, p. 348]. Let
assumed absolutely continuous with respect to sorfiaite F = {Fi, F2, ...} denote a sequence of subfields of F.
measurep” and its density with respect to that measure iEhe sequenc is called diltration if 7, C Fiy; for all . Let
denoted byp(z™; ¢). The explicit dependency of this densityX = {X:, ¢ > 1} denote a random process on the probability
on ¢ may be suppressed when notation may be simplified. TEBace. The process is said to dgaptedto the filtration F if
expected value of a measurable functigik ™) with respectto Xt is F¢-measurable for alt [154, p. 473]. For example, if
the probability measuré’qgg) is denoted byEy {g(X™)}. Of Tt = o{ X"} denotes the smallestfield generated byX* then
particular interest is the expected valuelef p(X™; ¢) with Fis af|ltrat|on andX is adaptgd tdF. SupposeF is a filtration
respect taP™ given by gndX is adaptgd tdF‘..The pair(X, F) = {(X, F), t > 1}
(0]
is called amartingaleif for all ¢ > 1, E{|X:|} < oo, and
E{X, | F} = X, [154, p. 474]. SupposgX, F) is a martin-
Ego{logp(X™; ¢)} = /10gp($n% ¢) Py (da™). ga{le. 'chh|e siquendé = {f)t, t >] 1},F\)/\t)hesr(eDt :)Xt — X4,
is a called amartingale difference sequenda particular, D;
The usual notation for conditional probabilities and densities ;-measurableE{|D;|} < oo, andE{D;1|F;} = 0 for all
is adopted here. For example, the densityXfgiven X~ is ¢ [154, p. 476]. The class of zero-mean independent processes
denoted byp(z;|z*1). is a subsest of the class of martingale difference sequences, and
In some sections of the paper we report results that are #pe class of martingale difference sequences is a subset of the
plicable tostandardmeasurable spacdst™, B%). The defi- class of zero-mean noncorrelated processes when second-order
nition and properties of standard spaces can be found in [15igments exist [288]. Under these conditions, a martingale
Ch. 2], [152, p. 12]. Standard spaces include discrete spaces difference sequence comprises noncorrelated random variables
real line, Euclidean vector spaces, Polish spaces which are cavhich may also be statistically independent. A martingale dif-
plete separable metric spaces, among other examples. Stanfiehce sequence enjoys a central limit theorem [38, Theorem
spaces form a general class of measurable spaces for which3hd 2].
Kolmogorov extension theorem holds, regular conditional prob-
ability measure exist, and the ergodic decomposition theord? Ergodicity and Asymptotically Mean Stationarity

holds [152, p. 12]. Consider a random process with associated sequence prob-
We shall also make the following conventions. We say thatgility space(x7, BL, Q). Assume that this is a one-sided

stochastic matrix satisfiesA > ¢ if all of its entries are larger process with index séf = {1,2,.. ). Leta” = (x1, 29, ...)

thané. Let A and B be two stochastic matrices of possibly difdenote a member €7 . Define theleft-shifttransformatior”:

ferent order. Suppose that= (A, B). We say thatp € @5 if &7 — X7 by T((z1, 2, ...)) = (z2, 73, ...). The measure

both A > ¢ andB > 6. The transpose of a vector, sayis de- @ is calledstationaryif Q(G) = Q(T~'G) for all G € BL

noted byz'. The gradient and Hessian of a functigfy) with whereT—1G = {27 : T(27 ) € G}. Stationary measures corre-

respect tap are denoted by, g(¢) andDig(@, respectively. spond to stationary random processes [154, p. 398]. An event
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G € B% is calledinvariantif G = 771G or whenz? € G if of the source; and channeb. Thus, a channel is simply a reg-
and only ifT'(z7 ) € G. The stationary measurg is calleder- ular conditional probability [152, p. 5].

godicif each invariant event has probability either zero or one, Let 7»» and?7}, be the shift transformations on the input se-
i.e., Q(G) = 0 or Q(G) = 1 for all invariant events7 [154, quence spac& and output sequence spagerespectively. A

p. 398]. DefineT™(z7) = (opt1, Tnt2, --.). The random channel is said to bstationarywith respect tdl’y and7),, or
process is calledsymptotically mean stationalfAMS) with  simply stationary if the shifts are clear from the context, if [152,

respect to the left-shiff” if the limit of the Cesaro mean p. 184]
_ n—1 , v (T3 F|z) = v(F|Ty z), zeX? FeBl. (35)
QG) = lim =3 Q(1776) (3.1) (157 Fle) = T 2) Y
[ Intuitively, a right-shift of an output event yields the same prob-

. - o _ ability as a left-shift of an input event. Two shifts are required
exists for all € By [152, p. 16]. The limit() is a stationary since in general’y*« and 73 F may not exist. If the shifts

probability measure ofiX’”, B%). It is called thestationary gare invertible, as for two-sided processes, then the definition is
meanof @ [152, p. 16]. The stationary mea@ asymptot- equivalent to

ically dominates@ in the sense thaQ(G) = 0 implies
lim,—..o Q(IT™"G) = 0[151, Corollary 6.3.2]. Conversely, if v(Iy F|Tyz) = v (15 F|Ty" 2) = v(Flz),
() is asymptotically dominated by a stationary measure then zeXT, Fe BJT,. (3.6)

Q is AMS [148, Theorem 2]. These properties demonstrate

intuitive aspects of AMS processes gained by considerifighus, shifting the input sequence and output sequence in the

events determinable by samples of the process in the distaaine direction does not change the probability. In that case, a

future. Asymptotic mean stationarity is necessary and sufficiesingle shift may be used for both input and output sequences.

for an ergodic theorem to hold [151, Corollary 7.2.2]. A channel is said to beutput strongly mixingor asymptot-
Note that the left-shift transformation for one-sided processesilly output memoryless, if for all output rectanglesand G

is not invertible. Some of the results discussed in this papend all input sequencas[152, p. 196]

were derived for two-sided processes. For that case, an invert-

ible (one-to-one) shift transformation can be defined. Jim [ (T"FNGz) —v (I7"F &) (G| 2)| = 0.
(3.7)
E. Mixing More generally, the channel is said to tatput weakly mixing
A processX = {X,, ¢ > 1} with distribution Px is said if
to be a-mixing if for every setf' € o(X;4, ..., X;) and set 1=t ‘ ‘
G € o(Xpyn, Xignyt, --),n>1,k>1 nh_I)r;o . Z|I/ (I "FNGlz)—v (T 'F|z) 1/(G|:l‘)| =0.
=0
|Px(FNG) = Px(F)Px(G)| <aln)  (3.2) (3.8)

Of particular interest for our discussion are memoryless in-
wherea(n) is independent of” andG andlim,, _,, «(n) = 0  Vvariant channels. Suppose thdt|z) _is a probability measure
[38, p. 363]. ThusX) and X, are approximately indepen-on By, for all » € & and thatv(F|z) is a measurable function

dent for largen. The process is said to kemixingif of z for fixed F7. Let {I;} denote a sequence of output events.
The channel’ is said to benemoryles#

v <H E|x> =[[ »(#ilz) (3.9)

L S

sup |Px (GIF) — Px (@) < ¢(n) (33)
G, F

wherep(n) is independent of” andG andlim,, .. ¢(n) =0
[37, p. 166]. This is a honsymmetric measure of approxim

e L
independence. aftor any finite index setZ < 7 [152, p. 193]. The channel

is said to beinvariant if v(Z;|z;) is independent of. When
densities exist, the channel is defined by its transition density or

] ] by then-dimensional conditional densip(y™|«™) for all finite

an input probability spacet? , BZ, 1) and an output measur-
able spacé)” BJT;). Assume that the two measurable spaces N
are standard. Achannelis a family of probability measures p(y"[e") = Hp(ytlxt)

{v(|z), 2 € X7} on (Y7, BY) such that for every output =t

eventF € BL, v(F|x) is a measurable function ef For every andp(w:|z:) is time-invariant, i.e., for any’ € By andx € X,
rectangle x F' € BL. x BJT,, the set function the probability ofY; € I given X, = z is the same for alf.

F. Channels

n

P(G x F) :/ V(F|z) dn(z) (3.4) IV. STATISTICAL PROPERTIES
¢ In this section, we define HMPs and discuss their relations
is well defined, and it extends to a probability measure on the mixture processes, switching autoregressive processes, dy-
joint input/output space which is sometimes calleditbekup namical systems, Markov-modulated Poisson processes, com-
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Memoryless ;
(s} Markov Invariant Observation i)
Chain %?;T::)ﬂ Sequence

Fig. 1. An HMP.

posite sources, deterministic functions of Markov chains, afthe conventioru,,s, = 7, for all s; € S is often convenient.
unifilar sources. We state conditions for HMPs to be stationafffhen-dimensional density af " with respect tq:™ is given by
ergodic, and mixing processes. We provide ergodic theorems N
for almost-sure convergence of the sample entropy and relative n

i ; - o = a b(yt|se). 4.3
entropy densities of stationary-ergodic general HMPs. Similar p(") Z H siovoibye]s) (4.3)

7" t=1
ergodic theorems for switching autoregressive processes with ’
finite and continuous state spaces are also reviewed. This function is often referred to as thikelihood functionof
the HMP. Note that the saummation in (4.3) is 0¥ product

terms.
) ) ) The likelihood function may also be expressed in an alterna-
Let {51, Sz, ...} denote a discrete-time Markov chain thaye useful form in terms OB(y|s¢) andp(se|yt—1). Itis easy to

takes values in a finite set called thestate spacelLet M de- cpeck, see, e.g., Ott [248], Lindgren [219], and Devijver [81],
note the number of states. We assume without loss of generajiyt

thats = {1, 2, ..., M }. Lets; € S denote a value tha; can

A. Definitions and Structure

take. Letr; = P(S1 = j) denote the probability that the initial ny _ t—1

state isj. Letwm = {m; } be al x M vector representing thai- Ply") =plo1) tzl_[Q Pluy™)

tial distribution. The Markov chain is always assumed homoge- M

neous unless stated otherwise. kgt = P(S; = j|S;—1 = 4) p(y) = Z 75, b(y1]51)

denote thetransition probability Let A = {a;;} denote the s1=1

M x M transition matrix Consider a discrete-time channel M

with input {Sy, Ss, ...} and output{Y;, Y, ...}. For each, Plely™) = D plsely ™ )b(wlse). (4.4)
Y, takes values in anbservation spacg’. The nature ofy will si=1

be discussed shortly. Let € ) denote a value that; can [\_Ne refer top(s:[y'~1) as thepredictive densitgf S; giveny!—!

tak_e. Assume that the channel is memorylggs and myanant. [Q(S]. Thus, properties of the likelihood function of the HMP are

agivens,, letb(y,|s.), y. € Y, denote a transition density of the et mined by the predictive density sequence and by the obser-

channel with respect to someefinite measurq.. Of particular \4tion conditional densities. These properties will be discussed

interest are the Lebesgue and counting measures. The counfingecion IV-C3. A computationally efficient recursion for cal-

measure is denoted Iy The channel is characterized by a seéu|atingp($t|yt_1) is provided in (4.30).

of M transition densitiegb(-|s;), s, = 1, ..., M}. We shall it follows from (4.4) that each observation of the HMP has a

refer tob(-|s;) as anobservation conditional densif210]. mixture density
In information theory, an HMP is viewed as a discrete-time

finite-state homogeneous Markov chain observed through a dis-

crete-time memoryless invariant channel as described in Fig. 1. plye) = Z p(s)b(yt]st)-

In the statistical literature, see, e.g., [36], an HMP is viewed as a o=t

discrete-time bivariate random procg$s:, Y;)} with Markov  If the Markov chain is stationary, theR(S; = j) = =, for

regime {S;} and conditionally independent random variablesll ¢, and the observationg’; } are identically distributed with

{Y:}. The distribution ofY; is time-invariant and it depends onmixture density given by

{S:} only throughsS;.

Then-dimensional density afY’ ™, S™) with respect tq.” x M )
k™ can be written as “ ) ply) = > mib(wl S = ). (4.5)

=1

M

n

Conditions for stationarity of the Markov chain are given in Sec-
p(y", ") = p(y1, 51) H P, silsi-1) (4.1) tion IV-C. The observation$Y; } are generally dependent but
=2 they may also be independent. For example{[§t} denote
a sequence of independent and identically distributed (i.i.d.)
random variables and define a Markov chdifi,} by S; =
(Xi—1, Xy). LetY, = ¢(S;) = X, for some deterministic
Py, s1) =ms, b(yr]s1) functiong(-, ) = z. The sequencéY; } is an HMP with i.i.d.
(Y, St|st—1) = as,_,s,b(ye|se), t=2,3,.... (4.2) observations. A stationary HMP is thus a sequence of possibly

where
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dependent identically distributed random variables with a mag-is referred to as thparameterof the HMP where in general
ginal mixture density. Each mixture density is overdispersed rél-heed not represent the usual parametrization.
ative to any given single density-|s;). Leroux [212] referred ~ We shall sometimes emphasize the dependency of-ttlie
to HMPs agmixture processes with Markov dependence mensional density of the HMP on its parameter by rewriting
It also follows from (4.4) that if the density{y;|s;) has zero (4.3) as

mean for alls; € &S, then almost surely n

BV =0 sl @y 0= [Law@busbu@). @9

s™ t=1

Under this condition{Y; } is a martingale difference sequencey, some discussions, such as in ML parameter estimation, we

as pointed out by Francq and Roussignol [126]. As such, gi,« distinguish between the true parameter that was used to
HMP is a sequence of noncorrelated random variables that nb%duce a given sequence of observationsy&agnd any other
also be statistically independent. This implies that the Obser‘(i?a1ue¢ of the parameter of the HMP. We denote the true param-
tions{Y>, 7 < t} of an HMP are not useful in predicting in 5o, by?. For the usual parametrizatiopfl = (x°, A°, 6°). A
the minimum mean square error (MM_SE) sense [288]. stationary HMP is said to hidentifiableif for each¢ € ® such

If the regime{ S, } of an HMP is i.i.d. instead of Markov, the that # ¢°, p(y™s ¢) # p(y™; ¢°) a.e. for somer > 0 [274].

observationgY; } are necessarily i.i.d. From (4.3) we have Note that states may always be permuted without affecting the

n distribution of the HMP. This ambiguity can be removed by or-
p(y") = Z H p(st)b(yt|st) dering the states, for example, according to tHéijr}.
) Two parameters’) and¢® in ¢ are said to bequivalent

M if they induce the same stationary law fdr; }. We denote this

=11 D> PSe = )b(wl S = ). (4.7)  relation by ~¢?2). The parameter sat can be partitioned
t=1j=1 into the equivalence classed ~. The equivalence class of a
An HMP with i.i.d. regime is amixture processMixture pro- parameteg of an identifiable HMP comprises all points
cesses have been extensively studied and a wealth of resul@bigined by permutations of the states of the HMP [214, Lemma
available, see, e.qg., [109], [266], [301], [232]. The close rel&]-
tion between HMPs and mixture processes is often exploited inln some applications such as modeling of speech signals
proving properties of HMPs using similar properties of mixturfL 73], and representing Markov modulated Poisson processes

processes. as HMPs [273], the assumption (4.2) is replaced by
When the observation spaggis finite, the HMP is referred

to as afinite-alphabetHMP. When) is not necessarily finite, P\¥t stlse—1) = plselse—1)p(yelse, se-1), =23, ...

the HMP is referred to as generalHMP [36]. For a finite- (4.9)

alphabet HMP, we assume without loss of generality fhat . . . .

(1,2, ..., L}. Let Since pairs of states |n.(4.9) may bg renamed as new stlat'es in

' ' (4.2), the two assumptions are equivalent [36], [173]. Finite-
bjy =P, =1S: = j) alphabet HMPs that obey (4.9) were referred tdimise-state

) ) ) ) - sourcesn [236], [325], [330].

denote the time-invariant state-to-observation transition probarnhere are many extensions of the HMP as defined in this sec-
bility. Let B = {b;;} denote thel x L state-to-observation yion some of them will be discussed in the next subsection.
transition matrix. The parameter of the channel is denoted by o,ghout this paper, we refer to the discrete-time finite-state
0 =B. I;or a general HMRY is usually a subset of a Euclidean, ocess with finite or general alphabet defined by (4.1) and (4.2)
spaceR™ for somek. Other higher dimensional spaces are als@s an HMP or even more specifically astandard HMP This
possible. The parameter of the olgservatlon conditional densityn ot to e confused with an HMP that has standard alphabet.
for statej is denoted by, € © C R for somed, . The param-  gther forms of HMPs such as HMPs with a countably infinite

eter of the channel is denoted 8y= {0, }. We shall sometimes g4t space, a continuous state space, or continuous-time HMPs
emphasize the dependency of the observation conditional dgp pe specifically noted.

sity on its parameter. We may wribéy,|s:; ) or use the more
customary notation dfi(y;; 6, ). B. Examples
The parameter of the HMP is given Hyr, A, ). For a

. L ] . ... HMPs appear in many forms. In this subsection we provide
stationary Markov chain with a unique stationary dlStI’IbutIOIgome examples to demonstrate the scope of this rich family of
n = wA the parameter of the HMP is simpl4, ¢). Con- P P y

ditions for uniqueness of a stationary distribution are give%rocesses.

in Section IV-C1. In some applications, the triplgt, A, 8) 1) Gaussian Mixture Processes With Markov Dependence:
depends on a parametgrin some parameter sdt and we HMPs with multivariate Gaussian observation conditional den-
have the parametrizatiofr(¢), A(¢), 8(¢)). The parameter sities are commonly used in automatic speech recognition ap-
¢ = (m, A, 8) is a particular case obtained using coordinatelications. Gaussian densities are suitable when modeling is ap-
projections, i.e.;r(¢) = 7, A(¢p) = A, andé(¢p) = 6. This plied to representations of the signal for which a central limit
is the most common parametrization of the HMP which itheorem holds [47]. This indeed is the case in automatic speech
referred to as thasual parametrizationThroughout this paper, recognition applications where modeling is applied to vectors of
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spectral or cepstral components of the signal [19], [262], [10&]enote the: x » companion matrix of the autoregression asso-
Let £ denote the dimension of each vector. Parametrization @hted with state5, = s,. The procesgY;} has the following
eachk x k covariance matrix as a matrix of an autoregressistate-space representation, see, e.g., [258, p. 797], [240]:
process of order < k [149] was studied in [254], [255], [175].

HMPs with zero-mean Gaussian observation conditional densi- 2y =Cs Zy1 + 05, Vs, (4.13)

ties also appear in the form & = 5, W;, where{S;}isa switching autoregressive process (4.10) is not guaranteed

Markov chain that takes valugs, ..., ox}, {W:} is a se- to be second-order stationary even if each individual autoregres-

guence of i.i.d. standard Gaussian random variables{&apd _. . - :
- : : sive process is stable. Conversely, the switching autoregressive
and{W,} are statistically independent. This model was thor- . .
rocesses (4.10) may be second-order stationary even if some

oughly studied by Francq and Roussignol [126]. Another pop- . . : -
ular form of HMPs with Gaussian observation conditional derE-w“VKmaI autoregressive processes are not [164]. A sufficient

sities is given by, = S, + W,, where{S, } is a Markov chain condn:;)n f((j)r the s_thchlng auto.regrebsswe Iprocgss (4.10) toI be
that takes valuegs o I} is a sequence of Zerosecon -order stationary was given by Holst, Lindgren, Holst,

- Lo P Ut . . and Thuvesholmen [164]. Assume that foreach1, ..., M
mean i.i.d. Gaussian random variables with variamge and

- : the innovation proces§W;(¢)} has zero mean and unit vari-
{5} and{W:} are statistically independent [59], [194], [197]'ance. Lete;; denote the transition probability from stateio

2) Poisson Mixture Processes With Markov Dependence: state:. For eachi, j = 1, ..., M, define ther? x 2 matrix
HMPs with Poisson observation conditional densities are uséf = (C; ® C;)a;; where® denotes the Kronecker product.
for modeling counting processes. Heérggiven S; = j is a LetF = {F;;} denote the resulting? M x r2M matrix and de-
Poisson random variable with rafg. Such HMPs are often note byp(Z”) its spectral radius. The switching autoregressive
encountered in biomedical applications, for example, in moprocess (4.10) is second-order stationapy(#) < 1.
itoring epileptic seizure counts [6], [207]. A more general form of the switching autoregressive process

3) Switching Processes With Markov Regime:switching géézohfﬁrlz(% ﬁ,ge'rgfogtigsvéaesﬁi%d&d by Francq and Rous-

process with Markov regime is a random process whos
dynamics at any given time depend on the state of a Markovz, — o(7,_,. S,: $)+h(V;, Si; ¢),  t=1,2, ... (4.14)
chain at that time. Examples includeitching regressiof219]

andswitching autoregressiverocesses [156, Ch. 22], [164]. Inwhere {Z,} is a sequence of-dimensional random vectors,
this subsection, we focus on switching autoregressive procesé8s} is a finite-state Markov chain{V;} is a sequence of
only. Let {Y;} denote the process and I¢5,} denote its i.i.d. k-dimensional random vectors independent {cf,},
Markov regime ofA states. Consider first a switching autoreand g(-, -, -) and h(-, -, -) are measurable functions from
gressive process that is linear in its parameter when the st&ex S x ® to R™ and fromR* x S x & to R", respectively.
sequence s, } is given. Assume that all states have the sanie general, the driving i.i.d. nois€V;} need not be Gaussian.

autoregressive order. Let6; = {o;, ¢;(¢),7 = 1,...,r} The standard HMP (4.3) is a special case of (4.14) which
denote the autoregressive parameter for statgheres; de- corresponds tg(-, -, -) = 0. Krishnamurthy and Rydén [198]
notes the gain anfkc;(¢), ¢ = 1, ..., r} are the autoregressivestudied an even more general class of switching autoregressive

coefficients. Let{ W;(¢)} denote the i.i.d. sequence of innovaprocess characterized by
tions when the Markov chain is in staje It is assumed that .1
{5:, {W;(8)}, 7 = 1, ..., M} are mutually statistically Yo =g (Y50 S W ¢), t=172 ... (4.15)

mdt_apendent. Assuming that the Markoy chain is in _Stﬁte where{Y; } is a scalar procesgis an arbitrary measurable func-
at timet, then the process can be described by the differe o ahd{Wt} is a scalar i.i.d. process. The conditionadli-

equation mensional densities of (4.14) and (4.15) may be written simi-
- larlyto (4.11) and (4.12). The scalar case was chosen in [198] for

Yi==> ., ()isito, W, (1), t=1,2,.... (410) notational convenience only. Douc, Moulines, and Rydén [91]
P studied general forms of switching autoregressive processes, of
which the above functional forms are special cases, when the

The conditionak-dimensional density of ™ is given by Markov chain{S,} takes values in a separable compact state

space that is not necessarily finite. For example, the state space
Py Y0 i1; @) = Z Py, sy grs @) (4.11) S may be a compact set in a Euclidean space. Sufficient con-
sn ditions for the existence of a stationary ergodic solution for the
n difference equation (4.14) will be detailed in Section IV-C4. Er-
p(y", "y 1 B) = H sy s, D(ue|Uir; 65,)  (4.12) godic theorems for switching autoregressive processes will be
t=1 presented in Section IV-D. Theorems for asymptotic optimality
) o o of their ML parameter estimators will be given in Section VI-B.
where 32, is a realization of a vector of initial con-  The switching autoregressive process (4.13) is a special case

ditions which is assumed independent p$;}, the den- of the,-dimensional vector process, } defined by the differ-
sity b(y|yiZr; 6,) is determined by the distribution of gpce equation -

W, (t), and ¢ is the parameter of the process. LBt =
(Y;, Y;,l, ey Yrtfr-l—l)/v ‘/St == (Wst (t), O7 ey 0)/, andCSt Zt - Gtthl + Ht (416)
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where {G;} and {H;} are sequences of random matricess an HMP observed through a memoryless invariant channel
When{G,} and{H,} are statistically independent sequencgd7]. Note also that an FSC with a degenerate input sequence of
of i.i.d. random matrices, the Markov procelss,; } is referred 2" = (z, =, ..., z),z € X, is an HMP.

st s wa 5 Th Glber Bt ChameThe GibenElit cran
: _— nel is a special FSC [137], [97], [14], [243], [204]. For this ex-
algorithms for parameter estimation of RCA processes Wear\anleC X, andY are binary. In addition
given by Nicholls and Quinn [245]. Conditions for geometric T '
ergodicity and existence of moments of RCA processes were
provided by Feigin and Tweedie [114]. The important concept
of geometric ergodicity will be defined in (4.28) for finite-stat nd
Markov chains. For more general cases see Meyn and Tweedie pletlei—1, z1) = plet|er-1).

[240]. Conditions for existence of moments of a scalar process ) - )
(Z,} satisfying (4.16), when{(G,, H,)} is a stationary The channel introduces an additive two-state hidden Markov

sequence of random variables, were given by Karlsen [18T]9ise proces$Z; } that is statistically independent of the input
A sufficient condition for existence of a unique stationaritpr0cesSt-X:}. For eacht, Y = X, & Z, where® denotes
solution {Z,} of (4.16), when{(G,, H,)} is a stationary modulo-two addition. The two states of the channel represent
ergodic sequence of random matrices, was given by Brandt [A8f/ @nd high error conditions. The channel is particularly
and by Bougerol and Picard [45]. The condition was shown gyiitable for modeling communications under fading conditions
be necessary in [45]. characterized by irregular patterns of burst errors. Properties
Note that the switching autoregressive process (4.13) difféts the Gilbert—Elliott channel depend on its memory length
from the HMP with autoregressive observation conditional deff@racterized by the parameter= 1 — (a12 + a21) which

sities of the example in Section IV-B1. In that example, obsef@tisfies|v| < 1 [243]. Whenv = 0, the Markov regime

vations are conditionally independent given the state sequentég} Pecomes an i.i.d. regime and the channel is memoryless.
henv = 1, the Markov chain is reducible and the state of

Applications of switching autoregressive processes of the forh ' _ AR o
(4.10) in econometrics were studied by Hamilton [156]. See a@“be channel is determined by its |n|t|_al distribution. Th|§ is a
Krolzig [202] and the references therein. First-order Switchit%egenerate channel whose underlying state can be mferred
autoregressive processes of the form (4.10) were used in adtgm the observed sequen¢; }. Whenv = —1, the chain
matic speech recognition applications by Wellekens [312] afl Periodic and the states constantly alternate. Additional
in speech enhancement applications by Ephraim [103]. properties of this channel are given in Section XIII.

p(yt|cta Ct—1, $t) = p(yt|cta $t)

6) Dynamical SystemsHMPs have dynamical system
representations in the sense of control theory. A dynamical
system representation for discrete-time point processes was first

that for eacht, X, takes values in an input spadg Y; takes given by Segall [289]. These processes are briefly described in
values in an output spack, and C; takes values in a state Section IV-B7. A dynamlcal system represen_tatlon of an HMP
spaceC. The channel is called finite-state channe{FSC) if Was developed by Hamilton [156, Ch. 22]. Elliott, Aggoun, and
the following conditions are met [133, Sec. 4.6]Ci)s finite. Moore [99] applied this representation to a range of general

ii) The state sequencéC;} is a Markov chain given{X,}, .I\I/IPs. In this examplg, we demonstrate the approach. for a
and the distribution of’, depends or{ X,} only throughX,. finite-alphabet HMP with}/ states andL letters. We will

iii) The observationgY;} are conditionally independent givenre"'s't this _representatlon in Section IX which is dedicated _to
{(X,, C,)}, and the distribution oF; depends of{(X;, C;)} the dynamical system approach to HMPs. Our presentation

only through (X;, C;, C,—1). An FSC is characterized by follows [99, Sec.2.2]. _
the time-invariant transition density(y:. c|z:, c;—1) and by Let.em denot_e a umt vector r_epresentlng;hm state of the
the initial stateco. The conditionaln-dimensional transition HMP inanM-dimensional Euclidean spaBe"’. Themth com-

density of the channel is given by ponent ofe,, is one while all other components are zero. The
state space of the HMP is given By, ..., ep}. Similarly,
p(y"|z", co) = Z p(y™, c*|x™, co) (4.17) let f; denote a unit vector iR L representing théh letter from
o the alphabet of the HMP. The observation space of the HMP
is given by{fl, N fL} Let A5 = P(St+1 = 6j|St = Ci)
denote the state transition probability and tet= {a;,}. Let
n ontn bji = P(Yiq1 = fi|S¢ = e;) denote the state-to-observa-
p(y", |z, co) = H p(ye, cilci-1, @t)- (4.18)  tion transition probability and leB = {b;;}. The unit delay
=1 between the state and output variables indicates a noninstanta-
Equation (4.18) is an example of a Markov channel [186], [150}eous response of the systemdp Let 7, = &(S}) denote
FSCs play an important role in information theory, see [133he smallest-field generated by the random variablgls Let
[205]. Properties and universal decoding of FSCs will be dig; = o(S§, Y*) denote the smallest-field generated by the
cussed in Section XIII. It is easy to check tha{{fX;, S;)} is random variable$S{, Y*}. Note that£'{S;,1|F:} = A’S; and
an HMP with state spac®, then{Y;, (C;, S;)}isanHMP with  E{Y,,,|G;} = B’S;. DefineV,y; = Si41 — A’S; and note that
an augmented state spate S. A special case of this example E{V;,1|F:} = 0. Similarly, defineW,,; = Y;,; — B'S; and

4) Communication Channels Driven by HMPE&onsider
a communication channel with inpytX;, Xs, ...}, output
{Y1,Y>, ...}, and a state sequend&’y, Cy, ...}. Assume

where

n
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note thatE{W, |G} = 0. The HMP can now be written as auntil the first event, and let,,, m > 2, denote the time
dynamical system that has the same probability law. This systeetween eventrn — 1) and eventn. It follows that
is given by
P(an S Y, Srn :j|Srn—l = iv yrn—l’ 87071_2)
Sip1 =A'Sp + Vi =P, <y, S = j[Sm—1 =14). (4.21)
/

Yoo =BSe+ War, £=01..... (419 Note that there is a one-to-one correspondence between
{Ym, m > 1} and{N(t), t > 0}. Also, {S,,} is a discrete-
time Markov chain, andY;,} is a sequence of conditionally
independent random variables givg$,, }. The distribution of
Y., depends o S,,} only throughS,,—; and.S,,. This sug-

7) Markov-Modulated Poisson Processes (MMPPEpn- gests that the Markov-modulated Poisson process may also be
sider a Poisson process whose rate is controlled by a nonobseiewed as an HMP with Markov chaifi5,,,} and observations
able continuous-time finite-state homogeneous Markov chaift,,,}. The density of this HMP is given by (4.1) and (4.9).
Such process is called Markov-modulated Poisson processThe formulations of the Markov-modulated Poisson process
Markov-modulated Poisson processes have many applicatiassa Markov renewal process and as an HMP are similar but
in medicine [295, Ch. 7], computer networks [158], [159], anthere is a subtle conceptual difference. For a Markov renewal
gueueing theory [117]. A survey of this class of processes carocess, the discrete-time Markov chain and the observations
be found in Fischer and Meier-Hellstern [117]. Some propertiesolve sequentially in time, i.eSq is first chosen according to
of Markov-modulated Poisson processes and their relationtte initial distributions, thenS; andY; are chosen according
HMPs are discussed in this subsection. Our presentation follotwg4.21), and so on. For an HMP, the entire Markov chain first
Rydén [273]. Additional results will be given in Sections IV-D gvolves and only then the observations follow [273].

The martingale difference proces4é3} and{;} may be sta-
tistically dependent as in [289]. They are statistically mdepe
dent for the HMP defined in Section IV-A.

VI-A-VI-C, and X. Let Fi;(y) = P(Yn < U, S = j|Sm_1 = 4) andF(y) =
Let{S(¢), t > 0} be the continuous-time Markov chain with{¥;;(y)}. Thetransition density matrixvhich corresponds to
state spacé = {1, 2, ..., M}. Let F(y) is given by [130], [117]
. . OF
o) = P(S(r 1) = jiS() =0), 120 f o) = 5 —eplG-appn. @22)

denote the transition probability from stéte statej in ¢t sec- The transition matrix of( S, } is given by A = F(x0). Inte-
onds. Assume that for arzy) pair j of stateSpEJ) > 0 for some grating (4.22) with respect tp over[0, ~) gives

t > 0. This implies tha@az,t > 0 forall £ > 0[154, p. 260]. _ _

A Markov chain with thisj property is calletireducible Let A=(A-G)7A. (4.23)
P = {pgi)} and assume that the entriesi@f are continuous The likelihood function of an observation sequentds given
functions oft. This assumption is equivalentfy — I ast | 0 by

wherel denotes the identity matrix [154, p. 257]. The transi- "

tion probabilitypgi) is approximately linear ir for sufficiently (" ¢) = n( H Flus ¢ (4.24)
smallt. There exist constantgy;; }, ¢, j € S, such that ey

wherer(¢) is a row vector of{7;(¢)} and1 denotes a column

) ~ 1+ git, L= vector of M 1's. Conditions for stationarity and ergodicity
by = L, (4.20)
Gijts tF£ of Markov modulated Poisson processes will be given in
Section IV-C2.

whereg;; > Ofori # j,andg,; < O0Oand> .g; = 0 When the Markov-modulated Poisson process has only two
for all i. The matrixG = {g,;} is called thegeneratorof the states it is called awitched Poisson proces$ the rate of one
chain [154, p. 256]. The matrik; satisfies Kolmogorov’s for- of the states is zero, the process is referred to astarrupted
ward and backward equationsP; /Jt = P,G anddP, /3t = Poisson processThese processes were studied in [130], [233],
G F,, respectively, wheré, = I. These equations often have aand [273], where more explicit results could be derived. In par-
unique solution given by, = exp (tG) [154, p. 259]. Next, let ticular, Freed and Shepp [130] considered interrupted Poisson
{N(t), t > 0} denote the Markov-modulated Poisson processrocesses, and derived a simple formula for the asymptotic like-
Let A; denote the rate of the process when the chain is in stéiteood ratio for estimating the state at any instant from a stream
¢. Assume that at least ong¢ > 0. Let A denote a diagonal ma- of past events. Bounds on the likelihood ratio were given for a
trix of rates{\; }. Let$ = (G, A) denote the parameter of theswitched Poisson process.
Markov-modulated Poisson process satisfying the above condiRelated to Markov-modulated Poisson processesdise
tions. crete-time point processed\ discrete-time point process is
The proces{N(t)} may be regarded asMarkov renewal a binary procesgY;} with rate {\;} determined by another
process To see this, letS,, denote the state of the contin-random process, such as a Markov chain, and possibly by past
uous-time chain at the time of theth Poisson event. IntroduceobservationsY; = 1 signifies the occurrence of an event at
an initial stateS, with distribution =. DefineY; as the time timet, e.g., emission of an electron, whitg¢ = 0 indicates that
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no such occurrence has taken place at that time. A recursion folrhe entropy rate of a sequence of finite-alphabet stationary

estimating\; was developed by Segall [289]. decomposable composite sources with statistically independent

8) Composite SourcesA composite source comprises subsources and sIowI_y vgrying switch processes was studied in
i 19, Theorem 12]. Itis given by a weighted sum of the entropy

collection of discrete-time stationary ergodic subsources an ra"iles of the individual subsources where the weights are the
random switch. At any given time, a single observation or mul- 9

tiple observations are drawn from a subsource selected by Sé{mptotlc probabilities of the switch process. Limit theorems

switch. Composite sources become HMPs when the switch % the d|s_tort|on—rat9 function of a sequence of composite
urces with vanishingly slow switch processes were also

controlled by a first-order discrete-time homogeneous Mark&y

chain, the number of subsources is finite, and the subsourgggelo‘)eqt;ln [119(11 Rgtte—rldlstortlon fugcﬂoc?s for (.:Ol’ndeSIte
are statistically independent i.i.d. random processes. Compo§| (%irceslm(/jl anf 'tr'] SWt'% process atlrt]h un er&/arylng degre(:jes
sources with i.i.d. switch processes and finite number gt Knowledge ot the switch process at the encoder and decoder

statistically independent i.i.d. subsources were first introduc ﬁre detegr;n;ed by Bergeé)r [31]. A CO(;rZ(.:t \éelrglonhof [Bﬁ’
by Berger [31]. When the switch position is randomly chose eodrgm . f] was glvin y Wyner sn id v ][ ] where the
at time minus infinity, and the switch remains in that positio te-distortion function of sources with side information at the

forever, a stationary ergodic process from one of the subsour ggoder was developed.

is observed. The identity or the index of the subsource is9) The Telegraph SignalThe telegraph signal is an example
not known. The frozen switch position composite source isg a continuous-time binary Markov process. The state space
mixture process. The ergodic decomposition theorem shows—= {+1, —1} and the generator of the chain is given by
that discrete-time standard alphabet stationary nonergogi¢c = —g,; = ¢ for i, j = 1, 2 [315]. When this signal is
processes are composite sources with a switch soldered toiiserved in white noise, it becomes a continuous-time HMP. Fi-
randomly chosen initial position [151, Ch. 7.4]. The speciglite-dimensional causal MMSE estimation of &frstate con-
case of discrete-alphabet sources was developed by Gray fiidous-time Markov chain observed in white noise was first de-

Davisson [147]. veloped by Wonham [315]. Noncausal estimation of the states
Composite sources have been found useful in applicatiopgs studied by Yao [323].

such as coding and enhancement of speech signals [93], [9],

[104]. A composite source with about 50 stationary subsources, Stationarity and Ergodicity

and a switch that may change position every 10-400 ms, can ) ) )
adequately represent the modes of speech signals and theptatistical properties of an HMP such as stationarity, ergod-
durations [9], [10]. Most of the information in a speech waveCity, mixing, and asymptotic stationarity, are inherited from
form lies in the sequence of modes. The set of modes is &§nilar properties of the underlying Markov chain. In the first
sentially independent of the speaker while the switch proceddd second parts of this subsection, we review these concepts
is characteristic of the speaker [119]. A collection of univers#r Markov chains and HMPs, respectively. Our presentation
modes may therefore be used to describe all speech sigtaisection IV-C1 follows Grimmett and Stirzaker [154] and
as it is done in vector quantization [135]. Composite sourcBdlingsley [38]. In the third part, we discuss exponential forget-
with a switch soldered to its randomly chosen initial positioAng and geometric ergodicity in HMPs. In the fourth part, we
are natural models in universal source coding [75], [147]. THovide conditions for stationarity and ergodicity of a switching
composite source represents a family of possible sources dgtoregressive process of the form (4.14). We conclude this sec-
which a coder is designed. The coder is universal in the seriié® with a local limit theorem for HMPs.

that it must perform well for all subsources while the identity 1) The Markov Chain:Consider a discrete-time homoge-

of the subsource selected by nature is not known. Existence < markov chaiiS,, t = 1, 2, ...} with finite or countably
of universal codes for composite sources was proved in [7§]e o oo space Let r — f’(Sl — i) denote the proba-

[118], [121]. bility that the chain starts from some stdte S. Let« denote

Ar‘] fs_,u_mmary t?f prfo petr)ties of tWO'Sid?d cc;mposite SourC%Srow vector with entrie$; }. This vector represents the initial
with finite number of subsources was given by Fontana [119:stribution of the chain. Lei;; = P(Ses = j|S: = i) de-

A composite source Is §a|d fo iecomposablef the. SWItCh 1 te the transition probability for statgsj € S.LetA = {a;;}
process is statistically independent of the collection of sug- . . ) ) .

. : enote the transition matrix of the chain. Izréf’ = P(S, =1)
sources, i.e., the switch only chooses a subsource but dges . . & .

. . aenote the probability of the chain to be in statec & at

not otherwise affect its output. Any decomposable comp05|te _ 1 Letx(™ denot ¢ ith entrids ™
source has a regular conditional probabili®(G|s) where ime t(n)_ n. Letw gno €a TOW vector with entrigs:; }
G is a set in theo-field of the observation sequence spack®! 7:; = P(Sitn = J‘| Sy = i) denote then-step trar.15|t|9n
and s denotes a switch sequence. The existencg(@Lg) is prol)_ablht%/ EOI’ States, J € S. Let A(n) denote a matrix with
guaranteed for any alphabet of the subsources. If the subsoursasies{p;;’}. We have thatr") = 7 and A = A. The
are jointly stationary ther?(G|s) is stationary in the sense Chapman-Kolmogorov theorem establishes thdp = A",
that P(G|s) = P(TG|Ts) whereT denotes the shift trans-thenth power ofA. Furthermores "+ = 7 A" [154, p. 215].
formation on any two-sided infinite product space. Stationary, To establish conditions for stationarity and ergodicity of
mixing, and ergodic properties of a composite source akéarkov chains we need to characterize states and subsets of
inherited from the switch process much like what we shall sstates within the chain. A statec S is said to berecurrent

in Section 1V-C for HMPs. or persistentif P(S;1; = i forsomet > 1|X; = ¢) = 1.
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If this probability is smaller than one then the state is calleglther positive recurrent or null recurrent. Also, all states are ei-
transient Intuitively, the probability that a recurrent stateill  ther aperiodic or periodic with the same period [154, Lemma
be revisited infinitely many times is one. The probability that 6.3.2]. Whens is finite, the chain cannot stay ify forever, and
transient staté will be revisited infinitely many times is zero. there exists at least one recurrent state. Furthermore, all recur-
More formally, define the evenk,, = {S,, = ¢}. The event rent states are positive recurrent [154, Lemma 6.3.5]. Thus, all
that infinitely many of thel;, occur, written asF,, infinitely states of an irreducible finite-state Markov chain are positive re-
oftenor { F,, i.0.}, satisfies current.
A homogeneous Markov chain is a stationary process if and
. _ oo only if 70 = 7@ for all n. Sincer™+1) = 7 A" the
{fhio }= hfff;ip Fo=( U Fu- process is stationary if and only if the initial distributian=
nom=n 71 satisfiesr = 7 A. This equation may not have a solution,

nd when it has one, it may not be unique. Any distribution

It is shown in Billingsley [38, Theorem 8.2] that perS|stence - _ . L
a statei is equivalent taP(S, = i 1.0.) = 1 and to3" p cfLat satisfiestr = 7 A is called astationary distribution The

- . : nPii = following summarizes conditions for existence and uniqueness
Transience is equivalent tB(S; = ¢i.0.) = 0 and to . e
; (n) _ q (5 ito) of a stationary distribution [162, Corollary 7, p. 68]. LAt
Pig denote the set of positive recurrent states of a Markov chain. If

Suppose that achain startsin s’rﬂlleetf(") denote the prob- Hp
ability that the first visit of the chain to statﬁoccurs aftem
steps. This probability is given by

is empty, the chain has no stationary distributiongH [

is a nonempty irreducible set, the chain has a unique stationary

distributionw given byr; = 1/7; for¢ € Hp and byr; = 0

() . . . . otherwise. IfH > is nonempty but not irreducible, the chain has

fii? =P(S2# Js ooy Sn # Js Sng1 = JIS1 =4). (4.25)  an infinite number of distinct stationary distributions. For ex-
ample, suppose th&t = Hp = C; U Ca. Any convex combi-

Let 7; denote the time of the first visit to staigi.e.,7; = nation of the unique stationary distributions@f and ofC, is
min{t > 1: S, = 4}. If the visit never occurs theli, = oc. The  a stationary distribution fo§. For a finite-state Markov chain,
probability P(1; = oo | S; = i) > 0ifand only if< is transient, 7 is a nonempty set, and the chain has a unique stationary
and in this casE{T; | S1 = i} = oc. Themean recurrence time distribution if and only if#p is irreducible. If the finite-state
7; of a statei is defined as Markov chain itself is irreducible then it has a unique positive
) 4 is recurrent stationa.ry distribution. . . :
7 =E{T;|S1 =1} = nz_: i ¢ Consider next the asymptotic behawoyxg);f [154, Theorem

o . 6.4.17]. If the Markov chain is irreducible and aperiodic, then
if 4 is transient. . (n) . . o .

(4.26) lim,,— o0 P = 1/; for all < andy. If the chain is transient or

_ o . null recurrentlpgj’?) — 0 for all ¢ andj sincer; = oc. If the
Note that the mean recurrence time may be infinite evénsif Mmarkov chain is irreducible, aperiodic, and positive recurrent,

recurrent. A recurrent stafes said to bepositive recurrentor  convergence is to the unique stationary distribution, safpr
nonnull recurrentif 7; < co. Otherwise, the state is calledll )| states; andj in S

recurrent

Theperiodof a statei is defined ag(i) = ged{n: p\” > 0}, Jim ) =y =1/7;. (4.27)
or as the greatest common divisor of the epochs at which retu
to ¢ are possible. A statec S is calledperiodicif ¢(¢) > 1 and
aperiodicif ¢(i) = 1. A state is callecergodicif it is positive
recurrent and aperiodic.

A setC of states is calle@dreducibleif for every pair of states
{andjin C,pg?) > 0 for somen. Thus,C is irreducible if there whereD > 0 and0 < p < 1, and the chain is an ergodic
is a positive probability of ever visiting a state in the set havingrocess, see Billingsley [38, Theorem 8.9 and Lemma 2, p. 315].
started from another state in the set. A &aif states is called An ergodic Markov chain satisfying (4.28) is callggomet-
closedif a;; = 0forall< € C andj ¢ C. Thus, the probability rically ergodic[114]. This concept usually applies to a much
of leaving the set is zero. A state is callgsorbingif the chain more general situation of a Markov chain with a continuous state
never leaves that state. The decomposition theorem for Markgpace, see Meyn and Tweedie [240]. Note that the aperiodic con-
chains establishes that the state space of a Markov chain caulitien for ergodicity of the chain is sufficient but not necessary.
uniquely partitioned a$ = 7o U C; UGy U --- WhereZg is  Forexample, consider a Markov chain with = 0 anda;; = 1,
the set of transient states, afid,,} are irreducible closed sets¢, j = 1, 2. This periodic chain has a unique stationary distri-
of recurrent states [154, Theorem 6.3.4]sif € C,, for some bution, (4.27) does not hold for this chain, but the chain is an
m, then the chain never leav€s, and that set may be takenergodic process.
to be the whole state space. On the other hangl, i 7y, the The transition matrix4 of a Markov chain is callegrimitive
chain will either stay inZ, forever or move eventually to oneif there exists some posmve integéisuch that thel-step tran-
of the {C,,} where it subsequently resides. Thus, if the Markosition matrix A4 = {pZ } has positive entries, i.e4¢ > 0.
chain is irreducible, then all states are either transient or rectihe smallest such mtegdrls called theindex of primitivityof
rent [38, Theorem 8.3]. In an irreducible chain, all states aré The transition matrix of an irreducible aperiodic finite-state

00,

S L. - .
[‘—nor a finite-stateirreducible aperiodic Markov chain, (4.27)
holds, convergence is at an exponential rate

p) - | < Do (4.28)
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Markov chain is primitive [38, Lemma 2, p. 125]. A finite-stateremaining states are transient. The discrete-time Markov chain
chain with primitive transition matrix has a unique positive staias therefore a unique stationary distribution which is positive
tionary distribution and the chain is geometrically ergodic [38or all states inH and zero otherwise. The stationary distribu-
Theorem 8.9]. A corollary of these results is that the chain hasian of A is given by [117, eq. (6)]

unique positive stationary distribution and is geometrically er- 1
godic when4 > 0. =7 wA. (4.29)
An M-state Markov chain wittd > 0 is «-mixing with > wik
=1

aln) = Mp™ for0 < p < 1. Moreover, any deterministic func-

tion of the chain isx-mixing with the same coefficients [38, p.Stationarity and ergodicity of the Markov modulated Poisson

363]. Since mixing implies ergodicity [38, p. 325], a stationarprocess are inherited from the Markov chain.

_finite-;tate Markov_ chain with positive transition probabilities 3) Exponential Forgetting and Geometric Ergodicityve

is _stat|0nary ergodic as we have seen before under weaker G%e seen in (4.4) that the likelihood functigy™) of an

ditions. HMP is determined by the state predictive densities and the
2) The HMP: HMPs are Markov chains observed througl®bservation conditional densities. Recall thats the 1 x M

channels. Statistical properties of sources observed thro§¢tor representing the initial distribution of the Markov chain.

channels were developed by Adler [1] for two-sided processkegt £&: denote the state predictive density vector at timEor

and by Gray [152] for one-sided processes. In particular, wheér= 1, ..., M, the jth component of this vector is given by
a stationary source is connected to a stationary channel tifefy) = =; for t = 1 and by&.(j) = P(S; = jly*~*) for
the source—channel hookup is stationary [152, Lemma 9.3.4F 2, ..., n. Letn, denote a column vector whogth element

When a stationary ergodic source is connected to a stationén@iven byn:(j) = b(y:|S: = j). Recall thatd; denotes the
output weakly mixing channel then the source—channel hookBprameter ofy.(j) and¢é = {6;}. Let B, denote a diagonal
is stationary and ergodic [152, Lemma 9.4.3]. The chann®@trix whose(j, j) element isn.(j). The state predictive
associated with an HMP is a memoryiess invariant Channgﬁnsity vector satisfies the f0||OWing recursion which will be
As such, it is stationary and output strongly mixing. Hencéliscussed in more details in Section V-A:

an HMP is stationary and ergodic if the Markov chain is & =

stationary, irreducible, and aperiodic. A similar result was A'Bi_16,

directly proved by Leroux [214, Lemma 1] without resorting to & = o t=2,...,n (4.30)
t—16t—

the information-theoretic model of the process.
When a stationary mixing source is observed through Tde log-likelihood function is given by
stationary output strongly mixing channel, the source—channel n
hookup is stationary mixing [1]. Hence, an HMP is stationary logp(y™; ¢) = > log(ni&e)- (4.31)
mixing if the Markov chain is stationary and its transition t=1
probabilities are positive. Mixing properties of the two-sided Assume the usual parametrization= (7, A, 8) € ® for the
HMP Y, = S,WW, in Section IV-B1 were demonstrated byHMP in (4.30) and (4.31). Let® € ® denote the true value gf
Francg and Roussignol [126]. used to produce the observation sequeyicéAssume tha#® is
An additional result showing that when an AMS source {80t known. For identification 0§, log p(y"; ) is expected to
observed through a stationary channel then the source-charik¢ different values for different pairs @i, 6). The effects of
hookup is AMS was developed by Fontana, Gray, and Kieff&©nlogp(y™; ¢) is expected to be rapidly forgotten so that an
[120, Theorem 4], see also [152, Lemma 9.3.2]. Finite-sta@goitrary initial distribution can be used in the recursion (4.30)
Markov chains and deterministic functions of such chains aéth no lasting effect. Conditions for identifiability of an HMP

AMS, see Kieffer and Rahe [186, Theorem 9]. Hence, HMPY€ given in Section VI-A. _
are AMS. Le Gland and Mevel [210, Theorem 2.2] proved exponential

Conditions for stationarity and ergodicity of a Markov_modforgetting of the initial distribution for the prediction recursion

0: o
ulated Poisson process, defined in Section IV-B7, were given() 30) Wherd) IS npt known. They referred to this S't“a“o.”. as
Rydén [273, Lemma 1]. Consider a process with an irreduci at of amisspecifieddMP. They assumed that the transition

continuous-time Markov chain, a genera@y and a diagonal matrix A and its true valuei® are primitive, but no restrictions
matrix of ratesA with at least c,Jne\< > 0. Let ¢ = (G, A) were imposed either ofior on its true valug®. To emphasize
denote the parameter of the process. A veatds a stationary € dependence @fon the observation sequer?gf,g and on the
distribution of the chain itw; > 0, 3", w; = 1, andew = wP, initial d|s.tr!put|o_n§,.n = ¢, we rewrite it a<(y?,, ¢). Let( be
for all ¢ > 0. This equation is satisfied for aflif and only if &nother initial distribution. It was shown that

wG = [0, ..., 0] [154, p. 261]. If atstationary distribution  1;) sup 1 10gH£(Y’:’ () —¢ (aniv 5)“

exists, then itis unique ardn, .., pij) =w,foralli, j[154, n—oo 7

p. 261]. Recall thatt = (A — G)flA is the transition matrix < 1 log(1 — D) Py-as. (4.32)
of the discrete-time Markov chain embedded at event epochs. d

Let H = {i € S: \; > 0} denote the subset of states withwhere|| - || denotes thd.! norm,d denotes the index of prim-
corresponding positive Poisson rate. It was shown that for edtitity of A, andD > 0 is a constant depending on the obser-
parametet), H is the only set of recurrent aperiodic states. Theation conditional densities of the HMP. An implication of this
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property is that the log-likelihood function is Lipschitz contin- 4) Switching Autoregressive Processe3Sonditions for sta-
uous with respect to some parameter of the model, uniformlytionarity and ergodicity of a switching autoregressive process
time [210]. of the form (4.14) were given by Francg and Roussignol [127,
For a misspecified HMP, the predictive density vector s@heorem 1]. Recall thatan HMP is a special case of this process.
quence{¢,;} is not a Markov chain undePy, but the triplet Let ¢° denote the true parameter of the switching autoregres-
(state, observation, wrong predictive density) is a Markov chaisive process. It was assumed that i) the Markov cHeip}
Let{Z, = (S, i, &), t > 1} denote that extended Markovis irreducible and aperiodic, il {||2(V;, j; #°)||} < oo for
chain. Le Gland and Mevel [210, Theorem 3.5, Corollary 3.6l ; = 1, ..., M where|| - || denotes the usual Euclidean
proved geometric ergodicity of the extended Markov cHé@p}  norm, and iii) there exist constants, . ..« such that for all
and showed existence of a unique invariant distribution undee= 1, ..., M and all(z, y) € R" x R"
the assumption that the true and unknown transition matrices
are primitive. In particular, this theorem implies an ergodic the- g (2, 33 ¢°) — g (v, 3: ¢°) || < ajllz =l (4.33)

orem for the relative entropy density of the HMP [210]. Th'%ndthe matrix) = Do (A%Y, whereD,, = diag(at, ..., an)

limit theorem is key to proving consistency of the ML param- . 2 .
ytop g y P rBiAO is the true transition matrix ofS;}, has spectral ra-

eter estimator. These subjects are discussed in Sections I\Z_ius smaller thari. Under these conditions, it was shown that
and VI-B, respectively.

the Markov chain{Z;, S;} on R" x & admits a unique sta-

Exponential forgetting, geometric ergodicity, and eXiStenﬁ%nary probability». The second marginal ef is equal to the

of a unique invariant distribution for an extended Markov Cha'&ationar robability of 5, }. Moreover, a stationary Markov
defined similarly to{Z,} above, for an HMP with a separable yp y o ' y

com : S chélin{Zt, S: } satisfying (4.14) withv as initial distribution is
pact state space that is not necessarily finite, were prove aperiodic ergodic Harris process [114], [240]
by Douc and Matias [90, Proposition 1, Corollaries 1, 2]. ' '

A recursion for the gradient of the predictive density vector 5) A Local Limit Theorem:A local limit theorem for
with respect to a scalar parameter of the HMP can be obtaireefo-mean stationary ergodic general HMPs with finite
from (4.30). Exponential forgetting of the initial condition forsecond-order moment that satisfy some mild conditions was
this recursion were established by Le Gland and Mevel [21@roven by Maxwell and Woodroofe [231]. L& denote the
Theorem 4.6]. This result implies that the score function of trdistribution of the HMP. For the partial sum of HMP observa-
HMP is Lipschitz continuous with respect to some parameterns,>,, = Y1 + - -- +Y,,, it was shown that
the model, uniformly in time [210]. Le{G;} denote the gra- _
dient sequence. Geometric ergodicity of the extended Markov Jim VinP(a <3, £ ) =B - a) (4.34)

chain
for some positive constartand—oo < o < § < oo, and

{Zt = (St7 Yrtv £t7 Gt)7 t 2 1} n

. 1

, S lim = 3 VEP(Sx € D, a <X, < ) = cP(D)(8 — a).
and existence of a unique invariant distribution, were proved by—> 7 —

Le Gland and Mevel [210, Theorem 5.4, Corollary 5.5] under (4.35)
some integrability assumptions. The implications of this result

are that a central limit theorem for the score function and a law

of large numbers for the Hessian matrix follow [210]. ThesP. Entropy Ergodic Theorems

limit theorems are key in proving asymptotic normality of the |n this subsection, we review ergodic theorems for the
ML parameter estimator. This subject will be discussed in Segample entropy and relative entropy densities of an HMP.
tion VI-B. The fundamental ergodic theorem for the sample entropy of a
Exponential forgetting and geometric ergodicity for similarlytationary ergodic finite-alphabet process, not necessarily an
defined extended Markov chains, involving the score functiggvip, is given by the Shannon-McMillan—Breiman theorem
and Hessian of a misspecified HMP with a separable compgg8, Theorem 15.7.1]. LefY;} denote such a process and let
state space that is not necessarily finite, were proved by Dopg denote its distribution. Lei(y") denote the:-dimensional

and Matias [90, Appendix D]. pmf induced byP-. The theorem states that
Another form of exponential forgetting was demonstrated by
. . Lo . . 1 _
Douc, Moulines, and Rydén [91] for switching autoregressive lim —= logp(Y™) = H(Py) Py-a.s. (4.36)

processes with a separable compact state space thatis not neces- »—=> 7
sarily finite. Letr denote the order of the autoregressive procegtere
and let¢® € ® be the true parameter. They showed that for any

n > m and¢ € @, the state sequende,, t > m} given an H(Py) = lim 1 Ep, {-logp(Y"™)}

observation sequenag;, ..., is an inhomogeneous Markov nTee n 1

chain under the stationary measufg [91, Lemma 1]. Expo- = lim Ep, {-logp (YaY"7")}

nential forgetting of the initial distribution for this inhomoge- =Ep, {_bgp (YO|Y:010)} < 00 (4.37)

neous Markov chain was shown in [91, Corollary 1]. This prop-
erty is key in proving consistency and asymptotic normality a¢ theentropy rateof {Y;} [152, p. 24]. Another common nota-
the ML parameter estimator gf’. tion for the entropy rate i#/ (V).
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Let{Y;, ¢ > 1} denote a stationary ergodic HMP with distri-theorem for subadditive processes assuming an irreducible
bution Py for some parametet’ ¢ ®. This one-sided processaperiodic Markov chain and observation conditional densities
may be considered part of a two-sided stationary ergodic procg&y,; 6,), 6; € ©} that satisfy
with the index set of all integers. Thedimensional density of
the HMP with respect tg is the densityp(y"; ¢°) given by Ego {
(4.8). For a finite-alphabet HMR, is the counting measure é;
For a general HMPy; is anyo-finite measure. For a finite-al-
phabet HMP we have from (4.36)

sup (log b(Y71; 91))"'} < 00
—0;]I<6

for someé > 0 where|| - || denotes the Euclidean distance and
% = max{z, 0}. Theorems (4.39) and (4.42) hold for agy
in the one-point compactified parameter spéceCompactifi-
(4.38) cation extends the parameter getnto a compact seb.. For

) the usual parametrizatioft,. is obtained from compactification
Leroux [214, Theorem 1] proved (4.38) for a stationary ergodi§_ of the parameter spa¢ The latter is done by attaching to

general HMP. He assumed an irreducible aperiodic Mark‘@/apointdenotedo, and extending(y.; 6, ) to ©, by defining
chain and observation conditional densities that satisfy b(ys; o0) = 0. For example, ib(y,; 6,) is the Poisson density

with meard; then®, = [0, cc]. Aregularity condition assumed
in [214] ensures continuity df(y,; -) over ©.. For any other
arametrizatiorp of the HMP,8;(¢) € ©.for j =1, ..., M.

This extensm.n isin fapt a special case of Barron’s ergodic t S proving (4.42), the assumption quoted after (4.38) was also
orem [23] which we discuss shortly. made

Let Py, ¢ € @, denote a distribution of the HMP and let " (n) ; iy :
p(y™; ¢) denote the induced-dimensional density with respect I WE_E assum(?nt)haﬂ < £, in addition to our earlle_r as-
to 4 as given by (4.8). The parametesand 4° are not nec- Sumption thatP;”™" < ™, then the two measures agquiva-

essarily equivalent. We are now interested in ergodic theoré@ft and

1 _
lim —— logp(Y"; ¢°) = H(Pyp)  Pg-as.

n—oo  n

Ego{|logb(Y1; 0;(¢")]} < o0, forj=1,..., M.

for n=log p(Y™; ¢) when{Y;} is the stationary ergodic HMP ap™ Y. 40
with distribution 4. Baum and Petrie [25, Theorem 3.2] and 0 p(™; ¢ ). (4.43)
Petrie [251, Theorem 2.1] developed the theorem for a finite-al- dP(i") p(Y™; ¢)

phabet HMP. Petrie [251] relaxed the assumption that 5 . . .
made in [25]. Leroux [214, Theorem 2] proved the theorem f(l):ﬁor this case, (4.38) anq (4.39) imply an ergod|c_ theorem for
the relative entropy density of one general HMP with respect to

a general HMP. The ergodic theorem states that
another

. 1 - (n)
lim — logp(Y"™; ¢) = H(Pyo, P, Pyp-as. (4.39 1 ar —
dim o logp(Y™s ¢) = H(Pyo, Fy) w-as. (4.39) lim = log —45) =D(Py||Py)  Pp-as. (4.44)
where .
1 In addition, we may now calD(P||FPy) therelative entropy
H(Py, Py) = lim = Egu{logp(Y™; ¢)} < co. (4.40) rate[152, p. 150].
nTee Similar ergodic theorems for relative entropy densities of sev-

Define eral extensions of standard HMPs were recently proved under
0 suitable conditions. Francq and Roussignol [127] studied sta-

D(Py||P,) = lim 1 o {bg M} tionary ergodic syvitching autoregressive processes with finit_e-

n—oo N p(Y"; ¢) state Markov regime given by (4.14). They proved an ergodic

=H(Py, Pyo)— H(Py, Py) (4.41) theorem similar to (4.39) for the normalized conditional log-

likelihoodn ! log p(Z"™|20; ¢) [127, €q. (11)]. They expressed
and note thaH (P,0, Ps) = —H(P,0). Baum and Petrie [25, the conditional density as a product of random matrices and ap-
Theorem 3.1], Petrie [251, Proposition 2.2, Theorem 2.5], aRfied Furstenberg and Kesten [132] ergodic theorem. The se-

Leroux [214, Lemma 6] proved that guence converges almost surely to the upper Lyapunov exponent
of the sequence of random matrices. They also proved (4.42)
ﬁ(P¢O||P¢) >0 with equality iff ¢ ~ ¢V. (4.42) [127, Theorem 2]. Conditions for a switching autoregressive

process of the form (4.14) to be stationary ergodic were given

This important property provides a criterion for distinguishingn Section IV-C4. For the matrix product form of the likelihood
between the equivalence classesgofind ¢°, and is key in function of a standard HMP see (5.12).
proving consistency of the ML estimator ¢f. For an identi- Krishnamurthy and Rydén [198, Lemma 1] studied stationary
fiable HMP, the equivalence class ¢t comprises all points in ergodic switching autoregressive processes with finite-state
® obtained by permutations of the states of the HMP. A simildiarkov regime described by (4.15) and arrived at a similar
statement holds for the equivalence clasg.of ergodic theorem for the normalized conditional log likelihood.

Leroux showed that theorem (4.39) holds for any choicEhey used Kingman's ergodic theorem following Leroux [214].
of positive initial distribution and H(Py., P,) is the same They also showed in [198, Lemma 4] tha{ P, || P,;) > 0 but
for any such choiceH (P, Py) may possibly be equal to the implications otD(Pye||P;) = 0 are not as explicit as for
—co. He proved the theorem using Kingman'’s [188] ergodithe process studied in [127, Theorem 2].
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Le Gland and Mevel [210] proved an ergodic theorem simvhere D(Py-||Q) is the relative entropy rate defined similarly
ilar to (4.39) for a finite-state general HMP using geometrito (4.41)
ergodicity of an extended Markov chain as described in Sec-
tion IV-C3. Douc and Matias [90] extended this approach to a DP _ oy 1 £ log dPX(V")
general HMP with a separable compact state space that is not (PrllQ) = niee Ty 1198 dQ™)
necessarily finite. They developed an ergodic theorem similar to
(4.39) for an HMP with arbitrary initial state density not neces- = lim FEp, {log f(Y,[Y" D)}. (4.46)
sarily a stationary density [90, Proposition 4]. They also proved e
(4.42) [90, Theorem 1]. It was noted in [90] that Leroux’s apFheorem (4.38) for a general HMP could be obtained from
proach does not immediately apply to HMPs with a continuoy8.45) if Py- = Pyo andQ™ = u». If
state space.
Douc, Moulines, and Rydén [91] studied general forms of Ego{minlogb(Y1; 6;)} > —oc
switching autoregressive processes with a separable compact ’
state space that is not necessarily finite. They proved an ergogien D,, > —oo and the theorem holds. This condition results
theorem similar to (4.39) for almost sure ahticonvergence of from application of Jensen’s inequality to (4.4).
the normalized conditional log likelihood of the observation se- An ergodic theorem fotog f(Y™) when Py is AMS and
quence [91, Proposition 1]. They also proved (4.42) [91, Prop@- is the same Markov measure as above was proved by
sition 3]. They relied on uniform exponential forgetting of th&Barron [23, Theorem 3]. See also Gray [152, Theorem 8.4.1].
initial distribution of the inhomogeneous Markov chain repre-et Py denote a stationary distribution that asymptotically
senting the states given the observation sequence. It was nateshinatesP-. This may be the stationary mean of the AMS
in [91] that application of the approach used in [90] would havsrocess. Letf(yn) = dﬁg’?/dQ(n)_ It was shown that if
required stronger assumptions. n~llog f(Y") — h Py-a.e. for some shift-invariant mea-
Rydén [273, Lemmas 5, 8] proved an ergodic theorem siradrable function then alson!log f(Y") — h Py-a.e.
ilar to (4.39) and the conclusion (4.42) for a Markov-moduErgodic theorems fdiog f(Y™) when Py- is stationary but not
lated Poisson process. The main difference between the HM#Pgodic were proved by Barron [23, Theorem 2] and Gray [152,
in Leroux [214] and Rydén [273] is that for the former cas€orollary 8.3.1].
(4.2) holds while in the latter (4.9) holds as explained in Sec- Without the Markov property for the dominating measte
tion IV-B7. In addition, compactification of the parameter set isonvergence dbg f(Y ") is not guaranteed [23]. WhdA,- and
not possible since(y™; ¢) does not always vanish at infinity. ¢ are two stationary ergodic general HMP distributions, (4.44)
We turn now to the general ergodic theorem for relative eRrovides a version of Barron's theorem with an HMP domi-
tropy density developed by Barron [23]. See also [152, Theordtating measure. For finite-alphabet processes, an HMP domi-
8.2.1]. Consider a standard alphabet random profEsst > hating measure may replace the Markov measure in (4.45) pro-
1} described by a stationary ergodic distributi on a se- Vided that its parametef € ®;. This result was first shown
quence measurable Borel space [152, p. 12].@dte as-fi- by Finesso [116, Theorem 2.3.3] and then by Kehagias [183,
nite Markov measure of order > 0 that has stationary transi-Lemma 1]. In particular, Finesso [116, Sec. 2.4] proved that if
tion probabilities and is defined on the same measurable spa#eder?y the procesgY; } is stationary ergodic, an@ = F;
Let Pé"’) and Q™ denote then-dimensional distributions in- i an HMP distribution with correspondingdimensional pmf

duced byPy andQ, respectively. Assume th&a” < Q) for p(y"; ¢), then
all n. Let f(Y™) = dPY” /dQ™ denote the Radon-Nikodym | . _
derivative or density oP{"” with respect taQ™. Let Jim o logp(Y"; ¢) = H(Py, Py)  Py-as. (447)

1y " 1 where H(Py-, P) is defined similarly to (4.40) and conver-
JORY) = JO)/ ), forn >1 gence ismiformlq;/in(j) € ®4. Thistheoremis particularly useful
and when one wishes to model a stationary ergodic pro¢&ss

Y% = f(v1). by an HMP (F,) and performs ML estimation of its param-
eter by maximizingr ! log p(y™; ¢) overg € ®;. In addition,
—H(Py, Py) = H(Py) + D(Py||Py) is the asymptotically
minimum average length of a source code designed for the sta-
tionary ergodic sourc&y- assuming that this source is the HMP
Dy, = Epn {log FYLY"H} > -0 P, [68, Theorem 5.4.3].

Assume that

for somen > m. This condition is automatically satisfied if E- Finite-Alphabet HMPs

Q) is a finite measure or a probability measure. In the latter In this subsection, we summarize results for finite-alphabet

case,D,, > 0. The theorem states that HMPs and deterministic functions of finite-state Markov chains.
We first show that the two classes of processes are closely re-

] 1 A - lated. Then we focus on an important subclass of finite-alphabet

lim —log f(Y") = D(Fy||Q) Py-ae.andink® (4.45) HMmPs known as unifilar sources. This class is amenable to the

n—oo
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method of types and hence is particularly attractive. We cois-chosen. Nexty- is generated according ffy»|s1), and so
clude with some bounds on the entropy rate and rate-distortion. Then-dimensional pmf of the source is given by
function of finite-alphabet HMPs.

Consider an HMP with/ states and. letters. Define the p("s0) = [ [ p(ulsi-). (4.49)
Cartesian produa@ = Y x S of observation and state spaces, t=1
and a deterministic functiog: @ — Y by ¢(y, s) = y. By constructions™ is uniquely determined by" and the ini-
Rewriting (4.1) redundantly, we have tial states, as we have seen for unifilar sources. The observa-
tion %, however, is a not a deterministic function gfunless
n g(-, s;—1) is a one-to-one function given_; . We shall not im-
p(y", s") =ply, s1) H p(ye, selye1, se—1).  (4.48) pose this restriction op. We shall refer to this source as the
t=2 unifilar source. Other authors have used the more explicit name
of unifilar finite-state source

Hence {(Y;, S;),t>1} is a Markov chain withl, x M states, Unifilar sources are mathematically tractable since they are
andY; = g(¥;,S,). Thus, any finite-alphabet HMP is a deteramenable to thenethod of typesnuch like i.i.d. sources and
ministic function of a Markov chain with augmented state spadéarkov chains. The method of types for i.i.d. sources was de-
[25]. Conversely, ifY, = h(S,) for some functiork and Markov v_eloped by Csiszar and_ Korner [70], [73]. Consider an i.i.d. fi-
chain{S,}, then{Y;} is an HMP withP(Y; = 4|5, = s) = 1 nite-alphabet source with letters and pmp(-). The method

if h(s) =y and zero otherwise [161]. Thus, any deterministi@ tYP€s characterizes the sample space-tEngth source se-
function of finite-state Markov chain is a trivial HMP. quences by an exhaustive set of empirical distributions called

B ) types The set of all-length source sequences having the same
Lgth = h(S) fors_ome many-to-one functignand Markov ype forms aype classThe set of all type classes forms a par-
chain{S,}. The functionh may collapse one or more states o

; . ition of the sample space of altlength source sequences. Let
{S:} onto a single letter ofY;}. The procesqY:} is there- n genote an observation sequence with empirical patf).
fore referred to asggregated Markov proceq®78], [206]. | ot

The procesdY;} is not in general a Markov chain and it ex-

hibits long statistical dependencies. It inherits stationarity and H(q,) =— Z an(y)log g, (v)

ergodicity from the Markov chain [25]. Necessary and suffi- Y

cient conditions for{Y;} to be a Markov chain were devel-genote thempirical entropy Let

oped by Burke and Rosenblatt [52]. Conditions for stationary

processes to be functions of Markov chains were developed by D(gallp) = an(y)log(gn(v)/p(v))

Dharmadhikari [83]-[86], Heller [160], and Erickson [107]. A Y

partial summary of these results appears in [272, pp. 77-78gnote therelative entropybetweeng,(-) and p(-). The fol-

These results are not constructive in the sense that they doIoating facts were established. We usdo denote approxima-

lead to an algorithm for producing the Markov chdisi } and tions up to polynomial factors. The pmf of the sequegitean

function for a given stationary procegs; }. Identifiability of be written as

a function of Markov chain was first studied by Blackwell and p(y) = 27 H @)+ D)) (4.50)

Koopmans [42], Gilbert [136], and Carlyle [54]. Identifiability ‘

of a finite-alphabet HMP was studied by Petrie [251]. IdentifidHence, all sequences within a given type class are equally likely.

bility of a function of a nonstationary Markov chain was studiedhere is a polynomial number of types that does not exceed

by Ito, Amari, and Kobayashi [167], Rydén [278], and Largef» + 1)*~*. There is an exponential number of sequences in

[206]. These results will be further discussed in Section VI-£2ach type class given by2"/(@+). The probability of a type

See [167] for additional references. class is given bys2~" (), B .

A deterministic function of Markov chain which produces As_ummary of the method of.types for unifilar gourcgs,,wh|ch

distinct letters when the chain transits from each stateall > similar to that for Markov (_:hams, can be found in C_s!szar [73].
N e Let ™ denote an observation sequence from a unifilar source

states{j} with a;; > 0 was referred to as a unifilar source

n—1
by Ash [14]. For unifilar sources, the stage is uniquely de- ?ndLleettSO ( gr;?r?ottgihséat;?i?;ﬁnfnet {ecg;’fze,‘f ﬁgﬁgd
termined by the previous statg_; and the current letteg,. o In\Y, b @Int typ Yoo )

) . Thejointtype is given by the relative frequency of appearance of
The entire state sequenge can be read from the observatio J YPeIsg y g y 0rapp

_ o ) X y, s) among ther pairs(y1, sg), - - -, (Yn, Sn—1). Letq,(y|s
sequence™ prowded that -the initial Stat& is known. An im- nEjeno)te the empirical tr(ansitio)n pmf Enduced t)>y the j(gin|t )type.
portant special case of unifilar sources is thth-order Markov |
chain{X,} with states defined agS, = X{_,,. ., }.

A more general source was introduced by Gallager who re- H(gn) ==Y qn(y, $)log ga(yls) (4.51)
ferred to it asMarkov source[133, Sec. 3.6]. The source is Y 8
characterized by an initial stag, a transition pmp(v:|s:-1),  denote the empirical conditional entropy, and let
and a deterministimext-state functiors;, = g(y, si—1) for
t = 1, 2, .... Given the initial statesy, an observationy; is D(g,|lp) = Z an(y, $)log an(y]s) (4.52)
generated according gy |so) and a new state; = g(y1, so) vs p(yls)
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denote the conditional relative entropy. The following facts wete the entropy rated(Y). In addition, H(Y, |[Y" 1, S;) <
established. The pmf (4.49) has the form of (4.50) withy,,) H(Y,|Y" 1) [68, p. 27]. Thus, for each

and D(q,||p) given by (4.51) and (4.52), respectively. All se- n—1 7 n—1

quenc(es Uvit)hin a given type class are equally likely. There is a H (Y"|Y ’ Sl) SHY)s H (Y"|Y ) (4.55)
polynomial number of joint types that is larger than/ (21  and

for some constant but does not exceegh + 1)1, The lim H (Y,[Y"%, 8) =HY) = lim H (Y,[y"}).

lower bound is due to Alon, cited in [309, Lemma 2]. The car- "~ nmeo 456
dinality of a type class is-2"# (1) and the probability of a type (4.56)
class isx2— Pl lip), The difference between the upper and lower bounds in (4.55) is

No extension of the method of types to HMPs is knowrthe conditional mutual informatiof68, p. 22]
Hen_ce_, the analysis of HMP_s is generally much harder as thei_r_, (Yn; 51|Yn_1) —H (Yn|Yn—l) _H (Yn|Yn—l’ 51) )
statistics cannot be summarized by types. In some problems, this
difficulty may be circumvented by defining a conditional type (4.57)
class and lower-bounding its cardinality using the Lempel-Ziv signifies the amount of information that can be gained about
universal codeword length instead of the empirical entropy &s from Y,, given Y"~!. The rate at which this difference
for the joint type above. This approach was demonstrated Agproaches zero is of theoretical and practical importance.
Ziv and Merhav [330] and Merhav [236]. In addition, any fi-Birch [40] showed that if the transition matrix > 0, then
nite-alphabet HMP for whicly(y;, s¢|s;—1) > & > Oforall I(Y,; S;|Y"~!) converges to zero exponentially fast with
¥ € Y and(s,_1, s;) € S% can be approximated by a unifilar A lower bound on the rate-distortion function of a finite-al-
source having sufficiently large number of states as was shopimabet HMP was developed by Gray [146]. The rate-distortion
by Zeitouni, Ziv, and Merhav [325, Appendix]. function R(D) provides the minimum possible bit rafe re-
The entropy rate of a unifilar sourd&’} was given by Gal- quired byany encoder to encode the source with average dis-
lager [133, Theorem 3.6.1]. Lét; = P(Y; =1|S; = ¢) and tortion that does not excedd [68, p. 341]. Consider an HMP
" with alphabet of sizd., n-dimensional pmp(y™), and entropy
¢ = lim 1 Z P(S, =1). rateH(Y). Letd(y, v) be a distortion measure between a letter
noeo N y and its encoded versian Assume tha{d(y, v): y € Y} is
independent of. Such a distortion measure is callealanced
The Hamming measurdy, v) = 1 — &, ., whereé,, ,, is the
Kronecker delta, has this property. Let

d(y™, v) =n"" Y d(w, v)
t=1

be the distortion betweeg* andv™. Define the set of condi-
tional pmfsg(v™|y™) for all possible encoders that provide av-

Let
L
H(Y3|S; =i) = — Z by log by
=1

be the conditional entropy df; given that the chain is in state
1. The entropy rate of the unifilar source is given by

H(Y) i H(Y,|S: = ) (4.53) erage distortion smaller than or equal/foas
= a4 =1). . o o
= Q= {g(v"ly"): B{A(Y", V'L <D} (458)
If the Markov chain is irreducible aperiodic with stationary diswhere expectation is taken with respect to the joint pmf
tribution = theng; = ;. g™, y™) = q("ly™)p(y"). Let I(Y™; V") denote the

No explicit single-letter expression for the entropy rate of a.'ﬁ‘b't“al information betw_eer:] the HMP observation sequence
HMP is known [41]. Sequences of asymptotically tight bounds™ and its encoded versioi™ L
for the entropy rate o_f a deterministic fun_ctlon of a stationary (Y™ vy = Z (o™, y™) log Q(Z Y n) . (459)
Markov chain were first developed by Birch [40]. The same g q(v™)p(y™)

bounds appear in Cover and Thomas [68, p. 69]. Gallager [1 . . L .
Problem 3.23] provides the same bounds for a finite—alphajjgerate distortion functioris defined as [68, p. 341]

stationary HMP. The bounds are given in terms of conditional R(D) = lim inf 1 I(Y™ V™). (4.60)
entropies of the process. For a procggs} with n-dimensional noo g(vtlyt)eQ n
pmf p(y™), theconditional entropyH (Y,,|Y 1) is defined by The bound on the rate-distortion function is given by
[68, p. 16] R(D)>H(Y) —log f — pD (4.61)
H(Y,[ym 1) = Z p(y") logp (yaly™ 1) - (4.54) wherep is a constant and
y" L
For a stationary process, this conditional entropy is a monoton- f= Z exp[—pd(l, 1)]. (4.62)

ically nonincreasing sequence which converges to the entro_Py ) =1 o ) .
rate H(Y') of the process. Hencef (Y, [Y"~1) provides an he optimal value op that maximizes the bound is obtained
upper bound fo (Y'). For the lower bound, the conditionalfrom

entropy H(Y,,|[Y"1, S;) is used. This conditional entropy is 7]

a monotonically nondecreasing sequence which also converges D= _a_p log f(p)- (4.63)
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The bound is the same for all HMPs having the same alphaloét observationg/™ for estimating a state at time < ¢ < n.
size and entropy rate. There exists a distortion intefjal.] A low-delay symbol MAP decoder was proposed in [249]. A
over which the bound is tight provided that the initial distribuhybrid of the two approaches (5.1) and (5.2) was proposed by
tion of the Markov chain is positive and either the state trandrushe, Mahony, and Moore [50]. A forward—backward recur-
tion matrix A > 0 or the state-to-observation transition matrixion that depends on a soft-decision parameigas developed
B > 0. The value ofD. depends on the number of states.  such that symbol decoding (5.1) is obtained wher+ 0 and
sequence decoding (5.2) is obtained whers oo. In partic-
V. STATE ESTIMATION ular, this approach shows that the Viterbi algorithm can be im-

Estimation of the state sequeng® from an observation se- pl?rmhgn;g?&;rgjgggg\?a;zafekx?;?orr?sar;rf]e(;han and Hancock
quencey™ is of considerable theoretical and practical impor- 9

R . o [56] as well as the Viterbi algorithm were shown by Aji and
tance. Estimation of the state from ™ is apredictionproblem McEli 3110 b ial lized distributi
whent > n, afiltering problem whernt = »n, and asmoothing cEliece [3] to be special cases ofganeralized distributive

problem whent < n. The state sequené&" may be estimated Iavc\)/ dwrc"tcgf's dufzedMg)n mstrgg;ag'lzi?tﬁr;osdusmcfﬁnacst'?r?estucrgoaze"i
under various criteria. The most common criteria are minimum u pats. y gon » Su u

symbolerror probability and minimunsequencesrror proba- coﬁ:ng rilgor'th’ tfiallnlnto thr']S catet{:]or:qy E’] hr nition. it
bility. In the first case, an estimate € S is chosen by mini- Some appiications, such as automatic speech recognition,

mizing the probability of erroP(S; # S.|y"). This results in is often desirable to find several state sequences that mostly con-

. . " tribute to the likelihood functiop(y™) = 3., p(s™, ¥™). An

the maximuma posteriori(MAP) symboldecision rule algorithm that accomplishes this task was proposed by Foreman
5; = argmax p(s¢|y™) (5.1) [123]. In other applications, lumpable HMPs are encountered.

: o . , These are generalizations of lumpable Markov chains, whereas
an_d_the sequencs™ is estlmategl ass”. ComquaﬂonaIIy states can be grouped together in disjoint sets, and the proba-
efficient forward—backward recursions for calculating: |y") bility of being in a state in one set is independent of the previous
were developed by Chang and Hancock [56], Ott [248], Ravi,4e a5 |ong as that state lies in another set. The state filtering
[265], Baum, Pe_trle, Soules, gnd Wels.s [28], Forney uz‘groblem for lumpable HMPs was studied by White, Mahony,
Bahl, Cocke, Jelinek, and Raviv [17], Lindgren [219], Askafq grshe [314].

and Derin [15], Devijver [81], and Kitagawa [189]. These Asymptotic performance of the MAP symbol estimator of

recursions will be presented in Section V-A. Estimation of th§ from y™, for an HMP with rare transitions, was studied by

state sequence using the second criterion results in the MR, minskii and Zeitouni [185]. They assumed a finite-state ir-
sequencestimate given by reducible aperiodic Markov chain with transition matfix;; }
§" = arg max p(3n|yn) (52) Whereaij = (:)\7‘,]' when ¢ £ Jya; = 1 — e, and\;; =
_ _ est _ > ;i Nij- Let {z;} denote the stationary distribution of the
This problem is solved using dynamic programming [30] or byhain and letl;; > 0 denote the divergence between the obser-
the well-known Viterbi algorithm [308], [124], [285]. vation conditional densities associated with statsdj where
When the states are considered unit vectors inMadi-  ; £ ;. Let P=m denote the infimum ofP(S,, # S,,) over all
mensional space, as was done in Section IV-B, they can fgssible estimators,,. Under some mild assumptions on the

estimated in the MMSE sense. The conditional mean eshservation conditional densities of the HMP, and for any ini-
mate in this case is the vector of conditional probabilitiegg| distribution, they showed that as— 0
{p(st|y™), s+ = 1,..., M}. This approach enables appli- v
cation of nonlinear estimation techniques [99] and will be lim P&" = (1+o(1)elog (™) > m > d”' (5.3)
presented in Section IX. In a related approach, Golubev [143]" i i Al
studied causal conditional mean estimatiowofjiveny* when
the finite number of values th&t can take were assumed rea
numbers rather than integers.9f € {11, ..., var}, then the
MMSE estimator ofS, is given by

similar result holds for a continuous-time HMP. When the
tates are considered real numbgrs, ..., vy}, Golubev
[143] showed under similar assumptions as in [185] that the
average MSE
M

* s t:f‘t' 6_1 - *
St = viP(S = jlu) Bo= ;E{(St_st)Q} (5-4)

=1

Boguslavskii and Borodovskii [44] proposed rounding the coRyqqciated with the conditional mean estimaipis given by
ditional mean estimate &f, giveny™ to the nearest neighbor

. bV

integer. lim RS = (14+o0(1))elog(e™) Y m Y =2 (v —vy)?
Note that the two schemes (5.1) and (5.2) are smoothing apx—<° z; ; dji ’

proaches except when estimating tith state fromy™. While (5.5)

the error probability of the MAP symbol decision rule (5.1pse¢ — 0.

cannot exceed that of the MAP sequence decision rule (5.2) Asymptotically optimal recursive estimators for the states ofa
there is no guarantee that the sequence estigfate admis- finite-alphabet HMP, in the minimum probability of error sense,
sible since it may contain transitions that argriori impos- that do not depend on the transition matrix, were derived in
sible. Both estimators (5.1) and (5.2) require the entire sequelfit42], [184], and [185].
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A. Prediction, Filtering, and Smoothing Recursions an M x 1 vector of1's. Recall thatA denotes the transition

In this subsection, we present recursions for the conditiof3ftrix andm denotes a x M vector /representing the initial
probabilitiesp(s.|y*—1), p(s:|yt) andp(s|y™), n > t. distribution. Letf; = wB; andb,, = 1’. The matrix forms of

We begin with the forward—backward recursions of Charlg-7): (5-8) and (/5'11)' reipectively, are given/by= f,—1 AB;,
and Hancock [56, egs. (10), (18)] which were later rediscoft = bi+1Br414, andp(y™) = f,1. In particular, we have

ered by Baum, Petrie, Soules, and Weiss [28], [29]. These re- n
cursions rely on the conditional statistical independencg ‘of p(y") =m H (B:A)1
and Y/, givens,, t = 1,...,n — 1. This property leads t=1
to a simple decomposition qf(s;, 4"*). Define theforward =nB1AByA - By, _1AB,1. (5.12)
densmil bya(st, ") N plst, ¥) an(i thebackwarddensity ;g el known that the forward—backward recursions (5.7)
by Byiyilst) = p(yiyalse) with B(yny|se) = 1. Fort = 4 (5.8) are not numerically stable. This has often been ob-
1, ..., nwe have served in practice, see, e.g., [215], [263], [81]. These observa-
p(se. y™) =p(se, o, Yi) tions are supported by_ the ergodic theorem (4.39) as argued by
— p(ss, yt)p(yﬁrllst) Leroux [212]. Fort sufficiently large
t n M
ot IRl GO w9 =Y ale o)~ expltH (P, Py)
The forward and backward densities satisfy the following recur- 5:=1
slons: with high probability. Furthermore{a(s,, y")}2_, are typi-
(75, b(y1]51), t=1 cally of the same order of magnitude. Hence, eack;, y*)
. M tends to zero or infinity exponentially fast as+ .
alse, y7) = blulse) X alse1, 4" )as, s, An embedded iterative scaling procedure for stabilizing the
=t PPN n forward—backward recursions was developed by Levinson, Ra-
N T (5.7) biner, and Sondhi [215]. They proposed using
M
17M P=n Ny = Z alse, y')
Byt lse) = > Blutialsts1)as, s, byrg1]sey1), o=t
se41=1 as a normalizing factor for the forward and backward densities.
. t=n—-1..., 1 Starting with a normalized forward density function, say
(5.8) a(si_1, y*71), the recursion (5.7) is executed and normal-
The conditional probability(s,|y"), t = 1, ..., n, can be cal- 12éd by N; to produce a new normalized updated density
culated as alse, y'). Fort = 1, we havex(sy, y1) = p(s1|y1). Similarly,
a0, y)B( s |50) starting with a normalizgd backwgrd density function, say
plsly™) = — t Y )P\Ye41l15t) (5.9) A(Yialsi+1), the recursion (5.8) is executed and normal-
S alse, y)ByR |5:) ized by N; 41 to produce a new normalized updated density
R e B(ypy1lse). Fort = n, we haveB(y2,,|s,) = 1. The condi-
Furthermore. fot — 2 n tional probabilities (5.9) and (5.10) may be calculated using the
’ T scaled forward and backward densities. Devijver [81, eq. (17)]
p(si—1, 5:|y™) showed that the scaled forward recursion provides a stable
(51—, U )AL [50) a0 blwi] 1) recursion for the conditional probabiligy(s;|y*). The scaled
v - (5.10) packward recursion does not enjoy such an intuitive interpre-
> alsi—1,yt B Ist)as, s, (Yl se) tation. The recursion foB(y;", |s;) is, in fact, a recursion for
se-rae=l P(uFs1|s)/p(ypa|v) 181, egs. (9), (16)]. Furthermore, the
The likelihood function of the observation sequentecan be State conditional probability(s;[y™) can be obtained from
efficiently calculated using the forward recursion as follows: plsily™) = @lsr, yt)ﬁ(yﬁrllst). (5.13)
M
(") = Z alsn, y™). (5.11) Similar stable recursions were later developed for turbo codes

by Barrou, Glavieux, and Thitimajshima [32].

) ) ) ) _ The stable forward recursion fp(s,|y') was provided much
E_valuauon of (5.11) requires an ordermM operations v_vhﬂe earlier than [215] and [81] by Ott [248, eq. (4)], Raviv [265, egs.
direct calculation of the likelihood function (4.3) requires aps), (8)], and Lindgren [219, Lemma 2.1]. Denotiags; |y) =

order ofnM™ operations. . _ p(s:|y), this recursion is given by
The forward—backward recursions can be compactly written

using matrix notation. Lef; denote thel x A/ vector whose
jth element isv(j, 4*). Let b, denote thel x M vector whose -1y

jth element is3(y}, 1 |7). Let B, denote anM x M diagonal sélp(stly Jbuelse)

matrix whose(yj, j) element ish(y,|S; = j). Let 1 represent (5.14)

Sp=1

sty Dby s
a(sily’) = Af( v Obuels) gy,
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wherep(s1|y?) = 7., and The vector form of (5.16) is given by [156, eq. 22.4.14]
t—1 a 1 Stln = Stlt © {A [£t+l|n (+) £t+1|t] },
p(3t|y ): Z a/stflsta(st—ﬂy ), t:2, e, N t:n—l’n_Q’ . 1 (520)
St71=1

_ ~ (5.15)  The recursions (5.18)—(5.20) hold for the switching autoregres-
Lindgren [219, Lemma 2.1] and Askar and Derin [15, Thesive process (4.10) of which HMPs are special cases, see, e.g.,
orem 1] developed equivalent alternative stable backward reciarse, Ch. 22].
sions for calculating(s; |y") andp(s;, si11|y™) usingonlythe e close this subsection with a relation that follows from

forward recursions for(s|y*) andp(s,|y*~*). See also com- Lindgren [219, Lemma 2.1]. We have that
ments in Devijver [81, eq. (21)]. We present here the recursions

from [15, Theorem 1] as follows: p(sels'™h ™) =p(silsi—1, ¥™)
Blyiylse)
M n =05, 15, 0(ye|5t) 77— (5.21)
p(sily™) = oe(st|yt) Z a5t5t+lp(8t+tl|y ) (5.16) ' et Byl si—1)
vty POy This demonstrates the well-known fact th, } is a condi-

Gy, P(St41ly™) tionally inhomogeneous Markov chain gived;}. The tran-
i . (5.17) sition probabilities are given by (5.21). This important prop-
p(sialy) erty is often used in analysis of HMPs, see, e.g., [166], [36],
fort=n—-1,n-2,..., 1, wherep(s,|v") = «(s,|y™). The and[174, Lemma 4.1]. Properties of the conditionally inhomo-
recursions (5.16), (5.17) are computationally more efficient th@eneous Markov chain for switching autoregressive processes,
(5.9), (5.10) which use Chang and Hancock’s forward—backith Markov regime in a separable compact state space that is
ward recursions [81]. not necessarily finite, were given by Douc, Moulines, and Rydén
The recursions fop(s,|y'~!) in (5.15), a(s;|y") in (5.14), [91, Lemma 1].
and p(s¢|y™) in (5.16) are, respectively, prediction, filtering,
and fixed-interval smoothing recursions for estimatthdrom VI. ML PARAMETER ESTIMATION
y™. A recursion for then-step predictop(s:|y*~™), m > 1, . ) .
can be found in Kiinsch [203, Lemma 3.1]. These recursions, " this section, we address several important aspects of pa-
with sums replaced by integrals, are applicable to discrete-tiffneter estimation of an HMP. We begin with conditions for
continuous-range state and observation processes, descrigggtifiability of an HMP and proceed with consistency and
by general state-space models of the fafm= g,(S,_1, V}) asymptotlc normgllty of the ML esnmatpr. This is followed by
andY; = h.(S,, W) whereg, andh, are arbitrary measurable@ brief presentation of the Baum algorithm for local ML esti-
functions and V;} and{W,} are statistically independent i.i.d.mation of the parameter of an HMP. Next, Louis’s formula for
processes [169, eq. (7.84)], [15], [189], [192], [203]. Thef§stimating the observed information matrix whose inverse pro-
provide conditional mean estimators for estimation problenyiles an estimate of the error covariance of the ML estimator is
that are not necessarily linear or Gaussian. For linear Gausgigsented. We conclude this section with Ziv's inequality which
state-space models with Gaussian initial conditions, the rerovides a tight upper bound on the maximum of the likelihood
cursions (5.14)—(5.16) are equivalent to the Kalman filter arfdnction of any finite-alphabet HMP.
fixed-interval Kalman smoother, respectively, [169, Example
7.8], [189], [76], [203, Sec. 3.4.2]. This is easily checked. Identifiability of HMPs
since p(8t|yt_l)’_ asly’), and p(s;|y") are Gaussian and Consider a stationary HMP with the usual parametrization
henqe characterized by their condmona! means apd covariapee (r A, 0} e o whered={6;, j=1, ..., M}.Letp(y™; ¢)
matrices [286, p. 308]. Exponential stability of the filtering angienote then-dimensional density of the HMP. An HMP with
fixed-lag smoothing recursions in finite-alphabet HMPs wagye parameters” ¢ @ is said to beidentifiable if for each
demonstrated by Anderson [11]. ¢ € @ such thatp £ ¢°, p(y™; ¢) # p(y™; ¢°) a.e. for
The stable forward-backward recursions have compact v@gmen > 0 [274]. Consider the source—channel information-
tor forms. Let,|, denote thel/ x 1 vector whosgth elementis theoretic model of an HMP. If the Markov chain is reducible,
given by P(S; = jly"). Letn, denote thell x 1 vector whose there might be infinitely many stationary distributions. In ad-
jth elementis given by(y, |5, = ;). Letr denote, as usual, the gition, some components of the parameter of the HMP, related
1 x M vector of initial distribution. Let> denote term-by-term +tq the Markov chain and observation conditional densities, will
multiplication of two vectors and Igt:-) denote term-by-term haye no effect on the likelihood function. Similarly, if some
division of two vectors. The vector forms of (5.14) and (5.1%)f the {6,} are identical, there might be an infinite number of
are, respectively, given by [156, egs. 22.4.5-6], stochastic matriced that induce the same-dimensional sta-

T ® &g tionary distribution asA® does. In both cases, the HMP cannot
—_— t=1,...,n (5.18) be identifiable [214], [274]. Note that the states of the HMP can
Mt be permuted without affecting its distribution. This trivial am-

whereé, o = «’ and biguity can be resolved iflthe states are orde_red: o
Leroux [214] and Rydén [274], [277] studied identifiability
S = A& 11, t=2,...,n. (5.19) of a general HMP. Leroux observed that the problem is essen-

p(se, serly™) = alse|y’)

£t|t =
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tially that of identifiability of finite mixtures of product densi- B. Consistency and Asymptotic Normality
ties, since from (4.8), the density of the HMP can be written as Suppose that an observation sequeptewas generated

n o n. . ) by an identifiable HMP with true paramete’ € @. Let
Py §) = Z p(s™; ) 1:[1 Wi 00 O1) 4 = log p(y™: ) denote the log-likelihood function of
° - the HMP wherep(y™; ¢) is given by (4.8) for anys € ®. The

wherep(s"; ¢) = s, [[;—p as,_,,- Lerouxinvoked aresult by ML estimator of¢” is obtained from

Teicher [297, Theorem 2] which shows that if the family of al
finite mixtures of{b(-; 6,), = 1, ..., M} isidentifiable, then “

for everyn > 2, the family of finite mixtures of product den- $(n) = arg lfcaq)f Ln(9)- (6.3)
sities of the form (6.1) is identifiable. The family of finite mix-

tures of{b(-; 6;), j = 1, ..., M} is identifiable if the mixing This maximization is performed over all € ® such thatr(¢)
coefficients can be identified, i.e., if is a distribution,A(¢) is a stochastic matrix, anf¥;(¢)} sat-

M M isfy appropriate constraints implied by the nature of the observa-
Z c;iby; 8;) = Z &ib(y; 6;) Po-a.s. tion conditional densities of the HMP. The additional constraint
j=1 j=1 7A = m must be imposed when(¢) represents a stationary

M M distribution of the Markov chain. This constraint, however, sig-
= Z cjbp, = Z éjééj (6.2) nificantly complicates the maximization problem and is usually
j=1 i=1 ignored since the effect af is asymptotically negligible as we

whereé,, denotes the point mass @t and{c;} and{¢;} are have seen in Section IV-C3.

distributions. This condition holds, for example, whigr 6;) An estimatorg(n) of ¢ is said to bestrongly consisterif

is Poisson, Gaussian with fixed variance, exponential, and neg-

ative exponential. Teicher’s theorem combined with the earlier lim J)(n) =¢° Pyo-a.s. (6.4)
comments lead to the following conclusion. An HMP with the e

usual parametrization is identifiable fer > 2 if the Markov  Convergence in (6.4) is interpreted in the quotient topology gen-
chain is irreducible, alkfy, ..., 6y} are distinct, and finite erated by~. This means that any open subggtc @, which
mixtures of the parametric familyb(-; 6,)} are identifiable. contains the equivalence class/fmust also contain the equiv-
In that case¢” = {A° 6°} is uniquely determined from”,  alence class ab(n) for n sufficiently largeP,0-a.s. [214]. For

n 2 2, up to permutations of the states. It should be noted thg{ jgentifiable HMP with parametef, the equivalence class of
the finite-dimensional distributions dfY; } are uniquely deter- o parameter comprises all pointsdq induced by permuta-
mined by the2 M/ -dimensional distribution even when not all ofiqns of the states of the HMP. The equivalence relationas

the {¢,} are distinct, Ryden [274], [277, Theorem 1].  qefined in Section IV-A, and the compactified parameteriset
Conditions for identifiability of a Markov-modulated PmssoqNas defined in Section IV-D.

process, defined in Section IV-B7, were given by Ryd(_én [2_78’ Strong consistency of the ML estimatéb(n) of the param-
Corollary 1]. A Markov-mpdula_ted PO'SSO.n Process 1s IOlermf'éter of a finite-alphabet stationary ergodic HMP was proved by
able, up to state permutations, if and only if all Poisson rates & m and Petrie [25, Theorem 3.4] and by Petrie [251, The-
distinct. ' ' :

Petrie [251, Theorem 1.3] provided conditions for identififzrg]msztﬁlr; Pceg;::isrziie%F?ﬁeal\jliuetg:;c;réﬁ(ﬂr?za)&oﬁ%:aadr(:u!:-
bility, up to permutations of the states, of a stationary ergodic 9 y b

finite-alphabet HMP; see also Finesso [116, Theorem 1.4.1].e er of a general stationary ergodic HMP was proved by Leroux

complete solution to the identifiability problem of a determinL 14’ Theorem 3], He assurr_u_ad an |rred_u_C|bIe aperlt_)dlc Markgv
istic function of discrete-time, possibly nonstationary, Marko{‘}ha'n and observation conditional densities that satisfy the mild

chain, was developed by Ito, Amari, and Kobayashi [167ﬁ<_agulariFy conditions noted in _Section IV-D.
gonsstency of the ML estimator was also proved for sev-

An algebraic approach was used to develop necessary an ) _ o
sufficient conditions for two aggregated Markov processes to Béal extensions of standard HMPs under suitable conditions. In

equivalent, i.e., to have equal finite-dimensional distribution§2ch case, consistency was shown using the corresponding er-
An algorithm for deciding equivalence was also developeg®dic theorem from Section IV-D. Strong consistency of the ML
This approach was used by Rydén [278] and Larget [Zog?tlmators of the parameters of switching autoregressive pro-
to determine equivalence of two continuous-time aggregate@sses satisfying (4.14) and (4.15), respectively, was proved by
Markov processes. These are deterministic functions of contfencg and Roussignol [127, Theorem 3] and Krishnamurthy
uous-time Markov chains. A unique canonical representati@fd Rydén [198, Theorem 1]. Recall that for a switching au-
of each equivalence class of aggregated Markov procest@égressive process, the ML estimator is obtained from max-
that satisfy some mild regularity conditions was developed ifization of the conditional likelihood function noted in Sec-
[206] for both continuous-time and discrete-time processdin IV-D. Weak consistency of the ML estimator of the param-
This representation contains a minimal parametrization of &ter of an HMP, with a separable compact state space that is not
identifiable information for the equivalence class. Equivalenseecessarily finite, was proved by Douc and Matias [90, Theorem
of aggregated Markov processes may be checked in a singleThe result applies to an HMP with arbitrary initial density,
direct computation by converting the standard representatioot necessarily a stationary density. Strong consistency of the
of the process to its canonical representation [206]. ML estimator of the parameter of a switching autoregressive
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process, with a separable compact state space that is not mackel, Ritov, and Rydén [36]. Douc and Matias relaxed the
essarily finite, was proved by Douc, Moulines, and Rydén [9&tationarity assumption by following the approach of Le Gland
Theorem 1]. The switching autoregressive process need notaogl Mevel [210]. Asymptotic nhormality of the conditional ML
stationary. Strong consistency of the ML estimator of the pparameter estimator, of a possibly nonstationary switching
rameter of a Markov-modulated Poisson process was proveddutoregressive process, with a separable compact state space
Rydén [273, Theorem 1]. that is not necessarily finite, was proved by Douc, Moulines,
Consistency of the ML estimator of the parameter of a fand Rydén [91, Theorem 4] following the approach of Bickel,
nite-alphabet HMP, when observations are drawn from a sRitov, and Rydén [36].
tionary ergodic process that is not necessarily the HMP, wasAsymptotic normality of the ML estimator of the parameter
proved by Finesso [116, Theorem 2.2.1]. This situation is def a general HMP was established only recently in [36] after
scribed in the last paragraph of Section IV-D. The parameterlzéing an open problem for over 30 years. Local asymptotic nor-
the HMP was assumed to satisfye ®;. Almost sure conver- mality of an ML estimator defined on a grid of the parameter set
gence of the set of maximizers &f,(¢) over¢ € &g, to the was shown in [35]. Consistency and asymptotic normality of a
set of parameter valuglsy € &5} that minimize the relative pseudo ML parameter estimator of a stationary ergodic general
entropy rateD(Py || P,) between the observation proc€sy-) HMP were proved by Lindgren [219] and Rydén [274]. The es-
and the HMR(F,), was proved. The relative entropy rate is detimator maximizes a pseudo likelihood function obtained under
fined similarly to (4.46) with() replaced byF. the assumption that consecutive blocksotonsecutive obser-
We turn now to asymptotic normality of the ML estimatowations are statistically independent. This likelihood function is
$(n). Assume thaip(n) is consistent. Asymptotic normality of given by
the ML estimatord;(n) of the parameter of a stationary ergodic "
finite-alphabet HMP was proved in 1966 by Baum and Petrie nm. 4y _ mt .
[25] assuming that € ®5. Asymptotic normality of the ML ™5 ) = 11 ity 0) (©.7)
estimatorg(n) of the parameter of a stationary ergodic general ) ) _ ) )
HMP was proved in 1998 by Bickel, Ritov, and Rydén [36, The¥herep(:; ¢) is the density o™ given by (4.3). For an identi-
orem 1]. They assumed an irreducible aperiodic Markov chdigPle HMP, anym > 2 can be chosen. Rydén refers to this esti-

and observation conditional densities that satisfy some mild rél_yator as thenaximum split data likelihood estimafMSDLE).
ularity conditions. They showed that or an HMP with irreducible aperiodic Markov chain that sat-

isfies some regularity conditions, the MSDLE is consistent and
nl/2 ((/3(71) _ </)0) N (07 I(;jl) Pyo-weakly ash — o asymptotic normalifor fixean andp — oo, and it performs as
(6.5) good as the ML estimator [274]. Lindgren [219] used= 1 but
whereZ.. is the Eisher information matrix which is ass.ume id not consider estimation of the transition matrix. Francq and
&

. . . . . . Roussignol [126] specialized these results to HMPs of the form
nonsingular. This matrix is defined in terms of the score funct|o§1 : : . S
+ = S W, described in Section IV-B1. A similar MSDLE es-
by [36, egs. (5) and (6), Lemma 6]

timator was proposed by Rydén [276] for estimating the param-
eter of a Markov-modulated Poisson process, and proved to be
consistent and asymptotically normal. Asymptotic block i.i.d.
lgmgo” (6.6) approximation of the HMP likelihood function was also found
useful in [238].
The ML estimator&(n) is therefore asymptotically efficient in
the sense of Lehmann [211, p. 404]. The crux of the proof fa- The Baum Algorithm
[36] is in establishing a central limit theorem for the score func- The Baum algorithm is a computationally efficient iterative
tion Dylog p(Y™; ¢) and a law of large numbers for the ob-algorithm for local maximization of the log-likelihood function
served informatior-'er5 log p(Y™; ¢). The proof then follows L,,(¢) in (6.3). It was developed and proved to converge by
from the classical approach introduced by Cramér. In provilgaum, Petrie, Soules, and Weiss [28], [29] in the early 1970s. It
the limit theorems, the Markov chaiff;} given the observa- is the expectation—maximization (EM) algorithm of Dempster,
tion sequencé¢Y; } is seen as an inhomogeneous Markov chaihaird, and Rubin [80] when applied to HMPs. In this section,
see, e.g., (5.21), and its mixing coefficients are bounded in termig present the Baum algorithm, discuss its relation to the EM
of {1:}. algorithm, and provide conditions for local convergence. We as-
Asymptotic normality of the ML parameter estimator ofume a general HMP with the usual parametrization.
a general HMP, using geometric ergodicity of an extendedThe rationale of the Baum algorithm is as follows [28, The-
Markov chain, follows from the work of Le Gland and Mevelorem 2.1]. Suppose that an estiméatg € ® of the parameter
[210] as described in Section IV-C3. Asymptotic normalityi)o is available at the end of theth iteration. Letp € ® denote
of the ML parameter estimator of a general HMP with §ome other estimate gf. Define anauxiliary functionfor the
separable compact state space that is not necessarily firf#¥en observation sequengeand any pair of parametefsand
was proved by Jensen and Petersen [174, Theorem 3.3] &ndin € as follows:
by Douc and Matias [90, Theorem 3]. Jensen and Petersen R R
assumed a stationary ergodic HMP and followed the proof of « ((/% </>m) =Ey, {108‘17 (5", Y™ </>)‘ y"} . (6.8)

t=1

Iy = Eyp{zZ'},
whereZ = lim Dylogp(Y1]Y2,; ¢)



1542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

Using Jensen’s inequality Hence,L,.(¢m+i1) > Ln(dm) if ¢rr1 maximizesQ(o, ¢m)
over¢ € ®.
R P (y"; d)) Convergence of the EM algorithm was established by Wu
Ly, ((/)) — Ly(¢pm) = log W [316] using the global convergence theorem [226, p. 187]. In
PR Fm . particular, it was assumed that i) the level §¢te @: L,,(¢) >
p (5", Y™ </>) N L, (¢o)} is compact for anypy € ® with L,,(¢g) > —oo; ii)
= log £y (5™, o o) |V L,(¢) is continuous in® and differentiable in the interior of
) ®; iii) Q(¢, $) is continuous in bothy and¢; and iv) all EM
p (8™, (/3) instanceq ¢,,,} are in the interior oft. Under these conditions,
>Ey < log y" it was shown in [316, Theorem 2] that all the limit points of

p(S™, ¥™; Pm)

=Q (4 #m) = Qém: o) (69)

any instance ¢,,, } of the EM algorithm are stationary points of
L,(¢), andL,,(¢,,) converges monotonically tb}, = L,,(¢*)
for some stationary poing*. There exists at least one such
limit point. The compactness assumption may be restrictive
when no realistic compactification of the original parameter
space is possible. Continuity @§(¢, J)) is satisfied in most
p(S™, 4™ (;)) =p(S", Y ) Dy, -ace. practical situations. It is guaranteed for the important family
of exponential (Koopman-Darmois) pdfs [211, p. 26], [316].
A new estimate of° at them + 1 iteration is obtained from  Wu [316] provided conditions for other convergence theorems,
in particular, convergence of limit points di$,,} to local
¢Pm+1 = argmax ((?), d)m) . (6.10) maxima of L,,(¢).

PP The strict maximization of(¢, ¢,,,) over ¢ in (6.10) is
relaxed in thegeneralized EMalgorithm. Any ¢ that satisfies
the weaker condition of)(¢, ¢,.) > Q(Pm, ) IS admis-
sible. Conditions for local convergence of the generalized EM
)algorithm were given in Wu [316, Theorem 1]. The generalized

algorithm was found useful in estimating the parameter of

where expectations are taken 0$€rgiveny™. Equality in (6.9)
holds if and only if

Sinceg,, € ®, the procedure results b, (¢nm+1) > Ln(Pm)
as can be seen from (6.9). Whépn,.1 ~ ¢, afixed point
is reached and.,,(¢m+1) = Ln(¢n). The Baum algorithm
starts with an initial estimate, and alternates between (6.8
and (6.10) until a fixed point is reached or some other stoppiﬁ% ) )
criterion is met. a Markov-modulated Poisson process [273]. An EM algorithm
Lety: ¢ — ¢my1 denote the mapping defined by (6.8) ana\’ith an explicit M-step for estimating the parameter of a
(6.10). Baum, Petrie, Soules, and Weiss [28, Theorem 3.1] dj@rkov-modulated Poisson process was developed by Rydén
Baum [29] showed that ifog b(y:; 6;) is strictly concave iré; [275]. ) ) )
for eachy, and allj, theny(¢n, ) is a single-valued continuous Note that in Sectlen VI-B we were concerned with conver-
mapping, andon (¢ma1) > Ln(ém) unlesss,, is a stationary gtoance of the ML estimate sequenﬁ(el) to the trge parameter
point of L, (¢) or equivalently a fixed point ap(¢,,,). Further- ¢” when the nur_nber ofobservat|ems—> oo. Consistency theo-
more, all limit points of(¢,,,) are stationary points d,, [28, rems were provided for o_bservat|on sequences generated by the
Proposition 2.1]. The log-concavity condition holds for normaf{MP or by any other stationary ergodic process in the case of a
Poisson, binomia,l and gamma distributions among others, btfite-alphabet HMP. In this section, we considered convergence
fails for the Cauchy distribution. Liporace [221] extended the&¥ an instance of the Baum algorithryp,,, }, for fixed » and
results to elliptically symmetric multivariate densities which ePServation sequengg, when the iteration numben — oo.
sentially are mixtures of Gaussian densities of which the Caucify this discussion, the observation sequepteneed not be
density is a special case. generated by the HMP as the EM algorithm can be applied to
The Baum algorithm is a particular instance of the EM alg@"y observation sequence. Whghis generated by an HMP
frithm of Dempster, Laird, and Rubin [80]. The expectation stefith parameter®, convergence of an EM instan¢g,,(n)} as
(E-step) is given by (6.8) and the maximization step (M-steff}, 7 — © may not be to the ML estimate ¢f’, since only
by (6.10). In the EM terminology, the state and observation s@cal convergence is guaranteed.
quencess”, y"} are thecompletedata while the observation 1y The Re-Estimation Formulasviaximization of the aux-
s_equ_encgn alone is thancompletedata. The likelihood func- iliary function Q(¢, ¢.,) in (6.8) for a given observation se-
tion is written as quencey” results in re-estimation formulas for the parameter of
the HMP. They generate a new parameter estimate from an old
Ln(¢) = Q¢, dm) — H(¢, dm) (6.11) parameter estimate. To demonstrate how the Baum algorithm
works, we shall provide here the re-estimation formulas for two
important HMPs, those with Gaussian and Poisson observation
H(, ¢m) = E,, {logp(S™ [4"; )| 4"} (6.12) conditional densities. In both cases, maximization of (6.8) over
¢ for a giveng,,, results in an explicit estimatg,,,; at the end
A well-known consequence of Jensen’s inequality is thaf them + 1stiteration. The re-estimation formulas require the
H{(}, ¢m) < H(¢m, ¢m) for any ¢ ande,, in ¢ with equality conditional probabilitie®(s:|y™; ¢n,) andp(si—1, s¢|4™; dm)
if and only if p(S™|y™; ¢) =p(S™|y™; ¢m) @.s. [80, Lemma 1]. which can be efficiently calculated as shown in Section V.

where
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Using (4.8), the auxiliary functior(¢, ¢..) in (6.8) is formulas. An estimate of this matrix can provide some idea

written as [29] about the quality of parameter estimates obtained by the Baum
M algorithm. The actual error covariance associated with the
Q(p, ) = Z P(S1 = jly"; ¢m)logm; Baum algorithm is not known. For consistent ML estimation,
j=1 however, it is known from (6.5) that the asymptotic error
M n covariance is given by the inverse of the Fisher information
+ 3> P(Sio1 =4, 8 = jly"; ¢m)loga;;  matrixZy. An estimate of this matrix is given by tubserved
ij=1t=2 information matrixwhich is the negative Hessian matrix
M n 2 N n.
ESST P8, = gl ) losblun: 6). v =-Dloesty’; 9). (619
j=1 t=1 Under some mild regularity conditions, the observed informa-

(6.13) tion matrix of a stationary ergodic HMP was shown by Bickel,
Ritov, and Rydén [36, Lemma 2] to be a consistent estimate of

Maximization of (6.13) over the distribution = {r;} and the i, Fisher information matrix. Specifically, for any consistent

stochastic matrixd = {a;;} gives estimatep(n) of ¢° it holds that
; 1) = P(S1 = jlv"; om 6.14 1 . .
mi(m+1) (51 = Jly"; ¢m) (6.14) lim - [-DZlog p(Y™; ‘7))]45:;5@) =Z4 in P-probability.
> P(Si1 =1, St = jly"; ¢m) (6.20)
t=2
agj(m+1) = n . - (6.15) Louis [225] developed a formula for calculatidg from the
Z%P(St,l = ily"; Pm) complete data comprising the state and observation sequences.
= Let Isy denote the complete data observed information matrix

These re-estimation formulas are intuitively appealing. The i iven by
tial state probability estimate (6.14) is the conditional proba-
bility of the state given the observations. The estimate of the Isy = —D3logp(S™, y™; ¢). (6.21)
transition probabilitys;; in (6.15) is the ratio of the Cesaro mean - )

of the conditional probabilities of visiting statend thenj and L&t L5y denote the conditional complete data observed infor-
the Cesaro mean of the conditional probabilities of visiting staféation matrix given by

i. The conditional probabilities are calculated under the current Is;y = —D2logp(S™[y"; ¢). (6.22)

estimate of the HMP. The formula is given b
The stationary distribution of the Markov chain is commonly 9 y

estimated as [219] Iy = Ex{lsy|y"} — Eo{lsiyly"}- (6.23)
1 & . The formula follows from a relation between the score function
= Z P(Se = jly"; pm)- (6.16)  of the incomplete dat&?y = D,logp(y™; ¢) and the score
t=1

function of the complete daté/sy = Dgylogp(S™, y"; ¢).
For an HMP with Gaussian observation conditional densitiepps relation is given by

the re-estimation formula for the mean vecipis given by

n Gy = Eg{Gsy|y"} (6.24)
2. P(Se = Jly"; dm)ye where expectation is ove$™ given ™. The second term in
gi(m+1) == . (6.17) (6.23) can be written as
t; PASe = dlas ém) Eg{lsiy|y"} = Ee{GsyGsyly"}
The re-estimation formula for the covariance mafkixis given — Eg{Gsy|y"}Eo{Gsyly"} (6.25)

by (6.18) shown at the bottom of the page. For an HMP wityhich implies its nonnegative definiteness. Henfg —

Poisson observation conditional pmfs, the re-estimation formug, { 7 y-|3"'} in non-positive definite.

for the mean parametey; is given by (6.17). A method for calculating the observed information matrix

of an HMP from (6.23) and (6.25) was proposed by Hughes

[166]. The term E4{Isy|y"} was evaluated similarly to
Unlike the Kalman filter, the Baum algorithm does noBaum’s auxiliary function (6.13) using the forward—backward

provide the error covariance matrix of the estimated parametermulas. From (6.24)E,.{Gsy |y} = 0 for any local ML

in each iteration. While this matrix is an integral part of thestimate ofp. The remaining ternE,{Gsy Gy |y"} in (6.25)

Kalman recursion, it is not needed by Baum’s re-estimatias the hardest to calculate since it involves double summations

D. Observed Information Matrix

30 P(Sy = 3lu™s (v — s5(m + 1)) — o3 (m + 1))
Rj(m+1) ==

(6.18)

NE

P(St = J|yn7 (/)m)

t=1
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of cross-product terms over pairs of states at distinct tingnce the number of phrases satisfies [326, eq. (4)], [68, Lemma
instants. Hughes used the fact that the state sequence is a ¢@nt0.1]
ditionally inhomogeneous Markov chain given the observation
sequence, and provided some mild conditions for the sequence
to be mixing with exponentially decreasing coefficients. This
enabled dropping cross-product terms involving state variablv%
that are well separated in time.

The observed information matrix was calculated using Monte 1 " 0 1 N
Carlo simulations by Diebolt and Ip [88] for general EM appli- n logp(y™; ¢7) < “n w(y") + 6n (6.28)
cations and by Turner and Cameron [303] for HMPs.

(y") o logl
n T (1—e,)logn

(6.27)

log(log n)+4
logn

ﬁeresn = min {1, } the bound can be written as

wheres,, = O (@). Henceg,, — 0 uniformly for every
E. Upper Bound on Likelihood of Finite-Alphabet HMPs y™ asn — oo. Forn — oo, the bound becomesH (Y). Since

Algorithms for global maximization of the likelinood func-(6.28) holds for any® € @, it also holds for the maximizing
tionlog p(y™; ¢) overgp € ® are not known for most interesting® € ¢ as follows:
HMPs. An .upper_bound on the .global maximum of the likeli- max log p(y™; ¢) < —u(y™) + néby. (6.29)
hood function exists for any finite-alphabet HMP. The bound
uses universal coding of the observation sequence and its NRisartial converse to Ziv's inequality is obtained as follows. Let
vanishing term is independent of the number of states and the .
underlying parametef. The bound is tight with high probability U= {y": p(y"; #°) < 2wy )*"E} (6.30)
and hence can be used to assess the closeneggof"; ¢) to

the global maximum dfog p(%™; $) for any estimator. for somee > 0. From the Kraft inequality [68, Sec. 5.2]

The upper bound is provided by the Ziv inequality which was P(y* € ¥) = Z p(y"; %)
first derived for Markov chains in [329], see also [68, Lemma et
12.10.3]. The bound was extended to finite-alphabet HMPs by g—uly")—ne
Plotnik, Weinberger, and Ziv in [253, p. 68]. The bound is es- < Z
sentially given by—u(y™) whereu(y™) is the length of the bi- yred N
nary codeword for™ in the Lempel-Ziv universal data com- <277 Z 27w <2 (6.31)
pression algorithm [326]. This algorithm sequentially parses the y"
sequencg” intoc— L distinct phrases, ..., 2., of variable HencepP(y" € ¥¢) > 1 — 2= and the probability that
length, and an additional, possibly incomplete, phraséhat
may coincide with one of the other— 1 phrases. Each phrase max logp(y™; ¢) > —u(y™) — ne

comprises a concatenation of a phrase that appeared previously o i i
in the sequence and an additional symbol that distinguishes fProaches one as— oo. Ziv's inequality was used in many
newly created phrase from any previously defined phrase. ﬂpllcatlc_)r!s including order estimation [330] a}nd source c_odlng
example, the binary sequeng® = 10110001011101110000 [236] of finite-alphabet HMPs. Th_ese applications are reviewed
is parsed ag,0,11,00,01,011, 10, 111,000,0 wherec = 10 N Sections Vlil and XIV, respectively. o
and the first nine phrases are distinct. The number of phrases A Stronger result holds for unifilar sources defined in Sec-
depends on the sequeng® and may be expressed more extion IV-E. From the analog of (4.50) for unifilar sources
plicitly as ¢(y™). The length of the codeword fay*, or the . _ 1 "
number of bits required to represeyitin the Lempel-Ziv algo- ;?;}i‘) n logp(y"|s0) = —H(gn) < “n u(y™) +én (6.32)
rithm, is given byu(y™) = ¢(y™)[log ¢(y™) 4+ 1]. The algorithm
asymptotically outperforms any finite-state coding scheme
compressing any individual sequence not necessarily from
HMP'.It asymptotl'cally achlevgs thg entropy rét¢Y’) in com- such functions for a unifilar source witlf states and. letters
pressing any stationary ergodic finite-alphabet soqiée ¢ > [330]
1}, ie., (1/n)u(Y™) — H(Y) with probability 1 asn — oo '
[326], see also [68, Theorem 12.10.2]. Lempel-Ziv is the stan-
dard compression algorithm in UNIX and operating systems for
PCs. In this section, we review joint estimation of the state se-
The upper bound for any stationary ergodic finite-alphabgtience and the parameter of an HMP. We first describe the
HMP with M states,L letters, and parameteé®, and for any Baum-Viterbi algorithm and its relations to the Baum algorithm
observation sequengg, is given by [253, p. 68] and to the generalized Lloyd algorithm for designing vector
N N N guantizers. The relation of the Baum-Viterbi algorithm to the
1 log p(y"™; ¢°) < _ey") log c(y") +h <C(y ’)> (6.26) minimum discrimination information parameter estimation ap-
n B n M? n proach is given in Section XIV-B. We then present a noniterative
whereh(-) denotes the binary entropy function given by algorithm for global maximization of the joint likelihood func-
tion of a left-right HMP. We conclude by reviewing Bayesian
h(q) = —qlogq — (1 — q)log(1 — q), foro<qg<1. Gibbs sampling approaches.

where H(g,) is the conditional empirical entropy defined in
@.51) for a given next-state functign If g is not known, the
1B-hand side of (6.32) is maximized over There arelf ™~V

VII. JOINT STATE AND PARAMETER ESTIMATION
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A. The Baum-Viterbi Algorithm for the EM algorithm [316], [176]. Note that a byproduct of

The Baum-Viterbi algorithm jointly estimates the paramet&P€ @lgorithm is an estimate of the most likely state sequence.
and state sequence of an HMP. The state sequence is estimatddify IS @nalogous to the byproduct of conditional state proba-
the minimum probability of error sense by the Viterbi algorithrPiliti€S given the observation sequence provided by the Baum
Recall that the Baum algorithm uses the state conditional protagorithm. _ _
bilities in estimating the parameter. When the states are consigMaximization ofp(s"(¢:.), y™; ¢) over ¢ is equivalent to
ered unit vectors in a Euclidean space, these conditional proB¥Ximizing the auxiliary function
bilities are the MMSE estimate of the state. The Baum-—Viterbi n n n n
algorithm was proven useful when the observations are vectors 1(®y m) = Z 8(s™ = s™(dm)) logp(s™, y"s ¢)  (7:2)
of sufficiently high dimension. In that case, the Baum-Viterbi °
algorithm provides parameter estimates that are almost as gadtered(-) is the Kronecker delta function that is equal to one
as those obtained by the Baum algorithm. The algorithm hasiens® = s"(¢,,) and is zero otherwise. Recall that in the
an intuitive appeal and is computationally more stable than tBaum algorithm, a new estima#g,,+1 is obtained from maxi-
Baum algorithm. The two algorithms require about the sanmaization overp of the auxiliary function
amount of computation.

When the observations of the HMP are scalar, or vectors of Q(¢, ¢m) = > _ p(s"[y"; ¢m)logp(s™, y™: ¢).  (7.3)
fixed dimension, say:, the Baum-Viterbi algorithm provides a"

inconsistent estimates of the state sequence and parameteé@rﬁparing (7.2) with (7.3) shows that,,.; in the Baum—
the number of observations — oo. This was shown in [S1], viterbi algorithm can be obtained from the re-estimation
[299] for r_mxture processes which are special cases HMPS. TR%mulas of the Baum algorithm by substitutipgs™|y"; ¢ )
a_symptotlc m0(_je c_onsu_jered here%_;of—> oo and fixedn ismo- py §(s" — s"(¢m)). These formulas are given by (6.14), (6.15)
tivated by applications in automatic speech recognition wheggq py (6.17), (6.18) for HMPs with Gaussian observation
HMPs with vector observations of relatively large dimensiongngitional densities. The re-estimation formulas for the
are often used and estimation is performed from a fixed numbgs m_\viterbi algorithm are rather intuitive. For example, the
of observations. The reason for using vector observations is thafimate fora,, is the ratio between the number of transitions
states representmg_ articulatory cues mix at 5|gn_|f|c§1ntly _|°Wf=’rbm statei to j and the number of transitions from statéo
rate than the sampling rate of the signal itself which is typlcalg(ny other state on the most likely sequestép,,, ). Similarly,
about 8000 Hz. Thus, the state process of a speech signal f§@sne\y estimate for the mean and covariance matrices of the
significantly lower bandwidth than that of the signal itself.  Gayssian density in théth state are obtained from sample
The_ Baum—\ﬁt(_arbl algorithm was first introduced in 1976averages of observation vectors assigned to gthies”™ (¢,.,).
by Jelinek and his colleagues at IBM [172] and was termegernatively, the observation vectors ig® are clustered
Viterbi extraction. The algorithm was further studied bynio 17 subsets by the most likely sequene¥¢,,) and the
Rabiner, Wilpon, and Juang [261], [262], [176], where it wagarameter of the observation conditional densities are obtained
referred to as segmentdl-means. Asymptotic equivalencesqom these clusters.
of parameter estimates obtained by the Baum algorithm and; fojiows from (7.2) and (7.3) that the Baum algorithm and
by the Baum-Viterbi algorithm for fixed andk — oc was  the Baum-Viterbi algorithm yield the same sequence of esti-

shown by Merhav and Ephraim [234]. We opted for the nam@ates( 4,,} when started from the same initial estimaigif
Baum-Viterbisince each iteration of the algorithm involves

Baum’s re-estimation iteration and application of the Viterbi p(s™ |y Pm) = 6(s™ — ™ (¢m)) (7.4)
algorithm.

Consider an HMP with vector observatiofig }, v, € R*, for everym. Convergence af(s"|y"; ¢m) t0 (s — s™(¢yn,))
and true parametef® € ®. The Baum-—Viterbi algorithm esti- Pyo-a.s., wherk — oo, was proved in [234]. It was assumed

mates4® from that the transition matrix satisfie$ > ¢ > 0, and an ergodic
theorem holds fok=! log b(Y;|6,(¢)) for any¢ € ®. The re-
max max p(s", y"; ) (7.1) quired ergodic property was demonstrated in [234] for HMPs

with Gaussian observation conditional densities. The required
where the double maximization is alternately performed overgodic theorem under more general conditions is implied from
s™ and¢. For a given parameter estimatg, ¢ ¢ at the end (4.39). The result is not surprising since states are detectable
of themth iteration, the most likely state sequence is estimateghen a sufficient number of consecutive observations is avail-
by maximizingp(s™, y"; ¢.) over s™. This maximization is able from each state. Whén— oo, the most likely state se-
performed using the Viterbi algorithm. Let (¢,,,) denote the quences™(¢) is given by
maximizing state sequence. Next, a new estinggte; of the
parameter is obtained by maximizings”(¢..), y™; ¢) over si(¢) = argmax b(y:; 0,(9)), t=1,....,n (7.5
¢ € ®. The alternate maximization procedure produces a se- ’
quence of estimatesp,,, } with nondecreasing joint likelihood for any parametep € ®.
values. The algorithm is terminated if a fixed point is reached Bounds on the log-likelihood difference resulting from (6.3)
or when a stopping criterion is met. Local convergence of tieand (7.1) were derived in [234]. Letdenote the maximizer over
algorithm can be established in a manner similar to that usgf max- p(s™, y™; ¢) and let¢ denote the maximizer over
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¢ of p(y™; ¢). Let 4™ denote a sequence efk-dimensional used in encoding the speech signal at a relatively low bit rate
observation vectors and I&f = nk denote the total number of [135, pp. 387-393], [259, Sec. 10.4].
observations. Then The relation of the Baum-Viterbi algorithm to the gener-
1 -1 | alized Lloyd algorithm becomes clear whénis large and
0= 57 logp(y™; ¢) — o7 logmax p(s™, ¥ ¢) < Jlog M —k~tlogh(y; 6;) is interpreted as the distortion measure
(7.6) between the vectoy, and a parametef; € ©. Almost sure
1 X 1 ) 1 convergence of-k !logh(Yy; ;) whenk — oo is implied
0< Nlogp(y"; ) — Nlogp(y"; P) < ElOgM. (7.7) from (4.39). It was demonstrated in [234] for HMPs with
Gaussian observation conditional densities where explicit
Thus the difference between the normalized likelihood valuegpressions for the limit were given. This distortion measure
associated withp and ¢ can never exceefll/k)log M. This may take negative values but this does not affect the general-
bound can be made sufficiently small compared to the likelihogzed Lloyd algorithm as long as the distortion is greater than
values ifk > M. This is often the situation in isolated-word—oc. Let 4 denote a training sequence ofk-dimensional
speech recognition applications where typicalfy= 5-30 and observation vectors. Assuming > § > 0 and largek, the
k = 256-512 [234]. Note that these inequalities are not suffisample mean of the distortion measure is given by
cientto guarantee closeness of the parameter estimates obtained
by the Baum and the Baum-Viterbi algorithms, since both al- 1 1 11
gorithms perform local rather than global maximization. More- n» tz_; log blys; 0.) ~ (7.8)
over, these inequalities do not imply that a dominant state se-
quence exists since they hold even when all state sequenced=sitgnation of{6,, ..., 8/} by the iterative Baum-Viterbi al-
equally likely. gorithm is equivalent to estimating these components of the
A theoretical approach for a sequential Baum-Viterbi alggarameter by minimizing the average distortion in the left-
rithm was proposed by Kogan [191]. The approach is based lsand side of (7.8). The most likely state sequence (7.5) in the
the observations that stopping times for the most likely state $daum-Viterbi algorithm provides the optimal partition or clas-
quence appear infinitely often if the Markov chain is irreduciblsification of the vectorgy, } in the generalized Lloyd algorithm.
and aperiodic, and the most likely state sequence at time instafités, in turn, provides the optimal partition of the underlying pa-
smaller than the stopping time is independent of future observameter space of these vectors. This partition rule is referred to

~ ok logp(s™, y¥™; ¢).

tions. as thenearest neighborule in vector quantization terminology.
Estimation of eacl#; by minimizing the average of the distor-
B. The Generalized Lloyd Algorithm tion measure over all vectors assigned to thestate, as in the

The Baum-Viterbi algorithm is closely related to the genefaum-Viterbi algorithm, provides the best parameter represen-
alized Lloyd algorithm for designing vector quantizers for parative in the generalized Lloyd algorithm. This estimate is re-
metric processes [135], [234]. The generalized Lloyd algorithfﬁrred toas theentroidof the.partltllon cell in vector quantiza-
is also known as the Linde—Buzo—Gray (LBG) algorithm [218}0n terminology. T.hus, gach iteration of th.e Baum-Viterbi glgo—
Avector quantizer partitions the parameter set of a process intdtdm parallels an iteration of the generalized Lloyd algorithm.
finite number of cells, say/, and chooses a parameter represeflote that the generalized Lloyd algorithm provides estimates of
tative from each cell. The design of vector quantizers required¥¢ Parameter of the observation conditional densities only. An

distortion measure that quantifies the similarity of one pararfStimate of the transition matrix can be found from the nearest
eter with respect to another. In the context of this section, tR€Ighbor state sequence (7.5) as in the Baum-Viterbi algorithm.

distortion measure is between a vecgpof the process, which
has some underlying parameter, and a paranteter ©. A C.
vector quantizer is designed by minimizing the expected valueThe likelihood function of an HMP may have multiple local
of the distortion measure over all partitions and parameter repreaxima while the Baum algorithm converges at best to a local
sentatives. The generalized Lloyd algorithm performs this mimaximum in the neighborhood of the initial guess of the param-
imization iteratively, once over the partition for a given set odter. Local convergence was demonstrated in [95] for a binary
parameter representatives, and then over the parameter redidP with a binary Markov chain. Initialization of the Baum al-
sentatives using the estimated partition. The process procegdsthm has therefore a significant impact on the optimality of
until a fixed point is reached or otherwise a stopping criterion the parameter estimate.
satisfied. In practice, the expected value of the distortion mea-Several initialization strategies were proposed. For HMPs
sure is replaced by the sample mean of a training sequencevih ordered states that are allowed self-transitions and next-
observations. Convergence properties of the generalized Llcstdte transitions only, commonly used in automatic speech
algorithm were established by Sabin and Gray [283]. A comecognition applications, it was suggested to segment the
prehensive overview of quantization theory and its applicatioasoustic signal from each word infd segments of approxi-
can be found in Gray and Neuhoff [153]. mately equal length, and to estimate the parameter of each state
An important application of vector quantization is in codingrom the observations in the corresponding segment [262].
of speech signals in cellular communication. The signal is moHer HMPs with A > 0, the generalized Lloyd algorithm may
eled as an autoregressive process with a time-varying paramedierused to cluster the observations idtb sets from which
A finite number of parameter representatives is estimated aheé parameter of the HMP can be estimated. The generalized

Initialization of the Baum Algorithm
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Lloyd algorithm applies to scalar as well as vector observationThe parameter is estimated from maximization of (7.11), first
processes. Similar clustering techniques for initialization afver ¢, and then ovef!;}. The maximization ovep can be
the Baum algorithm were proposed in [212] and [232, Seindependently performed for eachMaximizing overa; gives
1.7]. Simulated annealing may also be used as discussed in 1 )

Section VII-E. o = Ll g1 i=1,...,.M—1 (7.12)

T Lo . here«j; = 0. Estimation off; depends on the specific form
D. Global Likelihood M for Left-Right HMPs W M =5 on o depe ne torl
Global Likelihood Maximization for Left-Right S of the observation conditional density. For an HMP with finite-

An HMP is said to beleft—right if its transition matrix is alphabet ofL letters, maximization of (7.11) over the state-to-
an upper triangular matrix. An HMP is said to tieear if its  opservation transition matrix gives

transition matrix has nonzero entries only on the main diagonal _

. . . . . ; . y 17 T L
and first off-diagonal. In this subsection, we present a noniter”(Y: = y|Se =4) = f(y; liea +1, L), 7777
ative algorithm for global maximization gf(s", y™; ¢) over (7.13)

s™ and ¢ for a left—right HMP. The algorithm was developed .
by Fareg6 and Lugosi [111] in 1989 for a finite-alphabet HmWheref(y; Lii+1, ;) denotes the relative frequency of occur-
but it applies to a general HMP as well. Parameter estimatifl ©€S of the symbgj in th_e Sequencer, 41, -+, Y- Sub-
for a left-right HMP can be reduced to parameter estimatio) jtuting (7.12) and (7.13) in (7.11) gives

of a linear HMP [111]. Hence it suffices to describe the algo-log p(s™, ¥"; ¢)

rithm for a linear HMP. The practical importance of left-right M-1 1 L=l 1

HMPs is discussed in Section XIV-A. The rationale for max- = Z log <<1 - m) ﬁ)
imizing p(s™, y™; ¢) was detailed in Section VII-A. The key i=1 conet coht

idea of this algorithm is that the state sequence in a linear HMP M

is uniquely determined by the state occupancy durations. Global ~ + Z Z log f(yr; li1+ 1, ). (7.14)
noniterative maximization is achieved by explicit estimation of =l =l

the parameter of the HMP for a given state sequence, and sieximization of (7.14) ovef!/;} provides the optimal values
stituting that estimate back in the likelihood function. The rghat can be used in (7.12) and (7.13) to obtain the parameter
sulting likelihood function depends only on tiié-state occu- that globally maximizeg(s™, 4"; ¢). A detailed algorithm is
pancy durations. This function is maximized by the Viterbi alggerovided in [111] that shows how maximization of (7.14) can
rithm which is applied to a specially constructed trellis schemle performed using the Viterbi algorithm.

Assume that the number of statd€ is smaller than the The algorithm extends to parameter estimation from mul-
length of the observation sequengeotherwise, the estimation tiple statistically independent training sequences that share a
problem is trivial. Furthermore, consider only state sequenc&nmon state sequence. Parameter estimation from multiple
that start in the first state= 1 and end in the last staie= A7, training sequences with no restrictions on their individual state
since higher likelihood cannot be achieved with partial staf&duences does not appear feasible with this noniterative ap-
sequences. For a linear HM&; = 0if j ¢ {i, i + 1}. Let proach. Estl_mat|on from mqlnple training sequences is essen-
a; = a; 1. Let K; denote the number of time units the chaifial for Ie_ft—ng_ht HM_Ps a|_1d is cor_nmonly pe_rformed when the
spends in staté. The probability of spending; time units in Bau_m—Vlterbl algorlthr_n is used in applications such as auto-
statei < M and then moving to state+ 1 is (1 — «;)* ;. MAliC Speech recognition.

Hence, the pmf of a state sequentes given by
M—1
p(s™; @) = H (1— )" . (7.9) Bayesian estimation of the parameter of an HMP was studied
by Robert, Celeux, and Diebold [269]. The approach general-
i ) __izes Bayesian estimation of mixture processes [87], [270]. It is
Let; = >;_,k; denote the total number of time units,,q0q on Gibbs sampling of the parameter which is assumed
spent in the first: states. Thusk; = 1 — iy, Where ., 440 with a given prior. Usually conjugate priors are used.
lo = 0. The sequence of observapons from stae given t,’y In [269], the M rows of the transition matrix were assumed
Y141, S Ylf’.and by assumption, _these random_Va”ables?atistically independent and a product gt Dirichlet priors
are statistically mdependent._ln aqldmon, observations frofl. < 2<sumed. The observation conditional densities |6, )}
different states are also statistically independent. Hence were assumed members of the exponential family for which
M l; a conjugate prior for each; exists. The parametes can, in
s o) =1 [l p(u-1S- =i o). (7.10) principle, be estimated by sampling from the conditional den-

i

E. Bayesian Parameter Estimation

i=1

i=1 r=li_1+1 sity of the parametes(¢|y™). This, however, appears imprac-
From (7.9) and (7.10) tical as this conditional density involves the sum of an expo-

M1 nentially growing number of terms with. On the other hand,
log p(s™, y"; ¢) = Z (I; — li_1) log(1 — ;) + log(ey) sampling fromp(¢|s™, y™) is much simpler since this density

constitutes only one term of that sum. Thus, the Gibbs sampling

=1

approach proposed in [269] is based on alternative samplings

M i
+Z Z log p(y+|S- =i, ;). (7.11) fromp(¢|s™, y*) and fromp(s™|y™, ¢). The first sampling pro-
i=1 r=l;_1+1 duces an estimate of the parametexhich is then used in the
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second sampling to estimate the state sequ&hdeurther sim- identifiable if their order is overestimated [116], [156, Ch. 22],
plification was obtained by performing samplings for eackh [282]. Information-theoretic approaches for order estimation of

from a finite-alphabet HMP were developed by Finesso [116], Ziv
p(sdy™, {se,m £ 1), ¢) and Merhav [330], Kieffer[187], and Liu and Narayan [223]. An
order estimation approach for a general HMP was developed by
= pstlyes -1, se41, ¢) Rydén [277]. These approaches are reviewed in this section.

— s,_15, ()02 |05, (P))0s511: () (7.15) Let M be the true order and lef’ be the true parameter of
2 s 15, (P)0(Ye]0s, () a5, 5,11 (B) ' an HMP {Y;}. Let M,, denote an estimate dé/ from an ob-

_ o _ _ i servation sequenag’. Let ¢; denote the parameter of an HMP

instead of a single sampling frop(s" |y, ¢) which requires it assumed ordej. Let %) denote the parameter set. For a

forward—backward recursions. The Gibbs sampling algorithﬁhite-alphabet HMP of assumed ordgand parameter i®s,

produces a sequenge,, s"(m)} where,, ands"(m) de- e genote the parameter setdff’. Also, L denotes the size

note, respectively, the parameter and state sequence estimgft@ﬁe alphabet. LeP, ,j = 1, 2 denote the sequence of

at the end of thenth iteration. _ nested HMP densities. All but the order estimator of [223] use
Convergence properties of the Gibbs sampler were studigd 11 estimate ofp.. Let
e

in [269] and a summary of the results was also given by R N
Rydén and Titterington [280]. It was shown that the sequence ¢; = arg i logp(y"; ). (8.1)
{¢m, s"(m)} is geometrically ergodip-mixing homogeneous  The order estimator for a finite-alphabet HMP proposed by
Markov chain with a unique stationary dlstrlt_)utlon given P¥inesso is given by [116]
p(¢, s™|y™). The sequencgs™(m)} is geometrically ergodic 1 . logn
@-mixing Markov chain with a unique stationary distribution M,, = min {arg min {—— logp (y"; d)j) + 26]2» }}
given byp(s"|y™). The sequencéyp,, }, which is not a Markov izt " "
chain, is ergodicy-mixing, and converges weakly as — oo R h (8.2)
at geometric rate to a stationary distribution giverpiyly™). Whereg; is the ML estimator ove®{” ande; =j(j+L—2).
It follows from [269, Theorem 1] that the conditional expecThis penalized ML estimator was proved strongly consis-
tation of any functiong(-) of the parametep, giveny", can tent wheng® € @ and —D3H(Pyo, Py),_,, > 0, where
be approximated by the corresponding sample average fréhiPy, P;) is defined in (4.40) [116, Theorem 4.5.2]. The
a realization of{¢,,}. A central limit theorem for such an order estimator uses an estimate of the rate of growth of the
average is given in [269, Corollary 2]. maximized log-likelihood ratidog p(y™; ¢;)/p(y™; ¢°) which

A simulated annealing approach for estimating the parameteas found to be in the order tdg » a.s. [116, Theorem 4.4.1].
of an HMP was developed byAndrieu and Doucet [13]. Each The order estimator for a finite-alphabet HMP proposed by
iteration of the algorithm includes the above described iterdiv and Merhav was derived using a Neyman—Pearson type
tion and an additional step which aims at accepting or rejectingterion [330]. It minimizes the underestimation probability
the new parameter estimate. The decision is based on a prdbd,, < M), uniformly for all HMPs in7,,,, subject to an
bilistic scheme involving a deterministic cooling schedule. Coxponential decay of the overestimation probability given by

vergence in probability op(e,.|y™) to p(@|y™) whered is a P -
MAP estimate ot was shown under some mild regularity con- hﬁlllé%f n log P (M" > M) > A 83)
ditions. for all HMPs inPy,, . The estimator is given by

A Bayesian approach for iterative estimation of the parameter _ _ 1 R 1
of a switching autoregressive moving average (ARMA) process» = min {Ji —, logp (y"; </>j) -y < A} (8.4)

was developed by Billio, Monfort, and Robert [39]. Several Ve(ﬂ/hereu(y") is the length of the binary codeword fgF in the

sions of the Gibbs sampler presented earlier, that are particul rtl-:ympeI—Ziv universal data compression scheme. This length

suitable for hidden Markov fields, were studied by Qian and Ti unction was defined in Section VI-E. #log p(y™; (;)') is inter-
. . oo ! . i 9y
terington [260] and by Rydén and Titterington [280]. Here Sar}geted as amodel-based codeword lengtlyfd68, p. 85, then

pling is performed from a tractable pseudo-likelihood functio 4) seeks the shortest model-based binary codeword length

of the underlying Markov process. Reparametrization of HM tRat is sufficiently close to the universal codeword lengt™)
with Gaussian and Poisson observation conditional densiti% '

using less informative priors, was studied by Robert and Tgfquztgﬁ:zéﬁﬁrg erI;tiSo”:g(sqtuii“t\/)\//rE%Iiglc); fche Srd%r gstlmi':ltor
terington [271]. ) " . . gp(y”; ¢°) is re-

placed byu(y™). Unlike some other estimators presented in this
section, (8.4) does not require knowledge of an upper bound on
the orderi.

Theorderis the number of states of the HMP. Algorithms for It was pointed out in [223], [187] that the estimator (8.4)
estimating the parameter of an HMP assume that the ordetaads to underestimate the order of the HMP and hence is not
known. In many applications this is not the case. For exampbmnsistent. Liu and Narayan [223] proposed a slightly modi-
in blind deconvolution of unknown communication channeldied estimator and proved its consistency for a stationary er-
the received signal is an HMP, but its order determined by tigedic HMP that satisfies some mild regularity conditions. The
memory length of the channel is not known. This application @stimator assumes knowledge of an upper bofthcbn M.
further discussed in Section XIV-C. In addition, HMPs are ndt uses the binary codeword lengtliy™) for encodingy™ in

VIIl. ORDER ESTIMATION
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the Wyner—Ziv asymptotically optimal universal compressiokIDL order estimator uses a code for the cl@s whose ex-

scheme [319]. The estimator is given by pected redundancy grows at the minimum possible rate for al-
N o most all sequences modeled by member$gf. This results
My =1+ max {1 <Jj<M: in positive constantd; < ¢; for all 5. It is noted that relatively

1 . 1 small penalty terms may not provide consistent order estimators
——logp(y™; ¢;) — —v(@") > )\n} (8.5) as overfitting of the data may prevail. Sufficient conditions for
" " . consistency of the MDL order estimator and examples of model
provided the set is not empty, otherwidé, = 1. The sequence classes for which the MDL estimator is consistent were given
A, must satisflim,, .o An = 0 andlim,, .., nA, = cc. The by Kieffer [187], Barron, Rissanen, and Yu [24] and Csiszéar and
estimator is strongly consistent J7” , 27"* < oo and is Shields [74].
weakly consistent otherwise. Rydén [277] proposed an order estimator for a stationary
Liu and Narayan [223] proposed another strongly consistesygodic general HMP. The estimator is based on the MSDLE
order estimator for a stationary ergodic finite-alphabet HMBbtained from maximization of(y"™™; ¢) in (6.7). When the
They assumed that the parameggis random with prior, and  HMP is identifiable, in particular, when afld,;} are distinct,

the pmf ofy™ is the mixture anym > 2 may be used and there is no need for an estimate
n_ " of the largest possible order of the HMP. Otherwise, an upper
%(y") = /p(y |65 n(dep;)- (8.6) boundM on M is required, andn > 20 must be used, since

Dirichlet priors were assumed for the entriessbind B. Esti- finite—dimensioial distributions of the HMP are uniquely deter-
mation ofg;(3™) in terms of relative frequencies of states angnined by the2A/-dimensional distribution [277, Theorem 1].
observation symbols is outlined in [223, Appendix]. Avoiding'he order estimator is given by

ML estimation is desirable since only local ML estimation pro- M, = are max {bgq (y"’"- </~>) e }
cedures are available. The mixture model (8.6), however, is not e T B
trivial to estimate. Aspects of data modeling in the minimum de'hererj is the maximizer ofy(y"™; ) over¢ € ®;, andc;.

scription length (MDL) sense using mixture densities and M| nondecreasing sequence of real numbers that penalize the

ezsAtflm?rt]ed p?ra‘gegers ;,f\i/eiren?tUdr;z(ijtibﬁ B?r:on, I?T:s?atri\en, a?vi é‘iho&d and thus prevent overestimation of the model order.
[24]. They provided sufficient co ons Tor asymptotic equ deenM is required, maximization in (8.10) is over< j <

alence of the two approaches. The order estimator of Liu a[1 2l wh denot int ¢ Th t
Narayan [223] is given by _m_/ | where[-] denotes an in eger part. The sequencg sat-

R - isfiesc;y1,n > ¢ » forall n andlimsup,, ¢; »/n = 0. Under

M, =max {1<j<M: ¢;(y")—q;—1(y") >c;logn} (8.7) these and some additional regularity conditions, it was shown
wherec; = (5(j + L — 2) + 5)/2 andgo(y") = 1. If the set in [277, Theorem 2] that the estimator (8.10) does not under-
in (8.7) is empty ther\Z,, = 1. This estimator provides expo-@stimate the order of the HMP asymptotically as— oo,
nentially decaying underestimation probability and polynomwith probability one. The regularity conditions hold, for ex-
ally (as1/n3) decaying overestimation probability. ample, for HMPs with observation conditional densities from

Kieffer [187, Theorem 2] proposed a code-based order edfie Poisson, negative exponential, and normal with fixed vari-
mator for a class of stationary ergodionstrained finite-state @nce families. The conditions e ,, are satisfied by the penal-
sourcesand proved strong consistency of the estimator. St&ing terms used in the Akaike information criterion (AIC) [4]
tionary ergodic finite-alphabet HMPs are special cases of titd in MDL [267] or BIC [287]. Thus, these estimators never
class. Letp; denote a code designed By, source sequences.underestimate the HMP order wheris sufficiently large. The
The codey, is a mapping of source sequences into binary!C choice isc; ,, = dim(®;) and the BIC choice is;, ,, =
strings such thap;(y™) is not a prefix ofip; (2") if y™ andz"  (1/2) dim(®;)log(n) wheredim(®;) denotes the dimension
are two distinct sequences. Lety, (")) denote the length of of the parameter space of thth—qrder HMP. An earlier §|m|lar
the binary strings; (). Kieffer used ML codes>; (™) whose resu_lt on qrder estimation of_mnfture processes obtained from
lengths are determined by log p(y™; (/;j). The estimator is Maximization of a penalized likelihood function was proved by

(8.10)

given by Leroux [213, Theorem 4]. Additional references on consistent
N ] order estimators for mixture processes can be found in Rydén
M, = arg mjm{w(gpj (y")) +kjlogn} (8.8) [277].
wherek; is a subsequence of the positive integérsthat sat-
isfiesk; 11 > 2(k; +1) andzyn SUDyeq, p(y"; @) < nhi for IX. DYNAMICAL SYSTEM APPROACH
n > 2andallj € Z*. For sufficiently largen, this estimator  We have seen in Section IV-B6 that a finite-alphabet HMP has
takes the approximate form a dynamical system representation in the sense of control theory.

M,, ~ arg min {_ log p (yn; ¢J) +e logn} (8.9) Similar representatiqns exist.for other t.ypes of HMPs with dis_—

J crete as well as continuous time and discrete as well as contin-
where{c;} is a nondecreasing sequence of positive constamisus range state and observation processes. Elliott, Aggoun, and
that is determined from the model classg3;, }. This esti- Moore [99] provide a comprehensive study of HMPs in the dy-
mator resembles the MDL code-based order estimator of Rismical system setup. They develop conditional mean estima-
sanen [267] or the Bayesian information criterion (BIC) basedrs for the states, the number of jumps from one state to another,
order estimator derived independently by Schwarz [287]. Tliee state occupation time, and for some statistics reflecting the
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assignment of observations among the various states. The dsti-all w such thatEg{A|G} # 0, otherwise,E;{X |G} can

mators are then used in the EM algorithm for ML estimatiobe arbitrarily chosen. The approach can be applied wheis

of the parameter of the HMP. As is well known, conditionathe probability measure of the HMP atdd is the probability

mean estimation of continuous-time signals usually results in imeasure of an i.i.d. process that is independent of the Markov

finite-dimensional filters for nonlinear non-Gaussian problemshain. The approach is demonstrated here for a discrete-time

The book [99] contains almost all known estimation problemdMP with Gaussian observation conditional densities. Our dis-

for which finite-dimensional conditional mean estimators existussion follows [99, Ch. 3].

In this section, we demonstrate the approach for a discrete-time.et (4>, B5) denote a sequence measurable space where

HMP with Gaussian observation conditional densities. The ag=> = {sg°, 4¢°} is the set of all state and observation se-

proach requires forward recursions only. Its main advantagegigences, an#%’ denotes the Borel produetfield. Let P be

that it generalizes to continuous-time HMPs. the distribution of the HMP orf.A>, B). For the Markov
Application of the EM algorithm for estimating the parametethain we use the same representation as in (4.19). Specifically,

of a discrete-time dynamical system using Kalman smootheve assume a Markov chait$; } with state spacé = {¢;, j =

was first performed by Shumway and Stoffer [292]. The ag- ..., M} wheree, is a unit vector inR*, a transition ma-

proach was then expanded by several authors. Zeitouni drid A, and a stationary martingale difference sequefice-.

Dembo [324] studied finite-state continuous-time MarkoVhe observation process;} is characterized by a sequence

chains observed in white noise. They developed a finite-di#¥; } of i.i.d. standard Gaussian random variables independent

mensional conditional mean causal estimator for the numir{S;}, and twoM -dimensional vectors ando representing

of jumps from one state to another. The estimator was usedfe means and standard deviations of the Gaussian observation

an extended EM algorithm for ML estimation of the transitiowonditional densities in th&/ states. All components ef are

matrix of the Markov chain. The extension of the EM algorithrassumed positive. The dynamical system representation of the

to continuous-time processes and its convergence propertiddP underp; is given by

were established by Dembo and Zeitouni [77]. They also applied

the EM algorithm to a wide class of diffusion processes which  Si41 = A'Sy + Viq1

resulted in iterative applications of finite-dimensional Kalman vy, , = ¢S, + (¢/S,)W,41, t=0,1,2,.... (9.2

smoothers. A finite-dimensional conditional mean causal esti-

mator for the states of the chain was first developed by Wonhargt p, denote a second distribution ¢m>°, B%). Under %,

[315]. Finite-dimensional conditional mean estimators for thes,} has the same distribution as under, {W,} is an i.i.d.

state occupation time and for a stochastic integral related to §t&juence of standard Gaussian random variabled,%ndnd

drift in the observation process were derived by Elliott [98]17,} are statistically independent. The dynamical system rep-

MAP estimators of a randomly, slowly varying parameter, qesentation of the HMP undé, is given by

a continuous-time and a discrete-time ARMA processes, were

developed by Dembo and Zeitouniin [78] and [79], respectively. Sip1 =A'S, + Vi

ML est|m§1t|on of the parameter of a dlscrete—t|me dyqamlgal Yier = Wiat, £=0,1,2,.... (9.3)
system using Kalman filters rather than smoothersin conjunction
with the EM approach was developed by Elliott and Krishna-

(n) (n) -di i istributi
murthy [100]. Robust time discretization of the continuous-timé%:(_'\t Py7 and I denote then-dimensional distributions

- (n) (n)
filters and smoothers for estimating the parameter of an HfpAuced byPy and o, respectively. Clearly” ™ and Fy

was studied by James, Krishnamurthy, and Le Gland [168]. {ohosiesbs densities with reﬁsps{"e)ct/{f}fny nL \ivhereu r:jere S
The central theme in [99] is to derive conditional mean e%—e te tehsgu(;e_ mea;ure,l q 't'<< 0o - 1€ pld(.') a%n)po(~2j
timators for statistics of the HMP which are required for ML enote the:-dimensional densities corresponding/tp * an

(n) ; n (n)
estimation of its parameter by the EM algorithm. The condf-0 - "eSpectively. ASSL(T;e that' > " < Pn) - The Radon-
tional mean estimators are developed using a generalized Bay#@dym derivative ofP’ " with respect ta; " is given by
rule. This is a standard technique used, for example, in [324].

n|.n—1 n—1
This rule, or formula, enables evaluation of a conditional mean A(si ) = pi(y"lse” p(so— )
under one probability measure using another more convenient poly™)p(sy™)

probability measure. This is done as follows. /&t < F; be
two probability measures on the measurable sp&ceF). Let

Pol¥Yt4+1 p(St |3t—1)

_ = 1 (Vg1 |se)p(se|si—1)
-1l (Ye41)

Aw) = dPi(w)/dPy(w), w € £, denote the Radon—-Nikodym =0

derivative or density of” with respect taF,. LetG C F de- n—1g (%) 0,18

note a subr-field of 7. Let X denote a random variable on = ‘ ‘ (9.4)
{Q, F}. Let E;{X|G} denote the desired conditional mean of t=0 9(u+1)

X underP;. Let Eo{ X |G} denote the conditional mean &f
under P. The generalized Bayes rul47, Lemma 8.6.2], or Wherep(sols_1) = p(so) andg(y) = (2m)~"/2 exp{—y?/2}
the Kallianpur—Striebel formula [222, Lemma 7.4], is given bylenotes the standard normal pdf.
To state the generalized Bayes rule for the systems (9.2) and
(9.3) letG,, = o(Sy~t, Y™) denote the smallest-field gen-

Eo{AX|G}
erated by(Sy !, Y™). The sequencég,, } forms a filtration.

Eitxio) = Eo{A|G}

(9.1)
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Similarly, let),, = o(Y™) denote the smallest-field gener- simply by assigning(,, = 1 in ~,,(X,.S,.). A general recursion

ated byY™. Let{ X, } be a sequence of scalar integrable randofor ~,, 11 (X,,+15.+1) whenX,,,, is any of the above defined

variables adapted t0G,,}. From (9.1) four random variables was given in [99, Theorem 3.5.3]. The
recursion is given in terms aef, = A’e;, and

Eq {A(Sy™, Y") X0}

EO {A (Sg_l, Yn) |yn} ) g (%) cr’lek

This equation can be verified using the first line of (9.4) with- Ak (Un+1) = 9(Yna1)
out resorting to measure theoretic arguments. We emphasize

that{S,} and{Y;} are statistically independent undgy. Ina Note that Ax(yn+1) depends on the observatiog+1 as
more general situation of a finite-energy continuous-time co#ell as the parameter of the HMP. It constitutes the product
tinuous- -range s|gnd]5t} observed in white noise, the Radon_Of the kth-unit vectorey, and the last multlpllcatlve term of
Nikodym derivative ofP; with respect taf, is given by Gir- A(Sg, y**') for S, = ¢. The ldentltyzk L Sher = 1was
sanov theorem [222, Theorem 6.3], [247, Theorem 8.6.3]. THRuNd useful in deriving the recursions. For example, using this

Ck- (9.11)

form involves a stochastic integral. identity and the state equation from (9.3), it is easy to verify the
Let following recursion for estimating the state vector:
Yu(Xn) = Eo {A (S5 1Y) Xl W} (96) Mo

1 (Snt+1) = - (Sn) Ak (yn dj. 9.12
be the nonnormalized version &f { X,,|),, } and rewrite (9.5) 1 (Snet) kz::lh (Sn)Aryn2)] ( )
as

(X,) The recursions for estimating the other statistics represented by
Ei{X, |V} = I (1’; . (9.7) X, are given by
Tn

It is easier to derive recursions fo#,,(X,) than for M

Ei{X.|V.}. Hence, (9.7) is the basic equation we shalln+1(Jij(7 +1)Sni1) = Wi (R)S) M (¥t 1)) di

be working with. =
Of interest are special cases¥f that provide sufficient sta- + [ (Se)Ai(ynt)]aije;  (9.13)
tistics for an EM iteration in ML estimation of the HMP param- M
eter. These are as follows. Y1 (O (n +1)Sp41) = Z[fy;(oj(n)sn))\k(ynJrl)] dy.
i) X, = Jij(n). Thisis the number of jumps from stateo k=1 ,
statej duringn transitions of the chain. It is given by + (50X (nr1)]d; - (9.14)
M
n f _ / f
. Yt 1 (L7 (0 + 1)Snp1) = D[V (LF (R)Sn) Ak (Ynt1)] di
Jij(TL)IZ(Séflei)(S;Gj), jzl, ceey M. (98) / ; J
=t + 0 (SN )1 (Yngr) .
i) X,, = O;(n). This is the occupation time of stafdn n (9.15)

chain transitions given by
These recursions can now be used to obtain the conditional

n mean estimate&’ { X,,+1|Vny1}. FOrX,, = S,, we use (9.12)
=Y (Si_ie),  F=1..., M. (9:9) to recursively calculate
t=1
iii) X, = T/(n), for some deterministic functiorf(-). Snt1 = E{Sn+1 Va1 }
This random variable represents the sum of elements _ Ynt1(Snt1) (9.16)
of {f(Y;),t = 1, ..., n} assigned to statg duringn Vg1 (Sng1)1’ '
transitions of the chain. Of interest here are the functions ) .
F(y) = y and f(y) = y>. T]f(n) is defined by Note that~,1(S.+1) is the vector of nonnormalized con-

ditional probabilities ofS,,+1 given Y, 41 since§n+1 is the
n M-dimensional vector whosgth component isP(S,+1 =
Z (S;_ie))f j=1,..., M. (9.10) e¢j|Yns1). Equations (9.12) and (9.16) coincide with (5.14). A
=1 smoothed estimator fdf,,; was derived in [99, eq. 3.6.2]. For

. . . X, = J;;(n) we use (9.13) to recursively calculate
It turns out that a recursion for th& -dimensional vector i) ( ) y

v (X,S,) can be developed from which the desirgg X,,)

can be obtained simply by taking the inner prodygtX,, S, )1 Jij(n+ 1) = E{Jij(n+ D Vs }

wherel denotes am\/ x 1 vector of1’s. We shall therefore _ Va1 (ij (1 +1)Snt1)1
focus on the development of the recursions for calculating V1 (Snt1)1
Y41 ( Xy 1Sn41) from ~,,(X,,S,,) for n > 1. This will also ~ Ynr1(Jiy(n +1))

provide a recursion for estimating the state vedprat timen N Yr1(1) (@17)
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Estimation of the other two random variabl®s(n + 1) and cursion was developed for estimating the transition matrix of

ij(n + 1) can be performed similarly from (9.14) and (9.15)a Markov chain observed through arbitrary noise with indepen-

respectively. dent samples and some unknown finite variance. Convergence
Estimation of the parameteéf of the HMP (9.2) fromn ob-  of the recursion with probability one and in mean square was

servations can be iteratively performed using the EM algorithshown under some conditions.

In the context of this section, the parameter in each iteration canWith the introduction of the EM algorithm in 1977 there has

be estimated from maximization of the following function ovebeen renewed interest in recursive estimation from incomplete

</3 [77] data. Although HMPs fall into this category, recursions for gen-
ap™ eral incomplete data models are not immediately applicable to
7 & n—1 _n HMPs. Recursions for parameter estimation from incompl
AQ, ((7)7 ¢m) = E,, {log q(bn) (So Ly )|yn s. Recursions for para ete_ _es’_[ a_lto (0] co pet_e
P, data often aim at least at local minimization of the relative en

(9.18) OPY

This function is analogous to the right-hand side of (6.9). The K(¢) = Ego {log PYo1; ¢0)} (10.1)
usual parametrization is assumed. Maximization of (9.18) sub- P(Ynt1; @)

ject to natural constraints gives the following estimates at the . )
Jm + 1th iteration. For{i j}ge {1 M} 9 over¢ € ® whereg is the true parameter. The relative entropy

attains its global minimum of zero fas ~ ¢°. To describe a

dis(n) = Jij(n) _ mmlJii(n)) (9.19) recursion with this goal, 16k (y,+1; ¢) = Dy log p(ynt1; ¢)
“ Oi(n)  7(0i(n)) ' denote the score function and léf denote a matrix of suitable
Ty( ) () dimension. The recursion has the form of
. 5 L (n
&i(n) == = (9.20) T 1 .
J( ) OJ(TL) ’yn(OJ(TL)) (/)n+1 = ¢n + n__H b (yn+17 (/)n) (102)
5i(n) = — [Tf (n) — 2cj(n)T§(n) + CJQ'(TL)O]'(TL):| where the specific form of th_e adaptive matﬁx 5|gn|f|ca_ntly _
O;(n) affects convergence properties of the recursion. Of particular in-
1 terest is the inverse of the information matrix for the incomplete

v A y
" 1 (0;4(n)) [7" (Tj (”)) — 2¢;(n)m (I} (n)) datla given byl (¢) = Eg{h(Yn; 9)R' (Yy; ¢)}. FOr 1, =
. I;'(¢.), and under suitable regularity conditions, the recur-
2 . n
+ & (n)m(0; (”))} : (9-21) " 5jon can be shown to be consistent asymptotically normal and
efficient in the sense of achieving equality in the Cramér—Rao

The recursions for estimating;(n), O;(n), T?(n), andT%fz , , |
are calculated based on thengééﬁ;ble ég)ranajyﬁizzlnd afixed Mequality [110], [281]. Rydén [281] showed that some of these
’ conditions, however, do not hold for mixture processes and

number of observations. These re-estimation formulas may; ence cannot hold for HMPs. The recursion (10.2) with—
be interpreted similarly to _the re-estimation formulas (6.15 1((;) ) is also difficult to irﬁplement since expiicit fdrm of
(6.17), and (6.18), respectively. Note that only forward recu{ﬁe incomplete data information matrix is rarely available.

sions are used in (9.'19)_(9'21)' Furthermore, the parameter'ﬁﬁérington [300, eq. 9] proposed to use instead the informa-
timates can be straightforwardly updated when the number. 0 : .
tion matrix for the complete data. The recursion was related

observations is increased framto n + 1. to an EM iteration and proved under some conditions to be

consistent and asymptotically normal for i.i.d. data. This

recursion, however, is never efficient and its convergence for
Recursive estimation of the parameter of an HMP is of greatixture processes was not proved [281]. Weinstein, Feder, and

practical and theoretical importance since one always wish®ppenheim [310, egs. (19)—(21)] derived a similar EM related

to be able to update the parameter estimate when new obserggursion for stationary ergodic processes but did not study its

tions become available. Consider, for example, hidden Markgvoperties.

modeling of speech signals in automatic speech recognitionAnother recursion with the same goal of minimizing the rel-

applications. Here, an affirmative human feedback can be usgf/e entropy (10.1) proposed in [310, eq. (4)] is given by

by the recognizer to improve the modeling of a particular word . . .

using the speech utterance entered by the user. This, of course, Gnt1 = dn + 10N (yn+1; ¢n) (10.3)

could not be done with the Baum algorithm which requires the

entire observation sequence in each iteration. Recursive estitfygere the sequendey, } satisfies

tion is also desired when adapting to time-varying parameter of

an HMP. This situation occurs in automatic speech recognition,

neurophysiology, and data communications when the underlying i

HMP changes with time. These applications are discussed in Z% =0

Section XIV. Recursive estimation may also be computationally n=l

more efficient and require less storage than the Baum algorithﬁ\r.‘ oo
Recursive estimation of the parameter of an HMP was studied Z 72 < 0.

as early as 1970 by Kashyap [182]. A stochastic descent re- —

X. RECURSIVE PARAMETER ESTIMATION

lim v, =0
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It was suggested that(y,,+1; J)n) may be calculated from the eq. 3.18] applied similar ideas to recursive estimation of a
complete data using a one-dimensional version of the identMarkov chain observed in white Gaussian noise.

(6.24) given by Rydén [279] proposed a recursion for estimating the param-
eter of an HMP which does not use the adaptive makiix
h(tnt1; @) = Eg{Dylog p(ynt1; Snt15 #) | ynt1}. (10.4) The recursion uses vectogs, = (y(n-ym+1, - Ynm) Of

m successive observations, and a projectigninto a setG.

For HMPs, the alternative (10.4) does not offer computation€t 2(¥; ¢) = Dy log p(y; ¢) denote the score function where
savings over direct calculation 6fy,,1; ¢,.) using (4.5), par- P(¥; @) is them-dimensional density of the HVP givenin (4.3).
ticularly when estimating the transition matrix of the Markow he recursion is given by

chain. Another form for calculating(y,,+1; J)n), presented

below, is more suitable for HMPs. It was argued in [310] that bny1 = Pa (d)n +vah (yn+1; %)) (10.7)
the recursion (10.4) is consistent in the strong sense and in the

mean-square sense for stationary ergodic processes that saji$féfrey,, = von == for somey, > 0 anda € (1/2, 1]. The set

some regularity conditions. Some of these conditions, howeveris assumed a compact convex subseb efhich containss?,
are in general violated for i.i.d. observations from a finitg js the closure of its interiori can be written as

mixture density and hence by HMPs [279], [281]. This problem

can be circumvented if minimization @ (¢) is constrained to G={p:g;($)<0,j=1,...,J}

a compact convex subsgtC ¢ by projectingg,,+1 ontoG in

each iteration [279], [281]. Of course? € G. The estimator for some finite sefg;, j = 1, ..., J} of continuously differen-

(10.3) with~,, = n~%, 1/2 < a < 1, is asymptotically effi- yiape functions, and at eaghe G, the gradients of the active
cient if post-averaging of parameter estimates is applied [281] . straints (i.e., thosg-functions withg(¢) = 0) are linearly

A consistent asymptotically efficient estimator in the sense pfjenendent. The simplestthat satisfies these requirements is
[211, p. 404] for i.i.d. data with better finite-sample propertieg simplex whereas ajl-functions are linear.

was proposed by Ryden [281, Theorem 3]. The estimator hagyqen [279] studied statistical properties of (10.7) assuming
the form of (10.2), whereF_,;l is an empirical estimate of the 5 giationary irreducible aperiodic Markov chain and some ad-
incomplete data information matrix and parameter estimalggional mild regularity conditions. These conditions are satis-
are recursively projected ont. These ideas were also foundiey by many important parametric densities including normal
useful for HMPs as will be seen shortly. densities with positive variances. The sequefite} generated

Holst and Lindgren [163, eq. 16] first proposed a recursigly, (10 7) was shown to converge almost surely to the set of
of the form of (10.2) for estimating the parameter of an HMR¢,nn—Tucker points for minimizing the relative entropy

They used
_ p(Y™; 4%
W(ya: @) = Es{Dylogp(tn. SulSucr: @) v"}  (10.5) Kn(9) = Eg {108 (V7 9) (10.8)
and an empirical estimate of the incomplete data informatimver the sety [279, Corollary 1]. The relative entropy attains
matrix in the form of the adaptive matrix its global minimum atp~¢° provided that the HMP is identifi-
able. Conditions for identifiability were given in Section VI-A
4 1 o 7 where in particulasn > 2 is required. The behavior of the rel-
b= n Z h (y“ ‘/’t—l) h (y“ ‘/)t—l) : (106)  ative entropy is otherwise not known and the set may contain
=t other points. If the procedure is initialized sufficiently close to
The conditional expectation in (10.5) is ové, i, 5,) Metrue parametef” theng,, is qxpecteéj to converge ¢S with
given ™, and it can be efficiently calculated using a forwardi9h Probability. Assuming that, — ¢°, and some mild regu-

recursion form Section V-A. Note tha(y,.; ¢) does not equal larity conditions are satisfied, it was shown in [279, Lemma 2,
Dy log plynly™~"; ¢) and hence is not a score function. Eval! N€orem 2] that the averaged estimator

uation of F;, is done recursively fronF,,_; anda(y,; d}n_l) "

without matrix inversion [163, eq. 14]. Rydén [279] argued that @, = 1 Z & (10.9)
the recursion of Holst and Lindgren aims at local minimization ni3

of the relative entropy rat®( P.|| P,,) defined in (4.41). More-

over, he showed that if, — ¢°, thenn'/2(¢,,1 — ¢°) is converges at rate~1/2 and has similar asymptotic properties
asymptotically normal with zero mean and covariance matras the off-line MSDLE obtained from maximization of (6.7).
given by the inverse ofim,_... Eg{h(Yy,; ¢°)1/(Ys; ¢°)}.  The latter estimator is asymptotically normal and it performs
Lindgren and Holst [220] applied the recursion for estimatingimilarly to the ML estimator [274].

the parameter of a Markov modulated Poisson process. HolstA recursion for HMP parameter estimation using prediction
Lindgren, Holst, and Thuvesholmen [164] applied the recursi@mror techniques was proposed by Collings, Krishnamurthy, and
for estimating the parameter of a switching autoregressidoore [64] and demonstrated empirically to provide fast con-
process with Markov regime. Krishnamurthy and Moore [19%gergence.

n
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XI. SIGNAL CLASSIFICATION addition,{y; } are statistically independent givén(")}, andz

In recent years, a series of papers on universal classificatfif 1%, are statistically independent givér'/)} and the ac-
of Markov chains was published. Ziv [328] studied testing of &€ Source. AllJ hypotheses were assumed equally likely. He
simple hypothesis from which a training sequence is availagiBoWed that the optimal decision rule is given by
against a composite hypothesis in the set of all Markov chains
up to a given order. He developed an asymptotically optimal
test in the Neyman—Pearson sense. Gutman [155] characterized o (=, y,6@) p (6®) dp®
the tradeoffs between the best exponents of the two kinds of = argmax /s 0 O da0
. Jp(y:16@) p (¢©) dop

errors. He also extended the approach to multiple hypotheses
from which training sequences are available and allowed rejec-Merhav and Ephraim [238] proposed an approximation to this
tion of all hypotheses. He developed a test with asymptoticafgcision rule that does not require integration and explicit priors
vanishing error and reject probabilities. The generalized likéor the parameters. The approximate Bayesian decision rule is
lihood ratio test (GLRT), which relies on ML estimates of thgiven by
unknown sources, was used in [155]. This test was implemented @
using empirical entropies. Merhav [237] developed a Bayesian . Igf}fip (“" Yis ¢ )
approach for multiple hypotheses testing of first-order Markov J = argmax G

roach for mu! ses test . . & naxp (v 60)
chains using estimates of their transition matrices and studied (D

its performance. ) _ . S
Optimality of the GLRT in testing a simple hypothesis, sa he ratio of the two maxima comprises a similarity measure be-

P — P,, against a composite hypothesis, Say— P, € P ween the test and training data. The ratio is likely to be larger
where P, U P is asubsetof all stationary ergodienth-order fOr  andy; emerging from the same HMP than ferandy,
Markov measures, was studied by Zeitouni, Ziv, and Merh&yiginating from different HMPs. This decision rule is similar
[325]. A version of the Neyman—Pearson criterion was used i Universal decision rules developed by Ziv [328] and Gutman

which both error probabilities approach zero exponentially fat>°]- It was shown in [238, Theorem 1], under some regu-
with the number of observations. It was shown thatjfu 7 is larity conditions, that the decision rules (11.1) and (11.2) have

closed with respect to exponential combinationgpfand P, the same asymptotic behavior as the length of the test sequence

j = argmax p(ely,)

(11.1)

(11.2)

i.e., if for everyP, € P, and everyx € [0, 1] n — oo. Furthermore, for HMPs with positive transition proba-
’ bilities and a set of training sequences whose lengths grow
Qo =C,P§P™ € PUP at least linearly with the length of the test sequence, the de-

cision rule (11.1), and hence (11.2), provides exponentially de-

whereC,, is a normalization factor that makex, a pmf, then caying probability of error as — oo. The error exponent in
the GLRT is asymptotically optimal in the above describeboth cases is the same. When>>> n
sense [325, Theorem 2]. A closely related condition developed @) @)
by Gutman (cited in [325]) is necessary and sufficient for arglgf}f(p(mv Yi; 0) = arglgf}f(p(yi? ¢™)
asymptotic optimality of the GLRT. Whether the GLRT is
optimal for classification of HMPs even with a finite alphabe@nd (11.2) can be further approximated as
is still an open problem. L

Classification problems involving HMPs were studied by J = argmax p (fl‘; d)(z)) (11.3)
several authors. Merhav [235] studied a binary hypothesis
testing problem for two statistically independent observatiomhere () maximizesp(y;; () over 3 € ®. This is the
sequences to emerge from the same general HMP or from tetandard plug-in decision rule used in HMP-based classification
different general HMPs. The observation conditional densitissich as in automatic speech recognition applications, see, e.g.,
of the HMPs were assumed members of the exponential fam{ly4.6). The condition of; > n is commonly satisfied in clas-
(Koopman—-Darmois). A modified GLRT was developed ansification problems that are based on off-line training. Without
was shown to be asymptotically optimal in a Neyman—Pearstiis simplification, implementation of the decision rule (11.2)
sense. Kieffer [187] provided a strongly consistent code-basischard since it requires on-line global maximization of the two
approach for identifying whether or not a given observatidikelihood functions.
sequencey™ with unknown distribution was generated by a Kehagias [183] studied a sequential classification problem. A
member of a finite class of constrained finite-state soufggs set of HMPs is assumed given but the test sequence is a sample
Finite-alphabet HMPs are special cases of that class. from a stationary ergodic process that is not necessarily an HMP.

Nadas [244] studied a classification problem in which a te¥he goal is to recursively identify the HMP that is closest to
sequencea = z" is generated by one out dfpossible general the test sequence in the minimum relative entropy sense. A re-
HMPs whose parametefsy™), ..., ¢(/)} are not explicitly cursive algorithm was developed for associating a test sequence
known. A set of/ training sequencey,, ..., ¥;}, ¥; =¥, {z, t = 1,2, ...} with an HMP from a given set of finite or
from theJ HMPs is assumed available. The goal is to identifgountably infinite HMPs. The algorithm was derived under the
the HMP that generated with minimum probability of error. assumption that the test sequence was produced by one of the
Nadas developed a Bayesian approach assuming that the patdMPs. The analysis of the algorithm, however, does not make
eters{¢("} are statistically independent random variables. limis assumption. LeZ be a discrete random variable taking
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valuesin{1, 2, ...}. Letq:(j) = P(Z = j|=*). Let;(t) denote XIll. SIGNAL ESTIMATION

the jth HMP selected at timeaccording to Let {Y;} and{W,} denote observation sequences from two

. . statistically independent general HMPs. Assume {fi&} is a
() = arg max a1 (4)- (11.4)  gesired signal andiiv, } is a noise process. Lef, = Y; + W,
fort =1, 2, .... In this section, we review MMSE estimation
The conditional probability, (j) is recursively calculated using of Y; from Z™, n > t. The problem arises in applications such
as enhancement of noisy speech signals [105], channel decoding
[252], and forecasting in econometrics [156, Ch. 22].
Itis easy to check that the noisy sigfal, } is an HMP [105],
[313]. LetS and S denote the state spaces{df,} and {W,},
, respectively. The state space{df,} is given byS = S x S.
where?) is the parameter of the HMP associated withftte | et{s,} and{3,} denote the state sequencesf} and{ W, },
hypothesis ang(x,+1|*; ¢¥)) can be recursively calculatedrespectively. Le{S, = (S,, S,)} denote the state sequence of
using (4.4) and (4.30). Z,}. We refer toS, as acompositestate of the noisy process

In analyzing the algorithm, the test sequence was assume@t@me¢. The MMSE estimator of; given a realization™ of
be a sample from a finite-alphabet stationary ergodic procefige noisy signal is given by [105]

The HMPs were assumed to have a finite alphabet and for each

_ D ($t+1|$t% </)(j)) Qt(j)
Zp ($t+1|37t§ ¢(i)) Qt('i)

@+1(J) (11.5)

j the parametep’) e ®;. Almost sure convergence of the V; = B{Y;|-"}
recursive cla_ssification approach,fas- oo, to the hypqthesis - Z EAERIV A (12.1)
whose HMP is closest to the test sequence in the relative entropy =

rate sense was proved in [183, Theorem 2]. If there is more than . P )

one HMP that achieves the same minimum relative entropy raig€ conditional probabilities(s, | ) can be calculated using a
with respect to the test sequence, then convergence is to thd @d¢ard—backward recursion from Section V-A. A similar esti-
of all such HMPs. This situation may occur when the HMPs af8ator was developed by Magill [229] for a mixture of stationary
not identifiable. ergodic processes where the state remains constant in its ini-

Giudici, Rydén, and Vandekerkhove [139] applied standaf!ly chosen value. Suppose thigtand W, arek-dimensional

¥? asymptotic theory to the GLRT for two composite hyyectors inR*, and that the observation conditional densities of

potheses testing problems involving the paramgterd C ®¢ 1Yt} and {W;} are Gaussian with zero mean and covariance
of an HMP. They used the asymptotic results of Bickel, Ritofhatrices{f,, } and{£;, }, respectively. Then, the observation
and Rydén [36]. Lets® denote the true parameter. In thé:ondltlona}l densmes.o{fZ_t} are also Gaussian with zero mean
first problem, a simple null hypothesifly: ¢ = ¢° and an and covariance matric§ss, = R,, + R;, }. Furthermore
alternative hypothesif; : ¢ # ¢° were tested. Next, lak, C & .91

and assume thad, is characterized by a set of constraints E{Yifse i} = R, [RSt + Rﬁt} 2t (12.2)

R (¢)=0,i=1, ..., J, whereJ < d. In the second problem,
a composite null hypothesify: ¢ € ®¢ and an alternative
hypothesidi;: ¢ € P\&, were tested. Lek,,(¢) =log p(y™; ¢)
be the log likelihood of the HMP and lét, € ® denote the ML

which is the Wiener estimator fdf, given{s;, z:}.
The causal MMSE estimatoE{Y;|z'} was analyzed by
Ephraim and Merhav [104]. The MMSE given by

estimate ofg® as obtained from a sample of observations. - 1 N A\
The likelihood ratio test used for the simple null hypothesis is T tr { (Yt - Yt) (Yt - Yt) } (12.3)
given by

was expressed as the sum of two terms denote¢f nd 2.
A, =2 {Ln (dJn) —L, (¢0)} ) (11.6) The firgt terme? represents the average MMSE of the e_stim.ator
that is informed of the exact composite state of the noisy signal

Under Hy, and for largen, A\, has approximately a? dis- Z andis given by

tribution with d degrees of freedom. Hence, a test with size — 1 =
. . ) . S =—trk Yy |Se, Zy )} 124
approximately equal tev is obtained ifHy is rejected when =gt {cov (Vi[Se, 24)} (12.4)

2 2 H _ _ i J—
An > Xa1as Wherex‘l:l—a is the (1 — a)-quantile of the The termy? represents a sum of cross error terms for which no

2 . . ? . . . . .
x~ distribution withd degrees of freedom. The likelihood ratio_ . o '
used for the composite null hypothesis problem is given by explicit expression is known. Tight lower and upper bounds on

n? were developed. For signal and noise HMPs with Gaussian
} observation conditional densities, these bounds were shown to

(11.7) approach zero at the same exponential raté¢ as oo. The
exponential rate is the same as that of the error probability for
distinguishing between pairs of composite states.

Under H,, and for largen, A, has approximately a2 dis- Several other estimators for the sigialfrom 2™ were de-

tribution with » degrees of freedom. Hence, a test with sizeeloped [105]. We note, in particular, the detector—estimator

approximately equal tev is obtained ifH, is rejected when scheme proposed by Ephraim and Merhav [104] in which the

An > Xi I—a- composite state of the noisy signal is first estimated and then

A =2 {sup L, (¢) — sup L,(¢)
HED HEDq
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MMSE signal estimation is performed. This estimator is givelly Mushkin and Bar-David [243, Proposition 4]. Recall that the
by Yijz: = E{Y:[5}, 2} wheres; = argmaxs, p(5:]2*). The channel introduces an additive hidden Markov noise process,

MSE of this estimator approachédwhenk — oo and hence Say{Z:}. Let H(Z) denote the entropy rate ¢, }. Assume
the estimator is asymptotically optimal in the MMSE senséhat the parameter characterizes the memory of the channel sat-
An estimator similar to (12.1) and (12.2) was used by Crouggfies|v| < 1. The capacity of the channel is given by
Novyak, and Bar§n|uk [§9] for wavelet denoising of signals con- Cope=1-H(Z)=1— lim H(Z.|Z"Y). (13.3)
taminated by white noise. oo
Convergence off (Z,|Z"~1) occurs at an exponential rate as
XIIl. HIDDEN MARKOV CHANNELS shown in [40], [161], see also Section IV-E. The capa€ityc

FSCs were defined in Section IV-B4. An FSC with inputncreases monotonically with & [0, 1). It ranges from the

{X,}, output{Y;}, and state sequend€, } has a conditional capacity of a memoryless chanriel = 0) to the capacity of
transition density given by o a channel informed about its Markov stéte= 1). A decision-

feedback decoder that achieves capacity was developed in [243].

A class of channels related to FSCs was studied by Ziv [327].
A channel in that class is described by the conditional transition

mf
The memory of the channel is captured by the Markov cha?n
{C:}. The states may represent fading levels as in wireless com-
munications [205], previous channel inputs as in intersymbol
interference channels, or a tendency of the channel to persist in
a given mode as for bursty channels [133, Sec. 4.6]. FSCs apsl a deterministic next-state function
also encountered when a buffer exists at the input of a channel,
in which case the states correspond to the buffer contents [89].
FSCs may be interpreted as hidden Markov channels since fiedeveloped an asymptotically optimal universal decoding ap-
state sequence is not known at the encoder and decoder. Pggtgach for these channels. The same algorithm was shown by
rior probabilities of the states can be calculated using recursidrpidoth and Ziv [204] to be asymptotically optimal for FSCs
similar to those given in Section V-A [133, eq. 4.6.1], [141]described by (13.1). These results and the universal decoder are
In this section, we focus on FSCs with finite input and outpwtescribed next.
spaces’ and), respectively, and review some of their proper- Let © denote the parameter space of all FSCs with common
ties and the Lapidoth—Ziv universal decoding algorithm [204]. 8paceg.X’, )V, C). The parameter of each channel comprises an
thorough discussion on reliable communication under chanmiial stateco, € C and all transition probabilities of the form
uncertainties can be found in Lapidoth and Narayan [205]. p(:, ¢t|ei—1, x¢). Consider an FSC with parametee ©. Let

The channel coding theorem for FSCs was derived by Gdk, C &A™ denote a permutation invariant subsetit in the
lager [133] and by Blackwell, Breiman, and Thomasian [43kense that i# € B,, then any permutation of the components of
FSCs for which the effect of the initial state is rapidly forgottew results in a vector itB,,. Assume that a set & n-length
are said to bendecomposableA necessary and sufficient con-codewordgz(¢) } are drawn uniformly and independently from
dition for an FSC to be indecomposable is that for some fixed,, whereR denotes the rate of the code. The collection of these
n and each:™ € X there exists a choice for theh state, say codewords is referred to as a codebook. Pet,,,;(error) de-
¢n, SUch thatp(c,|z™, co) > 0 for all ¢g € C [133, Theorem note the probability of error of the ML decoder for the F8C
4.6.3]. If the FSC is indecomposable orrifcy) > 0 for every averaged over all"* messages and possible codebooks. Sim-
co € C, the capacity of the channel is given by [133, Theoreitarly, let P, .(error) denote the average probability of error
4.6.4], [205, Theorem 8] when Ziv's decoder is applied to the same channel without ex-
plicitly knowing its parametef. From [204, Theorem 1]

n

py"s " co) = [ plus cilerr, o). (13.1)

t=1

n

p(y" ", co) = [] plwieler, 1) (13.4)

t=1

Ct = g(yt—la Tt—1, Ct—l)-

1
Crsc = lim — max min I(X"; Y"|co) (13.2)

n—oo N p(mn) co

1 P, _(errof
lim sup — log M

o — =0. (13.5)
n—oo gco N Ps_na(erron

wherel(X™; Y"|¢y) denotes the conditional mutual informa-
tion between the input and output of the channel for a giveret D,, be a deterministic code @*® n-length codewords in
initial statecy. Sequences of upper and lower bounds#esc,  B,,. Let Py .(errolD,,) and Py ,.,;(erroD,,) denote, respec-
which can be used to approximate the capacity to an arbitragyely, the probabilities of error for the particular cofe using
degree, were provided in [133, Theorem 5.9.2]. For any FS&y's decoder and the ML decoder. These error probabilities are
code rateR < CFsc, and sufficiently larger, there exists a averaged over the messages only. It was shown in [204, Theorem
(2"%, n) code of2"* codewords of lengttn each that pro- 1] that there exists such a deterministic code for which

vides exponentially decaying probability of decoding error for 1 Py .(errorD,)

. L . g,z n
any input message and initial statg[133, Theorem 5.9.2]. If lim sup —log ———— %
R > Crsc, the probability of error cannot be made arbitrary n=o0geo 1 o mi(erromy,)
small, independent of the initial state [133, Theorem 4.6.2]. Admissibility of universal decoding for channels with memory,

The Gilbert—Elliott channel defined in Section 1V-B5 is arand in particular for FSCs, was studied by Feder and Lapidoth
example of an FSC. The capacity of this channel was calculaf@d2, Theorem 3].

=0. (13.6)
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Assume that a codebodle(i)} C A™ of 27 n-length code- From (13.10)x(z, %) = 2 when the logarithm’s base &
words was drawn at random by the encoder and that a copy ofAn analogue of Ziv's inequality for FSCs can be inferred from
the codebook is available at the decoder. The ML decoder foMerhav [239, egs. (7)—(9)]. L&t € © denote the parameter of
given FSG € © decodes the received sigaak )™ as coming an FSC with finite spacest, V, C). It holds that

from theith message if max plylz; 6) < 2-H@ W0l (k) +ea(k) (13.14)
i = arg max p(y|z(j); 0) (13.7) oee
! wherek is some integer that divides, ¢;(n, k) andex(k) are
where p(y|z(j); #) is the channel's pmf (4.17) specified forindependent of: andy, andlimy .o lim, o0 €1(n, k) = 0
the givend. If the maximum is not unique an error is declarethndlim,,_, ., e2(k) = 0. This result was used in [239] in a binary
Ziv's decoder does not explicitly ugein decoding the channel. hynothesis testing problem for deciding whether a given channel
Instead, a length function(z(¢), y) is calculated for each of oytput sequence was produced by a prescribe input sequence or
the codewordgz(¢)} and the received signgl The observed py an alternative sequence. A decision rule similar to (8.4) was
signaly is decoded as coming from tlilh message if used.
i = argmin w(z(5), ). (13.8) A composite hypothesis testing approach applicable for de-
J coding of unknown channels from a given family, in the rela-
If the minimum is not unique an error is declared. The lengtive minimax sense, was developed by Feder and Merhav [113].
functionu(z, y) is calculated from joint parsing ¢&, y) much FSCs are particular cases of that family. In this approach, the
like the parsing in the Lempel-Ziv universal data compressi@atio of the probability of error of a decoder that is independent
algorithm described in Section VI-E. This length function is desf the unknown channel parameter, and the minimum achievable
scribed next. probability of error for the channel, is optimized in the minimax
Let c(z, y) denote the number of distinct phrasegin y). sense. The optimal decision rule is obtained from minimization
The joint parsing of(z, y) induces parsing of into phrases of the maximum of this ratio over all possible channel parame-

that are not necessarily distinct. Lefty) denote the number of ters. Asymptotically optimal decoders that are easier to imple-
distinct phrases in the induced parsinggolety(l), 1 <1 < ment were also derived in [113].

<(y), denotedth distinct phrase in the induced parsingyoLet

x be parsed identically tg in the sense that if XIV. SELECTED APPLICATIONS
o, Uk
Y=Y % One of the earliest applications of HMPs and their theory was
then in ecology. In 1967, Baum and Eagon [26] developed an iterative

I, 0 4

g=alal  oal procedure for local maximization of the likelihood function of a
1 k—1

i _ ) finite-alphabet HMP. This procedure predated the EM approach
wherek is the total number of phrases in pars{ag y) ofwhich  yeveloped in 1970 by Baum, Petrie, Soules, and Weiss [28].
atleast —1 phrases are distinct, i.é:~ 1 < c(#, y) < k. Let g5, and Eagon observed that the likelihood functieyt; ¢)
c(z|y) denote the number of distinct phrases in the parsing @fa homogeneous polynomial of degse+ 1 in the compo-

x that appear jointly withy(1). We have that nents{r;, a;;, b;;(1)} of the parametep where

(y)

> alsly) = oz, y). (13.9) biyll) = P1 = UiSe-1 =4, St = j)

=1 as in (4.9). In estimatinga;; }, for example, they showed that
The length function«(x, ¥) required by the decision rule (13.8)the mapping:;; — @;; from the domain
is defined as

@) s R
w(z, y) =3 alzly)log caly). az10) °7 { . OZ shes=the M }
=1
These concepts are well demonstrated by the following exam it itself defined by
borrowed from [204]. Le®¥ = {0, 1}, Y = {a, b}, andn = 6. i ;TP
Considerz = 010001 andy = ababab. The joint parsing of i = — = (14.1)
(z, y) yieldsc(z, y) = 4 distinct phrases as shown below. ) aija%
=0 ] 1] 00 | 01 (13.11) . o =t _ o
y=a | b | a b | a b’ ' increases the likelihood function unless a stationary poit? in
The induced parsing of andy is given by is reached [26], [29, Theorem 2]. The transformation (14.1) was
namedgrowth transformatiorby Baum and Sell [27] and its
z =0, 1,00, 01 properties were studied. The recursion (14.1) turned out to be
Yy =a, b, ab, ab. (13.12) similar to a recursion developed in ecology for predicting the

There are:(y) — 3 distinct phrases fog. These phrases angrate of population growth. Baum [29] showed that (14.1) and
their joint occurrences are given by the re-estimation formula (6.15) fes; coincide. Similar con-

clusions hold for the re-estimation formulas forandb,; ({).
y(1) =a, y(2)=b, yB)=ab Concurrently with the above application, a new application
alzly) =1, c«(zly)=1, clzly)=2. (13.13) inthe area of automatic character recognition emerged at IBM.
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Raviv [265] studied this problem and developed the stable faZomparing (14.3) with (4.3) reveals that there is no principal
ward recursion (5.14) as well as a stable recursion similar difference between HMPs with a single or multiple mixture
(5.9) for calculatingy(s¢ |y *1). Subsequently, a major applica-components per state. The use of multiple mixture components
tion of HMPs to automatic speech recognition was undertakerpsr state allows one to increase the number of observation con-
IBM. Jelinek, Bahl, Mercer, and Baker [171], [18], [172], [21] ditional densities of the HMP without incurring a quadratic in-
along with their colleagues, developed the first automatic speedfgase in the number of components{of, a;; }.

recognition system based on hidden Markov modeling of speecHt has often been found useful to restrict the allowable tran-
signals. They also studied language modeling using Marksifions of the Markov chain. For example, left-right HMPs are
chains [173]. Language modeling using HMPs was studied Bpmmonly used in automatic speech recognition [262], [111]. In
Cave and Neuwirth [55]. Numerous papers and several bodRis case, the transition matrix is upper triangular or has nonzero
were published on automatic speech recognition, see, e.g., [B¥¢ments only on the main diagonal and first off-diagonal. For a
[262], [165], [263], [209], [173], [65], [230] and the referenced€ —ri_ght HMP,_ all but the I_ast state are transie_nt state_s. The last
therein. Moreover, HMP-based automatic speech recognitiﬁﬁlt? is absorblng. Itconsntu’;esadegeneratewredumble Ma_rkov
software packages running on personal computers are now C&tﬁam. L.eft—.rlght Mar_kov chalns are used for two reasons. First,
mercially available, see, e.g/ia Voiceby IBM and Naturally Fh|s choice is natural in modeling speech signals, as statgs e_voIve
Speakinghy Dragon Systems. In the process of studying app“’_l amanner that parallels thg evolvemgnt of the acoust!c signal
cations of HMPs to automatic speech recognition, several extdhime. Second, an HMP with a left-right Markov chain and

sions of HMPs and new parameter estimation approaches we ulsual par?metrlzatlon dli c;:a:a(f:terlaeﬁpby_ﬁlq '°W‘?tr. dlinen—
developed. These are briefly discussed in Sections XIV-A a hal parameler comparedtothatotan with posttive tran-
sition probabilities. Such reduction in the parameter size helps

XIV-B, respectively. In Section XIV-A, we also mention exten- . e - .
. . reventing overfitting of the model to training data. Left—right
sions of HMPs developed for other non-speech processing ap- . .
Ps are also mathematically tractable as was shown in Sec-

plications. tion VII-D.

In recent years, numerous new applications of HMPs havelnherent to an HMP is a geometric distribution for the number

emerged in many other areas, particularly in communlcanogsof consecutive time periods that the process spends in a given

and information theory, econometrics, and biological signal prgt'atej before leaving that state. This distribution is given by

cessing. In some applications, the underlying processes are B?&U) _ a¢71(1 ~ a;,). In some applications it was found
33

urally HMPs. In others, HMPs were found reasonable statis: 3 e L o).
tical models for the underlying processes. In either cases g%iful fo turn off selt-state tran5|t|0_r(&” = 0) and ntro

| ) : . ' dlce explicit distribution fokl that suits better the problem at
readily available theory of HMPs provides elegant and often iy, see Ferguson [115]. This approach was applied to auto-
tuitive solutions. We bne_f!y review t_hesfe applications in S_e%atic speech recognition [216], DNA sequencing [227], detec-
tions XIV-C—XIV-E. Additional applications can be found intjon of ECG events [298], and seismic signal modeling [145].
[66] and [228]. For each application, we attempted to providgamples of possible distributions used #binclude Poisson,
the original references as well as papers of tutorial nature. Usinomial, and gamma [115], [216]. The resulting hidden com-
fortunately, it is impractical to provide an exhaustive list of refponent of the model is referred to ssmi-Markowhain [145].
erences for each application due to the huge number of publi¢at ; denote a possible occupation time of statend define

tions in each area. do = 0andd,, = 37, d; for some integem. Using standard
conditional independence assumptions, and the simplifying as-
A. Special HMPs sumption that an integer number of state transitions occurred in

In some applications, the data associated with each staté {gme periods, we have
overdispersed relative to any single density such as Gaussian or

Poisson. Using an observation conditional density thatis a mix- ny _ . d d
ture of J densities for each state may circumvent this problerﬁ(y ) Z Z Z Hp($t|st_l)p( thse)p(yilst, di)

m dm:d,,=n 87 t=1

[221], [256], [175], [262]. Such modeling results in two regime (14.4)
variables,S; for the state at time and A, for the mixture com-

ponentin staté,. Using the standard conditional independencgherey, = {yz ., ..., vz }. This model can be seen as a
assumption (4.1) of observations given states we have standard HMP with an extended state spack/of D elements,

whereD is the largest possible duration. Extension of the Baum

n o J algorithm for estimating the parameter and state sequence of
pw™s™) =T D p(hals)plunlse, hu). (14.2)  this model was proposed by Ferguson [115]. An alternative ML
t=1 lu=1 approach was provided by Goutsias and Mendel [145].

] . . The next two extensions of HMPs were developed in biolog-
Lete; = P(H, = [|S; = j) denote the probability of choosingjco| signal processing and image processing, respectively. We
the ith mixture component in thgth state. Multiplying (14.2) 156 seen in Section IV-B3 that the observation conditional den-
by p(s™) and summing oves™, and using (4.7), we obtain  gjiag of HMPs may be dependent on past observations in addi-
tion to the current state of the Markov chain. A stronger assump-

p(y™) = Z Z H G, \o)Chyjn, D(Ue|5t, Bt). (14.3) tion was necessary in a neurophysiology application where ion

el channel currents observed in colored noise were recorded from
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living cells [306], [307]. The model used for that application reestimation is applied for individual estimation of each HMP. The
sulted in dependency &f, onY,~!  as well as ors{_,.;1- MMI estimate of¢ is obtained from

t—m—+1
The HMP is seen aseectorHMP and the sequence of states 7 W
St is commonly referred to as metastate Note that a Z - p(y oY)
t—m+1 max log —————. (24.7)
vector HMP is different from an HMP with vector observations P’ J

=1 ;p (v, 6@)

as in Section IV-B1. In the latter case, vector observations are

stat|st|c_:ally mde_pende_nt given _the state sequence. . A re-estimation approach for MMI estimation was developed in
Applications in coding of finite-alphabet images motivate

the definition of a partially hidden Markov model by Forch! 44]. It is based on a generalization of the growth transforma-

hammer and Rissanen [122]. The hidden states of this proctécs)n of Baum and Eagon [26] for maximization of homogeneous

are supplemented by the so-called contexts which are su Sce)tfynomials V.Vith nonr_1egative coefficier_ns o max?miz_ation of
quences of the observed signal. The partially hidden Markid) ional functions. This approach_requwes speC|f|cat|0n_ of an
model is defined by exogenous consta_mt whose practical value may re_sult in slow

convergent of the iterative approach [246]. Often this approach
is implemented using general-purpose optimization procedures

p(y", s™) = oy, s1) Hp(yt|st, re—1)p(St|St—1, T—1) such as the steepest descent algorithm.
t=2

(14.5) 2) Minimum Discrimination Information (MDI):Discrim-
ination information is synonymous to relative entropy, cross en-
where{s;} is a state sequence afick } and{x;} are the con- tropy, divergence, and the Kullback—Leibler number. The MDI
texts. The forward—backward and Baum algorithms extend &pproach is suitable for modeling one random process such as
the processes mentioned above as was shown in the referercggeech signal by another parametric process such as an HMP.

papers. The distribution of the first process is not explicitly known. The
process is characterized by a partial set of moments. The MDI
B. Parameter Estimation in Speech Recognition approach attempts to choose the HMP that provides MDI with

In this subsection, we briefly review three non-ML parametégSPect to the set of all distributions of the fir§t process that sat-
estimation approaches that were tailored primarily to automaltfdy the given moments. The MDI approach is a generalization
speech recognition applications. We focus on the maximum nfRRf-the maximum entropy inference appfoach [68, Ch. 11]. Shore
tual information (MMI) approach of Bahl, Brown, de Souza, an@nd Johnson [291] showed that MDI is a logically consistent
Mercer [20], the minimum discrimination information (MDI)@xiomatic modeling approach. See also Csiszar [72] for further
approach of Ephraim, Dembo, and Rabiner [101], and the mistification.
imum empirical error rate (MEER) approach of Ephraim and Let{Yz, t =1, ..., n}, ¥; € R¥, denote a set of vectors
Rabiner [102], Ljolje, Ephraim, and Rabiner [224], Juang arfem a source whose distribution is no_t expl|_C|tIy known. Sup-
Katagiri [177], Chou, Juang, and Lee [58], [178], and ErlicROSe that a set of moment constraints is available for these vec-
[108]. See also Amari [8]. tors_. For example, let:, and R, denote the true mean z_and co-

To motivate these approaches it is useful to review the rof@riance off;. Suppose that:; and a band of:; are available
of HMPs in automatic speech recognition applications [173Pr €acht = 1, ..., n. The band may comprise an upper left
[263], [165]. For simplicity, we discuss isolated word recog?!ock of &; or the main diagonal and some off-diagonalsipf
nition only. Consider a vocabulary of words. The density Let$ denote the set of ali-dimensional distribution$G™ }
of the acoustic signal from each word is modeled as an HMPat satisfy the given moment constraints. Eéfl) denote the
and the parameter of the HMP is estimated from a training ge=dimensional distribution of an HMP with parameterc ©.
quence of acoustic signals from that word. pét ¢) denote Letg(y™) andp(y™; ¢) denote the pdfs corresponding@™
the density of an HMP with parameter € &. Let y, de- anquE"), respectively. Let
note a training sequence of length from theith word. Let
¢ ={s", ..., ¢/} denote the/ parameters of the HMPs for D (G<") Pq(b")) = /g(y") log —"—_dy"  (14.8)
the J words. Let¢(") denote an estimate gf*) from y;. When p(y"s 9)

ML estimation is used)'”) = arg maxsce p(y;; ¢). AlWOIds  genote the discrimination information betwe@ anquE").
are as_sumed_pnorl equally I!kely. A test acousfuc S|gngP IS The HMP is estimated from
associated with thgth word in the vocabulary if the signal is

gy")

i ~ i in min D (G™|PM Y. 14.
most likely to have been produced by tjte HMP, i.e., min min (G P ) (14.9)
j = arg max_ p (yn; (/;(z‘)) i (14.6)  Thereis no closed-form solution for this optimization prob-
1<isJ lem even for HMPs with Gaussian observation conditional

densities and second-order moment constraints considered
1) Maximum Mutual Information (MMI):MMl is a training in [101]. An iterative approach for alternate minimization of
approach in which the parameters of théiMPs aresimulta- D(G(">||Pq(5")) overG™ e G and¢ € ® was developed in
neouslyestimated, by minimizing the average empirical mutugl01] following a similar approach due to Csiszar and Tusnady
information between the data and the hypotheses. The appromcfr1]. Given an HMP with parametet,, € ® at the end of
attempts to reduce the recognition error rate obtained when Nte mth iteration, a new estimate of the process distribution
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G™ ¢ G can, in principle, be obtained from the solution of a Let

set of nonlinear equations for the Lagrange multipliers. Let the p (yn; ¢(j))
complete data density of the new estimate®) be denoted  L;(y"; ¢) = log e 2L
by g(s™, ¥™; ¢m). Next, a new estimate,,,; of the HMP > (p (v ¢(i)))’7
parameter can be obtained from maximization oyet ¢ of iz Py
the auxiliary function (14.14)
For largen
_ noon. (G g n n. ()
Q¢ d)m)—;/g(s " dm) logp(s™, y7s @) dy”. L (" ) ~ log p(y" ¢ 2‘) (14.15)
(14.10) maxp (y"; ¢)

The procedure is repeated until a fixed point is reached or so
stopping criterion is met. Local convergence{gf,, } to a sta-
tionary point of the MDI measure was demonstrated in [101]. U,i(¢) =~ {y": L;(y"; ¢) > 0}. (14.16)
The general convergence proof from [71] is not applicable tIQn
this problem since the set of HMP distributions of a given order :
is not a convex set of probability measures. 1 (") ~ { 1, if L;(y"; ¢) >0 (14.17)
While maximization of the auxiliary function in (14.10) Vi(é) 0, otherwise. '

results in re-estimation formulas similar to those obtained th Lo P
; o o is approximation makes the argumén(y™; ¢) of the indi-
n
GH™ . . X . L .
the Baum algorithm, estimation of the distributi €9 ator function differentiable igp. Next, the indicator function

is a hard problem. If a single state sequence domlngtes Rlf is approximated by the differentiable sigmoid function as
MDI measure, then the MDI approach coincides with th]%llows

Baum-Viterbi algorithm.

T the decision rule can be approximated as

e indicator function (14.13) can similarly be approximated as

s 1
3) Minimum Empirical Error Rate (MEER)The MEER ap- ¥+ (") = 7 Fexp{—¢L; (v @)}

proach simultaneously estimates the parameters of th1Ps an .
S - : If ¢;(y™) is assumed to be concentrated on the training sequence
by minimizing the empirical error rate of the recognizer for . , " ”
. . T y; from thejth word, i.e.g;(y™) = 6(y™ —y;) andé(-) denotes
the given.J training sequences. This criterion is directly rez’ = . : ! J
; . the Dirac function, we obtain from (14.12) and (14.18) the de-
lated to the goal of automatic speech recognition. The theaqr . . o .
. ; L . . sited differentiable approximation for the probability of correct
of empirical risk minimization and the design of optimal sepa; _ ..
. . : decision as
rating hyperplanes using support vector machines has recently

attracted much attention, see Vapnik [304], [305]. The extension Puo) ~ 1 z‘]: 1
of Vapnik’s work to HMPs is still an open problem. ¢ ~J e 1+ exp{—SLj(yj; )}
In the MEER approach, the nondifferentiable indicator func- =

tions of the error rate expression are approximated by smodthis estimate approximatgs the empirical correctdecision_count
differentiable functions and minimization is performed usingf the HMP-based recognizer. The parametef the HMPs is

numerical procedures such as the steepest descent algoritgiimated from

£>0. (14.18)

(14.19)

Let ¢;(y™) denote the pdf of an observation sequegicdrom max Pu(¢) (14.20)
the acoustic signal of thgth word. Assume that the decision pcar '
rule is based on estimates of the HMPs. ThHeword is recog-

nized if the acoustic signaf* is in the set C. Communications and Information Theory

In this subsection, we review applications of HMPs in com-
V()= {yn:p (yn; ¢(a’)) > max p (yn; ¢(i))} . (14.11) Munications an_d information theory that we have not discussed
i7j previously in this paper.

1) Source Coding:Ott [248] proposed in 1967 a uniquely
decodable code for a sequerddé} from a finite-alphabet HMP.
The coder assumes zero channel errors. At each #jritken-

1 z‘]: / ") dy" tical Huffman-type codes are produced at the transmitter and
7 a; Y
JiH e

The probability of correct decision is given by

receiver for encoding;. The codes are based on the conditional
S pmfp(y: |yt 1) which is calculated using (4.4) and the recursion
1 " " 1 om 4.30). This recursion was originally developed for that purpose
=7 Z/lxpjw)(y Yoy dy™ (14.12) f)y Ot)t_ ginaty P purp
Merhav [236] studied in 1991 lossless block-to-variable
length source coding for finite-alphabet HMPs. He investigated
the probability of codeword length overflow and competitive
optimality of the Lempel-Ziv data compression algorithm
. (") = 1, ify" e V(o) (14.13) [326]. Consider an HMRY;} with observation spacg’ and
LOWIT 0, otherwise. ' entropy rateH (Y). He proved asymptotic optimality of the

i=L

wherely 4 (y™) denotes an indicator function defined by
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Lempel-ziv algorithm for any HMP, among all uniquelyHMP was observed through a memoryless channel and thus re-
decodable codes, in the sense that the normalized length ofigéted in another HMP with the same Markov chain. The same
codeword(1/7)u(Y™) has the lowest probability of exceedingapproach was used for decoding of convolutional and linear
a constanty, asn — oo, for any H(Y) < « < log|Y|. block codes in the minimum symbol error rate sense. The de-
For o < H(Y), the problem is not feasible and it is trivialcoding algorithm is commonly referred to as the BCJR decoder,
for o > log|Y|. This probability was shown to vanish expoand stabilized recursions have been used for decoding of turbo
nentially fast for unifilar sources. The Lempel-Ziv code fofodes [32], [33]. Turbo decoding of a finite-alphabet HMP with
HMPs was demonstrated to be asymptotically optimal in th&known parameter transmitted over a Gaussian memoryless
competitive sense of Cover and Thomas [68, Sec. 5.11]. §iannel was developed by Garcia-Frias and Villasenor [131].
particular, the Lempel—Ziv algorithm provides most of the time K@lehand Vallet[179] studied blind deconvolution of ani.i.d.

a codeword shorter than that of any other competing algoritrﬂﬁta sequence transmlftted across a finite memory channel with
within a normalized redundancy term bfn. This result was unk_nown transfer functl(_)n. We shall demonstrate th_e z_ipproach
first proved for Rissanen’s MDL universal code [268] fOlforllnearchannels. Nonlinear channels are treated similarly. Let

unifilar sources using the method of types, and then inferred fV arilé\lflg;(' 'téigir\]/(;tlitehseiLngﬁgli'iédéTsr?:sgf S;VIVE:{ Z t:gnrgtr; dom
- . . . y . - t =
the Lempel-Ziv code for HMPs using Ziv's inequality (6.29). IEhel x 1 vector of the finite impulse response of the channel.

should also be noted that the Lempel-Ziv algorithm compresse - ;
any observation sequence from any finite-alphabet HMP wi €t5, = (X;, ..., Xqpa)'. Let{Wy, Ws, ..} denote ase

uence of i.i.d. Gaussian random variables with zero mean and

essentially the same efficiency as any arithmetic coder Wh'o—B variance representing the white noise in the channel. The ob-

explicitly uses the pmf of the HMP. This observation f°”°W§erved signal atthe channel's output at tirissy; = /'S, + W.

from the Ziv inequality. o _Since{S,} is a first-order Markov chain with state spagg,
Goblirsch and Farvardin [140] studied in 1992 the de&gm} is an HMP. The parameter = {h, o2} of the channel is

of switched scalar quantizers for a stationary composite sou{g&nown but assumed constant dufinngervations, say".

with known transition matrix and densities. The encoder come memory length of the channel is assumed known. The pa-

prises a set of scalar quantizers and a next-quantizer distributigfineters is estimated from observationg™ using the Baum

This distribution is indexed by the quantizers and COdeworcagorithm and then used to decode these Observation$nl_et

Upon quantization of each observation, a quantizer is select{qgm’ o2} denote the estimate gfat the end of thenth itera-

for the next observation by sampling from the next-quantizébn. A new estimaté,,,; is obtained from the solution of the

distribution using a pseudorandom generator. The decoder Bggof linear normal equations

exact copies of the code books and the next-quantizer distribu-

tion and is fully synchronized with the encoder. Quantizatioy _*

of sources which are not necessarily HMPs, using finite-stafe) , > P(St = &ly"s ¢m)EE’ ¢ hna

quantizers with deterministic next-state functions, was studied=! ¢c*
by Dunham and Gray [94]. See also [135, Ch. 14]. ~ N
=Y > P(Si =Ly dm)nt.  (14.21)
2) Channel Coding:Drake [92] studied in 1965 decoding t=1 cext

of a binary-symmetric Markov chaifiS;} observed through a ) ) o )
binary-symmetric memoryless channel. A decoder is called Th€ noise variance re-estimation formula is
gletif it estimates the source symb§) as the received symbol 1
y, regardless of past observatiops , < t}. Drake provided 07,41 = - ST P(Se =& dm)lyr — hia €7
necessary and sufficient conditions for the singlet decoder to be t=1 gcxt
optimal in the minimum probability of symbol error sense. The ) R ) ) (14'22,)
work was extended by Devore [82] to decoding from a sarfRVen an estimate of ¢, the symbolz, is decoded in the min-
pled observation sequence, data-independent decoding, noff8&Mm symbol error rate using the decision rule
quential decoding, and decoding through channels with bino- n 4
mial distributed noise. A singlet sequence decoder estimates the ¢ — 818X >. P (St =&l d)) :
source symbol sequenc® as the received symbol sequence
y". Phamdo and Farvardin [252] provided necessary and suf-A problem similar to blind deconvolution arises in decoding
ficient conditions for the singlet sequence decoder to be gpulse amplitude modulation (PAM) signals using a receiver that
timal in the minimum probability of sequence error sense wheginot synchronized with the transmitter. Kaleh [180] formulated
a binary symmetric Markov chain source is observed throughis problem as a decoding problem of an HMP and applied the
a binary symmetric memoryless channel. Alajaji, Phamdo, Fatbhove approach for estimating the parameter and for decoding
vardin, and Fuja [5] extended the results from [252] to decodinige signal. The parameter comprises the clock offset between
of binary asymmetric Markov chains observed through binatlie receiver and transmitter and the white noise variance. Cirpan
Markov channels. and Tsatsanis [62] used an approach similar to that of Kaleh
Bahl, Cocke, Jelinek, and Raviv [17] used in 1974 the foend Vallet [179] for semiblind channel deconvolution. The finite
ward—backward recursions (5.7) and (5.8) for estimating tivapulse response of the channel is estimated from the received
states of an HMP in the minimum symbol error rate sense. THata as well as from an embedded training data. The presence

(14.23)

et xy=a
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of training data improves the channel estimation accuracy at fbaracterization of multichannel patch clamp recordings using
expanse of lowering the bit rate. HMPs with appropriate parametrization of the transition matrix
Krishnamurthy, Dey, and LeBlanc [196] studied blind equalvas studied in [7], [190].
ization of linear channels with infinite impulse response all-pole DNA sequencing based on hidden Markov modeling was
transfer functions. Phamdo and Farvardin [252] and Milleftudied in [61], [227]. The states represented different regions
and Park [241] studied decoding of vector quantized sourcgs segments of the DNA. Segmentation was inferred from
observed through finite-alphabet memoryless noisy channglap estimates of state sequences as obtained from the Viterbi
using a causal approximate MMSE estimator similar to (12.Jigorithm or the forward—backward recursions. In another
Brushe and White [48] and Brushe, Krishnamurthy, and Whitgypication [200], HMPs were applied to statistical modeling of
[49] studied demodulation of a number of convolutional COdeg}otein families for database searching and multiple sequence
signals impinging on an antenna array assuming UnknoWignment. In [53], neuron firing patterns were characterized by
channel and direction of arrival. Krishnamurthy and Logothetjfe most likely state sequence of an appropriately trained HMP.

[199] studied estimation of code-division multiple-accesg, [264), classification of neuronal responses to visual stimuli
(CDMA) signals in the presence of a narrowband interfef;aced on hidden Markov modeling was studied.

ence signal and white additive noise. The CDMA signal was |yvips were also used in automated analysis and classifica-

a;sumed a Markov chain with states represepting quantized, of ECG signals [63], [298], [193]. ECG wave patterns were
signal levels. Chao and Yao [57] proposed hidden MarkQysqqiated with states and detected from the most likely state se-
modeling of the burst error sequence in Viterbi decoding ﬂfuence of appropriately trained HMPs. In another application,

convolutional codes. Turin [302] studied MAP decoding fofj\ps \ere used to model epileptic seizure counts with varying
HMP observed through an FSC. Poisson rates [6], [207]

3) Spectral Estimation:A sinusoidal signal with a time-
varying frequency observed in white noise comprises an HMP

In this subsection, we describe some applications of HMPsyjfhen the unknown frequency is assumed a Markov process.
processing audio, biomedical, radar, sonar, and image signa§igorithms for tracking quantized versions of the frequency

1) Audio: Mixture processes were found useful in modeling;ing the Viterbi algorithm were developed in [296], [320],

speechsignalsin speakeridentification applications [138], [20 13], [321], [322].

HMPs were used in modeling speech signals and noise sources ifiy Radar and Sonar:A problem related to frequency track-
noisy speech enhancement applications [105]. HMPs were ajsg is that of maneuvering source tracking in sonar and radar
used in environmental sound recognition whereas a recordgg@tems [208]. The relative location and velocity of the source
acoustic signal is classified as being produced by a subseingfh respect to an observer comprised the state vector in a
noise sources that are simultaneously active at a given time [6ffnamical system. A quantized version of the state variables
[134]. The noise sources were assumed statistically independgste tracked using the Viterbi algorithm. Due to the observer's
HMPs. The observed signal is a mixture of these HMPs [67].  motion, optimal control was designed using the theory of

2) Biomedical: Characterization of currents flowingPartially observed Markov decision processes. In [201], [12],
through a single ion channel in living cell membranes hadL target localization using over-the-horizon radar systems

attracted significant research effort. An overview of stochastft?S dtc’tmd'ed' The undcelrtglntles 'nJ&eP'OﬁﬁSpTe:'c propagau?n q
models and statistical analysis applied to ion channels, ar! "OC?S ;/vere mToh eled as atn ¢ th :Mspa es reprtgsertle:j
an extensive list of references, can be found in [22]. This fgy mode lypes. The parameter of the was estimate

a rich and challenging area of current research. lon chani&l"9 smoothed bootstrap Monte Carlo resampling [96]

currents are believed to be well represented by a finite-states) Image: Restoration from corrupted images modeled as
continuous-time Markov process where the states represkittden Markov random fields was studied by Besag [34]. The
conductance levels. Recordings are made using the patch clamage was represented by a Markov field and its pixels were al-
technigue where substantial nonwhite noise and determinigticnatively estimated in the ML sense. Classification of images
interferences may be added. In addition, several conductamnepresented by hidden Markov random fields or by one-dimen-
levels may be aggregated into a single state representingienal HMPs was studied in [157], [257], [317], [217]. Partially
function of the Markov process. The sampled signal constituteislden Markov processes were studied in [122] and applied to
a noisy function of a finite-state discrete-time Markov chaifinage compression.

or an HMP. The theory of HMPs was applied to ion channels

in [59], [60], [129], [128], [306], [307]. The parameter of theE. Other Applications

HMP is estimated in the ML sense using the Baum as WeIII this subseci briefl . licati fHMPs i
as other optimization algorithms. Parameter estimation in the n this subsection, we briefly review applications o sin

presence of deterministic interferences was studied in [6 faarea of fault detection, economics, and metrology.

[194], [197]. The states representing the conductance levelsl) Fault Detection: Fast failure detection and prediction in
are estimated using the Viterbi algorithm or a forward—backemmunication networks was studied in [16]. An HMP with two
ward recursion. Of particular importance are estimations efates representing good and bad conditions of the network, and
the channel kinetics and mean dwell time within each stagbinary alphabet representing good and bad checksums in each

D. Signal Processing
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state was assumed for the fault detection process. ML estimaSome aspects of HMPs were inevitably left out. Our pri-
tion of the network’s condition (state) was performed using theary focus was on discrete-time general HMPs. Some results
Viterbi algorithm. In [293], [294], an HMP-based real-time faultoncerning HMPs with separable compact state spaces were
detection system for NASA's deep space network antennadrisluded. We did not cover continuous-time HMPs, nor did
described. Here multifaults are monitored by estimating theire treat hidden Markov fields which play an important role in
conditional probabilities at any given time using the forward rémage processing. Some references to these areas were pro-
cursion or the Viterbi algorithm. In [2], an HMP was constructedided in this paper. In addition, dynamical system approaches
for inventory system with perishable items. to these two areas can be found in [99].

2) Economics:HMPs and switching autoregressive pro- HMPs have attracted significant research effort in recent

: : years which has resulted in substantial gain in understanding
cesses appear particularly suitable to model macroeconomic

or financial time series over sufficiently long periods [156]'Fhe!r statlst|c_al properties and in Qe5|g_n|ng asymptthally
. : ; optimal algorithms for parameter estimation and for universal

The regime of the process provides a convenient way to reflect,. P L .
) . . coding and classification. The intuitive appeal of HMPs in
on events that may affect the underlying statistics of the time s . . : '
. : . many applications combined with their solid theory and the

series such as wars, changes in government policies, etc, A.° .~ - .

. . .~ availability of fast digital signal processors are expected to
summary of many properties of HMPs and their application Wttract further significant research effort in years to come
economics is given by Hamilton [156, Ch. 22]. In [282], HMPs 9 y ’

with Gaussian pdfs were used to model subseries of the S&P
500 return series as registered from 1928 to 1991. Explicit
expressions for the second-order statistics of these HMPs wer&he authors are grateful to Amir Dembo, Robert J. Elliott,
also given. Expressions for second-order statistics of HMR®bert M. Gray, Amos Lapidoth, Tobias Rydén, William Turin,
with discrete observations such as HMPs with Poisson amgachy Weissman, and the anonymous referees for helpful com-
binomial pmfs were derived in [228]. ments and suggestions. They also thank Randal Douc, Catherine

3) Metrology: HMPs were used in [331], [284] to modelMatias, Eric Moulines, and Tobias Rydén for making available

rainfall records assuming some “climate states” which Wepﬁ(fprints of their most recent work. The authors thank Shlomo
modeled as a Markov chain Shamai for coordinating the review process.
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