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Abstract—An overview of statistical and information-theoretic
aspects of hidden Markov processes (HMPs) is presented. An
HMP is a discrete-time finite-state homogeneous Markov chain
observed through a discrete-time memoryless invariant channel.
In recent years, the work of Baum and Petrie on finite-state
finite-alphabet HMPs was expanded to HMPs with finite as well
as continuous state spaces and a general alphabet. In particular,
statistical properties and ergodic theorems for relative entropy
densities of HMPs were developed. Consistency and asymptotic
normality of the maximum-likelihood (ML) parameter estimator
were proved under some mild conditions. Similar results were es-
tablished for switching autoregressive processes. These processes
generalize HMPs. New algorithms were developed for estimating
the state, parameter, and order of an HMP, for universal coding
and classification of HMPs, and for universal decoding of hidden
Markov channels. These and other related topics are reviewed in
this paper.

Index Terms—Baum–Petrie algorithm, entropy ergodic theo-
rems, finite-state channels, hidden Markov models, identifiability,
Kalman filter, maximum-likelihood (ML) estimation, order esti-
mation, recursive parameter estimation, switching autoregressive
processes, Ziv inequality.

I. INTRODUCTION

A hidden Markov process(HMP) is a discrete-time finite-
state homogeneous Markov chain observed through a dis-

crete-time memoryless invariant channel. The channel is char-
acterized by a finite set of transition densities indexed by the
states of the Markov chain. These densities may be members of
any parametric family such as Gaussian, Poisson, etc. The initial
distribution of the Markov chain, the transition matrix, and the
densities of the channel depend on some parameter that char-
acterizes the HMP. The process is said to be afinite-alphabet
HMP if the output alphabet of the channel is finite. It is said to
be ageneralHMP when the output alphabet of the channel is
not necessarily finite.

HMPs are more commonly referred to ashidden Markov
models. The term HMP was chosen since it emphasizes the
process itself rather than its use as a model. HMPs comprise
a rich family of parametric processes that was found useful
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in many applications. HMPs are closely related to mixture
processes, switching autoregressive processes, dynamical sys-
tems in the sense of control theory, Markov-modulated Poisson
processes, composite sources, and unifilar sources. HMPs are
fairly general processes that are amenable to mathematical
analysis.

HMPs have been widely studied in statistics. An HMP is
viewed as a discrete-time bivariate parametric process. The un-
derlying process is a finite-state homogeneous Markov chain.
This process is not observable and is often referred to as the
regime. The second process is a sequence of conditionally inde-
pendent random variables given the Markov chain. At any given
time, the distribution of each random variable depends on the
Markov chain only through its value at that time. This distribu-
tion is time-invariant and it may be a member of any parametric
family. The sequence of conditionally independent random vari-
ables is often referred to as theobservationsequence.

HMPs are commonly encountered in information theory.
Markov chains are common models for information sources
with memory, and memoryless invariant channels are among
the simplest models for communication channels. The hookup
of Markov chains with memoryless channels yields a family
of processes that are far more complex than the Markov chain
sources. For example, there is no closed-form single-letter
expression for the entropy rate of an HMP. Also, the method of
types does not apply to HMPs unless they are unifilar sources.
The state sequence of a unifilar source depends deterministi-
cally on the observation sequence and the initial state.

In recent years, the theory of HMPs has been substantially
advanced and a wealth of new results was developed. In addi-
tion, numerous new applications have emerged. In the statis-
tical literature, the main focus has been on HMPs with finite-
as well as continuous-state spaces and a general alphabet. Iden-
tifiability of an HMP, consistency and asymptotic normality of
the maximum likelihood (ML) parameter estimator, as well as
algorithms for estimating the state, parameter, number of states,
and the Fisher information matrix, were developed. The number
of states of an HMP is called theorder. In information theory,
the main focus has been on finite-state finite-alphabet HMPs
where order estimation, universal coding and classification of
HMPs, and universal decoding of finite-state channels, which
are hidden Markov channels, were studied.

Our goal is to present an overview of HMPs from the statis-
tical and information-theoretic viewpoints. Our primary focus
is on the theory of HMPs as it evolved in recent years. We also
provide a brief survey of many applications of HMPs. Some
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sections of the paper require some background in probability
theory. To facilitate reading, we have collected preliminary mea-
sure-theoretic material in one section. This manuscript is di-
vided into fifteen sections. The plan for each of the remaining
sections is outlined below.

II. A Brief History: Provides a brief history of HMPs and
a review of the main theoretical results developed in
recent years.

III. Preliminaries: Sets up the notation and provides some
preliminary background material.

IV. Statistical Properties: Defines HMPs and their rela-
tions to mixture processes, switching autoregressive
processes, dynamical systems, Markov-modulated
Poisson processes, composite sources, and unifilar
sources. Also defines hidden Markov channels.
Summarizes statistical properties of HMPs such as
stationary, mixing, and ergodic properties. These
properties are inherited from the Markov chains.
Provides ergodic theorems for the sample entropy and
relative entropy densities of HMPs.

V. State Estimation: Presents numerically stable and
computationally efficient recursions for prediction,
filtering, and fixed-interval smoothing of the state se-
quence of the HMP. The recursions coincide with the
Kalman filter and smoother, respectively, under linear
Gaussian assumptions. The recursions are naturally
stable, and they differ from those traditionally used
in signal processing and communication applications
such as automatic speech recognition and decoding of
turbo codes, respectively.

VI. ML Parameter Estimation: Deals with several aspects
of ML parameter estimation. Provides conditions for
identifiability of an HMP. States theorems for consis-
tency and asymptotic normality of the ML parameter
estimator of an HMP with a finite as well as contin-
uous-state space and a general alphabet. Provides sim-
ilar theorems for switching autoregressive processes.
Outlines the principles of the Baum algorithm for local
ML parameter estimation, and Louis’s formula for es-
timating the Fisher information matrix. States the Ziv
inequality which provides a tight upper bound on the
maximum value of the likelihood function forany fi-
nite-alphabet HMP.

VII. Joint State and Parameter Estimation: Focuses on joint
estimation of the state sequence and parameter of an
HMP. Presents the Baum–Viterbi algorithm and its re-
lations to the Baum algorithm and to the generalized
Lloyd algorithm for designing vector quantizers. The
algorithm is useful when a sufficiently long vector of
observations is generated from each state. Otherwise, it
does not provide a consistent estimate of either the pa-
rameter or the state sequence. Describes a noniterative
algorithm for global maximization of the joint likeli-
hood function of states and observations of a left–right
HMP. Discusses Bayesian estimation of the state se-

quence and parameter, and asymptotic properties of the
estimator.

VIII. Order Estimation: Presents consistent estimators for a
finite-alphabet HMP, and an estimator which does not
underestimate the order of a general HMP.

IX. Dynamical System Approach: The HMP is seen as a
dynamical system in the sense of control theory, and
its parameter is estimated using the expectation–max-
imization algorithm. Conditional mean estimators of
several statistics of the HMP, required by the expecta-
tion–maximization algorithm, are developed using the
generalized Bayes rule. The approach is demonstrated
for HMPs with Gaussian densities. The approach is
particularly useful for continuous-time HMPs but this
extension is not reviewed here.

X. Recursive Parameter Estimation: Describes algo-
rithms for recursive estimation of the parameter of an
HMP. A consistent asymptotically normal estimator is
provided.

XI. Signal Classification: Deals with several classification
problems involving HMPs including universal classi-
fication.

XII. Signal Estimation: The HMP is seen as a desired signal
and its estimation from a noisy signal is discussed.

XIII. Hidden Markov Channels: Reviews some properties of
finite-state channels such as capacity and the channel
coding theorem. Presents the Lapidoth–Ziv asymptot-
ically optimal universal decoding algorithm for finite-
state channels.

XIV. Selected Applications: Briefly describes selected
applications in communications, information theory,
and signal processing. Also presents special forms of
HMPs and non-ML parameter estimation procedures
which were found useful in practice.

XV. Concluding Remarks.

II. A B RIEF HISTORY

HMPs were introduced in full generality in 1966 by Baum
and Petrie [25] who referred to them asprobabilistic functions of
Markov chains. Indeed, the observation sequence depends prob-
abilistically on the Markov chain. During 1966–1969, Baum
and Petrie studied statistical properties of stationary ergodic fi-
nite-state finite-alphabet HMPs. They developed an ergodic the-
orem for almost-sure convergence of the relative entropy den-
sity of one HMP with respect to another. In addition, they proved
consistency and asymptotic normality of the ML parameter esti-
mator [25], [251]. In 1969, Petrie [251] provided sufficient con-
ditions for identifiability of an HMP and relaxed some of the
assumptions in [25]. In 1970, Baum, Petrie, Soules, and Weiss
[28], [29] developed forward–backward recursions for calcu-
lating the conditional probability of a state given an observation
sequence from a general HMP. They also developed a compu-
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tationally efficient iterative procedure for ML estimation of the
parameter of a general HMP using the forward–backward recur-
sions. This procedure is the well-knownexpectation–maximiza-
tion (EM) algorithm of Dempster, Laird, and Rubin [80] applied
to HMPs. Local convergence of the algorithm was established
in [28], [29]. The algorithm is often referred to as the Baum al-
gorithm, or the Baum–Petrie algorithm, or the Baum–Welch al-
gorithm in honor of Lloyd Welch [311]. Similar forward–back-
ward recursions were developed earlier by Chang and Hancock
[56] in their work on optimal decoding of intersymbol interfer-
ence channels.

Prior to the introduction of probabilistic functions of Markov
chains, deterministic functions of Markov chainswere ex-
tensively studied. They are often referred to asaggregated
Markov processesin the statistical literature since a function
may collapse several states of the Markov chain onto a single
letter. Deterministic and probabilistic functions of finite-state
Markov chains are related when the alphabet of the HMP is
finite. Any deterministic function of a Markov chain can be
described as a trivial finite-alphabet HMP, and any finite-al-
phabet HMP can be described as a deterministic function
of Markov chain with an augmented state space [25], [251],
[116]. Deterministic functions of Markov chains were used
by Shannon in 1948 [290] as models for information sources.
Ash [14, p. 185] refers to them asMarkov sourcesbut the
term has more often been associated with unifilar sources
introduced by Gallager [133, Sec. 3.6]. Shannon developed the
fundamental ergodic theorem for convergence in probability of
the sample entropy of a stationary ergodic Markov chain [290].
The theorem was proved for stationary ergodic finite-alphabet
processes, for and almost sure convergence, by McMillan
and Breiman, respectively. It is commonly referred to as the
Shannon–McMillan–Breiman theorem or as theaymptotic
equipartition property [152, Ch. 3]. The theorem applies to
any stationary ergodic finite-alphabet HMP. Deterministic
functions of Markov chains were also intensively studied in the
statistical literature, notably by Blackwell [41], Blackwell and
Koopmans [42], Burke and Rosenblatt [52], Gilbert [136], Fox
[125], Dharmadhikari [83]–[86], Heller [160], and Carlyle [54],
who investigated identifiability and conditions for deterministic
functions of Markov chains to be Markov chains.

HMPs comprise a rich family of parametric random pro-
cesses. In the context of information theory, we have already
seen that an HMP is a Markov chain observed through a
memoryless channel. More generally, consider a finite-state
channel [133, Sec. 4.6]. The transition density of the channel
depends on a nonobservable Markov chain. This channel is
sometimes called ahidden Markov channel. An HMP observed
through a finite-state channel is an HMP with an augmented
state space. The Gilbert–Elliott channel is an important ex-
ample of a finite-state channel [137], [97], [14], [243], [204].
This channel introduces a binary additive hidden Markov
noise process which is independent of the input process. The
Gilbert–Elliott channel is a good model for fading channels.
Finite-state channels are also known asstochastic sequential
machines(SSMs) orprobabilistic automata[250]. A subclass
of SSMs is formed bypartially observable Markov decision
processes[242].

HMPs are also related to a number of random processes com-
monly encountered in engineering, statistics, and econometrics.
We first point out the obvious relation to mixture processes
[212], [109], [232], [266], [301]. Each observation of an HMP
has a mixture distribution, but contrary to mixture processes,
HMP observations need not be statistically independent. HMPs
are special cases of switching autoregressive processes with
Markov regimes [156, Ch. 22]. These are autoregressive pro-
cesses whose dynamics at each time instant depend on the state
of a Markov chain at that time. When the autoregressive order
is zero, the switching autoregressive process degenerates to an
HMP. HMPs may be cast as dynamical systems in the sense
of control theory. When the state space is finite or countably
infinite, each state is represented by a unit vector in a Euclidean
space. Another relation is to Markov-modulated Poisson
processes [117], [273], [276]. These are Poisson processes
whose rate is controlled by a nonobservable continuous-time
Markov chain. A Markov-modulated Poisson process may be
viewed as a Markov renewal process and as an HMP. In both
cases, a discrete-time Markov chain is defined by sampling
the continuous-time chain at the Poisson event epochs, and the
observation sequence is given by the interevent time durations.

One of the earliest applications of HMPs was to automatic
character recognition. Raviv [265] studied the problem in 1967
at the IBM T. J. Watson Research Center. The characters of the
language were represented by states of the Markov chain and
the measurements constituted the observation process. Recog-
nition in the minimum character error rate sense was performed.
For that purpose, Raviv developed a new recursion for the con-
ditional probability of a state given the observations.

In the mid-1970s, another major application of HMPs was
taking place at the IBM T. J. Watson Research Center. Jelinek
[172], Baker [21], Jelinek, Bahl, and Mercer [171], Bahl and
Jelinek [18], along with their coworkers, developed a phonetic
speech recognition system that relies on hidden Markov mod-
eling of speech signals. The model for each word in the vocab-
ulary was composed of individual phonetic models which were
designed using the Baum algorithm. Linguistic decoding of an
acoustic utterance was performed using the Viterbi algorithm
[308], [124], [285] or the Stack graph-search algorithm of Je-
linek [170]. In the early 1980s, applications of HMPs to auto-
matic speech recognition were further studied primarily by Fer-
guson and his colleagues at the Institute for Defense Analysis
[115], [256], and by Rabiner and his group at AT&T Bell Lab-
oratories [262]. These studies popularized the theory of HMPs
which have since become widespread in many applications. In
Ferguson [115], probabilistic functions of Markov chains were
probably first referred to ashidden Markov models.

In recent years, HMPs have been widely studied by statis-
ticians and information theorists. Significant progress has
been made in the theory of HMPs where the work of Baum
and Petrie on finite-state finite-alphabet HMPs was expanded
to HMPs with finite as well as continuous-state spaces and
a general alphabet. In particular, new ergodic theorems for
relative entropy densities of HMPs were developed by Leroux
[214], Finesso [116], Le Gland and Mevel [210], and Douc
and Matias [90]. Consistency and asymptotic normality of
the ML estimator of the parameter of an HMP was proved
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by Leroux [214], Bickel, Ritov, and Rydén [36], Le Gland
and Mevel [210], Jensen and Petersen [174], and Douc and
Matias [90]. The ergodic theorems and asymptotic optimality
of the ML parameter estimator were also proved for switching
autoregressive processes with Markov regime by Francq and
Roussignol [127], Krishnamurthy and Rydén [198], and Douc,
Moulines, and Rydén [91]. Similar results were developed for
a Markov-modulated Poisson process by Rydén [273], [276].
Exponential forgetting and geometric ergodicity in HMPs were
studied by Le Gland and Mevel [210] and Douc and Matias
[90]. A complete solution to identifiability of deterministic
functions of nonstationary Markov chains was given by Ito,
Amari, and Kobayashi [167]. Conditions for identifiability
of a general HMP were developed by Leroux [214] and
Rydén [274], [277]. Conditions for identifiability of a Markov
modulated Poisson process were given by Rydén [278]. New
stable recursions for prediction, filtering, and fixed-interval
smoothing of the state sequence from an observation sequence
were developed by Lindgren [219] and Askar and Derin
[15]. These recursions provide conditional mean filters and
smoothers for Markov chains observed through channels that
are not necessarily Gaussian [203].

In addition to expanding the work of Baum and Petrie, other
approaches to HMPs were developed in recent years. A com-
prehensive dynamical system approach to general HMPs was
developed by Elliott, Aggoun, and Moore [99]. In particular, fi-
nite-dimensional recursions for conditional mean estimators of
statistics of a general HMP were developed, and used in ML es-
timation of the parameter of the process. HMPs with discrete-
as well as continuous-time state and observation processes, that
have finite or continuous alphabet, were studied in [99]. Infor-
mation-theoretic approaches for strongly consistent order es-
timation of a finite-alphabet HMP were developed by Finesso
[116], Kieffer [187], and Liu and Narayan [223]. An order es-
timator for a general HMP that does not underestimate the true
order was developed by Rydén [277]. A consistent asymptot-
ically normal recursiveestimator for the parameter of a gen-
eral HMP was developed by Rydén [279]. A Gibbs sampling
Bayesian approach for estimating the parameter of a general
HMP was developed by Robert, Celeux, and Diebold [269].

In communications and information theory, several aspects
of HMPs were studied in recent years. Minimum symbol
error-rate decoding of convolutional and linear codes using
the forward–backward recursions of Chang and Hancock [56]
was proposed by Bahl, Cocke, Jelinek, and Raviv [17]. The
algorithm has since been referred to as the BCJR algorithm,
and a stabilized version of the recursions is commonly used
in decoding turbo codes [32], [33].Turbo codesuse several
concatenated convolutional codes and a feedback mechanism
that allow iterative reduction of the bit error rate. They almost
achieve the Shannon capacity in communication over mem-
oryless Gaussian channels. Properties ofcomposite sources,
which are generalizations of HMPs, were studied by Fontana
[119], and Fontana, Gray, and Kieffer [120]. The Lempel–Ziv
universal data compression algorithm introduced in 1978 [326]
is applicable to universal coding of finite-alphabet HMPs. This
algorithm asymptotically outperforms any finite-state coding
scheme in compressing sequences from any source, not neces-

sarily an HMP. Large-deviations properties of the Lempel–Ziv
algorithm for HMPs were developed by Merhav [236]. Sig-
nificant progress in universal classification of Markov chains
of any order using empirically observed sequences was made
by Ziv [328], Gutman [155], and Zeitouni, Ziv, and Merhav
[325]. Universal classification of HMPs using empirically
observed training sequences was developed by Merhav [235],
Merhav and Ephraim [238], and Kieffer [187]. A universal
decoding algorithm for finite-state channels was developed
by Ziv [327], and Lapidoth and Ziv [204]. An algorithm for
decoding unknown intersymbol interference channels using the
Baum algorithm was developed by Kaleh and Vallet [179].

Along with the advances in the theory of HMPs, numerous
new applications of HMPs have emerged in recent years in areas
such as neurophysiology, biology, economics, control, spectral
estimation, radar, sonar and image signal processing, fault de-
tection, computer vision, robotics, and metrology.

III. PRELIMINARIES

In this section, we provide some preliminary background ma-
terial. We also describe the notation that we use throughout the
manuscript. Some additional notation will be introduced in Sec-
tion IV-A where the specifics of the HMP are discussed.

A. General Definitions

All random variables in a given discussion are defined on a
common probability space . We use capital letters to
denote random variables, lower case letters to denote realiza-
tions of random variables, and script letters to denote sets within
which the random variables take values. For example, a random
variable takes values in . We write to denote the
probability of an event . We also write to
denote the probability of the event : .

A random variable defined on the underlying probability
space induces a probability space . The random
variable takes values in the sample space. The -field
denotes the Borel -field of open subsets of with respect to
a given metric. The probability measure denotes thedistri-
butionof . Usually is the real line or a subset of the real
line. The probability space is referred to as theas-
sociated probability spaceof [152, p. 11]. We shall usually
work with this probability space rather than with the underlying
probability space. The sample spacemay also be referred to
as thealphabetof and members of may be referred to as
lettersof the alphabet. We assume that all distributions are ab-
solutely continuous with respect to some-finite measure, say

, and hence possessdensitiesor Radon–Nikodym derivatives
[38, Theorem 32.2]. We denote absolute continuity of with
respect to by . We denote the density of with
respect to by . We shall not stress the role of in the no-
tation of the density and use instead of . When the
dominating measure is the Lebesgue measure we may refer to
the density as the probability density function (pdf). When the
dominating measure is the counting measure we may use the
term probability mass function (pmf) instead of density. These
two dominating measures are of particular interest in applica-
tions of HMPs.
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A discrete-time random process, say, is denoted by
where is theindex setor a subset of all integers.

For one-sided random processes,is usually the set of all
positive integers. In some discussions, is more naturally
chosen to be the set of all nonnegative integers. For two-sided
random processes, is the set of all integers. When the index
set is clear from the context, we use the simpler notation of

. Assume that for all . The random process
is defined on the underlying probability space and
has an associated measurable product space . We
are particularly interested in a random process defined by
a distribution on which is a member of a given
parametric family. Let denote theparameterof the
process distribution where is the parameter set. Usually

where is a -dimensional Euclidean space.
Let denote the parametric distribution of the process. The
associatedsequence probability spaceof the random process is

. We denote by the true parameter used
to generate a given realization of the process.

A sequence of random variables of the process,
, , is denoted by . A realization

of is denoted by . Most commonly, we will consider a
sequence of random variables, , which, for simplicity, we
denote by . Let denote the -dimensional distribution

of induced by . For each , the distribution is
assumed absolutely continuous with respect to some-finite
measure and its density with respect to that measure is
denoted by . The explicit dependency of this density
on may be suppressed when notation may be simplified. The
expected value of a measurable function with respect to
the probability measure is denoted by . Of
particular interest is the expected value of with
respect to given by

The usual notation for conditional probabilities and densities
is adopted here. For example, the density ofgiven is
denoted by .

In some sections of the paper we report results that are ap-
plicable tostandardmeasurable spaces . The defi-
nition and properties of standard spaces can be found in [151,
Ch. 2], [152, p. 12]. Standard spaces include discrete spaces, the
real line, Euclidean vector spaces, Polish spaces which are com-
plete separable metric spaces, among other examples. Standard
spaces form a general class of measurable spaces for which the
Kolmogorov extension theorem holds, regular conditional prob-
ability measure exist, and the ergodic decomposition theorem
holds [152, p. 12].

We shall also make the following conventions. We say that a
stochastic matrix satisfies if all of its entries are larger
than . Let and be two stochastic matrices of possibly dif-
ferent order. Suppose that . We say that if
both and . The transpose of a vector, say, is de-
noted by . The gradient and Hessian of a function with
respect to are denoted by and , respectively.

All logarithms in a given discussion are taken to the same arbi-
trarily chosen base. The most common choices are the natural
base and the base.

B. Entropy

Consider a random process with parametric
distribution , . Let be the induced -
dimensional density of the process with respect towhere

is some -finite measure. The sample entropy is defined
for finite-alphabet processes. Suppose is the counting
measure. Then, thesample entropyof is defined as

[152, p. 58]. The relative entropy density
is defined for processes with finite as well as continuous
alphabet. Suppose is any -finite measure which could
possibly be the Lebesgue measure. Therelative entropy density
of is defined as [152, p. 150]. We shall
use this term for as well, where may be
different from the true parameter . These quantities have
well-defined limits for HMPs when . The limits and
conditions for their existence are given in Section IV-D.

C. Martingale Difference Sequence

Let be a random variable on the probability space
, and let be a sub--field of . The conditional

mean exists if [154, p. 348]. Let
denote a sequence of sub--fields of .

The sequence is called afiltration if for all . Let
denote a random process on the probability

space. The process is said to beadaptedto the filtration if
is -measurable for all [154, p. 473]. For example, if

denotes the smallest-field generated by then
is a filtration and is adapted to . Suppose is a filtration

and is adapted to . The pair
is called amartingale if for all , , and

[154, p. 474]. Suppose is a martin-
gale. The sequence , where ,
is a called amartingale difference sequence. In particular,
is -measurable, , and for all

[154, p. 476]. The class of zero-mean independent processes
is a subsest of the class of martingale difference sequences, and
the class of martingale difference sequences is a subset of the
class of zero-mean noncorrelated processes when second-order
moments exist [288]. Under these conditions, a martingale
difference sequence comprises noncorrelated random variables
which may also be statistically independent. A martingale dif-
ference sequence enjoys a central limit theorem [38, Theorem
35.12].

D. Ergodicity and Asymptotically Mean Stationarity

Consider a random process with associated sequence prob-
ability space . Assume that this is a one-sided
process with index set . Let
denote a member of . Define theleft-shifttransformation :

by . The measure
is calledstationary if for all

where : . Stationary measures corre-
spond to stationary random processes [154, p. 398]. An event
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is calledinvariant if or when if
and only if . The stationary measure is calleder-
godic if each invariant event has probability either zero or one,
i.e., or for all invariant events [154,
p. 398]. Define . The random
process is calledasymptotically mean stationary(AMS) with
respect to the left-shift if the limit of the Cesáro mean

(3.1)

exists for all [152, p. 16]. The limit is a stationary
probability measure on . It is called thestationary
meanof [152, p. 16]. The stationary mean asymptot-
ically dominates in the sense that implies

[151, Corollary 6.3.2]. Conversely, if
is asymptotically dominated by a stationary measure then
is AMS [148, Theorem 2]. These properties demonstrate

intuitive aspects of AMS processes gained by considering
events determinable by samples of the process in the distant
future. Asymptotic mean stationarity is necessary and sufficient
for an ergodic theorem to hold [151, Corollary 7.2.2].

Note that the left-shift transformation for one-sided processes
is not invertible. Some of the results discussed in this paper
were derived for two-sided processes. For that case, an invert-
ible (one-to-one) shift transformation can be defined.

E. Mixing

A process with distribution is said
to be -mixing if for every set and set

, ,

(3.2)

where is independent of and and
[38, p. 363]. Thus, and are approximately indepen-
dent for large . The process is said to be-mixing if

(3.3)

where is independent of and and
[37, p. 166]. This is a nonsymmetric measure of approximate
independence.

F. Channels

A channel is defined as follows [152, Sec. 9.2]. Consider
an input probability space and an output measur-
able space . Assume that the two measurable spaces
are standard. Achannel is a family of probability measures

on such that for every output
event , is a measurable function of. For every
rectangle , the set function

(3.4)

is well defined, and it extends to a probability measure on the
joint input/output space which is sometimes called thehookup

of the source and channel . Thus, a channel is simply a reg-
ular conditional probability [152, p. 5].

Let and be the shift transformations on the input se-
quence space and output sequence space, respectively. A
channel is said to bestationarywith respect to and , or
simply stationary if the shifts are clear from the context, if [152,
p. 184]

(3.5)

Intuitively, a right-shift of an output event yields the same prob-
ability as a left-shift of an input event. Two shifts are required
since in general and may not exist. If the shifts
are invertible, as for two-sided processes, then the definition is
equivalent to

(3.6)

Thus, shifting the input sequence and output sequence in the
same direction does not change the probability. In that case, a
single shift may be used for both input and output sequences.

A channel is said to beoutput strongly mixing, or asymptot-
ically output memoryless, if for all output rectanglesand
and all input sequences[152, p. 196]

(3.7)
More generally, the channel is said to beoutput weakly mixing
if

(3.8)
Of particular interest for our discussion are memoryless in-

variant channels. Suppose that is a probability measure
on for all and that is a measurable function
of for fixed . Let denote a sequence of output events.
The channel is said to bememorylessif

(3.9)

for any finite index set [152, p. 193]. The channel
is said to beinvariant if is independent of. When
densities exist, the channel is defined by its transition density or
by the -dimensional conditional density for all finite

. Memoryless invariant channels satisfy

and is time-invariant, i.e., for any and ,
the probability of given is the same for all.

IV. STATISTICAL PROPERTIES

In this section, we define HMPs and discuss their relations
to mixture processes, switching autoregressive processes, dy-
namical systems, Markov-modulated Poisson processes, com-
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Fig. 1. An HMP.

posite sources, deterministic functions of Markov chains, and
unifilar sources. We state conditions for HMPs to be stationary,
ergodic, and mixing processes. We provide ergodic theorems
for almost-sure convergence of the sample entropy and relative
entropy densities of stationary-ergodic general HMPs. Similar
ergodic theorems for switching autoregressive processes with
finite and continuous state spaces are also reviewed.

A. Definitions and Structure

Let denote a discrete-time Markov chain that
takes values in a finite set called thestate space. Let de-
note the number of states. We assume without loss of generality
that . Let denote a value that can
take. Let denote the probability that the initial
state is . Let be a vector representing theini-
tial distribution. The Markov chain is always assumed homoge-
neous unless stated otherwise. Let
denote thetransition probability. Let denote the

transition matrix. Consider a discrete-time channel
with input and output . For each ,

takes values in anobservation space . The nature of will
be discussed shortly. Let denote a value that can
take. Assume that the channel is memoryless and invariant. For
a given , let , , denote a transition density of the
channel with respect to some-finite measure . Of particular
interest are the Lebesgue and counting measures. The counting
measure is denoted by. The channel is characterized by a set
of transition densities . We shall
refer to as anobservation conditional density[210].

In information theory, an HMP is viewed as a discrete-time
finite-state homogeneous Markov chain observed through a dis-
crete-time memoryless invariant channel as described in Fig. 1.
In the statistical literature, see, e.g., [36], an HMP is viewed as a
discrete-time bivariate random process with Markov
regime and conditionally independent random variables

. The distribution of is time-invariant and it depends on
only through .

The -dimensional density of with respect to
can be written as

(4.1)

where

(4.2)

The convention for all is often convenient.
The -dimensional density of with respect to is given by

(4.3)

This function is often referred to as thelikelihood functionof
the HMP. Note that the saummation in (4.3) is over product
terms.

The likelihood function may also be expressed in an alterna-
tive useful form in terms of and . It is easy to
check, see, e.g., Ott [248], Lindgren [219], and Devijver [81],
that

(4.4)

We refer to as thepredictive densityof given
[90]. Thus, properties of the likelihood function of the HMP are
determined by the predictive density sequence and by the obser-
vation conditional densities. These properties will be discussed
in Section IV-C3. A computationally efficient recursion for cal-
culating is provided in (4.30).

It follows from (4.4) that each observation of the HMP has a
mixture density

If the Markov chain is stationary, then for
all , and the observations are identically distributed with
mixture density given by

(4.5)

Conditions for stationarity of the Markov chain are given in Sec-
tion IV-C. The observations are generally dependent but
they may also be independent. For example, let denote
a sequence of independent and identically distributed (i.i.d.)
random variables and define a Markov chain by

. Let for some deterministic
function . The sequence is an HMP with i.i.d.
observations. A stationary HMP is thus a sequence of possibly
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dependent identically distributed random variables with a mar-
ginal mixture density. Each mixture density is overdispersed rel-
ative to any given single density . Leroux [212] referred
to HMPs asmixture processes with Markov dependence.

It also follows from (4.4) that if the density has zero
mean for all , then almost surely

(4.6)

Under this condition, is a martingale difference sequence,
as pointed out by Francq and Roussignol [126]. As such, an
HMP is a sequence of noncorrelated random variables that may
also be statistically independent. This implies that the observa-
tions of an HMP are not useful in predicting in
the minimum mean square error (MMSE) sense [288].

If the regime of an HMP is i.i.d. instead of Markov, the
observations are necessarily i.i.d. From (4.3) we have

(4.7)

An HMP with i.i.d. regime is amixture process. Mixture pro-
cesses have been extensively studied and a wealth of results is
available, see, e.g., [109], [266], [301], [232]. The close rela-
tion between HMPs and mixture processes is often exploited in
proving properties of HMPs using similar properties of mixture
processes.

When the observation spaceis finite, the HMP is referred
to as afinite-alphabetHMP. When is not necessarily finite,
the HMP is referred to as ageneralHMP [36]. For a finite-
alphabet HMP, we assume without loss of generality that

. Let

denote the time-invariant state-to-observation transition proba-
bility. Let denote the state-to-observation
transition matrix. The parameter of the channel is denoted by

. For a general HMP, is usually a subset of a Euclidean
space for some . Other higher dimensional spaces are also
possible. The parameter of the observation conditional density
for state is denoted by for some . The param-
eter of the channel is denoted by . We shall sometimes
emphasize the dependency of the observation conditional den-
sity on its parameter. We may write or use the more
customary notation of .

The parameter of the HMP is given by . For a
stationary Markov chain with a unique stationary distribution

the parameter of the HMP is simply . Con-
ditions for uniqueness of a stationary distribution are given
in Section IV-C1. In some applications, the triplet
depends on a parameterin some parameter set and we
have the parametrization . The parameter

is a particular case obtained using coordinate
projections, i.e., , , and . This
is the most common parametrization of the HMP which is
referred to as theusual parametrization. Throughout this paper,

is referred to as theparameterof the HMP where in general
it need not represent the usual parametrization.

We shall sometimes emphasize the dependency of the-di-
mensional density of the HMP on its parameter by rewriting
(4.3) as

(4.8)

In some discussions, such as in ML parameter estimation, we
must distinguish between the true parameter that was used to
produce a given sequence of observations, say, and any other
value of the parameter of the HMP. We denote the true param-
eter by . For the usual parametrization, . A
stationary HMP is said to beidentifiableif for each such
that , a.e. for some [274].
Note that states may always be permuted without affecting the
distribution of the HMP. This ambiguity can be removed by or-
dering the states, for example, according to their .

Two parameters and in are said to beequivalent
if they induce the same stationary law for . We denote this
relation by . The parameter set can be partitioned
into theequivalence classesof . The equivalence class of a
parameter of an identifiable HMP comprises all points in
obtained by permutations of the states of the HMP [214, Lemma
2].

In some applications such as modeling of speech signals
[173], and representing Markov modulated Poisson processes
as HMPs [273], the assumption (4.2) is replaced by

(4.9)

Since pairs of states in (4.9) may be renamed as new states in
(4.2), the two assumptions are equivalent [36], [173]. Finite-
alphabet HMPs that obey (4.9) were referred to asfinite-state
sourcesin [236], [325], [330].

There are many extensions of the HMP as defined in this sec-
tion. Some of them will be discussed in the next subsection.
Throughout this paper, we refer to the discrete-time finite-state
process with finite or general alphabet defined by (4.1) and (4.2)
as an HMP or even more specifically as astandard HMP. This
is not to be confused with an HMP that has standard alphabet.
Other forms of HMPs such as HMPs with a countably infinite
state space, a continuous state space, or continuous-time HMPs
will be specifically noted.

B. Examples

HMPs appear in many forms. In this subsection we provide
some examples to demonstrate the scope of this rich family of
processes.

1) Gaussian Mixture Processes With Markov Dependence:
HMPs with multivariate Gaussian observation conditional den-
sities are commonly used in automatic speech recognition ap-
plications. Gaussian densities are suitable when modeling is ap-
plied to representations of the signal for which a central limit
theorem holds [47]. This indeed is the case in automatic speech
recognition applications where modeling is applied to vectors of
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spectral or cepstral components of the signal [19], [262], [106].
Let denote the dimension of each vector. Parametrization of
each covariance matrix as a matrix of an autoregressive
process of order [149] was studied in [254], [255], [175].
HMPs with zero-mean Gaussian observation conditional densi-
ties also appear in the form of , where is a
Markov chain that takes values , is a se-
quence of i.i.d. standard Gaussian random variables, and
and are statistically independent. This model was thor-
oughly studied by Francq and Roussignol [126]. Another pop-
ular form of HMPs with Gaussian observation conditional den-
sities is given by , where is a Markov chain
that takes values , is a sequence of zero
mean i.i.d. Gaussian random variables with variance, and

and are statistically independent [59], [194], [197].

2) Poisson Mixture Processes With Markov Dependence:
HMPs with Poisson observation conditional densities are used
for modeling counting processes. Heregiven is a
Poisson random variable with rate . Such HMPs are often
encountered in biomedical applications, for example, in mon-
itoring epileptic seizure counts [6], [207].

3) Switching Processes With Markov Regime:A switching
process with Markov regime is a random process whose
dynamics at any given time depend on the state of a Markov
chain at that time. Examples includeswitching regression[219]
andswitching autoregressiveprocesses [156, Ch. 22], [164]. In
this subsection, we focus on switching autoregressive processes
only. Let denote the process and let denote its
Markov regime of states. Consider first a switching autore-
gressive process that is linear in its parameter when the state
sequence is given. Assume that all states have the same
autoregressive order. Let
denote the autoregressive parameter for state, where de-
notes the gain and are the autoregressive
coefficients. Let denote the i.i.d. sequence of innova-
tions when the Markov chain is in state. It is assumed that

are mutually statistically
independent. Assuming that the Markov chain is in state
at time , then the process can be described by the difference
equation

(4.10)

The conditional -dimensional density of is given by

(4.11)

(4.12)

where is a realization of a vector of initial con-
ditions which is assumed independent of , the den-
sity is determined by the distribution of

, and is the parameter of the process. Let
, , and

denote the companion matrix of the autoregression asso-
ciated with state . The process has the following
state-space representation, see, e.g., [258, p. 797], [240]:

(4.13)

The switching autoregressive process (4.10) is not guaranteed
to be second-order stationary even if each individual autoregres-
sive process is stable. Conversely, the switching autoregressive
processes (4.10) may be second-order stationary even if some
individual autoregressive processes are not [164]. A sufficient
condition for the switching autoregressive process (4.10) to be
second-order stationary was given by Holst, Lindgren, Holst,
and Thuvesholmen [164]. Assume that for each
the innovation process has zero mean and unit vari-
ance. Let denote the transition probability from stateto
state . For each , define the matrix

where denotes the Kronecker product.
Let denote the resulting matrix and de-
note by its spectral radius. The switching autoregressive
process (4.10) is second-order stationary if .

A more general form of the switching autoregressive process
with Markov regime (4.13) was studied by Francq and Rous-
signol [127]. The process is defined by

(4.14)

where is a sequence of-dimensional random vectors,
is a finite-state Markov chain, is a sequence of

i.i.d. -dimensional random vectors independent of ,
and and are measurable functions from

to and from to , respectively.
In general, the driving i.i.d. noise need not be Gaussian.
The standard HMP (4.3) is a special case of (4.14) which
corresponds to . Krishnamurthy and Rydén [198]
studied an even more general class of switching autoregressive
process characterized by

(4.15)

where is a scalar process,is an arbitrary measurable func-
tion, and is a scalar i.i.d. process. The conditional-di-
mensional densities of (4.14) and (4.15) may be written simi-
larly to (4.11) and (4.12). The scalar case was chosen in [198] for
notational convenience only. Douc, Moulines, and Rydén [91]
studied general forms of switching autoregressive processes, of
which the above functional forms are special cases, when the
Markov chain takes values in a separable compact state
space that is not necessarily finite. For example, the state space

may be a compact set in a Euclidean space. Sufficient con-
ditions for the existence of a stationary ergodic solution for the
difference equation (4.14) will be detailed in Section IV-C4. Er-
godic theorems for switching autoregressive processes will be
presented in Section IV-D. Theorems for asymptotic optimality
of their ML parameter estimators will be given in Section VI-B.

The switching autoregressive process (4.13) is a special case
of the -dimensional vector process defined by the differ-
ence equation

(4.16)
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where and are sequences of random matrices.
When and are statistically independent sequences
of i.i.d. random matrices, the Markov process is referred
to asrandom coefficient autoregressive(RCA) process. Con-
ditions for stationarity and second-order stationarity as well as
algorithms for parameter estimation of RCA processes were
given by Nicholls and Quinn [245]. Conditions for geometric
ergodicity and existence of moments of RCA processes were
provided by Feigin and Tweedie [114]. The important concept
of geometric ergodicity will be defined in (4.28) for finite-state
Markov chains. For more general cases see Meyn and Tweedie
[240]. Conditions for existence of moments of a scalar process

satisfying (4.16), when is a stationary
sequence of random variables, were given by Karlsen [181].
A sufficient condition for existence of a unique stationarity
solution of (4.16), when is a stationary
ergodic sequence of random matrices, was given by Brandt [46]
and by Bougerol and Picard [45]. The condition was shown to
be necessary in [45].

Note that the switching autoregressive process (4.13) differs
from the HMP with autoregressive observation conditional den-
sities of the example in Section IV-B1. In that example, obser-
vations are conditionally independent given the state sequence.
Applications of switching autoregressive processes of the form
(4.10) in econometrics were studied by Hamilton [156]. See also
Krolzig [202] and the references therein. First-order switching
autoregressive processes of the form (4.10) were used in auto-
matic speech recognition applications by Wellekens [312] and
in speech enhancement applications by Ephraim [103].

4) Communication Channels Driven by HMPs:Consider
a communication channel with input , output

, and a state sequence . Assume
that for each , takes values in an input space, takes
values in an output space, and takes values in a state
space . The channel is called afinite-state channel(FSC) if
the following conditions are met [133, Sec. 4.6]. i)is finite.
ii) The state sequence is a Markov chain given ,
and the distribution of depends on only through .
iii) The observations are conditionally independent given

, and the distribution of depends on
only through . An FSC is characterized by
the time-invariant transition density and by
the initial state . The conditional -dimensional transition
density of the channel is given by

(4.17)

where

(4.18)

Equation (4.18) is an example of a Markov channel [186], [150].
FSCs play an important role in information theory, see [133],
[205]. Properties and universal decoding of FSCs will be dis-
cussed in Section XIII. It is easy to check that if is
an HMP with state space, then is an HMP with
an augmented state space . A special case of this example

is an HMP observed through a memoryless invariant channel
[17]. Note also that an FSC with a degenerate input sequence of

, , is an HMP.

5) The Gilbert–Elliott Channel:The Gilbert–Elliott chan-
nel is a special FSC [137], [97], [14], [243], [204]. For this ex-
ample, , , and are binary. In addition

and

The channel introduces an additive two-state hidden Markov
noise process that is statistically independent of the input
process . For each , where denotes
modulo-two addition. The two states of the channel represent
low and high error conditions. The channel is particularly
suitable for modeling communications under fading conditions
characterized by irregular patterns of burst errors. Properties
of the Gilbert–Elliott channel depend on its memory length
characterized by the parameter which
satisfies [243]. When , the Markov regime

becomes an i.i.d. regime and the channel is memoryless.
When , the Markov chain is reducible and the state of
the channel is determined by its initial distribution. This is a
degenerate channel whose underlying state can be inferred
from the observed sequence . When , the chain
is periodic and the states constantly alternate. Additional
properties of this channel are given in Section XIII.

6) Dynamical Systems:HMPs have dynamical system
representations in the sense of control theory. A dynamical
system representation for discrete-time point processes was first
given by Segall [289]. These processes are briefly described in
Section IV-B7. A dynamical system representation of an HMP
was developed by Hamilton [156, Ch. 22]. Elliott, Aggoun, and
Moore [99] applied this representation to a range of general
HMPs. In this example, we demonstrate the approach for a
finite-alphabet HMP with states and letters. We will
revisit this representation in Section IX which is dedicated to
the dynamical system approach to HMPs. Our presentation
follows [99, Sec.2.2].

Let denote a unit vector representing theth state of the
HMP in an -dimensional Euclidean space . The th com-
ponent of is one while all other components are zero. The
state space of the HMP is given by . Similarly,
let denote a unit vector in representing theth letter from
the alphabet of the HMP. The observation space of the HMP
is given by . Let
denote the state transition probability and let . Let

denote the state-to-observa-
tion transition probability and let . The unit delay
between the state and output variables indicates a noninstanta-
neous response of the system to. Let denote
the smallest -field generated by the random variables. Let

denote the smallest-field generated by the
random variables . Note that and

. Define and note that
. Similarly, define and
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note that . The HMP can now be written as a
dynamical system that has the same probability law. This system
is given by

(4.19)

The martingale difference processes and may be sta-
tistically dependent as in [289]. They are statistically indepen-
dent for the HMP defined in Section IV-A.

7) Markov-Modulated Poisson Processes (MMPPs):Con-
sider a Poisson process whose rate is controlled by a nonobserv-
able continuous-time finite-state homogeneous Markov chain.
Such process is called aMarkov-modulated Poisson process.
Markov-modulated Poisson processes have many applications
in medicine [295, Ch. 7], computer networks [158], [159], and
queueing theory [117]. A survey of this class of processes can
be found in Fischer and Meier-Hellstern [117]. Some properties
of Markov-modulated Poisson processes and their relation to
HMPs are discussed in this subsection. Our presentation follows
Rydén [273]. Additional results will be given in Sections IV-D,
VI-A–VI-C, and X.

Let be the continuous-time Markov chain with
state space . Let

denote the transition probability from stateto state in sec-
onds. Assume that for any pair of states, for some

. This implies that for all [154, p. 260].
A Markov chain with this property is calledirreducible. Let

and assume that the entries of are continuous
functions of . This assumption is equivalent to as
where denotes the identity matrix [154, p. 257]. The transi-
tion probability is approximately linear in for sufficiently
small . There exist constants , such that

(4.20)

where for , and and
for all . The matrix is called thegeneratorof the
chain [154, p. 256]. The matrix satisfies Kolmogorov’s for-
ward and backward equations, and

, respectively, where . These equations often have a
unique solution given by [154, p. 259]. Next, let

denote the Markov-modulated Poisson process.
Let denote the rate of the process when the chain is in state
. Assume that at least one . Let denote a diagonal ma-

trix of rates . Let denote the parameter of the
Markov-modulated Poisson process satisfying the above condi-
tions.

The process may be regarded as aMarkov renewal
process. To see this, let denote the state of the contin-
uous-time chain at the time of theth Poisson event. Introduce
an initial state with distribution . Define as the time

until the first event, and let , , denote the time
between event and event . It follows that

(4.21)

Note that there is a one-to-one correspondence between
and . Also, is a discrete-

time Markov chain, and is a sequence of conditionally
independent random variables given . The distribution of

depends on only through and . This sug-
gests that the Markov-modulated Poisson process may also be
viewed as an HMP with Markov chain and observations

. The density of this HMP is given by (4.1) and (4.9).
The formulations of the Markov-modulated Poisson process
as a Markov renewal process and as an HMP are similar but
there is a subtle conceptual difference. For a Markov renewal
process, the discrete-time Markov chain and the observations
evolve sequentially in time, i.e., is first chosen according to
the initial distribution , then and are chosen according
to (4.21), and so on. For an HMP, the entire Markov chain first
evolves and only then the observations follow [273].

Let and
. The transition density matrixwhich corresponds to

is given by [130], [117]

(4.22)

The transition matrix of is given by . Inte-
grating (4.22) with respect toover gives

(4.23)

The likelihood function of an observation sequenceis given
by

(4.24)

where is a row vector of and denotes a column
vector of ’s. Conditions for stationarity and ergodicity
of Markov modulated Poisson processes will be given in
Section IV-C2.

When the Markov-modulated Poisson process has only two
states it is called aswitched Poisson process. If the rate of one
of the states is zero, the process is referred to as aninterrupted
Poisson process. These processes were studied in [130], [233],
and [273], where more explicit results could be derived. In par-
ticular, Freed and Shepp [130] considered interrupted Poisson
processes, and derived a simple formula for the asymptotic like-
lihood ratio for estimating the state at any instant from a stream
of past events. Bounds on the likelihood ratio were given for a
switched Poisson process.

Related to Markov-modulated Poisson processes aredis-
crete-time point processes. A discrete-time point process is
a binary process with rate determined by another
random process, such as a Markov chain, and possibly by past
observations. signifies the occurrence of an event at
time , e.g., emission of an electron, while indicates that
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no such occurrence has taken place at that time. A recursion for
estimating was developed by Segall [289].

8) Composite Sources:A composite source comprises a
collection of discrete-time stationary ergodic subsources and a
random switch. At any given time, a single observation or mul-
tiple observations are drawn from a subsource selected by the
switch. Composite sources become HMPs when the switch is
controlled by a first-order discrete-time homogeneous Markov
chain, the number of subsources is finite, and the subsources
are statistically independent i.i.d. random processes. Composite
sources with i.i.d. switch processes and finite number of
statistically independent i.i.d. subsources were first introduced
by Berger [31]. When the switch position is randomly chosen
at time minus infinity, and the switch remains in that position
forever, a stationary ergodic process from one of the subsources
is observed. The identity or the index of the subsource is
not known. The frozen switch position composite source is a
mixture process. The ergodic decomposition theorem shows
that discrete-time standard alphabet stationary nonergodic
processes are composite sources with a switch soldered to its
randomly chosen initial position [151, Ch. 7.4]. The special
case of discrete-alphabet sources was developed by Gray and
Davisson [147].

Composite sources have been found useful in applications
such as coding and enhancement of speech signals [93], [9],
[104]. A composite source with about 50 stationary subsources,
and a switch that may change position every 10–400 ms, can
adequately represent the modes of speech signals and their
durations [9], [10]. Most of the information in a speech wave-
form lies in the sequence of modes. The set of modes is es-
sentially independent of the speaker while the switch process
is characteristic of the speaker [119]. A collection of universal
modes may therefore be used to describe all speech signals
as it is done in vector quantization [135]. Composite sources
with a switch soldered to its randomly chosen initial position
are natural models in universal source coding [75], [147]. The
composite source represents a family of possible sources for
which a coder is designed. The coder is universal in the sense
that it must perform well for all subsources while the identity
of the subsource selected by nature is not known. Existence
of universal codes for composite sources was proved in [75],
[118], [121].

A summary of properties of two-sided composite sources
with finite number of subsources was given by Fontana [119].
A composite source is said to bedecomposableif the switch
process is statistically independent of the collection of sub-
sources, i.e., the switch only chooses a subsource but does
not otherwise affect its output. Any decomposable composite
source has a regular conditional probability where

is a set in the -field of the observation sequence space
and denotes a switch sequence. The existence of is
guaranteed for any alphabet of the subsources. If the subsources
are jointly stationary then is stationary in the sense
that where denotes the shift trans-
formation on any two-sided infinite product space. Stationary,
mixing, and ergodic properties of a composite source are
inherited from the switch process much like what we shall see
in Section IV-C for HMPs.

The entropy rate of a sequence of finite-alphabet stationary
decomposable composite sources with statistically independent
subsources and slowly varying switch processes was studied in
[119, Theorem 12]. It is given by a weighted sum of the entropy
rates of the individual subsources where the weights are the
asymptotic probabilities of the switch process. Limit theorems
for the distortion-rate function of a sequence of composite
sources with vanishingly slow switch processes were also
developed in [119]. Rate-distortion functions for composite
sources with an i.i.d. switch process and under varying degrees
of knowledge of the switch process at the encoder and decoder
were determined by Berger [31]. A correct version of [31,
Theorem 6.1.1] was given by Wyner and Ziv [318] where the
rate-distortion function of sources with side information at the
decoder was developed.

9) The Telegraph Signal:The telegraph signal is an example
of a continuous-time binary Markov process. The state space

and the generator of the chain is given by
for [315]. When this signal is

observed in white noise, it becomes a continuous-time HMP. Fi-
nite-dimensional causal MMSE estimation of an-state con-
tinuous-time Markov chain observed in white noise was first de-
veloped by Wonham [315]. Noncausal estimation of the states
was studied by Yao [323].

C. Stationarity and Ergodicity

Statistical properties of an HMP such as stationarity, ergod-
icity, mixing, and asymptotic stationarity, are inherited from
similar properties of the underlying Markov chain. In the first
and second parts of this subsection, we review these concepts
for Markov chains and HMPs, respectively. Our presentation
in Section IV-C1 follows Grimmett and Stirzaker [154] and
Billingsley [38]. In the third part, we discuss exponential forget-
ting and geometric ergodicity in HMPs. In the fourth part, we
provide conditions for stationarity and ergodicity of a switching
autoregressive process of the form (4.14). We conclude this sec-
tion with a local limit theorem for HMPs.

1) The Markov Chain:Consider a discrete-time homoge-
neous Markov chain with finite or countably
infinite state space . Let denote the proba-
bility that the chain starts from some state . Let denote
a row vector with entries . This vector represents the initial
distribution of the chain. Let de-
note the transition probability for states . Let
denote the transition matrix of the chain. Let
denote the probability of the chain to be in state at
time . Let denote a row vector with entries .
Let denote the -step transition
probability for states . Let denote a matrix with
entries . We have that and . The
Chapman–Kolmogorov theorem establishes that ,
the th power of . Furthermore, [154, p. 215].

To establish conditions for stationarity and ergodicity of
Markov chains we need to characterize states and subsets of
states within the chain. A state is said to berecurrent,
or persistent, if for some .
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If this probability is smaller than one then the state is called
transient. Intuitively, the probability that a recurrent statewill
be revisited infinitely many times is one. The probability that a
transient state will be revisited infinitely many times is zero.
More formally, define the event . The event
that infinitely many of the occur, written as infinitely
oftenor i.o. , satisfies

i.o.

It is shown in Billingsley [38, Theorem 8.2] that persistence of
a state is equivalent to i.o. and to

. Transience is equivalent to i.o. and to
.

Suppose that a chain starts in state. Let denote the prob-
ability that the first visit of the chain to stateoccurs after
steps. This probability is given by

(4.25)

Let denote the time of the first visit to state, i.e.,
: . If the visit never occurs then . The

probability if and only if is transient,
and in this case . Themean recurrence time

of a state is defined as

if is recurrent

if is transient.
(4.26)

Note that the mean recurrence time may be infinite even ifis
recurrent. A recurrent stateis said to bepositive recurrent, or
nonnull recurrent, if . Otherwise, the state is callednull
recurrent.

Theperiodof a state is defined as ,
or as the greatest common divisor of the epochs at which returns
to are possible. A state is calledperiodicif and
aperiodic if . A state is calledergodic if it is positive
recurrent and aperiodic.

A set of states is calledirreducibleif for every pair of states
and in , for some . Thus, is irreducible if there

is a positive probability of ever visiting a state in the set having
started from another state in the set. A setof states is called
closedif for all and . Thus, the probability
of leaving the set is zero. A state is calledabsorbingif the chain
never leaves that state. The decomposition theorem for Markov
chains establishes that the state space of a Markov chain can be
uniquely partitioned as where is
the set of transient states, and are irreducible closed sets
of recurrent states [154, Theorem 6.3.4]. If for some

, then the chain never leaves and that set may be taken
to be the whole state space. On the other hand, if , the
chain will either stay in forever or move eventually to one
of the where it subsequently resides. Thus, if the Markov
chain is irreducible, then all states are either transient or recur-
rent [38, Theorem 8.3]. In an irreducible chain, all states are

either positive recurrent or null recurrent. Also, all states are ei-
ther aperiodic or periodic with the same period [154, Lemma
6.3.2]. When is finite, the chain cannot stay in forever, and
there exists at least one recurrent state. Furthermore, all recur-
rent states are positive recurrent [154, Lemma 6.3.5]. Thus, all
states of an irreducible finite-state Markov chain are positive re-
current.

A homogeneous Markov chain is a stationary process if and
only if for all . Since , the
process is stationary if and only if the initial distribution

satisfies . This equation may not have a solution,
and when it has one, it may not be unique. Any distribution
that satisfies is called astationary distribution. The
following summarizes conditions for existence and uniqueness
of a stationary distribution [162, Corollary 7, p. 68]. Let
denote the set of positive recurrent states of a Markov chain. If

is empty, the chain has no stationary distributions. If
is a nonempty irreducible set, the chain has a unique stationary
distribution given by for and by
otherwise. If is nonempty but not irreducible, the chain has
an infinite number of distinct stationary distributions. For ex-
ample, suppose that . Any convex combi-
nation of the unique stationary distributions of and of is
a stationary distribution for . For a finite-state Markov chain,

is a nonempty set, and the chain has a unique stationary
distribution if and only if is irreducible. If the finite-state
Markov chain itself is irreducible then it has a unique positive
stationary distribution.

Consider next the asymptotic behavior of [154, Theorem
6.4.17]. If the Markov chain is irreducible and aperiodic, then

for all and . If the chain is transient or

null recurrent, for all and since . If the
Markov chain is irreducible, aperiodic, and positive recurrent,
convergence is to the unique stationary distribution, say, for
all states and in

(4.27)

For a finite-state irreducible aperiodic Markov chain, (4.27)
holds, convergence is at an exponential rate

(4.28)

where and , and the chain is an ergodic
process, see Billingsley [38, Theorem 8.9 and Lemma 2, p. 315].
An ergodic Markov chain satisfying (4.28) is calledgeomet-
rically ergodic [114]. This concept usually applies to a much
more general situation of a Markov chain with a continuous state
space, see Meyn and Tweedie [240]. Note that the aperiodic con-
dition for ergodicity of the chain is sufficient but not necessary.
For example, consider a Markov chain with and ,

. This periodic chain has a unique stationary distri-
bution, (4.27) does not hold for this chain, but the chain is an
ergodic process.

The transition matrix of a Markov chain is calledprimitive
if there exists some positive integersuch that the -step tran-
sition matrix has positive entries, i.e., .
The smallest such integeris called theindex of primitivityof

. The transition matrix of an irreducible aperiodic finite-state
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Markov chain is primitive [38, Lemma 2, p. 125]. A finite-state
chain with primitive transition matrix has a unique positive sta-
tionary distribution and the chain is geometrically ergodic [38,
Theorem 8.9]. A corollary of these results is that the chain has a
unique positive stationary distribution and is geometrically er-
godic when .

An -state Markov chain with is -mixing with
for . Moreover, any deterministic func-

tion of the chain is -mixing with the same coefficients [38, p.
363]. Since mixing implies ergodicity [38, p. 325], a stationary
finite-state Markov chain with positive transition probabilities
is stationary ergodic as we have seen before under weaker con-
ditions.

2) The HMP: HMPs are Markov chains observed through
channels. Statistical properties of sources observed through
channels were developed by Adler [1] for two-sided processes
and by Gray [152] for one-sided processes. In particular, when
a stationary source is connected to a stationary channel then
the source–channel hookup is stationary [152, Lemma 9.3.1].
When a stationary ergodic source is connected to a stationary
output weakly mixing channel then the source–channel hookup
is stationary and ergodic [152, Lemma 9.4.3]. The channel
associated with an HMP is a memoryless invariant channel.
As such, it is stationary and output strongly mixing. Hence,
an HMP is stationary and ergodic if the Markov chain is
stationary, irreducible, and aperiodic. A similar result was
directly proved by Leroux [214, Lemma 1] without resorting to
the information-theoretic model of the process.

When a stationary mixing source is observed through a
stationary output strongly mixing channel, the source–channel
hookup is stationary mixing [1]. Hence, an HMP is stationary
mixing if the Markov chain is stationary and its transition
probabilities are positive. Mixing properties of the two-sided
HMP in Section IV-B1 were demonstrated by
Francq and Roussignol [126].

An additional result showing that when an AMS source is
observed through a stationary channel then the source-channel
hookup is AMS was developed by Fontana, Gray, and Kieffer
[120, Theorem 4], see also [152, Lemma 9.3.2]. Finite-state
Markov chains and deterministic functions of such chains are
AMS, see Kieffer and Rahe [186, Theorem 9]. Hence, HMPs
are AMS.

Conditions for stationarity and ergodicity of a Markov-mod-
ulated Poisson process, defined in Section IV-B7, were given by
Rydén [273, Lemma 1]. Consider a process with an irreducible
continuous-time Markov chain, a generator, and a diagonal
matrix of rates with at least one . Let
denote the parameter of the process. A vectoris a stationary
distribution of the chain if , , and
for all . This equation is satisfied for allif and only if

[154, p. 261]. If a stationary distribution
exists, then it is unique and for all [154,
p. 261]. Recall that is the transition matrix
of the discrete-time Markov chain embedded at event epochs.
Let : denote the subset of states with
corresponding positive Poisson rate. It was shown that for each
parameter , is the only set of recurrent aperiodic states. The

remaining states are transient. The discrete-time Markov chain
has therefore a unique stationary distribution which is positive
for all states in and zero otherwise. The stationary distribu-
tion of is given by [117, eq. (6)]

(4.29)

Stationarity and ergodicity of the Markov modulated Poisson
process are inherited from the Markov chain.

3) Exponential Forgetting and Geometric Ergodicity:We
have seen in (4.4) that the likelihood function of an
HMP is determined by the state predictive densities and the
observation conditional densities. Recall thatis the
vector representing the initial distribution of the Markov chain.
Let denote the state predictive density vector at time. For

, the th component of this vector is given by
for and by for
. Let denote a column vector whoseth element

is given by . Recall that denotes the
parameter of and . Let denote a diagonal
matrix whose element is . The state predictive
density vector satisfies the following recursion which will be
discussed in more details in Section V-A:

(4.30)

The log-likelihood function is given by

(4.31)

Assume the usual parametrization for the
HMP in (4.30) and (4.31). Let denote the true value of
used to produce the observation sequence. Assume that is
not known. For identification of , is expected to
take different values for different pairs of . The effects of

on is expected to be rapidly forgotten so that an
arbitrary initial distribution can be used in the recursion (4.30)
with no lasting effect. Conditions for identifiability of an HMP
are given in Section VI-A.

Le Gland and Mevel [210, Theorem 2.2] proved exponential
forgetting of the initial distribution for the prediction recursion
(4.30) when is not known. They referred to this situation as
that of amisspecifiedHMP. They assumed that the transition
matrix and its true value are primitive, but no restrictions
were imposed either onor on its true value . To emphasize
the dependence ofon the observation sequence and on the
initial distribution , we rewrite it as . Let be
another initial distribution. It was shown that

-a.s. (4.32)

where denotes the norm, denotes the index of prim-
itivity of , and is a constant depending on the obser-
vation conditional densities of the HMP. An implication of this
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property is that the log-likelihood function is Lipschitz contin-
uous with respect to some parameter of the model, uniformly in
time [210].

For a misspecified HMP, the predictive density vector se-
quence is not a Markov chain under , but the triplet
(state, observation, wrong predictive density) is a Markov chain.
Let denote that extended Markov
chain. Le Gland and Mevel [210, Theorem 3.5, Corollary 3.6]
proved geometric ergodicity of the extended Markov chain
and showed existence of a unique invariant distribution under
the assumption that the true and unknown transition matrices
are primitive. In particular, this theorem implies an ergodic the-
orem for the relative entropy density of the HMP [210]. This
limit theorem is key to proving consistency of the ML param-
eter estimator. These subjects are discussed in Sections IV-D
and VI-B, respectively.

Exponential forgetting, geometric ergodicity, and existence
of a unique invariant distribution for an extended Markov chain
defined similarly to above, for an HMP with a separable
compact state space that is not necessarily finite, were proved
by Douc and Matias [90, Proposition 1, Corollaries 1, 2].

A recursion for the gradient of the predictive density vector
with respect to a scalar parameter of the HMP can be obtained
from (4.30). Exponential forgetting of the initial condition for
this recursion were established by Le Gland and Mevel [210,
Theorem 4.6]. This result implies that the score function of the
HMP is Lipschitz continuous with respect to some parameter of
the model, uniformly in time [210]. Let denote the gra-
dient sequence. Geometric ergodicity of the extended Markov
chain

and existence of a unique invariant distribution, were proved by
Le Gland and Mevel [210, Theorem 5.4, Corollary 5.5] under
some integrability assumptions. The implications of this result
are that a central limit theorem for the score function and a law
of large numbers for the Hessian matrix follow [210]. These
limit theorems are key in proving asymptotic normality of the
ML parameter estimator. This subject will be discussed in Sec-
tion VI-B.

Exponential forgetting and geometric ergodicity for similarly
defined extended Markov chains, involving the score function
and Hessian of a misspecified HMP with a separable compact
state space that is not necessarily finite, were proved by Douc
and Matias [90, Appendix D].

Another form of exponential forgetting was demonstrated by
Douc, Moulines, and Rydén [91] for switching autoregressive
processes with a separable compact state space that is not neces-
sarily finite. Let denote the order of the autoregressive process
and let be the true parameter. They showed that for any

and , the state sequence given an
observation sequence , is an inhomogeneous Markov
chain under the stationary measure [91, Lemma 1]. Expo-
nential forgetting of the initial distribution for this inhomoge-
neous Markov chain was shown in [91, Corollary 1]. This prop-
erty is key in proving consistency and asymptotic normality of
the ML parameter estimator of .

4) Switching Autoregressive Processes:Conditions for sta-
tionarity and ergodicity of a switching autoregressive process
of the form (4.14) were given by Francq and Roussignol [127,
Theorem 1]. Recall that an HMP is a special case of this process.
Let denote the true parameter of the switching autoregres-
sive process. It was assumed that i) the Markov chain
is irreducible and aperiodic, ii) for
all where denotes the usual Euclidean
norm, and iii) there exist constants such that for all

and all

(4.33)

and the matrix , where
and is the true transition matrix of , has spectral ra-
dius smaller than . Under these conditions, it was shown that
the Markov chain on admits a unique sta-
tionary probability . The second marginal of is equal to the
stationary probability of . Moreover, a stationary Markov
chain satisfying (4.14) with as initial distribution is
an aperiodic ergodic Harris process [114], [240].

5) A Local Limit Theorem:A local limit theorem for
zero-mean stationary ergodic general HMPs with finite
second-order moment that satisfy some mild conditions was
proven by Maxwell and Woodroofe [231]. Let denote the
distribution of the HMP. For the partial sum of HMP observa-
tions, , it was shown that

(4.34)

for some positive constantand , and

(4.35)

D. Entropy Ergodic Theorems

In this subsection, we review ergodic theorems for the
sample entropy and relative entropy densities of an HMP.
The fundamental ergodic theorem for the sample entropy of a
stationary ergodic finite-alphabet process, not necessarily an
HMP, is given by the Shannon–McMillan–Breiman theorem
[68, Theorem 15.7.1]. Let denote such a process and let

denote its distribution. Let denote the -dimensional
pmf induced by . The theorem states that

-a.s. (4.36)

where

(4.37)

is theentropy rateof [152, p. 24]. Another common nota-
tion for the entropy rate is .
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Let denote a stationary ergodic HMP with distri-
bution for some parameter . This one-sided process
may be considered part of a two-sided stationary ergodic process
with the index set of all integers. The-dimensional density of
the HMP with respect to is the density given by
(4.8). For a finite-alphabet HMP, is the counting measure.
For a general HMP, is any -finite measure. For a finite-al-
phabet HMP we have from (4.36)

-a.s. (4.38)

Leroux [214, Theorem 1] proved (4.38) for a stationary ergodic
general HMP. He assumed an irreducible aperiodic Markov
chain and observation conditional densities that satisfy

for

This extension is in fact a special case of Barron’s ergodic the-
orem [23] which we discuss shortly.

Let , , denote a distribution of the HMP and let
denote the induced-dimensional density with respect

to as given by (4.8). The parametersand are not nec-
essarily equivalent. We are now interested in ergodic theorem
for when is the stationary ergodic HMP
with distribution . Baum and Petrie [25, Theorem 3.2] and
Petrie [251, Theorem 2.1] developed the theorem for a finite-al-
phabet HMP. Petrie [251] relaxed the assumption that
made in [25]. Leroux [214, Theorem 2] proved the theorem for
a general HMP. The ergodic theorem states that

-a.s. (4.39)

where

(4.40)

Define

(4.41)

and note that . Baum and Petrie [25,
Theorem 3.1], Petrie [251, Proposition 2.2, Theorem 2.5], and
Leroux [214, Lemma 6] proved that

with equality iff (4.42)

This important property provides a criterion for distinguishing
between the equivalence classes ofand , and is key in
proving consistency of the ML estimator of . For an identi-
fiable HMP, the equivalence class of comprises all points in

obtained by permutations of the states of the HMP. A similar
statement holds for the equivalence class of.

Leroux showed that theorem (4.39) holds for any choice
of positive initial distribution and is the same
for any such choice. may possibly be equal to

. He proved the theorem using Kingman’s [188] ergodic

theorem for subadditive processes assuming an irreducible
aperiodic Markov chain and observation conditional densities

that satisfy

for some where denotes the Euclidean distance and
. Theorems (4.39) and (4.42) hold for any

in the one-point compactified parameter space. Compactifi-
cation extends the parameter setinto a compact set . For
the usual parametrization, is obtained from compactification

of the parameter space. The latter is done by attaching to
a point denoted , and extending to by defining

. For example, if is the Poisson density
with mean then . A regularity condition assumed
in [214] ensures continuity of over . For any other
parametrization of the HMP, for .
In proving (4.42), the assumption quoted after (4.38) was also
made.

If we assume that in addition to our earlier as-

sumption that , then the two measures areequiva-
lent, and

(4.43)

For this case, (4.38) and (4.39) imply an ergodic theorem for
the relative entropy density of one general HMP with respect to
another

-a.s. (4.44)

In addition, we may now call the relative entropy
rate [152, p. 150].

Similar ergodic theorems for relative entropy densities of sev-
eral extensions of standard HMPs were recently proved under
suitable conditions. Francq and Roussignol [127] studied sta-
tionary ergodic switching autoregressive processes with finite-
state Markov regime given by (4.14). They proved an ergodic
theorem similar to (4.39) for the normalized conditional log-
likelihood [127, eq. (11)]. They expressed
the conditional density as a product of random matrices and ap-
plied Furstenberg and Kesten [132] ergodic theorem. The se-
quence converges almost surely to the upper Lyapunov exponent
of the sequence of random matrices. They also proved (4.42)
[127, Theorem 2]. Conditions for a switching autoregressive
process of the form (4.14) to be stationary ergodic were given
in Section IV-C4. For the matrix product form of the likelihood
function of a standard HMP see (5.12).

Krishnamurthy and Rydén [198, Lemma 1] studied stationary
ergodic switching autoregressive processes with finite-state
Markov regime described by (4.15) and arrived at a similar
ergodic theorem for the normalized conditional log likelihood.
They used Kingman’s ergodic theorem following Leroux [214].
They also showed in [198, Lemma 4] that but
the implications of are not as explicit as for
the process studied in [127, Theorem 2].
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Le Gland and Mevel [210] proved an ergodic theorem sim-
ilar to (4.39) for a finite-state general HMP using geometric
ergodicity of an extended Markov chain as described in Sec-
tion IV-C3. Douc and Matias [90] extended this approach to a
general HMP with a separable compact state space that is not
necessarily finite. They developed an ergodic theorem similar to
(4.39) for an HMP with arbitrary initial state density not neces-
sarily a stationary density [90, Proposition 4]. They also proved
(4.42) [90, Theorem 1]. It was noted in [90] that Leroux’s ap-
proach does not immediately apply to HMPs with a continuous
state space.

Douc, Moulines, and Rydén [91] studied general forms of
switching autoregressive processes with a separable compact
state space that is not necessarily finite. They proved an ergodic
theorem similar to (4.39) for almost sure andconvergence of
the normalized conditional log likelihood of the observation se-
quence [91, Proposition 1]. They also proved (4.42) [91, Propo-
sition 3]. They relied on uniform exponential forgetting of the
initial distribution of the inhomogeneous Markov chain repre-
senting the states given the observation sequence. It was noted
in [91] that application of the approach used in [90] would have
required stronger assumptions.

Rydén [273, Lemmas 5, 8] proved an ergodic theorem sim-
ilar to (4.39) and the conclusion (4.42) for a Markov-modu-
lated Poisson process. The main difference between the HMPs
in Leroux [214] and Rydén [273] is that for the former case
(4.2) holds while in the latter (4.9) holds as explained in Sec-
tion IV-B7. In addition, compactification of the parameter set is
not possible since does not always vanish at infinity.

We turn now to the general ergodic theorem for relative en-
tropy density developed by Barron [23]. See also [152, Theorem
8.2.1]. Consider a standard alphabet random process

described by a stationary ergodic distribution on a se-
quence measurable Borel space [152, p. 12]. Letbe a -fi-
nite Markov measure of order that has stationary transi-
tion probabilities and is defined on the same measurable space.
Let and denote the -dimensional distributions in-
duced by and , respectively. Assume that for
all . Let denote the Radon–Nikodym
derivative or density of with respect to . Let

for

and

Assume that

for some . This condition is automatically satisfied if
is a finite measure or a probability measure. In the latter

case, . The theorem states that

-a.e. and in (4.45)

where is the relative entropy rate defined similarly
to (4.41)

(4.46)

Theorem (4.38) for a general HMP could be obtained from
(4.45) if and . If

then and the theorem holds. This condition results
from application of Jensen’s inequality to (4.4).

An ergodic theorem for when is AMS and
is the same Markov measure as above was proved by

Barron [23, Theorem 3]. See also Gray [152, Theorem 8.4.1].
Let denote a stationary distribution that asymptotically
dominates . This may be the stationary mean of the AMS
process. Let . It was shown that if

-a.e. for some shift-invariant mea-
surable function then also -a.e.
Ergodic theorems for when is stationary but not
ergodic were proved by Barron [23, Theorem 2] and Gray [152,
Corollary 8.3.1].

Without the Markov property for the dominating measure,
convergence of is not guaranteed [23]. When and

are two stationary ergodic general HMP distributions, (4.44)
provides a version of Barron’s theorem with an HMP domi-
nating measure. For finite-alphabet processes, an HMP domi-
nating measure may replace the Markov measure in (4.45) pro-
vided that its parameter . This result was first shown
by Finesso [116, Theorem 2.3.3] and then by Kehagias [183,
Lemma 1]. In particular, Finesso [116, Sec. 2.4] proved that if
under the process is stationary ergodic, and
is an HMP distribution with corresponding-dimensional pmf

, then

-a.s. (4.47)

where is defined similarly to (4.40) and conver-
gence isuniformlyin . This theorem is particularly useful
when one wishes to model a stationary ergodic process
by an HMP and performs ML estimation of its param-
eter by maximizing over . In addition,

is the asymptotically
minimum average length of a source code designed for the sta-
tionary ergodic source assuming that this source is the HMP

[68, Theorem 5.4.3].

E. Finite-Alphabet HMPs

In this subsection, we summarize results for finite-alphabet
HMPs and deterministic functions of finite-state Markov chains.
We first show that the two classes of processes are closely re-
lated. Then we focus on an important subclass of finite-alphabet
HMPs known as unifilar sources. This class is amenable to the
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method of types and hence is particularly attractive. We con-
clude with some bounds on the entropy rate and rate-distortion
function of finite-alphabet HMPs.

Consider an HMP with states and letters. Define the
Cartesian product of observation and state spaces,
and a deterministic function: by .
Rewriting (4.1) redundantly, we have

(4.48)

Hence, is a Markov chain with states,
and . Thus, any finite-alphabet HMP is a deter-
ministic function of a Markov chain with augmented state space
[25]. Conversely, if for some function and Markov
chain , then is an HMP with
if and zero otherwise [161]. Thus, any deterministic
function of finite-state Markov chain is a trivial HMP.

Let for some many-to-one functionand Markov
chain . The function may collapse one or more states of

onto a single letter of . The process is there-
fore referred to asaggregated Markov process[278], [206].
The process is not in general a Markov chain and it ex-
hibits long statistical dependencies. It inherits stationarity and
ergodicity from the Markov chain [25]. Necessary and suffi-
cient conditions for to be a Markov chain were devel-
oped by Burke and Rosenblatt [52]. Conditions for stationary
processes to be functions of Markov chains were developed by
Dharmadhikari [83]–[86], Heller [160], and Erickson [107]. A
partial summary of these results appears in [272, pp. 77–78].
These results are not constructive in the sense that they do not
lead to an algorithm for producing the Markov chain and
function for a given stationary process . Identifiability of
a function of Markov chain was first studied by Blackwell and
Koopmans [42], Gilbert [136], and Carlyle [54]. Identifiability
of a finite-alphabet HMP was studied by Petrie [251]. Identifia-
bility of a function of a nonstationary Markov chain was studied
by Ito, Amari, and Kobayashi [167], Rydén [278], and Larget
[206]. These results will be further discussed in Section VI-A.
See [167] for additional references.

A deterministic function of Markov chain which produces
distinct letters when the chain transits from each stateto all
states with was referred to as a unifilar source
by Ash [14]. For unifilar sources, the state is uniquely de-
termined by the previous state and the current letter .
The entire state sequence can be read from the observation
sequence provided that the initial state is known. An im-
portant special case of unifilar sources is theth-order Markov
chain with states defined as .

A more general source was introduced by Gallager who re-
ferred to it asMarkov source[133, Sec. 3.6]. The source is
characterized by an initial state, a transition pmf ,
and a deterministicnext-state function for

. Given the initial state , an observation is
generated according to and a new state

is chosen. Next, is generated according to , and so
on. The -dimensional pmf of the source is given by

(4.49)

By construction, is uniquely determined by and the ini-
tial state as we have seen for unifilar sources. The observa-
tion , however, is a not a deterministic function ofunless

is a one-to-one function given . We shall not im-
pose this restriction on. We shall refer to this source as the
unifilar source. Other authors have used the more explicit name
of unifilar finite-state source.

Unifilar sources are mathematically tractable since they are
amenable to themethod of typesmuch like i.i.d. sources and
Markov chains. The method of types for i.i.d. sources was de-
veloped by Csiszár and Körner [70], [73]. Consider an i.i.d. fi-
nite-alphabet source with letters and pmf . The method
of types characterizes the sample space of-length source se-
quences by an exhaustive set of empirical distributions called
types. The set of all -length source sequences having the same
type forms atype class. The set of all type classes forms a par-
tition of the sample space of all-length source sequences. Let

denote an observation sequence with empirical pmf .
Let

denote theempirical entropy. Let

denote therelative entropybetween and . The fol-
lowing facts were established. We useto denote approxima-
tions up to polynomial factors. The pmf of the sequencecan
be written as

(4.50)

Hence, all sequences within a given type class are equally likely.
There is a polynomial number of types that does not exceed

. There is an exponential number of sequences in
each type class given by . The probability of a type
class is given by .

A summary of the method of types for unifilar sources, which
is similar to that for Markov chains, can be found in Csiszár [73].
Let denote an observation sequence from a unifilar source
and let denote the state sequence recovered fromand

. Let denote the pmf of thejoint typeof .
The joint type is given by the relative frequency of appearance of

among the pairs . Let
denote the empirical transition pmf induced by the joint type.
Let

(4.51)

denote the empirical conditional entropy, and let

(4.52)



1536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

denote the conditional relative entropy. The following facts were
established. The pmf (4.49) has the form of (4.50) with
and given by (4.51) and (4.52), respectively. All se-
quences within a given type class are equally likely. There is a
polynomial number of joint types that is larger than
for some constant but does not exceed . The
lower bound is due to Alon, cited in [309, Lemma 2]. The car-
dinality of a type class is and the probability of a type
class is .

No extension of the method of types to HMPs is known.
Hence, the analysis of HMPs is generally much harder as their
statistics cannot be summarized by types. In some problems, this
difficulty may be circumvented by defining a conditional type
class and lower-bounding its cardinality using the Lempel–Ziv
universal codeword length instead of the empirical entropy as
for the joint type above. This approach was demonstrated by
Ziv and Merhav [330] and Merhav [236]. In addition, any fi-
nite-alphabet HMP for which for all

and can be approximated by a unifilar
source having sufficiently large number of states as was shown
by Zeitouni, Ziv, and Merhav [325, Appendix].

The entropy rate of a unifilar source was given by Gal-
lager [133, Theorem 3.6.1]. Let and

Let

be the conditional entropy of given that the chain is in state
. The entropy rate of the unifilar source is given by

(4.53)

If the Markov chain is irreducible aperiodic with stationary dis-
tribution then .

No explicit single-letter expression for the entropy rate of an
HMP is known [41]. Sequences of asymptotically tight bounds
for the entropy rate of a deterministic function of a stationary
Markov chain were first developed by Birch [40]. The same
bounds appear in Cover and Thomas [68, p. 69]. Gallager [133,
Problem 3.23] provides the same bounds for a finite-alphabet
stationary HMP. The bounds are given in terms of conditional
entropies of the process. For a process with -dimensional
pmf , theconditional entropy is defined by
[68, p. 16]

(4.54)

For a stationary process, this conditional entropy is a monoton-
ically nonincreasing sequence which converges to the entropy
rate of the process. Hence, provides an
upper bound for . For the lower bound, the conditional
entropy is used. This conditional entropy is
a monotonically nondecreasing sequence which also converges

to the entropy rate . In addition,
[68, p. 27]. Thus, for each

(4.55)

and

(4.56)

The difference between the upper and lower bounds in (4.55) is
theconditional mutual information[68, p. 22]

(4.57)

It signifies the amount of information that can be gained about
from given . The rate at which this difference

approaches zero is of theoretical and practical importance.
Birch [40] showed that if the transition matrix , then

converges to zero exponentially fast with.
A lower bound on the rate-distortion function of a finite-al-

phabet HMP was developed by Gray [146]. The rate-distortion
function provides the minimum possible bit rate re-
quired byany encoder to encode the source with average dis-
tortion that does not exceed [68, p. 341]. Consider an HMP
with alphabet of size , -dimensional pmf , and entropy
rate . Let be a distortion measure between a letter

and its encoded version. Assume that : is
independent of . Such a distortion measure is calledbalanced.
The Hamming measure , where is the
Kronecker delta, has this property. Let

be the distortion between and . Define the set of condi-
tional pmfs for all possible encoders that provide av-
erage distortion smaller than or equal toas

(4.58)

where expectation is taken with respect to the joint pmf
. Let denote the

mutual information between the HMP observation sequence
and its encoded version

(4.59)

Therate distortion functionis defined as [68, p. 341]

(4.60)

The bound on the rate-distortion function is given by

(4.61)

where is a constant and

(4.62)

The optimal value of that maximizes the bound is obtained
from

(4.63)
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The bound is the same for all HMPs having the same alphabet
size and entropy rate. There exists a distortion interval
over which the bound is tight provided that the initial distribu-
tion of the Markov chain is positive and either the state transi-
tion matrix or the state-to-observation transition matrix

. The value of depends on the number of states.

V. STATE ESTIMATION

Estimation of the state sequence from an observation se-
quence is of considerable theoretical and practical impor-
tance. Estimation of the state from is apredictionproblem
when , a filtering problem when , and asmoothing
problem when . The state sequence may be estimated
under various criteria. The most common criteria are minimum
symbolerror probability and minimumsequenceerror proba-
bility. In the first case, an estimate is chosen by mini-
mizing the probability of error . This results in
the maximuma posteriori(MAP) symboldecision rule

(5.1)

and the sequence is estimated as . Computationally
efficient forward–backward recursions for calculating
were developed by Chang and Hancock [56], Ott [248], Raviv
[265], Baum, Petrie, Soules, and Weiss [28], Forney [124],
Bahl, Cocke, Jelinek, and Raviv [17], Lindgren [219], Askar
and Derin [15], Devijver [81], and Kitagawa [189]. These
recursions will be presented in Section V-A. Estimation of the
state sequence using the second criterion results in the MAP
sequenceestimate given by

(5.2)

This problem is solved using dynamic programming [30] or by
the well-known Viterbi algorithm [308], [124], [285].

When the states are considered unit vectors in an-di-
mensional space, as was done in Section IV-B, they can be
estimated in the MMSE sense. The conditional mean esti-
mate in this case is the vector of conditional probabilities

. This approach enables appli-
cation of nonlinear estimation techniques [99] and will be
presented in Section IX. In a related approach, Golubev [143]
studied causal conditional mean estimation ofgiven when
the finite number of values that can take were assumed real
numbers rather than integers. If , then the
MMSE estimator of is given by

Boguslavskii and Borodovskii [44] proposed rounding the con-
ditional mean estimate of given to the nearest neighbor
integer.

Note that the two schemes (5.1) and (5.2) are smoothing ap-
proaches except when estimating theth state from . While
the error probability of the MAP symbol decision rule (5.1)
cannot exceed that of the MAP sequence decision rule (5.2),
there is no guarantee that the sequence estimateis admis-
sible since it may contain transitions that area priori impos-
sible. Both estimators (5.1) and (5.2) require the entire sequence

of observations for estimating a state at time .
A low-delay symbol MAP decoder was proposed in [249]. A
hybrid of the two approaches (5.1) and (5.2) was proposed by
Brushe, Mahony, and Moore [50]. A forward–backward recur-
sion that depends on a soft-decision parameterwas developed
such that symbol decoding (5.1) is obtained when and
sequence decoding (5.2) is obtained when . In partic-
ular, this approach shows that the Viterbi algorithm can be im-
plemented in a forward–backward manner.

The forward–backward recursions of Chang and Hancock
[56] as well as the Viterbi algorithm were shown by Aji and
McEliece [3] to be special cases of ageneralized distributive
law which is used to marginalize a product function such as a
product of pdfs. Many other algorithms, such as the turbo de-
coding algorithm, fall into this category [3].

In some applications, such as automatic speech recognition, it
is often desirable to find several state sequences that mostly con-
tribute to the likelihood function . An
algorithm that accomplishes this task was proposed by Foreman
[123]. In other applications, lumpable HMPs are encountered.
These are generalizations of lumpable Markov chains, whereas
states can be grouped together in disjoint sets, and the proba-
bility of being in a state in one set is independent of the previous
state as long as that state lies in another set. The state filtering
problem for lumpable HMPs was studied by White, Mahony,
and Brushe [314].

Asymptotic performance of the MAP symbol estimator of
from , for an HMP with rare transitions, was studied by

Khasminskii and Zeitouni [185]. They assumed a finite-state ir-
reducible aperiodic Markov chain with transition matrix
where when , , and

. Let denote the stationary distribution of the
chain and let denote the divergence between the obser-
vation conditional densities associated with statesand where

. Let denote the infimum of over all
possible estimators . Under some mild assumptions on the
observation conditional densities of the HMP, and for any ini-
tial distribution, they showed that as

(5.3)

A similar result holds for a continuous-time HMP. When the
states are considered real numbers , Golubev
[143] showed under similar assumptions as in [185] that the
average MSE

(5.4)

associated with the conditional mean estimatoris given by

(5.5)
as .

Asymptotically optimal recursive estimators for the states of a
finite-alphabet HMP, in the minimum probability of error sense,
that do not depend on the transition matrix, were derived in
[142], [184], and [185].



1538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

A. Prediction, Filtering, and Smoothing Recursions

In this subsection, we present recursions for the conditional
probabilities , and , .

We begin with the forward–backward recursions of Chang
and Hancock [56, eqs. (10), (18)] which were later rediscov-
ered by Baum, Petrie, Soules, and Weiss [28], [29]. These re-
cursions rely on the conditional statistical independence of
and given , . This property leads
to a simple decomposition of . Define theforward
density by and thebackwarddensity
by with . For

we have

(5.6)

The forward and backward densities satisfy the following recur-
sions:

(5.7)

(5.8)

The conditional probability , , can be cal-
culated as

(5.9)

Furthermore, for

(5.10)

The likelihood function of the observation sequencecan be
efficiently calculated using the forward recursion as follows:

(5.11)

Evaluation of (5.11) requires an order of operations while
direct calculation of the likelihood function (4.3) requires an
order of operations.

The forward–backward recursions can be compactly written
using matrix notation. Let denote the vector whose
th element is . Let denote the vector whose
th element is . Let denote an diagonal

matrix whose element is . Let represent

an vector of ’s. Recall that denotes the transition
matrix and denotes a vector representing the initial
distribution. Let and . The matrix forms of
(5.7), (5.8) and (5.11), respectively, are given by ,

, and . In particular, we have

(5.12)

It is well known that the forward–backward recursions (5.7)
and (5.8) are not numerically stable. This has often been ob-
served in practice, see, e.g., [215], [263], [81]. These observa-
tions are supported by the ergodic theorem (4.39) as argued by
Leroux [212]. For sufficiently large

with high probability. Furthermore, are typi-
cally of the same order of magnitude. Hence, each
tends to zero or infinity exponentially fast as .

An embedded iterative scaling procedure for stabilizing the
forward–backward recursions was developed by Levinson, Ra-
biner, and Sondhi [215]. They proposed using

as a normalizing factor for the forward and backward densities.
Starting with a normalized forward density function, say

, the recursion (5.7) is executed and normal-
ized by to produce a new normalized updated density

. For , we have . Similarly,
starting with a normalized backward density function, say

, the recursion (5.8) is executed and normal-
ized by to produce a new normalized updated density

. For , we have . The condi-
tional probabilities (5.9) and (5.10) may be calculated using the
scaled forward and backward densities. Devijver [81, eq. (17)]
showed that the scaled forward recursion provides a stable
recursion for the conditional probability . The scaled
backward recursion does not enjoy such an intuitive interpre-
tation. The recursion for is, in fact, a recursion for

[81, eqs. (9), (16)]. Furthermore, the
state conditional probability can be obtained from

(5.13)

Similar stable recursions were later developed for turbo codes
by Barrou, Glavieux, and Thitimajshima [32].

The stable forward recursion for was provided much
earlier than [215] and [81] by Ott [248, eq. (4)], Raviv [265, eqs.
(5), (8)], and Lindgren [219, Lemma 2.1]. Denoting

, this recursion is given by

(5.14)
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where and

(5.15)
Lindgren [219, Lemma 2.1] and Askar and Derin [15, The-

orem 1] developed equivalent alternative stable backward recur-
sions for calculating and using only the
forward recursions for and . See also com-
ments in Devijver [81, eq. (21)]. We present here the recursions
from [15, Theorem 1] as follows:

(5.16)

(5.17)

for , where . The
recursions (5.16), (5.17) are computationally more efficient than
(5.9), (5.10) which use Chang and Hancock’s forward–back-
ward recursions [81].

The recursions for in (5.15), in (5.14),
and in (5.16) are, respectively, prediction, filtering,
and fixed-interval smoothing recursions for estimatingfrom

. A recursion for the -step predictor , ,
can be found in Künsch [203, Lemma 3.1]. These recursions,
with sums replaced by integrals, are applicable to discrete-time
continuous-range state and observation processes, described
by general state-space models of the form
and where and are arbitrary measurable
functions and and are statistically independent i.i.d.
processes [169, eq. (7.84)], [15], [189], [192], [203]. They
provide conditional mean estimators for estimation problems
that are not necessarily linear or Gaussian. For linear Gaussian
state-space models with Gaussian initial conditions, the re-
cursions (5.14)–(5.16) are equivalent to the Kalman filter and
fixed-interval Kalman smoother, respectively, [169, Example
7.8], [189], [76], [203, Sec. 3.4.2]. This is easily checked
since , , and are Gaussian and
hence characterized by their conditional means and covariance
matrices [286, p. 308]. Exponential stability of the filtering and
fixed-lag smoothing recursions in finite-alphabet HMPs was
demonstrated by Anderson [11].

The stable forward–backward recursions have compact vec-
tor forms. Let denote the vector whoseth element is
given by . Let denote the vector whose
th element is given by . Let denote, as usual, the

vector of initial distribution. Let denote term-by-term
multiplication of two vectors and let denote term-by-term
division of two vectors. The vector forms of (5.14) and (5.15)
are, respectively, given by [156, eqs. 22.4.5–6],

(5.18)

where and

(5.19)

The vector form of (5.16) is given by [156, eq. 22.4.14]

(5.20)

The recursions (5.18)–(5.20) hold for the switching autoregres-
sive process (4.10) of which HMPs are special cases, see, e.g.,
[156, Ch. 22].

We close this subsection with a relation that follows from
Lindgren [219, Lemma 2.1]. We have that

(5.21)

This demonstrates the well-known fact that is a condi-
tionally inhomogeneous Markov chain given . The tran-
sition probabilities are given by (5.21). This important prop-
erty is often used in analysis of HMPs, see, e.g., [166], [36],
and [174, Lemma 4.1]. Properties of the conditionally inhomo-
geneous Markov chain for switching autoregressive processes,
with Markov regime in a separable compact state space that is
not necessarily finite, were given by Douc, Moulines, and Rydén
[91, Lemma 1].

VI. ML PARAMETER ESTIMATION

In this section, we address several important aspects of pa-
rameter estimation of an HMP. We begin with conditions for
identifiability of an HMP and proceed with consistency and
asymptotic normality of the ML estimator. This is followed by
a brief presentation of the Baum algorithm for local ML esti-
mation of the parameter of an HMP. Next, Louis’s formula for
estimating the observed information matrix whose inverse pro-
vides an estimate of the error covariance of the ML estimator is
presented. We conclude this section with Ziv’s inequality which
provides a tight upper bound on the maximum of the likelihood
function of any finite-alphabet HMP.

A. Identifiability of HMPs

Consider a stationary HMP with the usual parametrization
where . Let

denote the -dimensional density of the HMP. An HMP with
true parameter is said to beidentifiable if for each

such that , a.e. for
some [274]. Consider the source–channel information-
theoretic model of an HMP. If the Markov chain is reducible,
there might be infinitely many stationary distributions. In ad-
dition, some components of the parameter of the HMP, related
to the Markov chain and observation conditional densities, will
have no effect on the likelihood function. Similarly, if some
of the are identical, there might be an infinite number of
stochastic matrices that induce the same-dimensional sta-
tionary distribution as does. In both cases, the HMP cannot
be identifiable [214], [274]. Note that the states of the HMP can
be permuted without affecting its distribution. This trivial am-
biguity can be resolved if the states are ordered.

Leroux [214] and Rydén [274], [277] studied identifiability
of a general HMP. Leroux observed that the problem is essen-
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tially that of identifiability of finite mixtures of product densi-
ties, since from (4.8), the density of the HMP can be written as

(6.1)

where . Leroux invoked a result by
Teicher [297, Theorem 2] which shows that if the family of all
finite mixtures of is identifiable, then
for every , the family of finite mixtures of product den-
sities of the form (6.1) is identifiable. The family of finite mix-
tures of is identifiable if the mixing
coefficients can be identified, i.e., if

-a.s.

(6.2)

where denotes the point mass at, and and are
distributions. This condition holds, for example, when
is Poisson, Gaussian with fixed variance, exponential, and neg-
ative exponential. Teicher’s theorem combined with the earlier
comments lead to the following conclusion. An HMP with the
usual parametrization is identifiable for if the Markov
chain is irreducible, all are distinct, and finite
mixtures of the parametric family are identifiable.
In that case, is uniquely determined from ,

, up to permutations of the states. It should be noted that
the finite-dimensional distributions of are uniquely deter-
mined by the -dimensional distribution even when not all of
the are distinct, Rydén [274], [277, Theorem 1].

Conditions for identifiability of a Markov-modulated Poisson
process, defined in Section IV-B7, were given by Rydén [278,
Corollary 1]. A Markov-modulated Poisson process is identifi-
able, up to state permutations, if and only if all Poisson rates are
distinct.

Petrie [251, Theorem 1.3] provided conditions for identifia-
bility, up to permutations of the states, of a stationary ergodic
finite-alphabet HMP; see also Finesso [116, Theorem 1.4.1]. A
complete solution to the identifiability problem of a determin-
istic function of discrete-time, possibly nonstationary, Markov
chain, was developed by Ito, Amari, and Kobayashi [167].
An algebraic approach was used to develop necessary and
sufficient conditions for two aggregated Markov processes to be
equivalent, i.e., to have equal finite-dimensional distributions.
An algorithm for deciding equivalence was also developed.
This approach was used by Rydén [278] and Larget [206]
to determine equivalence of two continuous-time aggregated
Markov processes. These are deterministic functions of contin-
uous-time Markov chains. A unique canonical representation
of each equivalence class of aggregated Markov processes
that satisfy some mild regularity conditions was developed in
[206] for both continuous-time and discrete-time processes.
This representation contains a minimal parametrization of all
identifiable information for the equivalence class. Equivalence
of aggregated Markov processes may be checked in a single
direct computation by converting the standard representation
of the process to its canonical representation [206].

B. Consistency and Asymptotic Normality

Suppose that an observation sequencewas generated
by an identifiable HMP with true parameter . Let

denote the log-likelihood function of
the HMP where is given by (4.8) for any . The
ML estimator of is obtained from

(6.3)

This maximization is performed over all such that
is a distribution, is a stochastic matrix, and sat-
isfy appropriate constraints implied by the nature of the observa-
tion conditional densities of the HMP. The additional constraint

must be imposed when represents a stationary
distribution of the Markov chain. This constraint, however, sig-
nificantly complicates the maximization problem and is usually
ignored since the effect of is asymptotically negligible as we
have seen in Section IV-C3.

An estimator of is said to bestrongly consistentif

-a.s. (6.4)

Convergence in (6.4) is interpreted in the quotient topology gen-
erated by . This means that any open subset which
contains the equivalence class ofmust also contain the equiv-
alence class of for sufficiently large -a.s. [214]. For
an identifiable HMP with parameter, the equivalence class of
the parameter comprises all points in induced by permuta-
tions of the states of the HMP. The equivalence relationwas
defined in Section IV-A, and the compactified parameter set
was defined in Section IV-D.

Strong consistency of the ML estimator of the param-
eter of a finite-alphabet stationary ergodic HMP was proved by
Baum and Petrie [25, Theorem 3.4] and by Petrie [251, The-
orem 2.8]. Petrie relaxed the assumption that made in
[25]. Strong consistency of the ML estimator of the param-
eter of a general stationary ergodic HMP was proved by Leroux
[214, Theorem 3]. He assumed an irreducible aperiodic Markov
chain and observation conditional densities that satisfy the mild
regularity conditions noted in Section IV-D.

Consistency of the ML estimator was also proved for sev-
eral extensions of standard HMPs under suitable conditions. In
each case, consistency was shown using the corresponding er-
godic theorem from Section IV-D. Strong consistency of the ML
estimators of the parameters of switching autoregressive pro-
cesses satisfying (4.14) and (4.15), respectively, was proved by
Frencq and Roussignol [127, Theorem 3] and Krishnamurthy
and Rydén [198, Theorem 1]. Recall that for a switching au-
toregressive process, the ML estimator is obtained from max-
imization of the conditional likelihood function noted in Sec-
tion IV-D. Weak consistency of the ML estimator of the param-
eter of an HMP, with a separable compact state space that is not
necessarily finite, was proved by Douc and Matias [90, Theorem
2]. The result applies to an HMP with arbitrary initial density,
not necessarily a stationary density. Strong consistency of the
ML estimator of the parameter of a switching autoregressive
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process, with a separable compact state space that is not nec-
essarily finite, was proved by Douc, Moulines, and Rydén [91,
Theorem 1]. The switching autoregressive process need not be
stationary. Strong consistency of the ML estimator of the pa-
rameter of a Markov-modulated Poisson process was proved by
Rydén [273, Theorem 1].

Consistency of the ML estimator of the parameter of a fi-
nite-alphabet HMP, when observations are drawn from a sta-
tionary ergodic process that is not necessarily the HMP, was
proved by Finesso [116, Theorem 2.2.1]. This situation is de-
scribed in the last paragraph of Section IV-D. The parameter of
the HMP was assumed to satisfy . Almost sure conver-
gence of the set of maximizers of over , to the
set of parameter values that minimize the relative
entropy rate between the observation process
and the HMP , was proved. The relative entropy rate is de-
fined similarly to (4.46) with replaced by .

We turn now to asymptotic normality of the ML estimator
. Assume that is consistent. Asymptotic normality of

the ML estimator of the parameter of a stationary ergodic
finite-alphabet HMP was proved in 1966 by Baum and Petrie
[25] assuming that . Asymptotic normality of the ML
estimator of the parameter of a stationary ergodic general
HMP was proved in 1998 by Bickel, Ritov, and Rydén [36, The-
orem 1]. They assumed an irreducible aperiodic Markov chain
and observation conditional densities that satisfy some mild reg-
ularity conditions. They showed that

-weakly as
(6.5)

where is the Fisher information matrix which is assumed
nonsingular. This matrix is defined in terms of the score function
by [36, eqs. (5) and (6), Lemma 6]

where (6.6)

The ML estimator is therefore asymptotically efficient in
the sense of Lehmann [211, p. 404]. The crux of the proof in
[36] is in establishing a central limit theorem for the score func-
tion and a law of large numbers for the ob-
served information . The proof then follows
from the classical approach introduced by Cramér. In proving
the limit theorems, the Markov chain given the observa-
tion sequence is seen as an inhomogeneous Markov chain,
see, e.g., (5.21), and its mixing coefficients are bounded in terms
of .

Asymptotic normality of the ML parameter estimator of
a general HMP, using geometric ergodicity of an extended
Markov chain, follows from the work of Le Gland and Mevel
[210] as described in Section IV-C3. Asymptotic normality
of the ML parameter estimator of a general HMP with a
separable compact state space that is not necessarily finite,
was proved by Jensen and Petersen [174, Theorem 3.3] and
by Douc and Matias [90, Theorem 3]. Jensen and Petersen
assumed a stationary ergodic HMP and followed the proof of

Bickel, Ritov, and Rydén [36]. Douc and Matias relaxed the
stationarity assumption by following the approach of Le Gland
and Mevel [210]. Asymptotic normality of the conditional ML
parameter estimator, of a possibly nonstationary switching
autoregressive process, with a separable compact state space
that is not necessarily finite, was proved by Douc, Moulines,
and Rydén [91, Theorem 4] following the approach of Bickel,
Ritov, and Rydén [36].

Asymptotic normality of the ML estimator of the parameter
of a general HMP was established only recently in [36] after
being an open problem for over 30 years. Local asymptotic nor-
mality of an ML estimator defined on a grid of the parameter set
was shown in [35]. Consistency and asymptotic normality of a
pseudo ML parameter estimator of a stationary ergodic general
HMP were proved by Lindgren [219] and Rydén [274]. The es-
timator maximizes a pseudo likelihood function obtained under
the assumption that consecutive blocks ofconsecutive obser-
vations are statistically independent. This likelihood function is
given by

(6.7)

where is the density of given by (4.3). For an identi-
fiable HMP, any can be chosen. Rydén refers to this esti-
mator as themaximum split data likelihood estimator(MSDLE).
For an HMP with irreducible aperiodic Markov chain that sat-
isfies some regularity conditions, the MSDLE is consistent and
asymptotic normal for fixed and , and it performs as
good as the ML estimator [274]. Lindgren [219] used but
did not consider estimation of the transition matrix. Francq and
Roussignol [126] specialized these results to HMPs of the form

described in Section IV-B1. A similar MSDLE es-
timator was proposed by Rydén [276] for estimating the param-
eter of a Markov-modulated Poisson process, and proved to be
consistent and asymptotically normal. Asymptotic block i.i.d.
approximation of the HMP likelihood function was also found
useful in [238].

C. The Baum Algorithm

The Baum algorithm is a computationally efficient iterative
algorithm for local maximization of the log-likelihood function

in (6.3). It was developed and proved to converge by
Baum, Petrie, Soules, and Weiss [28], [29] in the early 1970s. It
is the expectation–maximization (EM) algorithm of Dempster,
Laird, and Rubin [80] when applied to HMPs. In this section,
we present the Baum algorithm, discuss its relation to the EM
algorithm, and provide conditions for local convergence. We as-
sume a general HMP with the usual parametrization.

The rationale of the Baum algorithm is as follows [28, The-
orem 2.1]. Suppose that an estimate of the parameter

is available at the end of theth iteration. Let denote
some other estimate of . Define anauxiliary functionfor the
given observation sequenceand any pair of parametersand

in as follows:

(6.8)
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Using Jensen’s inequality

(6.9)

where expectations are taken overgiven . Equality in (6.9)
holds if and only if

-a.e.

A new estimate of at the iteration is obtained from

(6.10)

Since , the procedure results in
as can be seen from (6.9). When , a fixed point
is reached and . The Baum algorithm
starts with an initial estimate and alternates between (6.8)
and (6.10) until a fixed point is reached or some other stopping
criterion is met.

Let : denote the mapping defined by (6.8) and
(6.10). Baum, Petrie, Soules, and Weiss [28, Theorem 3.1] and
Baum [29] showed that if is strictly concave in
for each and all , then is a single-valued continuous
mapping, and unless is a stationary
point of or equivalently a fixed point of . Further-
more, all limit points of are stationary points of [28,
Proposition 2.1]. The log-concavity condition holds for normal,
Poisson, binomia,l and gamma distributions among others, but it
fails for the Cauchy distribution. Liporace [221] extended these
results to elliptically symmetric multivariate densities which es-
sentially are mixtures of Gaussian densities of which the Cauchy
density is a special case.

The Baum algorithm is a particular instance of the EM algo-
rithm of Dempster, Laird, and Rubin [80]. The expectation step
(E-step) is given by (6.8) and the maximization step (M-step)
by (6.10). In the EM terminology, the state and observation se-
quences are thecompletedata while the observation
sequence alone is theincompletedata. The likelihood func-
tion is written as

(6.11)

where

(6.12)

A well-known consequence of Jensen’s inequality is that
for any and in with equality

if and only if a.s. [80, Lemma 1].

Hence, if maximizes
over .

Convergence of the EM algorithm was established by Wu
[316] using the global convergence theorem [226, p. 187]. In
particular, it was assumed that i) the level set :

is compact for any with ; ii)
is continuous in and differentiable in the interior of

; iii) is continuous in both and ; and iv) all EM
instances are in the interior of . Under these conditions,
it was shown in [316, Theorem 2] that all the limit points of
any instance of the EM algorithm are stationary points of

, and converges monotonically to
for some stationary point . There exists at least one such
limit point. The compactness assumption may be restrictive
when no realistic compactification of the original parameter
space is possible. Continuity of is satisfied in most
practical situations. It is guaranteed for the important family
of exponential (Koopman–Darmois) pdfs [211, p. 26], [316].
Wu [316] provided conditions for other convergence theorems,
in particular, convergence of limit points of to local
maxima of .

The strict maximization of over in (6.10) is
relaxed in thegeneralized EMalgorithm. Any that satisfies
the weaker condition of is admis-
sible. Conditions for local convergence of the generalized EM
algorithm were given in Wu [316, Theorem 1]. The generalized
EM algorithm was found useful in estimating the parameter of
a Markov-modulated Poisson process [273]. An EM algorithm
with an explicit M-step for estimating the parameter of a
Markov-modulated Poisson process was developed by Rydén
[275].

Note that in Section VI-B we were concerned with conver-
gence of the ML estimate sequence to the true parameter

when the number of observations . Consistency theo-
rems were provided for observation sequences generated by the
HMP or by any other stationary ergodic process in the case of a
finite-alphabet HMP. In this section, we considered convergence
of an instance of the Baum algorithm, , for fixed and
observation sequence , when the iteration number .
In this discussion, the observation sequenceneed not be
generated by the HMP as the EM algorithm can be applied to
any observation sequence. When is generated by an HMP
with parameter , convergence of an EM instance as

may not be to the ML estimate of , since only
local convergence is guaranteed.

1) The Re-Estimation Formulas:Maximization of the aux-
iliary function in (6.8) for a given observation se-
quence results in re-estimation formulas for the parameter of
the HMP. They generate a new parameter estimate from an old
parameter estimate. To demonstrate how the Baum algorithm
works, we shall provide here the re-estimation formulas for two
important HMPs, those with Gaussian and Poisson observation
conditional densities. In both cases, maximization of (6.8) over

for a given results in an explicit estimate at the end
of the st iteration. The re-estimation formulas require the
conditional probabilities and
which can be efficiently calculated as shown in Section V.
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Using (4.8), the auxiliary function in (6.8) is
written as [29]

(6.13)

Maximization of (6.13) over the distribution and the
stochastic matrix gives

(6.14)

(6.15)

These re-estimation formulas are intuitively appealing. The ini-
tial state probability estimate (6.14) is the conditional proba-
bility of the state given the observations. The estimate of the
transition probability in (6.15) is the ratio of the Cesáro mean
of the conditional probabilities of visiting stateand then and
the Cesáro mean of the conditional probabilities of visiting state
. The conditional probabilities are calculated under the current

estimate of the HMP.
The stationary distribution of the Markov chain is commonly

estimated as [219]

(6.16)

For an HMP with Gaussian observation conditional densities,
the re-estimation formula for the mean vectoris given by

(6.17)

The re-estimation formula for the covariance matrixis given
by (6.18) shown at the bottom of the page. For an HMP with
Poisson observation conditional pmfs, the re-estimation formula
for the mean parameter is given by (6.17).

D. Observed Information Matrix

Unlike the Kalman filter, the Baum algorithm does not
provide the error covariance matrix of the estimated parameter
in each iteration. While this matrix is an integral part of the
Kalman recursion, it is not needed by Baum’s re-estimation

formulas. An estimate of this matrix can provide some idea
about the quality of parameter estimates obtained by the Baum
algorithm. The actual error covariance associated with the
Baum algorithm is not known. For consistent ML estimation,
however, it is known from (6.5) that the asymptotic error
covariance is given by the inverse of the Fisher information
matrix . An estimate of this matrix is given by theobserved
information matrixwhich is the negative Hessian matrix

(6.19)

Under some mild regularity conditions, the observed informa-
tion matrix of a stationary ergodic HMP was shown by Bickel,
Ritov, and Rydén [36, Lemma 2] to be a consistent estimate of
the Fisher information matrix. Specifically, for any consistent
estimate of it holds that

in -probability

(6.20)

Louis [225] developed a formula for calculating from the
complete data comprising the state and observation sequences.
Let denote the complete data observed information matrix
given by

(6.21)

Let denote the conditional complete data observed infor-
mation matrix given by

(6.22)

The formula is given by

(6.23)

The formula follows from a relation between the score function
of the incomplete data and the score
function of the complete data .
This relation is given by

(6.24)

where expectation is over given . The second term in
(6.23) can be written as

(6.25)

which implies its nonnegative definiteness. Hence
in non-positive definite.

A method for calculating the observed information matrix
of an HMP from (6.23) and (6.25) was proposed by Hughes
[166]. The term was evaluated similarly to
Baum’s auxiliary function (6.13) using the forward–backward
formulas. From (6.24), for any local ML
estimate of . The remaining term in (6.25)
is the hardest to calculate since it involves double summations

(6.18)
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of cross-product terms over pairs of states at distinct time
instants. Hughes used the fact that the state sequence is a con-
ditionally inhomogeneous Markov chain given the observation
sequence, and provided some mild conditions for the sequence
to be mixing with exponentially decreasing coefficients. This
enabled dropping cross-product terms involving state variables
that are well separated in time.

The observed information matrix was calculated using Monte
Carlo simulations by Diebolt and Ip [88] for general EM appli-
cations and by Turner and Cameron [303] for HMPs.

E. Upper Bound on Likelihood of Finite-Alphabet HMPs

Algorithms for global maximization of the likelihood func-
tion over are not known for most interesting
HMPs. An upper bound on the global maximum of the likeli-
hood function exists for any finite-alphabet HMP. The bound
uses universal coding of the observation sequence and its non-
vanishing term is independent of the number of states and the
underlying parameter. The bound is tight with high probability
and hence can be used to assess the closeness of to
the global maximum of for any estimator .

The upper bound is provided by the Ziv inequality which was
first derived for Markov chains in [329], see also [68, Lemma
12.10.3]. The bound was extended to finite-alphabet HMPs by
Plotnik, Weinberger, and Ziv in [253, p. 68]. The bound is es-
sentially given by where is the length of the bi-
nary codeword for in the Lempel–Ziv universal data com-
pression algorithm [326]. This algorithm sequentially parses the
sequence into distinct phrases of variable
length, and an additional, possibly incomplete, phrasethat
may coincide with one of the other phrases. Each phrase
comprises a concatenation of a phrase that appeared previously
in the sequence and an additional symbol that distinguishes the
newly created phrase from any previously defined phrase. For
example, the binary sequence
is parsed as where
and the first nine phrases are distinct. The number of phrases
depends on the sequence and may be expressed more ex-
plicitly as . The length of the codeword for , or the
number of bits required to representin the Lempel–Ziv algo-
rithm, is given by . The algorithm
asymptotically outperforms any finite-state coding scheme in
compressing any individual sequence not necessarily from an
HMP. It asymptotically achieves the entropy rate in com-
pressing any stationary ergodic finite-alphabet source

, i.e., with probability as
[326], see also [68, Theorem 12.10.2]. Lempel–Ziv is the stan-
dard compression algorithm in UNIX and operating systems for
PCs.

The upper bound for any stationary ergodic finite-alphabet
HMP with states, letters, and parameter , and for any
observation sequence , is given by [253, p. 68]

(6.26)

where denotes the binary entropy function given by

for

Since the number of phrases satisfies [326, eq. (4)], [68, Lemma
12.10.1]

(6.27)

where , the bound can be written as

(6.28)

where . Hence, uniformly for every

as . For , the bound becomes . Since
(6.28) holds for any , it also holds for the maximizing

as follows:

(6.29)

A partial converse to Ziv’s inequality is obtained as follows. Let

(6.30)

for some . From the Kraft inequality [68, Sec. 5.2]

(6.31)

Hence and the probability that

approaches one as . Ziv’s inequality was used in many
applications including order estimation [330] and source coding
[236] of finite-alphabet HMPs. These applications are reviewed
in Sections VIII and XIV, respectively.

A stronger result holds for unifilar sources defined in Sec-
tion IV-E. From the analog of (4.50) for unifilar sources

(6.32)

where is the conditional empirical entropy defined in
(4.51) for a given next-state function. If is not known, the
left-hand side of (6.32) is maximized over. There are
such functions for a unifilar source with states and letters
[330].

VII. JOINT STATE AND PARAMETER ESTIMATION

In this section, we review joint estimation of the state se-
quence and the parameter of an HMP. We first describe the
Baum–Viterbi algorithm and its relations to the Baum algorithm
and to the generalized Lloyd algorithm for designing vector
quantizers. The relation of the Baum–Viterbi algorithm to the
minimum discrimination information parameter estimation ap-
proach is given in Section XIV-B. We then present a noniterative
algorithm for global maximization of the joint likelihood func-
tion of a left–right HMP. We conclude by reviewing Bayesian
Gibbs sampling approaches.
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A. The Baum–Viterbi Algorithm

The Baum–Viterbi algorithm jointly estimates the parameter
and state sequence of an HMP. The state sequence is estimated in
the minimum probability of error sense by the Viterbi algorithm.
Recall that the Baum algorithm uses the state conditional proba-
bilities in estimating the parameter. When the states are consid-
ered unit vectors in a Euclidean space, these conditional proba-
bilities are the MMSE estimate of the state. The Baum–Viterbi
algorithm was proven useful when the observations are vectors
of sufficiently high dimension. In that case, the Baum–Viterbi
algorithm provides parameter estimates that are almost as good
as those obtained by the Baum algorithm. The algorithm has
an intuitive appeal and is computationally more stable than the
Baum algorithm. The two algorithms require about the same
amount of computation.

When the observations of the HMP are scalar, or vectors of
fixed dimension, say , the Baum–Viterbi algorithm provides
inconsistent estimates of the state sequence and parameter as
the number of observations . This was shown in [51],
[299] for mixture processes which are special cases HMPs. The
asymptotic mode considered here of and fixed is mo-
tivated by applications in automatic speech recognition where
HMPs with vector observations of relatively large dimensions
are often used and estimation is performed from a fixed number
of observations. The reason for using vector observations is that
states representing articulatory cues mix at significantly lower
rate than the sampling rate of the signal itself which is typically
about 8000 Hz. Thus, the state process of a speech signal has
significantly lower bandwidth than that of the signal itself.

The Baum–Viterbi algorithm was first introduced in 1976
by Jelinek and his colleagues at IBM [172] and was termed
Viterbi extraction. The algorithm was further studied by
Rabiner, Wilpon, and Juang [261], [262], [176], where it was
referred to as segmental-means. Asymptotic equivalence
of parameter estimates obtained by the Baum algorithm and
by the Baum–Viterbi algorithm for fixed and was
shown by Merhav and Ephraim [234]. We opted for the name
Baum–Viterbisince each iteration of the algorithm involves
Baum’s re-estimation iteration and application of the Viterbi
algorithm.

Consider an HMP with vector observations , ,
and true parameter . The Baum–Viterbi algorithm esti-
mates from

(7.1)

where the double maximization is alternately performed over
and . For a given parameter estimate at the end

of the th iteration, the most likely state sequence is estimated
by maximizing over . This maximization is
performed using the Viterbi algorithm. Let denote the
maximizing state sequence. Next, a new estimate of the
parameter is obtained by maximizing over

. The alternate maximization procedure produces a se-
quence of estimates with nondecreasing joint likelihood
values. The algorithm is terminated if a fixed point is reached
or when a stopping criterion is met. Local convergence of the
algorithm can be established in a manner similar to that used

for the EM algorithm [316], [176]. Note that a byproduct of
the algorithm is an estimate of the most likely state sequence.
This is analogous to the byproduct of conditional state proba-
bilities given the observation sequence provided by the Baum
algorithm.

Maximization of over is equivalent to
maximizing the auxiliary function

(7.2)

where is the Kronecker delta function that is equal to one
when and is zero otherwise. Recall that in the
Baum algorithm, a new estimate is obtained from maxi-
mization over of the auxiliary function

(7.3)

Comparing (7.2) with (7.3) shows that in the Baum–
Viterbi algorithm can be obtained from the re-estimation
formulas of the Baum algorithm by substituting
by . These formulas are given by (6.14), (6.15)
and by (6.17), (6.18) for HMPs with Gaussian observation
conditional densities. The re-estimation formulas for the
Baum–Viterbi algorithm are rather intuitive. For example, the
estimate for is the ratio between the number of transitions
from state to and the number of transitions from stateto
any other state on the most likely sequence . Similarly,
the new estimate for the mean and covariance matrices of the
Gaussian density in theth state are obtained from sample
averages of observation vectors assigned to stateby .
Alternatively, the observation vectors in are clustered
into subsets by the most likely sequence and the
parameter of the observation conditional densities are obtained
from these clusters.

It follows from (7.2) and (7.3) that the Baum algorithm and
the Baum–Viterbi algorithm yield the same sequence of esti-
mates when started from the same initial estimateif

(7.4)

for every . Convergence of to
-a.s., when , was proved in [234]. It was assumed

that the transition matrix satisfies , and an ergodic
theorem holds for for any . The re-
quired ergodic property was demonstrated in [234] for HMPs
with Gaussian observation conditional densities. The required
ergodic theorem under more general conditions is implied from
(4.39). The result is not surprising since states are detectable
when a sufficient number of consecutive observations is avail-
able from each state. When , the most likely state se-
quence is given by

(7.5)

for any parameter .
Bounds on the log-likelihood difference resulting from (6.3)

and (7.1) were derived in [234]. Letdenote the maximizer over
of and let denote the maximizer over
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of . Let denote a sequence of -dimensional
observation vectors and let denote the total number of
observations. Then

(7.6)

(7.7)

Thus the difference between the normalized likelihood values
associated with and can never exceed . This
bound can be made sufficiently small compared to the likelihood
values if . This is often the situation in isolated-word
speech recognition applications where typically – and

– [234]. Note that these inequalities are not suffi-
cient to guarantee closeness of the parameter estimates obtained
by the Baum and the Baum–Viterbi algorithms, since both al-
gorithms perform local rather than global maximization. More-
over, these inequalities do not imply that a dominant state se-
quence exists since they hold even when all state sequences are
equally likely.

A theoretical approach for a sequential Baum–Viterbi algo-
rithm was proposed by Kogan [191]. The approach is based on
the observations that stopping times for the most likely state se-
quence appear infinitely often if the Markov chain is irreducible
and aperiodic, and the most likely state sequence at time instants
smaller than the stopping time is independent of future observa-
tions.

B. The Generalized Lloyd Algorithm

The Baum–Viterbi algorithm is closely related to the gener-
alized Lloyd algorithm for designing vector quantizers for para-
metric processes [135], [234]. The generalized Lloyd algorithm
is also known as the Linde–Buzo–Gray (LBG) algorithm [218].
A vector quantizer partitions the parameter set of a process into a
finite number of cells, say , and chooses a parameter represen-
tative from each cell. The design of vector quantizers requires a
distortion measure that quantifies the similarity of one param-
eter with respect to another. In the context of this section, the
distortion measure is between a vectorof the process, which
has some underlying parameter, and a parameter . A
vector quantizer is designed by minimizing the expected value
of the distortion measure over all partitions and parameter repre-
sentatives. The generalized Lloyd algorithm performs this min-
imization iteratively, once over the partition for a given set of
parameter representatives, and then over the parameter repre-
sentatives using the estimated partition. The process proceeds
until a fixed point is reached or otherwise a stopping criterion is
satisfied. In practice, the expected value of the distortion mea-
sure is replaced by the sample mean of a training sequence of
observations. Convergence properties of the generalized Lloyd
algorithm were established by Sabin and Gray [283]. A com-
prehensive overview of quantization theory and its applications
can be found in Gray and Neuhoff [153].

An important application of vector quantization is in coding
of speech signals in cellular communication. The signal is mod-
eled as an autoregressive process with a time-varying parameter.
A finite number of parameter representatives is estimated and

used in encoding the speech signal at a relatively low bit rate
[135, pp. 387–393], [259, Sec. 10.4].

The relation of the Baum–Viterbi algorithm to the gener-
alized Lloyd algorithm becomes clear whenis large and

is interpreted as the distortion measure
between the vector and a parameter . Almost sure
convergence of when is implied
from (4.39). It was demonstrated in [234] for HMPs with
Gaussian observation conditional densities where explicit
expressions for the limit were given. This distortion measure
may take negative values but this does not affect the general-
ized Lloyd algorithm as long as the distortion is greater than

. Let denote a training sequence of -dimensional
observation vectors. Assuming and large , the
sample mean of the distortion measure is given by

(7.8)

Estimation of by the iterative Baum–Viterbi al-
gorithm is equivalent to estimating these components of the
parameter by minimizing the average distortion in the left-
hand side of (7.8). The most likely state sequence (7.5) in the
Baum–Viterbi algorithm provides the optimal partition or clas-
sification of the vectors in the generalized Lloyd algorithm.
This, in turn, provides the optimal partition of the underlying pa-
rameter space of these vectors. This partition rule is referred to
as thenearest neighborrule in vector quantization terminology.
Estimation of each by minimizing the average of the distor-
tion measure over all vectors assigned to theth state, as in the
Baum–Viterbi algorithm, provides the best parameter represen-
tative in the generalized Lloyd algorithm. This estimate is re-
ferred to as thecentroidof the partition cell in vector quantiza-
tion terminology. Thus, each iteration of the Baum–Viterbi algo-
rithm parallels an iteration of the generalized Lloyd algorithm.
Note that the generalized Lloyd algorithm provides estimates of
the parameter of the observation conditional densities only. An
estimate of the transition matrix can be found from the nearest
neighbor state sequence (7.5) as in the Baum–Viterbi algorithm.

C. Initialization of the Baum Algorithm

The likelihood function of an HMP may have multiple local
maxima while the Baum algorithm converges at best to a local
maximum in the neighborhood of the initial guess of the param-
eter. Local convergence was demonstrated in [95] for a binary
HMP with a binary Markov chain. Initialization of the Baum al-
gorithm has therefore a significant impact on the optimality of
the parameter estimate.

Several initialization strategies were proposed. For HMPs
with ordered states that are allowed self-transitions and next-
state transitions only, commonly used in automatic speech
recognition applications, it was suggested to segment the
acoustic signal from each word into segments of approxi-
mately equal length, and to estimate the parameter of each state
from the observations in the corresponding segment [262].
For HMPs with , the generalized Lloyd algorithm may
be used to cluster the observations into sets from which
the parameter of the HMP can be estimated. The generalized
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Lloyd algorithm applies to scalar as well as vector observation
processes. Similar clustering techniques for initialization of
the Baum algorithm were proposed in [212] and [232, Sec.
1.7]. Simulated annealing may also be used as discussed in
Section VII-E.

D. Global Likelihood Maximization for Left–Right HMPs

An HMP is said to beleft–right if its transition matrix is
an upper triangular matrix. An HMP is said to belinear if its
transition matrix has nonzero entries only on the main diagonal
and first off-diagonal. In this subsection, we present a noniter-
ative algorithm for global maximization of over

and for a left–right HMP. The algorithm was developed
by Faregó and Lugosi [111] in 1989 for a finite-alphabet HMP
but it applies to a general HMP as well. Parameter estimation
for a left–right HMP can be reduced to parameter estimation
of a linear HMP [111]. Hence it suffices to describe the algo-
rithm for a linear HMP. The practical importance of left–right
HMPs is discussed in Section XIV-A. The rationale for max-
imizing was detailed in Section VII-A. The key
idea of this algorithm is that the state sequence in a linear HMP
is uniquely determined by the state occupancy durations. Global
noniterative maximization is achieved by explicit estimation of
the parameter of the HMP for a given state sequence, and sub-
stituting that estimate back in the likelihood function. The re-
sulting likelihood function depends only on the-state occu-
pancy durations. This function is maximized by the Viterbi algo-
rithm which is applied to a specially constructed trellis scheme.

Assume that the number of states is smaller than the
length of the observation sequence; otherwise, the estimation
problem is trivial. Furthermore, consider only state sequences
that start in the first state and end in the last state ,
since higher likelihood cannot be achieved with partial state
sequences. For a linear HMP, if . Let

. Let denote the number of time units the chain
spends in state. The probability of spending time units in
state and then moving to state is .
Hence, the pmf of a state sequenceis given by

(7.9)

Let denote the total number of time units
spent in the first states. Thus, , where

. The sequence of observations from stateis given by
, and by assumption, these random variables

are statistically independent. In addition, observations from
different states are also statistically independent. Hence

(7.10)

From (7.9) and (7.10)

(7.11)

The parameter is estimated from maximization of (7.11), first
over , and then over . The maximization over can be
independently performed for each. Maximizing over gives

(7.12)

where . Estimation of depends on the specific form
of the observation conditional density. For an HMP with finite-
alphabet of letters, maximization of (7.11) over the state-to-
observation transition matrix gives

(7.13)

where denotes the relative frequency of occur-
rences of the symbol in the sequence . Sub-
stituting (7.12) and (7.13) in (7.11) gives

(7.14)

Maximization of (7.14) over provides the optimal values
that can be used in (7.12) and (7.13) to obtain the parameter
that globally maximizes . A detailed algorithm is
provided in [111] that shows how maximization of (7.14) can
be performed using the Viterbi algorithm.

The algorithm extends to parameter estimation from mul-
tiple statistically independent training sequences that share a
common state sequence. Parameter estimation from multiple
training sequences with no restrictions on their individual state
sequences does not appear feasible with this noniterative ap-
proach. Estimation from multiple training sequences is essen-
tial for left–right HMPs and is commonly performed when the
Baum–Viterbi algorithm is used in applications such as auto-
matic speech recognition.

E. Bayesian Parameter Estimation

Bayesian estimation of the parameter of an HMP was studied
by Robert, Celeux, and Diebold [269]. The approach general-
izes Bayesian estimation of mixture processes [87], [270]. It is
based on Gibbs sampling of the parameter which is assumed
random with a given prior. Usually conjugate priors are used.
In [269], the rows of the transition matrix were assumed
statistically independent and a product of Dirichlet priors
was assumed. The observation conditional densities
were assumed members of the exponential family for which
a conjugate prior for each exists. The parameter can, in
principle, be estimated by sampling from the conditional den-
sity of the parameter . This, however, appears imprac-
tical as this conditional density involves the sum of an expo-
nentially growing number of terms with. On the other hand,
sampling from is much simpler since this density
constitutes only one term of that sum. Thus, the Gibbs sampling
approach proposed in [269] is based on alternative samplings
from and from . The first sampling pro-
duces an estimate of the parameterwhich is then used in the
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second sampling to estimate the state sequence. Further sim-
plification was obtained by performingsamplings for each
from

(7.15)

instead of a single sampling from which requires
forward–backward recursions. The Gibbs sampling algorithm
produces a sequence where and de-
note, respectively, the parameter and state sequence estimates
at the end of the th iteration.

Convergence properties of the Gibbs sampler were studied
in [269] and a summary of the results was also given by
Rydén and Titterington [280]. It was shown that the sequence

is geometrically ergodic -mixing homogeneous
Markov chain with a unique stationary distribution given by

. The sequence is geometrically ergodic
-mixing Markov chain with a unique stationary distribution

given by . The sequence , which is not a Markov
chain, is ergodic, -mixing, and converges weakly as
at geometric rate to a stationary distribution given by .
It follows from [269, Theorem 1] that the conditional expec-
tation of any function of the parameter , given , can
be approximated by the corresponding sample average from
a realization of . A central limit theorem for such an
average is given in [269, Corollary 2].

A simulated annealing approach for estimating the parameter
of an HMP was developed byAndrieu and Doucet [13]. Each
iteration of the algorithm includes the above described itera-
tion and an additional step which aims at accepting or rejecting
the new parameter estimate. The decision is based on a proba-
bilistic scheme involving a deterministic cooling schedule. Con-
vergence in probability of to where is a
MAP estimate of was shown under some mild regularity con-
ditions.

A Bayesian approach for iterative estimation of the parameter
of a switching autoregressive moving average (ARMA) process
was developed by Billio, Monfort, and Robert [39]. Several ver-
sions of the Gibbs sampler presented earlier, that are particularly
suitable for hidden Markov fields, were studied by Qian and Tit-
terington [260] and by Rydén and Titterington [280]. Here sam-
pling is performed from a tractable pseudo-likelihood function
of the underlying Markov process. Reparametrization of HMPs
with Gaussian and Poisson observation conditional densities,
using less informative priors, was studied by Robert and Tit-
terington [271].

VIII. O RDER ESTIMATION

Theorder is the number of states of the HMP. Algorithms for
estimating the parameter of an HMP assume that the order is
known. In many applications this is not the case. For example,
in blind deconvolution of unknown communication channels,
the received signal is an HMP, but its order determined by the
memory length of the channel is not known. This application is
further discussed in Section XIV-C. In addition, HMPs are not

identifiable if their order is overestimated [116], [156, Ch. 22],
[282]. Information-theoretic approaches for order estimation of
a finite-alphabet HMP were developed by Finesso [116], Ziv
and Merhav [330], Kieffer[187], and Liu and Narayan [223]. An
order estimation approach for a general HMP was developed by
Rydén [277]. These approaches are reviewed in this section.

Let be the true order and let be the true parameter of
an HMP . Let denote an estimate of from an ob-
servation sequence . Let denote the parameter of an HMP
with assumed order. Let denote the parameter set. For a
finite-alphabet HMP of assumed orderand parameter in ,
we denote the parameter set by . Also, denotes the size
of the alphabet. Let , , denote the sequence of
nested HMP densities. All but the order estimator of [223] use
the ML estimate of . Let

(8.1)

The order estimator for a finite-alphabet HMP proposed by
Finesso is given by [116]

(8.2)

where is the ML estimator over and
This penalized ML estimator was proved strongly consis-
tent when and , where

is defined in (4.40) [116, Theorem 4.5.2]. The
order estimator uses an estimate of the rate of growth of the
maximized log-likelihood ratio which
was found to be in the order of a.s. [116, Theorem 4.4.1].

The order estimator for a finite-alphabet HMP proposed by
Ziv and Merhav was derived using a Neyman–Pearson type
criterion [330]. It minimizes the underestimation probability

, uniformly for all HMPs in , subject to an
exponential decay of the overestimation probability given by

(8.3)

for all HMPs in . The estimator is given by

(8.4)

where is the length of the binary codeword for in the
Lempel–Ziv universal data compression scheme. This length
function was defined in Section VI-E. If is inter-
preted as a model-based codeword length for[68, p. 85], then
(8.4) seeks the shortest model-based binary codeword length
that is sufficiently close to the universal codeword length .
Alternatively, using Ziv’s inequality (6.28), the order estimator
(8.4) is a likelihood ratio test in which is re-
placed by . Unlike some other estimators presented in this
section, (8.4) does not require knowledge of an upper bound on
the order .

It was pointed out in [223], [187] that the estimator (8.4)
tends to underestimate the order of the HMP and hence is not
consistent. Liu and Narayan [223] proposed a slightly modi-
fied estimator and proved its consistency for a stationary er-
godic HMP that satisfies some mild regularity conditions. The
estimator assumes knowledge of an upper boundon .
It uses the binary codeword length for encoding in
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the Wyner–Ziv asymptotically optimal universal compression
scheme [319]. The estimator is given by

(8.5)

provided the set is not empty, otherwise, . The sequence
must satisfy and . The

estimator is strongly consistent if and is
weakly consistent otherwise.

Liu and Narayan [223] proposed another strongly consistent
order estimator for a stationary ergodic finite-alphabet HMP.
They assumed that the parameteris random with prior , and
the pmf of is the mixture

(8.6)

Dirichlet priors were assumed for the entries ofand . Esti-
mation of in terms of relative frequencies of states and
observation symbols is outlined in [223, Appendix]. Avoiding
ML estimation is desirable since only local ML estimation pro-
cedures are available. The mixture model (8.6), however, is not
trivial to estimate. Aspects of data modeling in the minimum de-
scription length (MDL) sense using mixture densities and ML
estimated parameters were studied by Barron, Rissanen, and Yu
[24]. They provided sufficient conditions for asymptotic equiv-
alence of the two approaches. The order estimator of Liu and
Narayan [223] is given by

(8.7)

where and . If the set
in (8.7) is empty then . This estimator provides expo-
nentially decaying underestimation probability and polynomi-
ally (as ) decaying overestimation probability.

Kieffer [187, Theorem 2] proposed a code-based order esti-
mator for a class of stationary ergodicconstrained finite-state
sourcesand proved strong consistency of the estimator. Sta-
tionary ergodic finite-alphabet HMPs are special cases of that
class. Let denote a code designed for source sequences.
The code is a mapping of source sequences into binary
strings such that is not a prefix of if and
are two distinct sequences. Let denote the length of
the binary string . Kieffer used ML codes whose
lengths are determined by . The estimator is
given by

(8.8)

where is a subsequence of the positive integersthat sat-
isfies and for

and all . For sufficiently large , this estimator
takes the approximate form

(8.9)

where is a nondecreasing sequence of positive constants
that is determined from the model classes . This esti-
mator resembles the MDL code-based order estimator of Ris-
sanen [267] or the Bayesian information criterion (BIC) based
order estimator derived independently by Schwarz [287]. The

MDL order estimator uses a code for the class whose ex-
pected redundancy grows at the minimum possible rate for al-
most all sequences modeled by members of. This results
in positive constants for all . It is noted that relatively
small penalty terms may not provide consistent order estimators
as overfitting of the data may prevail. Sufficient conditions for
consistency of the MDL order estimator and examples of model
classes for which the MDL estimator is consistent were given
by Kieffer [187], Barron, Rissanen, and Yu [24] and Csiszár and
Shields [74].

Rydén [277] proposed an order estimator for a stationary
ergodic general HMP. The estimator is based on the MSDLE
obtained from maximization of in (6.7). When the
HMP is identifiable, in particular, when all are distinct,
any may be used and there is no need for an estimate
of the largest possible order of the HMP. Otherwise, an upper
bound on is required, and must be used, since
finite-dimensional distributions of the HMP are uniquely deter-
mined by the -dimensional distribution [277, Theorem 1].
The order estimator is given by

(8.10)

where is the maximizer of over , and
is a nondecreasing sequence of real numbers that penalize the
likelihood and thus prevent overestimation of the model order.
When is required, maximization in (8.10) is over

where denotes an integer part. The sequence sat-
isfies for all and . Under
these and some additional regularity conditions, it was shown
in [277, Theorem 2] that the estimator (8.10) does not under-
estimate the order of the HMP asymptotically as ,
with probability one. The regularity conditions hold, for ex-
ample, for HMPs with observation conditional densities from
the Poisson, negative exponential, and normal with fixed vari-
ance families. The conditions on are satisfied by the penal-
izing terms used in the Akaike information criterion (AIC) [4]
and in MDL [267] or BIC [287]. Thus, these estimators never
underestimate the HMP order whenis sufficiently large. The
AIC choice is and the BIC choice is

where denotes the dimension
of the parameter space of theth-order HMP. An earlier similar
result on order estimation of mixture processes obtained from
maximization of a penalized likelihood function was proved by
Leroux [213, Theorem 4]. Additional references on consistent
order estimators for mixture processes can be found in Rydén
[277].

IX. DYNAMICAL SYSTEM APPROACH

We have seen in Section IV-B6 that a finite-alphabet HMP has
a dynamical system representation in the sense of control theory.
Similar representations exist for other types of HMPs with dis-
crete as well as continuous time and discrete as well as contin-
uous range state and observation processes. Elliott, Aggoun, and
Moore [99] provide a comprehensive study of HMPs in the dy-
namical system setup. They develop conditional mean estima-
tors for the states, the number of jumps from one state to another,
the state occupation time, and for some statistics reflecting the
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assignment of observations among the various states. The esti-
mators are then used in the EM algorithm for ML estimation
of the parameter of the HMP. As is well known, conditional
mean estimation of continuous-time signals usually results in in-
finite-dimensional filters for nonlinear non-Gaussian problems.
The book [99] contains almost all known estimation problems
for which finite-dimensional conditional mean estimators exist.
In this section, we demonstrate the approach for a discrete-time
HMP with Gaussian observation conditional densities. The ap-
proach requires forward recursions only. Its main advantage is
that it generalizes to continuous-time HMPs.

Application of the EM algorithm for estimating the parameter
of a discrete-time dynamical system using Kalman smoothers
was first performed by Shumway and Stoffer [292]. The ap-
proach was then expanded by several authors. Zeitouni and
Dembo [324] studied finite-state continuous-time Markov
chains observed in white noise. They developed a finite-di-
mensional conditional mean causal estimator for the number
of jumps from one state to another. The estimator was used in
an extended EM algorithm for ML estimation of the transition
matrix of the Markov chain. The extension of the EM algorithm
to continuous-time processes and its convergence properties
were established by Dembo and Zeitouni [77]. They also applied
the EM algorithm to a wide class of diffusion processes which
resulted in iterative applications of finite-dimensional Kalman
smoothers. A finite-dimensional conditional mean causal esti-
mator for the states of the chain was first developed by Wonham
[315]. Finite-dimensional conditional mean estimators for the
state occupation time and for a stochastic integral related to the
drift in the observation process were derived by Elliott [98].
MAP estimators of a randomly, slowly varying parameter, of
a continuous-time and a discrete-time ARMA processes, were
developed by Dembo and Zeitouni in [78] and [79], respectively.
ML estimation of the parameter of a discrete-time dynamical
systemusingKalman filters rather thansmoothers inconjunction
with the EM approach was developed by Elliott and Krishna-
murthy [100]. Robust time discretization of the continuous-time
filters and smoothers for estimating the parameter of an HMP
was studied by James, Krishnamurthy, and Le Gland [168].

The central theme in [99] is to derive conditional mean es-
timators for statistics of the HMP which are required for ML
estimation of its parameter by the EM algorithm. The condi-
tional mean estimators are developed using a generalized Bayes
rule. This is a standard technique used, for example, in [324].
This rule, or formula, enables evaluation of a conditional mean
under one probability measure using another more convenient
probability measure. This is done as follows. Let be
two probability measures on the measurable space . Let

, , denote the Radon–Nikodym
derivative or density of with respect to . Let de-
note a sub--field of . Let denote a random variable on

. Let denote the desired conditional mean of
under . Let denote the conditional mean of

under . Thegeneralized Bayes rule[247, Lemma 8.6.2], or
the Kallianpur–Striebel formula [222, Lemma 7.4], is given by

(9.1)

for all such that , otherwise, can
be arbitrarily chosen. The approach can be applied whenis
the probability measure of the HMP and is the probability
measure of an i.i.d. process that is independent of the Markov
chain. The approach is demonstrated here for a discrete-time
HMP with Gaussian observation conditional densities. Our dis-
cussion follows [99, Ch. 3].

Let denote a sequence measurable space where
is the set of all state and observation se-

quences, and denotes the Borel product-field. Let be
the distribution of the HMP on . For the Markov
chain we use the same representation as in (4.19). Specifically,
we assume a Markov chain with state space

where is a unit vector in , a transition ma-
trix , and a stationary martingale difference sequence .
The observation process is characterized by a sequence

of i.i.d. standard Gaussian random variables independent
of , and two -dimensional vectors and representing
the means and standard deviations of the Gaussian observation
conditional densities in the states. All components of are
assumed positive. The dynamical system representation of the
HMP under is given by

(9.2)

Let denote a second distribution on . Under ,
has the same distribution as under, is an i.i.d.

sequence of standard Gaussian random variables, andand
are statistically independent. The dynamical system rep-

resentation of the HMP under is given by

(9.3)

Let and denote the -dimensional distributions
induced by and , respectively. Clearly, and
possess densities with respect to , where here is
the Lebesgue measure, and . Let and
denote the -dimensional densities corresponding to and

, respectively. Assume that . The Radon–
Nikodym derivative of with respect to is given by

(9.4)

where and
denotes the standard normal pdf.

To state the generalized Bayes rule for the systems (9.2) and
(9.3) let denote the smallest-field gen-
erated by . The sequence forms a filtration.
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Similarly, let denote the smallest-field gener-
ated by . Let be a sequence of scalar integrable random
variables adapted to . From (9.1)

(9.5)

This equation can be verified using the first line of (9.4) with-
out resorting to measure theoretic arguments. We emphasize
that and are statistically independent under. In a
more general situation of a finite-energy continuous-time con-
tinuous-range signal observed in white noise, the Radon–
Nikodym derivative of with respect to is given by Gir-
sanov theorem [222, Theorem 6.3], [247, Theorem 8.6.3]. This
form involves a stochastic integral.

Let

(9.6)

be the nonnormalized version of and rewrite (9.5)
as

(9.7)

It is easier to derive recursions for than for
. Hence, (9.7) is the basic equation we shall

be working with.
Of interest are special cases of that provide sufficient sta-

tistics for an EM iteration in ML estimation of the HMP param-
eter. These are as follows.

i) . This is the number of jumps from stateto
state during transitions of the chain. It is given by

(9.8)

ii) . This is the occupation time of statein
chain transitions given by

(9.9)

iii) , for some deterministic function .
This random variable represents the sum of elements
of assigned to state during
transitions of the chain. Of interest here are the functions

and . is defined by

(9.10)

It turns out that a recursion for the -dimensional vector
can be developed from which the desired

can be obtained simply by taking the inner product
where denotes an vector of ’s. We shall therefore
focus on the development of the recursions for calculating

from for . This will also
provide a recursion for estimating the state vectorat time

simply by assigning in . A general recursion
for when is any of the above defined
four random variables was given in [99, Theorem 3.5.3]. The
recursion is given in terms of and

(9.11)

Note that depends on the observation as
well as the parameter of the HMP. It constitutes the product
of the th-unit vector and the last multiplicative term of

for . The identity was
found useful in deriving the recursions. For example, using this
identity and the state equation from (9.3), it is easy to verify the
following recursion for estimating the state vector:

(9.12)

The recursions for estimating the other statistics represented by
are given by

(9.13)

(9.14)

(9.15)

These recursions can now be used to obtain the conditional
mean estimates . For we use (9.12)
to recursively calculate

(9.16)

Note that is the vector of nonnormalized con-
ditional probabilities of given since is the

-dimensional vector whoseth component is
. Equations (9.12) and (9.16) coincide with (5.14). A

smoothed estimator for was derived in [99, eq. 3.6.2]. For
we use (9.13) to recursively calculate

(9.17)
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Estimation of the other two random variables and
can be performed similarly from (9.14) and (9.15),

respectively.
Estimation of the parameter of the HMP (9.2) from ob-

servations can be iteratively performed using the EM algorithm.
In the context of this section, the parameter in each iteration can
be estimated from maximization of the following function over

[77]

(9.18)

This function is analogous to the right-hand side of (6.9). The
usual parametrization is assumed. Maximization of (9.18) sub-
ject to natural constraints gives the following estimates at the

th iteration. For

(9.19)

(9.20)

(9.21)

The recursions for estimating , , , and
are calculated based on the available parameterand a fixed
number of observations. These re-estimation formulas may
be interpreted similarly to the re-estimation formulas (6.15),
(6.17), and (6.18), respectively. Note that only forward recur-
sions are used in (9.19)–(9.21). Furthermore, the parameter es-
timates can be straightforwardly updated when the number of
observations is increased fromto .

X. RECURSIVEPARAMETER ESTIMATION

Recursive estimation of the parameter of an HMP is of great
practical and theoretical importance since one always wishes
to be able to update the parameter estimate when new observa-
tions become available. Consider, for example, hidden Markov
modeling of speech signals in automatic speech recognition
applications. Here, an affirmative human feedback can be used
by the recognizer to improve the modeling of a particular word
using the speech utterance entered by the user. This, of course,
could not be done with the Baum algorithm which requires the
entire observation sequence in each iteration. Recursive estima-
tion is also desired when adapting to time-varying parameter of
an HMP. This situation occurs in automatic speech recognition,
neurophysiology, and data communications when the underlying
HMP changes with time. These applications are discussed in
Section XIV. Recursive estimation may also be computationally
more efficient and require less storage than the Baum algorithm.

Recursive estimation of the parameter of an HMP was studied
as early as 1970 by Kashyap [182]. A stochastic descent re-

cursion was developed for estimating the transition matrix of
a Markov chain observed through arbitrary noise with indepen-
dent samples and some unknown finite variance. Convergence
of the recursion with probability one and in mean square was
shown under some conditions.

With the introduction of the EM algorithm in 1977 there has
been renewed interest in recursive estimation from incomplete
data. Although HMPs fall into this category, recursions for gen-
eral incomplete data models are not immediately applicable to
HMPs. Recursions for parameter estimation from incomplete
data often aim at least at local minimization of the relative en-
tropy

(10.1)

over where is the true parameter. The relative entropy
attains its global minimum of zero for . To describe a
recursion with this goal, let
denote the score function and let denote a matrix of suitable
dimension. The recursion has the form of

(10.2)

where the specific form of the adaptive matrix significantly
affects convergence properties of the recursion. Of particular in-
terest is the inverse of the information matrix for the incomplete
data given by . For

, and under suitable regularity conditions, the recur-
sion can be shown to be consistent asymptotically normal and
efficient in the sense of achieving equality in the Cramér–Rao
inequality [110], [281]. Rydén [281] showed that some of these
conditions, however, do not hold for mixture processes and
hence cannot hold for HMPs. The recursion (10.2) with

is also difficult to implement since explicit form of
the incomplete data information matrix is rarely available.
Titterington [300, eq. 9] proposed to use instead the informa-
tion matrix for the complete data. The recursion was related
to an EM iteration and proved under some conditions to be
consistent and asymptotically normal for i.i.d. data. This
recursion, however, is never efficient and its convergence for
mixture processes was not proved [281]. Weinstein, Feder, and
Oppenheim [310, eqs. (19)–(21)] derived a similar EM related
recursion for stationary ergodic processes but did not study its
properties.

Another recursion with the same goal of minimizing the rel-
ative entropy (10.1) proposed in [310, eq. (4)] is given by

(10.3)

where the sequence satisfies

and
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It was suggested that may be calculated from the
complete data using a one-dimensional version of the identity
(6.24) given by

(10.4)

For HMPs, the alternative (10.4) does not offer computational
savings over direct calculation of using (4.5), par-
ticularly when estimating the transition matrix of the Markov
chain. Another form for calculating , presented
below, is more suitable for HMPs. It was argued in [310] that
the recursion (10.4) is consistent in the strong sense and in the
mean-square sense for stationary ergodic processes that satisfy
some regularity conditions. Some of these conditions, however,
are in general violated for i.i.d. observations from a finite
mixture density and hence by HMPs [279], [281]. This problem
can be circumvented if minimization of is constrained to
a compact convex subset by projecting onto in
each iteration [279], [281]. Of course, . The estimator
(10.3) with , , is asymptotically effi-
cient if post-averaging of parameter estimates is applied [281].
A consistent asymptotically efficient estimator in the sense of
[211, p. 404] for i.i.d. data with better finite-sample properties
was proposed by Rydén [281, Theorem 3]. The estimator has
the form of (10.2), where is an empirical estimate of the
incomplete data information matrix and parameter estimates
are recursively projected onto. These ideas were also found
useful for HMPs as will be seen shortly.

Holst and Lindgren [163, eq. 16] first proposed a recursion
of the form of (10.2) for estimating the parameter of an HMP.
They used

(10.5)

and an empirical estimate of the incomplete data information
matrix in the form of the adaptive matrix

(10.6)

The conditional expectation in (10.5) is over
given , and it can be efficiently calculated using a forward
recursion form Section V-A. Note that does not equal

and hence is not a score function. Eval-
uation of is done recursively from and
without matrix inversion [163, eq. 14]. Rydén [279] argued that
the recursion of Holst and Lindgren aims at local minimization
of the relative entropy rate defined in (4.41). More-
over, he showed that if , then is
asymptotically normal with zero mean and covariance matrix
given by the inverse of .
Lindgren and Holst [220] applied the recursion for estimating
the parameter of a Markov modulated Poisson process. Holst,
Lindgren, Holst, and Thuvesholmen [164] applied the recursion
for estimating the parameter of a switching autoregressive
process with Markov regime. Krishnamurthy and Moore [195,

eq. 3.18] applied similar ideas to recursive estimation of a
Markov chain observed in white Gaussian noise.

Rydén [279] proposed a recursion for estimating the param-
eter of an HMP which does not use the adaptive matrix.
The recursion uses vectors of

successive observations, and a projectioninto a set .
Let denote the score function where

is the -dimensional density of the HMP given in (4.3).
The recursion is given by

(10.7)

where for some and . The set
is assumed a compact convex subset ofwhich contains ,

it is the closure of its interior, can be written as

for some finite set of continuously differen-
tiable functions, and at each , the gradients of the active
constraints (i.e., those-functions with ) are linearly
independent. The simplestthat satisfies these requirements is
a simplex whereas all-functions are linear.

Rydén [279] studied statistical properties of (10.7) assuming
a stationary irreducible aperiodic Markov chain and some ad-
ditional mild regularity conditions. These conditions are satis-
fied by many important parametric densities including normal
densities with positive variances. The sequence generated
by (10.7) was shown to converge almost surely to the set of
Kuhn–Tucker points for minimizing the relative entropy

(10.8)

over the set [279, Corollary 1]. The relative entropy attains
its global minimum at provided that the HMP is identifi-
able. Conditions for identifiability were given in Section VI-A
where in particular is required. The behavior of the rel-
ative entropy is otherwise not known and the set may contain
other points. If the procedure is initialized sufficiently close to
the true parameter then is expected to converge to with
high probability. Assuming that , and some mild regu-
larity conditions are satisfied, it was shown in [279, Lemma 2,
Theorem 2] that the averaged estimator

(10.9)

converges at rate and has similar asymptotic properties
as the off-line MSDLE obtained from maximization of (6.7).
The latter estimator is asymptotically normal and it performs
similarly to the ML estimator [274].

A recursion for HMP parameter estimation using prediction
error techniques was proposed by Collings, Krishnamurthy, and
Moore [64] and demonstrated empirically to provide fast con-
vergence.
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XI. SIGNAL CLASSIFICATION

In recent years, a series of papers on universal classification
of Markov chains was published. Ziv [328] studied testing of a
simple hypothesis from which a training sequence is available
against a composite hypothesis in the set of all Markov chains
up to a given order. He developed an asymptotically optimal
test in the Neyman–Pearson sense. Gutman [155] characterized
the tradeoffs between the best exponents of the two kinds of
errors. He also extended the approach to multiple hypotheses
from which training sequences are available and allowed rejec-
tion of all hypotheses. He developed a test with asymptotically
vanishing error and reject probabilities. The generalized like-
lihood ratio test (GLRT), which relies on ML estimates of the
unknown sources, was used in [155]. This test was implemented
using empirical entropies. Merhav [237] developed a Bayesian
approach for multiple hypotheses testing of first-order Markov
chains using estimates of their transition matrices and studied
its performance.

Optimality of the GLRT in testing a simple hypothesis, say
, against a composite hypothesis, say ,

where is a subsetof all stationary ergodic th-order
Markov measures, was studied by Zeitouni, Ziv, and Merhav
[325]. A version of the Neyman–Pearson criterion was used in
which both error probabilities approach zero exponentially fast
with the number of observations. It was shown that if is
closed with respect to exponential combinations ofand ,
i.e., if for every , and every

where is a normalization factor that makes a pmf, then
the GLRT is asymptotically optimal in the above described
sense [325, Theorem 2]. A closely related condition developed
by Gutman (cited in [325]) is necessary and sufficient for
asymptotic optimality of the GLRT. Whether the GLRT is
optimal for classification of HMPs even with a finite alphabet
is still an open problem.

Classification problems involving HMPs were studied by
several authors. Merhav [235] studied a binary hypothesis
testing problem for two statistically independent observation
sequences to emerge from the same general HMP or from two
different general HMPs. The observation conditional densities
of the HMPs were assumed members of the exponential family
(Koopman–Darmois). A modified GLRT was developed and
was shown to be asymptotically optimal in a Neyman–Pearson
sense. Kieffer [187] provided a strongly consistent code-based
approach for identifying whether or not a given observation
sequence with unknown distribution was generated by a
member of a finite class of constrained finite-state sources.
Finite-alphabet HMPs are special cases of that class.

Nádas [244] studied a classification problem in which a test
sequence is generated by one out ofpossible general
HMPs whose parameters are not explicitly
known. A set of training sequences , ,
from the HMPs is assumed available. The goal is to identify
the HMP that generated with minimum probability of error.
Nádas developed a Bayesian approach assuming that the param-
eters are statistically independent random variables. In

addition, are statistically independent given , and
and are statistically independent given and the ac-
tive source. All hypotheses were assumed equally likely. He
showed that the optimal decision rule is given by

(11.1)

Merhav and Ephraim [238] proposed an approximation to this
decision rule that does not require integration and explicit priors
for the parameters. The approximate Bayesian decision rule is
given by

(11.2)

The ratio of the two maxima comprises a similarity measure be-
tween the test and training data. The ratio is likely to be larger
for and emerging from the same HMP than forand
originating from different HMPs. This decision rule is similar
to universal decision rules developed by Ziv [328] and Gutman
[155]. It was shown in [238, Theorem 1], under some regu-
larity conditions, that the decision rules (11.1) and (11.2) have
the same asymptotic behavior as the length of the test sequence

. Furthermore, for HMPs with positive transition proba-
bilities and a set of training sequences whose lengthsgrow
at least linearly with the length of the test sequence, the de-
cision rule (11.1), and hence (11.2), provides exponentially de-
caying probability of error as . The error exponent in
both cases is the same. When

and (11.2) can be further approximated as

(11.3)

where maximizes over . This is the
standard plug-in decision rule used in HMP-based classification
such as in automatic speech recognition applications, see, e.g.,
(14.6). The condition of is commonly satisfied in clas-
sification problems that are based on off-line training. Without
this simplification, implementation of the decision rule (11.2)
is hard since it requires on-line global maximization of the two
likelihood functions.

Kehagias [183] studied a sequential classification problem. A
set of HMPs is assumed given but the test sequence is a sample
from a stationary ergodic process that is not necessarily an HMP.
The goal is to recursively identify the HMP that is closest to
the test sequence in the minimum relative entropy sense. A re-
cursive algorithm was developed for associating a test sequence

with an HMP from a given set of finite or
countably infinite HMPs. The algorithm was derived under the
assumption that the test sequence was produced by one of the
HMPs. The analysis of the algorithm, however, does not make
this assumption. Let be a discrete random variable taking



EPHRAIM AND MERHAV: HIDDEN MARKOV PROCESSES 1555

values in . Let . Let denote
the th HMP selected at timeaccording to

(11.4)

The conditional probability is recursively calculated using

(11.5)

where is the parameter of the HMP associated with theth
hypothesis and can be recursively calculated
using (4.4) and (4.30).

In analyzing the algorithm, the test sequence was assumed to
be a sample from a finite-alphabet stationary ergodic process.
The HMPs were assumed to have a finite alphabet and for each

the parameter . Almost sure convergence of the
recursive classification approach, as , to the hypothesis
whose HMP is closest to the test sequence in the relative entropy
rate sense was proved in [183, Theorem 2]. If there is more than
one HMP that achieves the same minimum relative entropy rate
with respect to the test sequence, then convergence is to the set
of all such HMPs. This situation may occur when the HMPs are
not identifiable.

Giudici, Rydén, and Vandekerkhove [139] applied standard
asymptotic theory to the GLRT for two composite hy-

potheses testing problems involving the parameter
of an HMP. They used the asymptotic results of Bickel, Ritov,
and Rydén [36]. Let denote the true parameter. In the
first problem, a simple null hypothesis : and an
alternative hypothesis : were tested. Next, let
and assume that is characterized by a set of constraints

, , where . In the second problem,
a composite null hypothesis : and an alternative
hypothesis : were tested. Let
be the log likelihood of the HMP and let denote the ML
estimate of as obtained from a sample of observations.
The likelihood ratio test used for the simple null hypothesis is
given by

(11.6)

Under , and for large , has approximately a dis-
tribution with degrees of freedom. Hence, a test with size
approximately equal to is obtained if is rejected when

, where is the -quantile of the
distribution with degrees of freedom. The likelihood ratio

used for the composite null hypothesis problem is given by

(11.7)

Under , and for large , has approximately a dis-
tribution with degrees of freedom. Hence, a test with size
approximately equal to is obtained if is rejected when

.

XII. SIGNAL ESTIMATION

Let and denote observation sequences from two
statistically independent general HMPs. Assume that is a
desired signal and is a noise process. Let
for . In this section, we review MMSE estimation
of from , . The problem arises in applications such
as enhancement of noisy speech signals [105], channel decoding
[252], and forecasting in econometrics [156, Ch. 22].

It is easy to check that the noisy signal is an HMP [105],
[313]. Let and denote the state spaces of and ,
respectively. The state space of is given by .
Let and denote the state sequences of and ,
respectively. Let denote the state sequence of

. We refer to as acompositestate of the noisy process
at time . The MMSE estimator of given a realization of
the noisy signal is given by [105]

(12.1)

The conditional probabilities can be calculated using a
forward–backward recursion from Section V-A. A similar esti-
mator was developed by Magill [229] for a mixture of stationary
ergodic processes where the state remains constant in its ini-
tially chosen value. Suppose thatand are -dimensional
vectors in , and that the observation conditional densities of

and are Gaussian with zero mean and covariance
matrices and , respectively. Then, the observation
conditional densities of are also Gaussian with zero mean
and covariance matrices . Furthermore

(12.2)

which is the Wiener estimator for given .
The causal MMSE estimator was analyzed by

Ephraim and Merhav [104]. The MMSE given by

(12.3)

was expressed as the sum of two terms denoted byand .
The first term represents the average MMSE of the estimator
that is informed of the exact composite state of the noisy signal

and is given by

(12.4)

The term represents a sum of cross error terms for which no
explicit expression is known. Tight lower and upper bounds on

were developed. For signal and noise HMPs with Gaussian
observation conditional densities, these bounds were shown to
approach zero at the same exponential rate as . The
exponential rate is the same as that of the error probability for
distinguishing between pairs of composite states.

Several other estimators for the signalfrom were de-
veloped [105]. We note, in particular, the detector–estimator
scheme proposed by Ephraim and Merhav [104] in which the
composite state of the noisy signal is first estimated and then
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MMSE signal estimation is performed. This estimator is given
by where . The

MSE of this estimator approaches when and hence
the estimator is asymptotically optimal in the MMSE sense.
An estimator similar to (12.1) and (12.2) was used by Crouse,
Nowak, and Baraniuk [69] for wavelet denoising of signals con-
taminated by white noise.

XIII. H IDDEN MARKOV CHANNELS

FSCs were defined in Section IV-B4. An FSC with input
, output , and state sequence has a conditional

transition density given by

(13.1)

The memory of the channel is captured by the Markov chain
. The states may represent fading levels as in wireless com-

munications [205], previous channel inputs as in intersymbol
interference channels, or a tendency of the channel to persist in
a given mode as for bursty channels [133, Sec. 4.6]. FSCs are
also encountered when a buffer exists at the input of a channel,
in which case the states correspond to the buffer contents [89].
FSCs may be interpreted as hidden Markov channels since the
state sequence is not known at the encoder and decoder. Poste-
rior probabilities of the states can be calculated using recursions
similar to those given in Section V-A [133, eq. 4.6.1], [141].
In this section, we focus on FSCs with finite input and output
spaces, and , respectively, and review some of their proper-
ties and the Lapidoth–Ziv universal decoding algorithm [204]. A
thorough discussion on reliable communication under channel
uncertainties can be found in Lapidoth and Narayan [205].

The channel coding theorem for FSCs was derived by Gal-
lager [133] and by Blackwell, Breiman, and Thomasian [43].
FSCs for which the effect of the initial state is rapidly forgotten
are said to beindecomposable. A necessary and sufficient con-
dition for an FSC to be indecomposable is that for some fixed

and each there exists a choice for theth state, say
, such that for all [133, Theorem

4.6.3]. If the FSC is indecomposable or if for every
, the capacity of the channel is given by [133, Theorem

4.6.4], [205, Theorem 8]

(13.2)

where denotes the conditional mutual informa-
tion between the input and output of the channel for a given
initial state . Sequences of upper and lower bounds for ,
which can be used to approximate the capacity to an arbitrary
degree, were provided in [133, Theorem 5.9.2]. For any FSC,
code rate , and sufficiently large , there exists a

code of codewords of length each that pro-
vides exponentially decaying probability of decoding error for
any input message and initial state[133, Theorem 5.9.2]. If

, the probability of error cannot be made arbitrary
small, independent of the initial state [133, Theorem 4.6.2].

The Gilbert–Elliott channel defined in Section IV-B5 is an
example of an FSC. The capacity of this channel was calculated

by Mushkin and Bar-David [243, Proposition 4]. Recall that the
channel introduces an additive hidden Markov noise process,
say . Let denote the entropy rate of . Assume
that the parameter characterizes the memory of the channel sat-
isfies . The capacity of the channel is given by

(13.3)

Convergence of occurs at an exponential rate as
shown in [40], [161], see also Section IV-E. The capacity
increases monotonically with . It ranges from the
capacity of a memoryless channel to the capacity of
a channel informed about its Markov state . A decision-
feedback decoder that achieves capacity was developed in [243].

A class of channels related to FSCs was studied by Ziv [327].
A channel in that class is described by the conditional transition
pmf

(13.4)

and a deterministic next-state function

Ziv developed an asymptotically optimal universal decoding ap-
proach for these channels. The same algorithm was shown by
Lapidoth and Ziv [204] to be asymptotically optimal for FSCs
described by (13.1). These results and the universal decoder are
described next.

Let denote the parameter space of all FSCs with common
spaces . The parameter of each channel comprises an
initial state and all transition probabilities of the form

. Consider an FSC with parameter . Let
denote a permutation invariant subset of in the

sense that if then any permutation of the components of
results in a vector in . Assume that a set of -length

codewords are drawn uniformly and independently from
where denotes the rate of the code. The collection of these

codewords is referred to as a codebook. Let error de-
note the probability of error of the ML decoder for the FSC
averaged over all messages and possible codebooks. Sim-
ilarly, let error denote the average probability of error
when Ziv’s decoder is applied to the same channel without ex-
plicitly knowing its parameter. From [204, Theorem 1]

error

error
(13.5)

Let be a deterministic code of -length codewords in
. Let error and error denote, respec-

tively, the probabilities of error for the particular code using
Ziv’s decoder and the ML decoder. These error probabilities are
averaged over the messages only. It was shown in [204, Theorem
1] that there exists such a deterministic code for which

error
error

(13.6)

Admissibility of universal decoding for channels with memory,
and in particular for FSCs, was studied by Feder and Lapidoth
[112, Theorem 3].
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Assume that a codebook of -length code-
words was drawn at random by the encoder and that a copy of
the codebook is available at the decoder. The ML decoder for a
given FSC decodes the received signal as coming
from the th message if

(13.7)

where is the channel’s pmf (4.17) specified for
the given . If the maximum is not unique an error is declared.
Ziv’s decoder does not explicitly usein decoding the channel.
Instead, a length function is calculated for each of
the codewords and the received signal. The observed
signal is decoded as coming from theth message if

(13.8)

If the minimum is not unique an error is declared. The length
function is calculated from joint parsing of much
like the parsing in the Lempel–Ziv universal data compression
algorithm described in Section VI-E. This length function is de-
scribed next.

Let denote the number of distinct phrases in .
The joint parsing of induces parsing of into phrases
that are not necessarily distinct. Let denote the number of
distinct phrases in the induced parsing of. Let ,

, denote th distinct phrase in the induced parsing of. Let
be parsed identically to in the sense that if

then

where is the total number of phrases in parsing of which
at least phrases are distinct, i.e., . Let

denote the number of distinct phrases in the parsing of
that appear jointly with . We have that

(13.9)

The length function required by the decision rule (13.8)
is defined as

(13.10)

These concepts are well demonstrated by the following example
borrowed from [204]. Let , , and .
Consider and . The joint parsing of

yields distinct phrases as shown below.

(13.11)

The induced parsing of and is given by

(13.12)

There are distinct phrases for . These phrases and
their joint occurrences are given by

(13.13)

From (13.10), when the logarithm’s base is.
An analogue of Ziv’s inequality for FSCs can be inferred from

Merhav [239, eqs. (7)–(9)]. Let denote the parameter of
an FSC with finite spaces . It holds that

(13.14)

where is some integer that divides, and are
independent of and , and
and . This result was used in [239] in a binary
hypothesis testing problem for deciding whether a given channel
output sequence was produced by a prescribe input sequence or
by an alternative sequence. A decision rule similar to (8.4) was
used.

A composite hypothesis testing approach applicable for de-
coding of unknown channels from a given family, in the rela-
tive minimax sense, was developed by Feder and Merhav [113].
FSCs are particular cases of that family. In this approach, the
ratio of the probability of error of a decoder that is independent
of the unknown channel parameter, and the minimum achievable
probability of error for the channel, is optimized in the minimax
sense. The optimal decision rule is obtained from minimization
of the maximum of this ratio over all possible channel parame-
ters. Asymptotically optimal decoders that are easier to imple-
ment were also derived in [113].

XIV. SELECTED APPLICATIONS

One of the earliest applications of HMPs and their theory was
in ecology. In 1967, Baum and Eagon [26] developed an iterative
procedure for local maximization of the likelihood function of a
finite-alphabet HMP. This procedure predated the EM approach
developed in 1970 by Baum, Petrie, Soules, and Weiss [28].
Baum and Eagon observed that the likelihood function
is a homogeneous polynomial of degree in the compo-
nents of the parameter where

as in (4.9). In estimating , for example, they showed that
the mapping from the domain

into itself defined by

(14.1)

increases the likelihood function unless a stationary point in
is reached [26], [29, Theorem 2]. The transformation (14.1) was
namedgrowth transformationby Baum and Sell [27] and its
properties were studied. The recursion (14.1) turned out to be
similar to a recursion developed in ecology for predicting the
rate of population growth. Baum [29] showed that (14.1) and
the re-estimation formula (6.15) for coincide. Similar con-
clusions hold for the re-estimation formulas forand .

Concurrently with the above application, a new application
in the area of automatic character recognition emerged at IBM.
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Raviv [265] studied this problem and developed the stable for-
ward recursion (5.14) as well as a stable recursion similar to
(5.9) for calculating . Subsequently, a major applica-
tion of HMPs to automatic speech recognition was undertaken at
IBM. Jelinek, Bahl, Mercer, and Baker [171], [18], [172], [21],
along with their colleagues, developed the first automatic speech
recognition system based on hidden Markov modeling of speech
signals. They also studied language modeling using Markov
chains [173]. Language modeling using HMPs was studied by
Cave and Neuwirth [55]. Numerous papers and several books
were published on automatic speech recognition, see, e.g., [19],
[262], [165], [263], [209], [173], [65], [230] and the references
therein. Moreover, HMP-based automatic speech recognition
software packages running on personal computers are now com-
mercially available, see, e.g.,Via Voiceby IBM andNaturally
Speakingby Dragon Systems. In the process of studying appli-
cations of HMPs to automatic speech recognition, several exten-
sions of HMPs and new parameter estimation approaches were
developed. These are briefly discussed in Sections XIV-A and
XIV-B, respectively. In Section XIV-A, we also mention exten-
sions of HMPs developed for other non-speech processing ap-
plications.

In recent years, numerous new applications of HMPs have
emerged in many other areas, particularly in communications
and information theory, econometrics, and biological signal pro-
cessing. In some applications, the underlying processes are nat-
urally HMPs. In others, HMPs were found reasonable statis-
tical models for the underlying processes. In either cases, the
readily available theory of HMPs provides elegant and often in-
tuitive solutions. We briefly review these applications in Sec-
tions XIV-C–XIV-E. Additional applications can be found in
[66] and [228]. For each application, we attempted to provide
the original references as well as papers of tutorial nature. Un-
fortunately, it is impractical to provide an exhaustive list of ref-
erences for each application due to the huge number of publica-
tions in each area.

A. Special HMPs

In some applications, the data associated with each state is
overdispersed relative to any single density such as Gaussian or
Poisson. Using an observation conditional density that is a mix-
ture of densities for each state may circumvent this problem
[221], [256], [175], [262]. Such modeling results in two regime
variables, for the state at timeand for the mixture com-
ponent in state . Using the standard conditional independence
assumption (4.1) of observations given states we have

(14.2)

Let denote the probability of choosing
the th mixture component in theth state. Multiplying (14.2)
by and summing over , and using (4.7), we obtain

(14.3)

Comparing (14.3) with (4.3) reveals that there is no principal
difference between HMPs with a single or multiple mixture
components per state. The use of multiple mixture components
per state allows one to increase the number of observation con-
ditional densities of the HMP without incurring a quadratic in-
crease in the number of components of .

It has often been found useful to restrict the allowable tran-
sitions of the Markov chain. For example, left–right HMPs are
commonly used in automatic speech recognition [262], [111]. In
this case, the transition matrix is upper triangular or has nonzero
elements only on the main diagonal and first off-diagonal. For a
left–right HMP, all but the last state are transient states. The last
state is absorbing. It constitutes a degenerate irreducible Markov
chain. Left–right Markov chains are used for two reasons. First,
this choice is natural in modeling speech signals, as states evolve
in a manner that parallels the evolvement of the acoustic signal
in time. Second, an HMP with a left–right Markov chain and
the usual parametrization is characterized by a lower dimen-
sional parameter compared to that of an HMP with positive tran-
sition probabilities. Such reduction in the parameter size helps
preventing overfitting of the model to training data. Left–right
HMPs are also mathematically tractable as was shown in Sec-
tion VII-D.

Inherent to an HMP is a geometric distribution for the number
of consecutive time periods that the process spends in a given

state before leaving that state. This distribution is given by
. In some applications it was found

useful to turn off self-state transitions and intro-
duce explicit distribution for that suits better the problem at
hand, see Ferguson [115]. This approach was applied to auto-
matic speech recognition [216], DNA sequencing [227], detec-
tion of ECG events [298], and seismic signal modeling [145].
Examples of possible distributions used forinclude Poisson,
binomial, and gamma [115], [216]. The resulting hidden com-
ponent of the model is referred to assemi-Markovchain [145].
Let denote a possible occupation time of stateand define

and for some integer . Using standard
conditional independence assumptions, and the simplifying as-
sumption that an integer number of state transitions occurred in

time periods, we have

(14.4)

where . This model can be seen as a
standard HMP with an extended state space of elements,
where is the largest possible duration. Extension of the Baum
algorithm for estimating the parameter and state sequence of
this model was proposed by Ferguson [115]. An alternative ML
approach was provided by Goutsias and Mendel [145].

The next two extensions of HMPs were developed in biolog-
ical signal processing and image processing, respectively. We
have seen in Section IV-B3 that the observation conditional den-
sities of HMPs may be dependent on past observations in addi-
tion to the current state of the Markov chain. A stronger assump-
tion was necessary in a neurophysiology application where ion
channel currents observed in colored noise were recorded from
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living cells [306], [307]. The model used for that application re-
sulted in dependency of on as well as on .
The HMP is seen as avectorHMP and the sequence of states

is commonly referred to as ametastate. Note that a
vector HMP is different from an HMP with vector observations
as in Section IV-B1. In the latter case, vector observations are
statistically independent given the state sequence.

Applications in coding of finite-alphabet images motivated
the definition of a partially hidden Markov model by Forch-
hammer and Rissanen [122]. The hidden states of this process
are supplemented by the so-called contexts which are subse-
quences of the observed signal. The partially hidden Markov
model is defined by

(14.5)

where is a state sequence and and are the con-
texts. The forward–backward and Baum algorithms extend to
the processes mentioned above as was shown in the referenced
papers.

B. Parameter Estimation in Speech Recognition

In this subsection, we briefly review three non-ML parameter
estimation approaches that were tailored primarily to automatic
speech recognition applications. We focus on the maximum mu-
tual information (MMI) approach of Bahl, Brown, de Souza, and
Mercer [20], the minimum discrimination information (MDI)
approach of Ephraim, Dembo, and Rabiner [101], and the min-
imum empirical error rate (MEER) approach of Ephraim and
Rabiner [102], Ljolje, Ephraim, and Rabiner [224], Juang and
Katagiri [177], Chou, Juang, and Lee [58], [178], and Erlich
[108]. See also Amari [8].

To motivate these approaches it is useful to review the role
of HMPs in automatic speech recognition applications [173],
[263], [165]. For simplicity, we discuss isolated word recog-
nition only. Consider a vocabulary of words. The density
of the acoustic signal from each word is modeled as an HMP,
and the parameter of the HMP is estimated from a training se-
quence of acoustic signals from that word. Let denote
the density of an HMP with parameter . Let de-
note a training sequence of length from the th word. Let

denote the parameters of the HMPs for
the words. Let denote an estimate of from . When
ML estimation is used, . All words
are assumeda priori equally likely. A test acoustic signal is
associated with theth word in the vocabulary if the signal is
most likely to have been produced by theth HMP, i.e.,

(14.6)

1) Maximum Mutual Information (MMI):MMI is a training
approach in which the parameters of theHMPs aresimulta-
neouslyestimated, by minimizing the average empirical mutual
information between the data and the hypotheses. The approach
attempts to reduce the recognition error rate obtained when ML

estimation is applied for individual estimation of each HMP. The
MMI estimate of is obtained from

(14.7)

A re-estimation approach for MMI estimation was developed in
[144]. It is based on a generalization of the growth transforma-
tion of Baum and Eagon [26] for maximization of homogeneous
polynomials with nonnegative coefficients to maximization of
rational functions. This approach requires specification of an
exogenous constant whose practical value may result in slow
convergent of the iterative approach [246]. Often this approach
is implemented using general-purpose optimization procedures
such as the steepest descent algorithm.

2) Minimum Discrimination Information (MDI):Discrim-
ination information is synonymous to relative entropy, cross en-
tropy, divergence, and the Kullback–Leibler number. The MDI
approach is suitable for modeling one random process such as
a speech signal by another parametric process such as an HMP.
The distribution of the first process is not explicitly known. The
process is characterized by a partial set of moments. The MDI
approach attempts to choose the HMP that provides MDI with
respect to the set of all distributions of the first process that sat-
isfy the given moments. The MDI approach is a generalization
of the maximum entropy inference approach [68, Ch. 11]. Shore
and Johnson [291] showed that MDI is a logically consistent
axiomatic modeling approach. See also Csiszár [72] for further
justification.

Let , , denote a set of vectors
from a source whose distribution is not explicitly known. Sup-
pose that a set of moment constraints is available for these vec-
tors. For example, let and denote the true mean and co-
variance of . Suppose that and a band of are available
for each . The band may comprise an upper left
block of or the main diagonal and some off-diagonals of.
Let denote the set of all -dimensional distributions
that satisfy the given moment constraints. Let denote the

-dimensional distribution of an HMP with parameter .
Let and denote the pdfs corresponding to
and , respectively. Let

(14.8)

denote the discrimination information between and .
The HMP is estimated from

(14.9)

There is no closed-form solution for this optimization prob-
lem even for HMPs with Gaussian observation conditional
densities and second-order moment constraints considered
in [101]. An iterative approach for alternate minimization of

over and was developed in
[101] following a similar approach due to Csiszár and Tusnady
in [71]. Given an HMP with parameter at the end of
the th iteration, a new estimate of the process distribution
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can, in principle, be obtained from the solution of a
set of nonlinear equations for the Lagrange multipliers. Let the
complete data density of the new estimate of be denoted
by . Next, a new estimate of the HMP
parameter can be obtained from maximization over of
the auxiliary function

(14.10)
The procedure is repeated until a fixed point is reached or some
stopping criterion is met. Local convergence of to a sta-
tionary point of the MDI measure was demonstrated in [101].
The general convergence proof from [71] is not applicable to
this problem since the set of HMP distributions of a given order
is not a convex set of probability measures.

While maximization of the auxiliary function in (14.10)
results in re-estimation formulas similar to those obtained in
the Baum algorithm, estimation of the distribution
is a hard problem. If a single state sequence dominates the
MDI measure, then the MDI approach coincides with the
Baum–Viterbi algorithm.

3) Minimum Empirical Error Rate (MEER):The MEER ap-
proach simultaneously estimates the parameters of theHMPs
by minimizing the empirical error rate of the recognizer for
the given training sequences. This criterion is directly re-
lated to the goal of automatic speech recognition. The theory
of empirical risk minimization and the design of optimal sepa-
rating hyperplanes using support vector machines has recently
attracted much attention, see Vapnik [304], [305]. The extension
of Vapnik’s work to HMPs is still an open problem.

In the MEER approach, the nondifferentiable indicator func-
tions of the error rate expression are approximated by smooth
differentiable functions and minimization is performed using
numerical procedures such as the steepest descent algorithm.
Let denote the pdf of an observation sequencefrom
the acoustic signal of theth word. Assume that the decision
rule is based on estimates of the HMPs. Theth word is recog-
nized if the acoustic signal is in the set

(14.11)

The probability of correct decision is given by

(14.12)

where denotes an indicator function defined by

if

otherwise.
(14.13)

Let

(14.14)
For large

(14.15)

and the decision rule can be approximated as

(14.16)

The indicator function (14.13) can similarly be approximated as

if

otherwise.
(14.17)

This approximation makes the argument of the indi-
cator function differentiable in . Next, the indicator function
itself is approximated by the differentiable sigmoid function as
follows:

(14.18)

If is assumed to be concentrated on the training sequence
from the th word, i.e., and denotes

the Dirac function, we obtain from (14.12) and (14.18) the de-
sired differentiable approximation for the probability of correct
decision as

(14.19)

This estimate approximates the empirical correct decision count
of the HMP-based recognizer. The parameterof the HMPs is
estimated from

(14.20)

C. Communications and Information Theory

In this subsection, we review applications of HMPs in com-
munications and information theory that we have not discussed
previously in this paper.

1) Source Coding:Ott [248] proposed in 1967 a uniquely
decodable code for a sequence from a finite-alphabet HMP.
The coder assumes zero channel errors. At each time, iden-
tical Huffman-type codes are produced at the transmitter and
receiver for encoding . The codes are based on the conditional
pmf which is calculated using (4.4) and the recursion
(4.30). This recursion was originally developed for that purpose
by Ott.

Merhav [236] studied in 1991 lossless block-to-variable
length source coding for finite-alphabet HMPs. He investigated
the probability of codeword length overflow and competitive
optimality of the Lempel–Ziv data compression algorithm
[326]. Consider an HMP with observation space and
entropy rate . He proved asymptotic optimality of the
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Lempel–Ziv algorithm for any HMP, among all uniquely
decodable codes, in the sense that the normalized length of its
codeword has the lowest probability of exceeding
a constant , as , for any .
For , the problem is not feasible and it is trivial
for . This probability was shown to vanish expo-
nentially fast for unifilar sources. The Lempel–Ziv code for
HMPs was demonstrated to be asymptotically optimal in the
competitive sense of Cover and Thomas [68, Sec. 5.11]. In
particular, the Lempel–Ziv algorithm provides most of the time
a codeword shorter than that of any other competing algorithm
within a normalized redundancy term of . This result was
first proved for Rissanen’s MDL universal code [268] for
unifilar sources using the method of types, and then inferred for
the Lempel–Ziv code for HMPs using Ziv’s inequality (6.29). It
should also be noted that the Lempel–Ziv algorithm compresses
any observation sequence from any finite-alphabet HMP with
essentially the same efficiency as any arithmetic coder which
explicitly uses the pmf of the HMP. This observation follows
from the Ziv inequality.

Goblirsch and Farvardin [140] studied in 1992 the design
of switched scalar quantizers for a stationary composite source
with known transition matrix and densities. The encoder com-
prises a set of scalar quantizers and a next-quantizer distribution.
This distribution is indexed by the quantizers and codewords.
Upon quantization of each observation, a quantizer is selected
for the next observation by sampling from the next-quantizer
distribution using a pseudorandom generator. The decoder has
exact copies of the code books and the next-quantizer distribu-
tion and is fully synchronized with the encoder. Quantization
of sources which are not necessarily HMPs, using finite-state
quantizers with deterministic next-state functions, was studied
by Dunham and Gray [94]. See also [135, Ch. 14].

2) Channel Coding:Drake [92] studied in 1965 decoding
of a binary-symmetric Markov chain observed through a
binary-symmetric memoryless channel. A decoder is calledsin-
glet if it estimates the source symbol as the received symbol

regardless of past observations . Drake provided
necessary and sufficient conditions for the singlet decoder to be
optimal in the minimum probability of symbol error sense. The
work was extended by Devore [82] to decoding from a sam-
pled observation sequence, data-independent decoding, nonse-
quential decoding, and decoding through channels with bino-
mial distributed noise. A singlet sequence decoder estimates the
source symbol sequence as the received symbol sequence

. Phamdo and Farvardin [252] provided necessary and suf-
ficient conditions for the singlet sequence decoder to be op-
timal in the minimum probability of sequence error sense when
a binary symmetric Markov chain source is observed through
a binary symmetric memoryless channel. Alajaji, Phamdo, Far-
vardin, and Fuja [5] extended the results from [252] to decoding
of binary asymmetric Markov chains observed through binary
Markov channels.

Bahl, Cocke, Jelinek, and Raviv [17] used in 1974 the for-
ward–backward recursions (5.7) and (5.8) for estimating the
states of an HMP in the minimum symbol error rate sense. The

HMP was observed through a memoryless channel and thus re-
sulted in another HMP with the same Markov chain. The same
approach was used for decoding of convolutional and linear
block codes in the minimum symbol error rate sense. The de-
coding algorithm is commonly referred to as the BCJR decoder,
and stabilized recursions have been used for decoding of turbo
codes [32], [33]. Turbo decoding of a finite-alphabet HMP with
unknown parameter transmitted over a Gaussian memoryless
channel was developed by Garcia-Frias and Villasenor [131].

Kaleh and Vallet [179] studied blind deconvolution of an i.i.d.
data sequence transmitted across a finite memory channel with
unknown transfer function. We shall demonstrate the approach
for linear channels. Nonlinear channels are treated similarly. Let

denote the input i.i.d. sequencewhere the random
variable takes values in a finite-alphabet set. Let denote
the vector of the finite impulse response of the channel.
Let . Let denote a se-
quence of i.i.d. Gaussian random variables with zero mean and

variance representing the white noise in the channel. The ob-
served signal at the channel’s output at timeis .
Since is a first-order Markov chain with state space,

is an HMP. The parameter of the channel is
unknown but assumed constant duringobservations, say .
The memory length of the channel is assumed known. The pa-
rameter is estimated from observations using the Baum
algorithm and then used to decode these observations. Let

denote the estimate ofat the end of the th itera-
tion. A new estimate is obtained from the solution of the
set of linear normal equations

(14.21)

The noise variance re-estimation formula is

(14.22)
Given an estimate of , the symbol is decoded in the min-
imum symbol error rate using the decision rule

(14.23)

A problem similar to blind deconvolution arises in decoding
pulse amplitude modulation (PAM) signals using a receiver that
is not synchronized with the transmitter. Kaleh [180] formulated
this problem as a decoding problem of an HMP and applied the
above approach for estimating the parameter and for decoding
the signal. The parameter comprises the clock offset between
the receiver and transmitter and the white noise variance. Cirpan
and Tsatsanis [62] used an approach similar to that of Kaleh
and Vallet [179] for semiblind channel deconvolution. The finite
impulse response of the channel is estimated from the received
data as well as from an embedded training data. The presence
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of training data improves the channel estimation accuracy at the
expanse of lowering the bit rate.

Krishnamurthy, Dey, and LeBlanc [196] studied blind equal-
ization of linear channels with infinite impulse response all-pole
transfer functions. Phamdo and Farvardin [252] and Miller
and Park [241] studied decoding of vector quantized sources
observed through finite-alphabet memoryless noisy channels
using a causal approximate MMSE estimator similar to (12.1).
Brushe and White [48] and Brushe, Krishnamurthy, and White
[49] studied demodulation of a number of convolutional coded
signals impinging on an antenna array assuming unknown
channel and direction of arrival. Krishnamurthy and Logothetis
[199] studied estimation of code-division multiple-access
(CDMA) signals in the presence of a narrowband interfer-
ence signal and white additive noise. The CDMA signal was
assumed a Markov chain with states representing quantized
signal levels. Chao and Yao [57] proposed hidden Markov
modeling of the burst error sequence in Viterbi decoding of
convolutional codes. Turin [302] studied MAP decoding for
HMP observed through an FSC.

D. Signal Processing

In this subsection, we describe some applications of HMPs in
processing audio, biomedical, radar, sonar, and image signals.

1) Audio: Mixture processes were found useful in modeling
speechsignals inspeaker identificationapplications [138], [209].
HMPs were used in modeling speech signals and noise sources in
noisy speech enhancement applications [105]. HMPs were also
used in environmental sound recognition whereas a recorded
acoustic signal is classified as being produced by a subset of
noise sources that are simultaneously active at a given time [67],
[134]. The noise sources were assumed statistically independent
HMPs. The observed signal is a mixture of these HMPs [67].

2) Biomedical: Characterization of currents flowing
through a single ion channel in living cell membranes has
attracted significant research effort. An overview of stochastic
models and statistical analysis applied to ion channels, and
an extensive list of references, can be found in [22]. This is
a rich and challenging area of current research. Ion channel
currents are believed to be well represented by a finite-state
continuous-time Markov process where the states represent
conductance levels. Recordings are made using the patch clamp
technique where substantial nonwhite noise and deterministic
interferences may be added. In addition, several conductance
levels may be aggregated into a single state representing a
function of the Markov process. The sampled signal constitutes
a noisy function of a finite-state discrete-time Markov chain
or an HMP. The theory of HMPs was applied to ion channels
in [59], [60], [129], [128], [306], [307]. The parameter of the
HMP is estimated in the ML sense using the Baum as well
as other optimization algorithms. Parameter estimation in the
presence of deterministic interferences was studied in [60],
[194], [197]. The states representing the conductance levels
are estimated using the Viterbi algorithm or a forward–back-
ward recursion. Of particular importance are estimations of
the channel kinetics and mean dwell time within each state.

Characterization of multichannel patch clamp recordings using
HMPs with appropriate parametrization of the transition matrix
was studied in [7], [190].

DNA sequencing based on hidden Markov modeling was
studied in [61], [227]. The states represented different regions
or segments of the DNA. Segmentation was inferred from
MAP estimates of state sequences as obtained from the Viterbi
algorithm or the forward–backward recursions. In another
application [200], HMPs were applied to statistical modeling of
protein families for database searching and multiple sequence
alignment. In [53], neuron firing patterns were characterized by
the most likely state sequence of an appropriately trained HMP.
In [264], classification of neuronal responses to visual stimuli
based on hidden Markov modeling was studied.

HMPs were also used in automated analysis and classifica-
tion of ECG signals [63], [298], [193]. ECG wave patterns were
associated with states and detected from the most likely state se-
quence of appropriately trained HMPs. In another application,
HMPs were used to model epileptic seizure counts with varying
Poisson rates [6], [207].

3) Spectral Estimation:A sinusoidal signal with a time-
varying frequency observed in white noise comprises an HMP
when the unknown frequency is assumed a Markov process.
Algorithms for tracking quantized versions of the frequency
using the Viterbi algorithm were developed in [296], [320],
[313], [321], [322].

4) Radar and Sonar:A problem related to frequency track-
ing is that of maneuvering source tracking in sonar and radar
systems [208]. The relative location and velocity of the source
with respect to an observer comprised the state vector in a
dynamical system. A quantized version of the state variables
were tracked using the Viterbi algorithm. Due to the observer’s
motion, optimal control was designed using the theory of
partially observed Markov decision processes. In [201], [12],
ML target localization using over-the-horizon radar systems
was studied. The uncertainties in the ionospheric propagation
conditions were modeled as an HMP. The states represented
ray mode types. The parameter of the HMP was estimated
using smoothed bootstrap Monte Carlo resampling [96].

5) Image: Restoration from corrupted images modeled as
hidden Markov random fields was studied by Besag [34]. The
image was represented by a Markov field and its pixels were al-
ternatively estimated in the ML sense. Classification of images
represented by hidden Markov random fields or by one-dimen-
sional HMPs was studied in [157], [257], [317], [217]. Partially
hidden Markov processes were studied in [122] and applied to
image compression.

E. Other Applications

In this subsection, we briefly review applications of HMPs in
the area of fault detection, economics, and metrology.

1) Fault Detection: Fast failure detection and prediction in
communication networks was studied in [16]. An HMP with two
states representing good and bad conditions of the network, and
a binary alphabet representing good and bad checksums in each
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state was assumed for the fault detection process. ML estima-
tion of the network’s condition (state) was performed using the
Viterbi algorithm. In [293], [294], an HMP-based real-time fault
detection system for NASA’s deep space network antennas is
described. Here multifaults are monitored by estimating their
conditional probabilities at any given time using the forward re-
cursion or the Viterbi algorithm. In [2], an HMP was constructed
for inventory system with perishable items.

2) Economics:HMPs and switching autoregressive pro-
cesses appear particularly suitable to model macroeconomic
or financial time series over sufficiently long periods [156].
The regime of the process provides a convenient way to reflect
on events that may affect the underlying statistics of the time
series such as wars, changes in government policies, etc. A
summary of many properties of HMPs and their application in
economics is given by Hamilton [156, Ch. 22]. In [282], HMPs
with Gaussian pdfs were used to model subseries of the S&P
500 return series as registered from 1928 to 1991. Explicit
expressions for the second-order statistics of these HMPs were
also given. Expressions for second-order statistics of HMPs
with discrete observations such as HMPs with Poisson and
binomial pmfs were derived in [228].

3) Metrology: HMPs were used in [331], [284] to model
rainfall records assuming some “climate states” which were
modeled as a Markov chain.

XV. CONCLUDING REMARKS

An overview of HMPs was presented in this paper. Clearly,
the theory of HMPs is very rich with many results derived from
statistics, probability theory, information theory, control theory,
and optimization theory. While HMPs are fairly general pro-
cesses, they are still amenable to mathematical analysis. Many
of these results were developed only in the past few years. Many
ingenious approaches have been invented to study and prove
large-sample properties of HMPs. We have attempted to present
the principles of the main theoretical results and to point out to
differences in alternative proofs. The emphasis of the paper is on
the new results even though some more classical material was
included for completeness and proper perspective.

We have collected a large number of results primarily from
the mathematical literature and described a range of selected
applications. We have seen how results developed in one area
are useful in another area. For example, the source-channel in-
formation-theoretic model for an HMP enables quick inference
of their statistical properties using existing results, which other-
wise are harder to prove directly. The forward–backward recur-
sions are useful in decoding of turbo codes in data communica-
tions. Ergodic theorems for relative entropy densities of HMPs
have significance in coding, estimation, and hypothesis testing
of HMPs. The Ziv inequality which proved useful in order esti-
mation and hypothesis testing can also be used in assessing the
quality of a local ML estimator for finite-alphabet HMPs. The
forward–backward recursions for HMPs become the Kalman
filter and smoother under appropriate conditions. Otherwise,
they provide optimal filters and smoothers for non-Gaussian
nonlinear discrete-time signals.

Some aspects of HMPs were inevitably left out. Our pri-
mary focus was on discrete-time general HMPs. Some results
concerning HMPs with separable compact state spaces were
included. We did not cover continuous-time HMPs, nor did
we treat hidden Markov fields which play an important role in
image processing. Some references to these areas were pro-
vided in this paper. In addition, dynamical system approaches
to these two areas can be found in [99].

HMPs have attracted significant research effort in recent
years which has resulted in substantial gain in understanding
their statistical properties and in designing asymptotically
optimal algorithms for parameter estimation and for universal
coding and classification. The intuitive appeal of HMPs in
many applications combined with their solid theory and the
availability of fast digital signal processors are expected to
attract further significant research effort in years to come.
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