

Athens Authentication Point

Welcome!

To use the personalized features of this site, please **log in or register**.

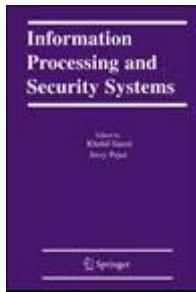
If you have forgotten your username or password, we can **help**.

My SpringerLink

Marked Items

Alerts

Order History


Saved Items

All

Favorites

Content Types Subject Collections English

Book Chapter

large version

The Jeep Problem, searching for the best strategy with a genetic algorithm

Book	Information Processing and Security Systems
Publisher	Springer US
DOI	10.1007/b137371
Copyright	2005
ISBN	978-0-387-25091-5 (Print) 978-0-387-26325-0 (Online)
Part	Part III
DOI	10.1007/0-387-26325-X_41
Pages	453-464
Subject Collection	Computer Science
SpringerLink Date	Tuesday, December 06, 2005

Information Processing and Security Systems

10.1007/0-387-26325-X_41

Khalid Saeed and Jerzy Pejaś

Przemysław Klęsk³

(3) ul. Emilii Plater 96/57, 71-635 Szczecin, Poland

Abstract

In the Jeep Problem, the goal is to maximize the distance the jeep can penetrate into the desert using a given quantity of fuel. The jeep must not take all the fuel from the base at once. The jeep is allowed to go forward, unload some fuel, and then return to its base using the fuel remaining in its tank. At the base, it may refuel and set out again. When it reaches the fuel it has stored previously, it may use it to fill up its tank. This paper describes an attempt of solving this problem (finding the best strategy for the jeep) with a genetic algorithm. Experiments with both binary and real-coded GAs were performed.

Keywords The jeep problem - optimization - genetic algorithm

References secured to subscribers.

[Frequently asked questions](#) | [General information on journals and books](#) | [S](#)

© Springer. Part of Springer Science+Business Media

[Privacy](#), [Disclaimer](#), [Terms and Conditions](#), © Copyright Information

Remote Address: 82.209.198.29 • Server: mpweb18
HTTP User Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)