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Jeep-problemet
Kjell Elfström

Problemet

En jeep kan sammanlagt ta 200 liter bensin i tanken och i lösa dunkar. Jeepen kan g̊a
2,5 km p̊a 1 liter bensin och skall köras till en punkt 1000 km in i en öken. Bränsle finns
bara vid startpunkten s̊a föraren m̊aste placera ut bensin i dep̊aer längs färdvägen för att
klara färden. Fr̊agan är hur mycket bränsle det g̊ar åt och var dep̊aerna skall placeras.

Problemets matematiska formulering

L̊at oss kalla den maximala volym bränsle som bilen kan frakta för en volymsenhet och
den sträcka bilen kommer p̊a en volymsenhet för en längdenhet. Vi förlägger färden till
x-axeln s̊a att startpunkten och m̊alet har koordinaterna 0 respektive d, där d är avst̊andet
mellan punkterna. Vi antar att den sammanlagda körsträckan är s längdenheter och att
den initiala dep̊an inneh̊aller b volymsenheter. D̊a är d ≤ s ≤ b. Om X(t) är jeepens
position efter t längdenheter s̊a är X en kontinuerlig funktion av t, X(0) = 0, X(s) = d
och 0 ≤ X(t) < d d̊a 0 < t < s. Vi säger att X är en b-kurva om färden är möjlig att
genomföra med b volymsenheter i den initiala dep̊an.

Figur 1 visar hur kurvan t 7→ X(t) kan se ut. Hela kurvan ligger p̊a x-axeln men har
i figuren sträckts ut för att göras synlig. De vertikala delarna motsvarar enstaka punkter,
som har längden 0.

x0 d

Figur 1: x = X(t)

Problemet kan nu formuleras som att för ett givet värde p̊a d finna en b-kurva X som
minimerar b.

Det kan tyckas vara naturligt att kräva att kurvan bara byter riktning ändligt m̊anga
g̊anger. I problemets lösning kommer vi med kurva att mena en s̊adan naturlig kurva och ge
ett bevis för att det finns en naturlig kurva som ger lika liten eller mindre bensinförbrukning
än alla andra naturliga kurvor. Det är sant att det inte finns n̊agon annan (onaturlig) kurva,
som ger en lägre bensinförbrukning. Detta diskuteras i avsnittet om Banachs formel.

Copyright c© 2002 by Kjell Elfström 1



Lösningen

Problemet löstes av N. J. Fine 1947 [2]. Den lösning som presenteras här har jag inspirerats
till av en artikel fr̊an 1970 av D. Gale [3].

I stället för att direkt lösa problemet löser vi först det duala problemet, att för ett
givet värde p̊a b finna en b-kurva X som maximerar d.

En strategi är att flytta den ursprungliga dep̊an vid punkten 0 till en punkt x litet
närmare m̊alet. Den nya dep̊an blir naturligtvis mindre eftersom en del bränsle g̊ar åt vid
förflyttningen. Färden utgörs av ett antal tur- och returresor och slutligen en enkelresa
fr̊an 0 till x. Därefter blir x utg̊angspunkt för den fortsatta färden. Dep̊an vid x flyttas
fram till en ny punkt ännu litet närmare m̊alet och s̊a fortsätter färden tills m̊alet d är
n̊att och bensinen är slut.

Definition 1 L̊at t vara ett reellt tal. Heltalsdelen [t] av t defininieras som det största

heltalet n, s̊adant att n ≤ t. Decimaldelen (t) av t definieras genom (t) = t− [t].

Sätt nu n = [b] och definiera punkterna xk, k = 0, 1, . . . , n, s̊a att

xn =
(b)

2n+ 1

och

xk − xk+1 =
1

2k + 1
, k = 0, 1, 2, . . . , n− 1.

Vi skall visa att det är möjligt att ta sig fr̊an utg̊angspunkten 0 till d = x0 genom att
successivt placera dep̊aer i punkterna xn, xn−1, . . . , x1. Om b = n är ett positivt heltal s̊a
är (b) = 0 och därför xn = 0. I det fallet placerar vi den första nya dep̊an i punkten xn−1.
Om b = 0 st̊ar jeepen i x0 fr̊an början.

x0 x0

1

x1

1/3

x2

1/5

x3

(b)/7

Figur 2: Dep̊aer d̊a n = 3

Lemma 1 L̊at k vara ett naturligt tal och c ett reellt tal i intervallet (0, 1]. Antag att

det finns b = k + c volymsenheter vid punkten x′ och att punkten x′′ ligger c/(2k + 1)
längdenheter fr̊an x′. Det g̊ar d̊a att resa fr̊an x′ till x′′ p̊a ett s̊adant sätt att det efter

resan finns en dep̊a med k volymsenheter i x′′.

Bevis Föraren gör k tur- och returresor fr̊an x′ till x′′. Före varje resa fyller han 1 volyms-
enhet i bilen. Framme i x′′ deponerar han allt som finns kvar utom det som behövs för
återfärden. Efter tur- och returresorna fyller han i de återst̊aende c volymsenheterna, gör
en enkelresa till x′′ och deponerar det som är kvar. Färden motsvarar 2k + 1 enkelresor
som var och en kräver c/(2k + 1) volymsenheter. Därför har c volymsenheter förbrukats
och de resterande k volymsenheterna finns i dep̊an vid x′′.

Lemma 1 visar att det är möjligt att ta sig fr̊an 0 till x0. L̊at nämligen som innan
n = [b]. Om b inte är ett heltal s̊a är 0 < (b) < 1. Sätter vi k = n, c = (b), x′ = 0 och
x′′ = xn visar lemmat att en ny dep̊a med n volymsenheter kan skapas i xn. Om b = n är
ett heltal s̊a är xn = 0. I vilket fall som helst s̊a finns det nu en dep̊a med n volymsenheter
i xn. Om sedan c = 1 säger lemmat att om det finns en dep̊a med k + 1 volymsenheter
i x′ = xk+1 g̊ar det att åka till x′′ = xk och där skapa en ny dep̊a med k volymsenheter.
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Det g̊ar allts̊a att åka fr̊an xn till xn−1 och där skapa en dep̊a med n − 1 volymsenheter,
sedan åka till xn−2 och skapa en dep̊a med n−2 volymsenheter och fortsätta p̊a det sättet
tills m̊alet x0 n̊atts. Färden fr̊an dep̊an före xk till xk kräver k tur- och returresor och en
enkelresa.

Definition 2 Vi definierar funktionen D genom

D(t) =
1

1
+

1

3
+

1

5
+ · · ·+

1

2[t]− 1
+

(t)

2[t] + 1
, t ≥ 0.

Den ovan beskrivna färden för jeepen till en punkt D(b) längdenheter fr̊an utg̊angs-
punkten. Detta är i själva verket det maximala värdet av d för ett givet värde p̊a b. Innan
vi bevisar det behöver vi n̊agra hjälpresultat.

Lemma 2 Funktionen D är strängt växande och dess värdemängd är [0,∞).

Bevis Att D är strängt växande är självklart. Jämförelse med den harmoniska serien
visar att

∑
∞

k=1 1/(2k − 1) är divergent. Det följer att D(n) → ∞ d̊a n → ∞. Vidare är
det klart att D(t) ≥ 0. Om x ≥ 0 l̊ater vi n vara det största heltalet s̊adant att D(n) ≤ x.
D̊a är x = D(n) + c/(2n + 1), där 0 ≤ c < 1. Med t = n + c är x = D(t) vilket visar att
x tillhör värdemängden till D.

Definition 3 L̊at X : [a, b] → R vara en funktion. D̊a x ∈ R skall vi med nX(x) mena

antalet rötter t ∈ [a, b] till ekvationen X(t) = x. Om ekvationen har oändligt m̊anga rötter

sätter vi nX(x) =∞.

Är det klart vilken funktion X som avses skriver vi bara n(x). Om X är en jeepkurva s̊a
är n(x) ändlig för alla x och noll utanför intervallet [0, d]. Figur 3 visar funktionen n som
hör till kurvan X i figur 1.

x0 d

y

0
1
2
3
4
5
6
7

Figur 3: y = n(x)

Lemma 3 Antag att 0 ≤ x′ < x′′ ≤ d och att n(x) ≥ m d̊a x′ < x < x′′. D̊a är den

sammanlagda längden av de delar av kurvan X som ligger i [x′, x′′] minst m(x′′ − x′).

Bevis Vi p̊aminner om att vi förutsätter att kurvan bara byter riktning ändligt m̊anga
g̊anger. Antag att kurvan inte byter riktning i intervallet [x′, x′′] utom möjligen i punkterna
x′ = ξ0 < ξ1 < · · · < ξn−1 < ξn = x′′. Se figur 4. Den kan dock byta riktning flera g̊anger
i var och en av dessa punkter och även komma in i och ut ur intervallet flera g̊anger.
Enligt förutsättningarna passerar kurvan varje intervall (ξk−1, ξk), k = 1, 2, . . . , n, minst
m g̊anger. Lemmat följer av att den sammanlagda längden av dessa intervall är x′′− x′.
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x0 dx′ = ξ0 ξ1 ξ2 ξ3 ξ4 = x′′

Figur 4: x = X(t), x′ ≤ x ≤ x′′

Sats 1 För ett givet b ≥ 0 är D(b) det maximala värdet av d.

Bevis Vi har redan visat att det finns en b-kurva som n̊ar till punkten D(b). Det återst̊ar
att visa att d ≤ D(b) för alla b-kurvor. Sätt n = [s], där s är kurvans längd, och l̊at
xk, k = 0, 1, . . . , n, vara den punkt i [0, d], som är s̊adan att den sammanlagda längden av
de delar av kurvan som ligger till höger om xk är k längdenheter. D̊a är

0 ≤ xn < xn−1 < · · · < x1 < x0 = d.

Den sammanlagda längden av de delar av kurvan som ligger mellan xk+1 och xk är 1 längd-
enhet. Om 0 < x < xk g̊ar det åt en viss mängd bränsle för färden fr̊an x till xk. För den
delen av färden som sker till höger om xk krävs minst k volymsenheter bensin. För att
forsla detta bränsle förbi punkten xk m̊aste jeepen passera punkten x minst k + 1 g̊anger
i riktning fr̊an 0 till d. Därför m̊aste den passera punkten x minst k g̊anger i den andra
riktningen. Jeepen m̊aste allts̊a befinna sig i punkten x minst 2k + 1 g̊anger. Den sam-
manlagda körsträckan i intervallet [xk+1, xk], där 0 ≤ k ≤ n− 1, är därför enligt lemma 3
minst (2k+1)(xk−xk+1) längdenheter. Eftersom körsträckan är 1 längdenhet visar detta
att (2k + 1)(xk − xk+1) ≤ 1, dvs

xk − xk+1 ≤
1

2k + 1
, k = 0, 1, . . . , n− 1.

Körsträckan i [0, xn] är s− n = (s) längdenheter och vi f̊ar p̊a samma sätt

xn = xn − 0 ≤
(s)

2n+ 1
.

Eftersom d = x0 = (x0 − x1) + (x1 − x2) + · · ·+ (xn−1 − xn) + xn s̊a är

d ≤
1

1
+

1

3
+ · · ·+

1

2n− 1
+

(s)

2n+ 1
= D(s).

Enligt lemma 2 är D växande och eftersom s ≤ b följer det att d ≤ D(b).

Definition 4 Enligt lemma 2 är D inverterbar. Vi sätter B = D−1.

I beviset till lemma 2 s̊ag vi att B(x) = n + (2n + 1)(x − D(n)), där n är det största
heltalet s̊adant att D(n) ≤ x.

Sats 2 För ett givet d ≥ 0 är B(d) det minimala värdet av b.

Bevis Om b0 = B(d) s̊a är d = D(b0) och sats 1 ger att jeepen kan komma d längdenheter
in i öknen p̊a b0 volymsenheter bensin. Enligt lemma 2 är D(b) < D(b0) = d d̊a b < b0,
vilket visar att b0 är den minimala volymen.
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I det inledande problemet är en volymsenhet 200 liter, en längdenhet 500 km och jeepen
skall köra 2 längdenheter in i öknen. Den minimala bensinvolymen är B(2) volymsenheter.
Eftersom

D(7) =
1

1
+

1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
=

88069

45045
< 2

och

D(8) = D(7) +
1

15
=

91072

45045
> 2

s̊a är n = 7 det största heltal för vilket D(n) ≤ 2. Det följer att

B(2) = 7 + (2 · 7 + 1)(2−D(7)) = 7 +
2021

3003
=

23042

3003
,

vilket motsvarar 4608400/3003 ≈ 1534,6 liter. Deponeringspunkterna xk = 2−D(k), där
k = 7, 6, . . . , 1, är 2021/45045, 422/3465, 67/315, 34/105, 7/15, 2/3, 1 och ligger omkring
22,4, 60,9, 106,3, 161,9, 233,3, 333,3 och 500,0 km fr̊an startpunkten.

Funktionerna D och B

Det är ett välkänt faktum att

n∑
k=1

1

k
− lnn→ γ d̊a n→∞,

där γ ≈ 0,5772 är Eulers konstant. Eftersom

D(n) =
n∑

k=1

1

2k − 1
=

2n∑
k=1

1

k
−

n∑
k=1

1

2k
=

2n∑
k=1

1

k
−

1

2

n∑
k=1

1

k

följer det att

D(n)−
1

2
lnn→

γ

2
+ ln 2 d̊a n→∞

och det är sedan enkelt att visa att

D(t)−
1

2
ln t→

γ

2
+ ln 2 d̊a t→∞.

Med t = B(x) f̊ar vi 2x− lnB(x)→ γ + ln 4 d̊a x→∞, dvs

4eγ−2xB(x)→ 1 d̊a x→∞.

t

x

1 2 3 4 5 6 7

1

2

Figur 5: x = D(t)
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Banachs formel

Definition 5 En kontinuerlig kurva X : [a, b]→ R kallas rektifierbar om

s = sup
∆

n∑
k=1

|X(tk)−X(tk−1)| <∞,

där supremum tas över alla indelningar ∆ : a = t0 < t1 < · · · < tn−1 < tn = b av [a, b].
Talet s kallas i s̊a fall för längden av kurvan. Man säger ocks̊a att funktionen X är av

begränsad variation och kallar s för totalvariationen av X.

Sats 3 L̊at X : [a, b] → R vara en kontinuerlig rektifierbar kurva med längden s. D̊a är

n = nX integrerbar i Lebesgues mening och

∫
∞

−∞

n(x) dx = s.

Denna sats bevisades 1925 av S. Banach [1].

Korollarium 1 L̊at X : [a, b] → R vara en kontinuerlig rektifierbar kurva, s(t) längden

av restriktionen av X till intervallet [a, t] och n = nX . Om x′ < x′′ s̊a är

∫ x′′

x′
n(x) dx =

∫
M

1 ds(t),

där M = {t ∈ [a, b] ; x′ ≤ X(t) ≤ x′′}.

I lösningen till jeep-problemet var det bara i lemma 3 det användes att kurvan endast
byter riktning ändligt m̊anga g̊anger. Korollarium 1 visar att lemmat är sant för alla
rektifierbara kurvor.
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