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Abstract

We present two approaches to the analysis of the relationship between a recurrent neural
network (RNN) and the finite state machine M the network is able to exactly mimic. First,
the network is treated as a state machine and the relationship between the RNN and M is
established in the context of algebraic theory of automata. In the second approach, the RNN
is viewed as a set of discrete-time dynamical systems associated with input symbols of M. In
particular, issues concerning network representation of loops and cycles in the state transition
diagram of M are shown to provide a basis for the interpretation of learning process from the
point of view of bifurcation analysis. The circumstances under which a loop corresponding
to an input symbol z is represented by an attractive fixed point of the underlying dynamical
system associated with z are investigated. For the case of two recurrent neurons, under some
assumptions on weight values, bifurcations can be understood in the geometrical context of
intersection of increasing and decreasing parts of curves defining fixed points. The most typical

bifurcation responsible for the creation of a new fixed point is the saddle node bifurcation.



1 Introduction

The relationship between recurrent neural networks (RNN) and automata has been treated by
many [29], [26], [8], [10], [15], [17], [5], [38], [39], [28], [L1], [23]. State units’ activations represent
past histories and clusters of these activations can represent the states of the generating automaton
[18].

In this contribution, the relationship between a RNN and a finite state machine it exactly mimics
is investigated from two points of view. First (section 5), the network is treated as a state machine.
The concept of state equivalence is used to reduce the infinite, non-countable set of network states
(activations of RNN state neurons) to a finite factor state set corresponding to the set of states of
M. Second (section 6), the RNN is viewed as a set of discrete-time dynamical systems associated
with input symbols of M. The dynamical systems operate on (0,1)”, where L is the number
of recurrent neurons of the RNN. In our experiments, loops and cycles corresponding to an input
symbol z of M have stable representation as attractive fixed points and periodic orbits respectively
of the dynamical system associated with the input z. Suppose there is a loop associated with an
input z in a state ¢ of M. Denote the set of network states equivalent to ¢ by (¢)r. Then, if there
is a vertex v € {0, 1}” such that v is in the closure of (g)r, the loop is likely to be represented by

t1 “near” v.

an attractive fixed poin

A related work was independently done by Casey [5], [6]. In his setting, RNN is assumed to
operate in a noisy environment (representing for example a noise corresponding to round-off errors
in computations performed on a digital computer). RNNs are trained to perform grammatical
inference. It is proved that a presence of a loop in the state transition diagram of the automaton
2 necessarily implies the presence of an attractive set inside RNN state space (see the discussion
in section 6). It is also shown that the method for extraction of an automaton from a trained
RNN introduced in [17] is consistent: the method is based on dividing RNN state space into equal
hypercubes and there is always a finite number of hypercubes one needs to unambiguously cover

regions of equivalent network states.

In section 7 a more detailed analysis of the case when RNN has two state neurons is presented.

Lof the corresponding dynamical system

%recognizing the same language as the RNN



Under some conditions on weight values, the number, position and stability types of fixed points of
the underlying dynamical systems are analyzed and bifurcation mechanism is clarified. The most
typical bifurcation responsible for the creation of a new fixed point as the saddle node bifurcation. A
mechanism of correct behaviour of RNN for short input strings, when for long strings, the network
is known to generalize poorly is investigated in section 8. In such cases, a correct state transition
diagram of a FSM the network was trained with can still be extracted [17]. A tool called the
state degradation diagram is developed to illustrate how regions of network state space, initially
acting as if they assumed the role of states of the FSM in which there is a loop associated with an
input symbol x, gradually degradate upon repeated presentation of . Sections 2 and 3 bring brief
introductions to state machines and dynamical systems respectively. Section 4 is devoted to the

model of RNN [31] used for learning FSMs.

2 State Machines

This section introduces the concept of state machine, which is a generalized finite state machine
with possibly uncountable number of states. When viewed as automata, RNNs can be described

in terms of state machines.

A state machine (SM) is a 6-tuple M=(X,Y, S, fs, fo, S0), where
e X is a nonempty finite set called the input set
e Y is a nonempty finite set called the output set

e S is a nonempty set called the set of internal states

fsisamap fs:5 x X — S called the next-state function

foisamap f,: S x X =Y called the output function
e 5o€ S is called the initial state

SMs with a finite internal state set are called finite state machines (FSMs).
We assume that the reader is familiar with the notion of monoid of words over a finite set.
Following the standard notation, A, X*, X and uv denote the empty word, the set of all words

over X, the set of all nonempty words over X, and concatenation of words u and v respectively.



In every moment M is in exactly one state s € S. When an element z € X is read in, the
machine changes its state to fs(s,z) and yields the output f,(s,z). The processing of any input
word we X by M always starts with M being in the initial state.

If for some x € X and s € S, it holds fs(s,z) = s, then it is said that there is an z-loop in the
state s. If there exist m (m > 2) distinct states sq,...,$, € S and an input z € X, such that
fs(siyz) =841, forall i=1,....m —1 and fs(s;,,x) = s1, then the set {s1,...,s,,} is said to be
an z-cycle of length m passing through the states si, ..., Sp.

It is convenient to extend the domain of f; and f, from S x X to S x X* and S x Xt respectively:
o VseS; fi(s,A)=s,
o VseS, YweX*, VeeX; fi(s,wx)=[fs(fs(s,w),z) and fo(s,wz)=fo(fs(s,w),x).
Yet further generalization of f, is useful:
Vs€S, Yw=z129...7, EXT;  fF(s,w)=fo(5,71) fo(5, 2122)... fo(S, T1T2...27).

A distinguishing sequence of M is a word w € X such that there are no two states s, sy of M
for which ff(s1,w) = f,F(s2,w).

The behaviour of M is a map By: X T —=Y: Vwe X™; Buy(w)= f,(s0,w).

A state so €5 is said to be accessible and z-accessible from the state sy €S if there exists some
w € X* and w € {z}* respectively, such that so = fs(s1,w). M is said to be connected if every
state s € S is accessible from sy. The set of all states that are z-accessible from a state s € S is
denoted by Acc(z,s). An z-cycle v = {s1,..., S} is said to be z-accessible from a state p € S, if
v C Ace(z,p).

An input word w € X* is leading to a state q if fs(sg,w) = ¢. An input word leading to ¢ is
minimal if there is no input word leading to ¢ of shorter length.

We shall also need some concepts concerning state and machine equivalence. Let M; =
(X,Y,S;, fi, fi s0i),i = 1,2 be two SMs. States s; € Sy and sy € So are said to be equivalent
if there is no non-empty word over X which would cause M; to give different output from that
given by Ms, provided M and M started from s; and so respectively. This is formally represented

by the equivalence relation E(M;i, M3) C S7x So:

(51,82)E E(My, M3) iff YweXT; f(}(sl,w):fg(s%w).



The set {p € S2|(¢,p) € E(M1, M2)} of all states of My that are equivalent to a state ¢ € S; of
M is denoted by [q] (a1, A,)- When My =Mz =M, the equivalence relation F(M, M) partitions
the state set S of M into the set of disjoint equivalence classes S/E(M, M).

My and My are said to be equivalent if for every state s; €S there exists a state so € S5 such

that (s1,s2) € E(Mj, Ms), and vice-versa. If there exists a bijection bg : S7 — Sy satisfying:
o Vs€S), VzeX; bs(f(s,2))=FF(bs(s),2) and f;(s,7)=f3(bs(s),)
i bS(sé):s%’

then M; and M are said to be isomorphic. Isomorphic SMs can be considered identical since
they differ only in names of states.

An SM is said to be reduced if no two of its states are equivalent to each other. Reduced SM
equivalent to M =(X,Y, S, s, fo, 50) is (X, Y, S/E(M, M), fs, fo, [s0] E(Mm,Mm))» With fg 0 S/E(M, M)x
X*—S/E(M,M) and f}: S/|E(M, M)x X+ —S/E(M, M) defined as follows:

VseS,Ywe X5 fi[slpmmy w) =[fs(s,0)] v, m)s (1)

VseS,Ywe XT; FollslEmnys w) = fo(s, w). (2)

3 Dynamical Systems

Analysis of dynamical systems (DSs) via state space structures plays an important role in ex-
perimenting and interpreting complex systems. Most of the important qualitative behaviors of a
nonlinear system can be made explicit in the state space with a state space analysis. In this paper
only discrete-time DSs (i.e. DSs evolving in discrete time) will be considered. Our theoretical
knowledge about nonlinear DSs is far from complete. The state space of a nonlinear DS often con-
sists of qualitatively different regions. It is useful to take into account the geometric information
about the structures and spatial arrangements of these regions.

Among the most important characteristics of a DS are the fixed points, periodic orbits, their
stability types, and the spatial arrangement of the corresponding stability regions. We review some

of the basic concepts in DS theory.



A discrete-time DS can be represented as the iteration of a (differentiable, invertible) function
f:A—=A (ACR"), ie.

Tig+1 = f(xt)a te Za (3)

where Z denotes the set of all integers. For each x € A, the iteration (3) generates a sequence
of distinct points defining the orbit, or trajectory of x under f. Hence, the (forward) orbit of z
under f is the set {f™(z)| m > 0}. For m > 1, f™ is the composition of f with itself m times.
f° is defined to be the identity map on A.

A point z, € A is called a fized point of f, if f™(x,) = x4, for allm € Z. A point z, € A is a
periodic point of f,if f%(x,) =z, for some ¢ > 1. The least such a value of ¢ is called the period
of the point z, and the orbit of z,. The set {z., f(24), ..., f7 1 (x.)} is said to be a periodic orbit
of . of period gq. Notice that a fixed point is a periodic point of period one, and a periodic point
of f with period ¢ is a fixed point of f?. If x, is a periodic point of period ¢ for f, then so are
all of the other points in the orbit of ..

Fixed and periodic points can be classified according to the behaviour of the orbits of points in
their vicinity. A fixed point z, is said to be asymptotically stable (or an attractive point of f), if
there exists a neighborhood O(z,) of ., such that limy, , f™(2)=x., for all z € O(x.). As m
increases, trajectories of points near to an asymptotically stable fixed point tend to it. The basin
of attraction of an attractive fixed point z, is the set {x € A| lim,, 00 f™(z) =24 }.

A fixed point z, of f is asymptotically stable only if for each eigenvalue A of Df(xz,), the
Jacobian of f at z., |A| < 1 holds. The eigenvalues of Df(z.) govern whether or not the map f
in a vicinity of z, has contracting or expanding directions. Eigenvalues larger in absolute value
than one lead to expansion, whereas eigenvalues smaller than one lead to contraction. If all the
eigenvalues of D f(x,) are outside the unit circle, z, is a repulsive point, or repellor. All points from
a neighborhood of a repellor move away from it as m increases, or equivalently, move towards it as
—m decreases®. If some eigenvalues of D f(z,) are inside and some are outside the unit circle, x.
is said to be a saddle point. There is a set W?* of points x such that the trajectory of = tends to
z, for m — oo. W? is called the stable invariant manifold of z.. Similarly, the unstable invariant

manifold of x., W", is the set of points x such that the trajectory of x tends to z, for m — —oo.




Since any periodic point of period ¢ can be thought of as a fixed point of f?, these remarks
apply to periodic points as well.

An absorbing set of a set BC A wunder the map f is a set P such that for all x € B, there
exists mgy > 0, for which f™(xz) € P, for all m > my. For a given x € B, the least such a value of
my is called the absorption level of z in P under the map f. An absorption region of P under the

map f is defined as follows:
A¢(P) = {z € A| there exists mo > 0, such that f™(z)€ P, for all m > my}.

When A C R, or A C %2, it is useful to code with colors (or different gray levels) the absorption
levels of points from Af(P) in P. We will refer to such a diagram as an absorption diagram of P
under the map f.

B C A is said to be positively invariant set of f if f(B)C B, i.e. trajectories of points from B
stay in B. Trivially, A is positively invariant set of f, but in an effort to understand the dynamics of
(3), we are usually interested in finding as minimal positively invariant set* as possible. If B is open
and® f(B) C B then the set B = Nm>o f™(B) is not only positively invariant, but also attracting,
meaning that there is a neighborhood of B such that all orbits starting in that neighborhood
converge to B. Attractive fixed points and periodic orbits are trivial examples of attractive sets.
Much more complicated attractive sets can be found in dynamical systems literature under the
name strange attractors® [12]. As in the case of an attractive fixed point, the basin of attraction of
an attractive set B is the set of all points whose orbits converge to B.

If BC A is positively invariant set of f then it is certainly an absorbing set of itself under f. B
may be an attracting set of f, or it may contain an attractive set of f7, or none of the two®.

To learn more about the theory of DSs, see for example [19].

4in sense of inclusion

5B denotes the closure of B

Loosely speaking, strange attractors are attractive sets that are topologically distinct from (i.e. cannot be

transformed by a homeomorphism to) trivial attractive sets mentioned above.
"Note that this does not necessarily imply that B is part of basin of attraction of an attractive set contained in

B. Think of attractive periodic orbit inside B that encircles a repelling fixed point.

®Identity map constitutes a simple example
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Figure 1: RNN model used for learning FSMs.
4 Recurrent Neural Network

The RNN presented in figure 1 was shown to be able to learn mappings that can be described by
finite state machines [31]. A binary input vector IY) = (T ft), vy I](\f)) corresponds to the activations

of N input neurons. There are two types of hidden neurons in the network.

e K hidden nonrecurrent neurons Hi,...,Hp, activations of which are denoted by H ](.t), j=

1., K.

e [ hidden recurrent neurons Si,...,S7, called state neurons. We refer to the activations of

state neurons by S»(t), i=1,...,L. The vector S® = (Sgt), ves S(Lt)) is called the state of the

)

network.



Wiin, Qjin and Vi, are real-valued weights and g is a sigmoid function g(x) = 1/(14e~*). The

activations of hidden nonrecurrent neurons are determined by
H = g3 Qi 5" 1),
ln
The activations of state neurons at the next time step (¢ + 1) are computed as follows:
S = g3 W 87 19) = §i(5©, 10)). (4)
ln

(t) (t)

The output of the network at time ¢ is the vector (0", ...,0;;) of activations of M output neurons

O1,...,0pr. The network output is determined by
0% = g3 Vaur- HY)) = O (8, 1), (5)
k

Network states are elements of the L-dimensional open interval (0,1)”, the internal region of
the L-dimensional hypercube.

A unary encoding of symbols of both the input and output alphabets is used with one input
and one output neuron for each input and output symbol respectively.

The bijection defining the encoding of NV input symbols into N-dimensional binary vectors with
just one active bit is denoted by c¢;. Similarly, the bijection that defines the encoding of M output
symbols into M-dimensional one-active-bit binary vectors is denoted by co.

The vector I(t) = ( {t), ...,I](\?) € {0,1}"  of activations of input neurons corresponds to the
input symbol cfl(Ift), ...,I](é)).

Activation of each output neuron is from the open interval (0,1). A threshold A € (0, %) is
introduced, such that any value from (0, A) is assumed to be an approximation of 0, and any value
from (1 — A, 1) represents the value 1. A mapping 7 : (0,1) — {0,1,—1} is defined as follows:

0 if z€(0,A)
rz)y=< 1 if ze(l-A1)

-1 otherwise.

9_1 represents don’t know output of an output neuron



Interpretation of network output in terms of output symbols of the FSM it models is performed
via mapping D'
o (i, myn) if y; €{0,1}, i=1,..,M

* otherwise.

D(y1,-yym) = {

If the output of the network, O(t) = (Ogt),...,O](\f[)), falls into ((0,A) U (1 — A,1))M, then it

corresponds to the output symbol
D(r(0Y),...r(O1)) = 5 (r(O), ..., r(O))) = 5 (RO, ..., O4))) = et (R(OW)),

where the map R is the component-wise application of the map r.

Each input word (a word over the input alphabet of the FSM used for training) is encoded into
the input neurons one symbol per discrete time step ¢, yielding the corresponding output, as well
as the network new state.

Training is performed via optimization with respect to the error function

where Tr(rlf)E{O, 1} is the desired response value for the m—th output neuron at the time step t. For

a more detailed explanation of the training procedure see [31].

5 RNN as a State Machine

In this section we assume that a RNN A of the type described above has learned to exactly mimic
the behaviour of a reduced, connected FSM M = (X,Y, @, 0, A, s,) it was trained with. It follows
that there exists a network state S°, for which network output will always be in ((0, A)U(1—A, 1))M
upon presentation of any input word, and such that the following correspondence holds (time is set
tot=1):"

Vw = z1..0n €XT; Mgi,21) =D(R(OW)), foralli=1,..,n, (6)

107t is assumed that * does not belong to the set of output symbols of the FSM modeled by the RNN. * stands for

don’t know output of the net.
"Tn practical terms, during learning phase, the network is trained to respond to a special ”reset” input symbol

# (# ¢ X) by changing its state to a state equivalent to so, the initial state of M (more details in [31]). S° is the
“next-state” computed in the layer of recurrent state neurons when the symbol # is presented to the network input

after training process has been completed.



® Gi+1 = 6(QZax1)a i=1,..,n—1, and

e the network input I?) at the time step 7 is the code ¢;(z;) of the i-th input symbol z; of the

input word w.

Automata theory provides us with the ability to connect structural and behavioural equivalence
of automata [32]. In particular, it can be shown, that for any couple (M1, M3) of connected FSMs
with equal input, as well as output sets it holds: if By, = B, then M and My are equivalent
and their reduced forms are isomorphic. To investigate the correspondence between N and M in
this context, we represent the network A" as a SM N =(X,Y U {x},5,7,v,5°), where the maps v

and 7 are defined as follows:
for any S=(Si,...,S5,)€S, and any z€ X;

v(S,z)=D(R(O1(S,cr(x)), ..., On (S, cr(x)))),

and

7(S,2) =(S1(S, cr(x)), ..., SL.(S, cr(x))),

with O; and S; defined by (5) and (4) respectively.
From (6) it follows that
Ywe Xt At(so,w)=vT (S, w). (7)

The set S = (0,1)" of states of A’ can be partitioned into the set of equivalence classes corre-
sponding to the equivalence relation E(N', N'). By presenting inputs to the network and considering
only the de-coded network outputs, it is impossible to distinguish between equivalent network states.

[S] BV, s the set of all network states equivalent to S%. Denote the set of network states
accessible from states from [SY] BN by Suce. Note that for every state S € S,.. and for each
input word w € XT, v*(S,w) does not contain the don’t know symbol . From A, a reduced,

connected SM N} = (X, Y, Syee/ E(N,N), 11,11, [SO]E(./\T,J\T)) is constructed, where 7, and v, are

10



defined according to (1) and (2) respectively, and respectively restricted to Sgec/ E(N,N) x X* and
Suce/ E(N',N') x X*. N has the same behaviour as M. It is easy to see that the number of states
of N is finite and hence N is a FSM. Tt follows that A, and M are isomorphic.

The set [q] B, of all network states equivalent to the state g of M is denoted by (q)n-
States of a SM code the information about “what has happened so far in the course of input word
processing”. From that point of view, all network states from (g)x code the same information, the
information that is coded by the state ¢ of M.

So far we have dealt with the existence issues concerning nonempty regions of network states
equivalent to states of the FSM the network is capable to exactly mimic. For a “constructive”
approach to determination of (¢)ar, the regions N'¥ of network state space are identified, for which
the network N gives the (decoded) output y provided the code of the input symbol z is presented
at network input. In particular, N¥ = {S € S|v(S,z) = y}. Note that for each z € X and y € Y,

NY is an open set. For a given input word w = z1z3...z, € X, the set of all network states

Ny @) originating the output equal to A™ (g, w) is
N300 x2000 0 [y 007y 07y T, ©
i=2
where
7:(S)=7(S,z), for each z€X. (9)

By f !(A), where f is a map and A is a set, we denote the set of all points whose images under
f are in A. For any =z € X, 7, is continuous, and so is the composition 7, o ... o0 7, o 75, for any

+
word x1T...z, € X. Tt follows that the sets N @) are open. However, the set

(Qn = [ NY'@w) (10)

weXt

of network states equivalent to the state g of M is not necessarily open, since an infinite, countable

2

intersection of open sets is not guaranteed to be open'2. If (¢) is open, (q)nr # 0 implies there

exists a (finite) length L of input words such that'? (¢)x = Njwi<L le(q’w).

12The case when trajectories in the RNN state space may be corrupted by a noise is not discussed in this paper.
However, we note that if (¢)a is not open, arbitrarily close to a state S € (¢)a there is a network state not equivalent
to the state ¢ of M and an arbitrarily small perturbation of S may cause failure in the RNN modeling of M.

13|w| denotes length of the word w, i.e. the number of symbols contained in w

11



From (8) and (10) it follows that if there is an z-loop in a state ¢ of M producing an output

symbol y, then
72((9)w) C (9w C [ (72) T (ND). (11)

i>0
As in section 3, 7! is the composition of 7, with itself i times. 70 is defined to be the identity map.
Analogically, if there is an z-cycle of length m passing through states ¢, ..., ¢, with outputs
yi = AMgi,z), i =1,...,m, then
m
(xS ((HEH! (ﬂ(ﬁf}m)_l( é’j)) - (12)
j=1 i>0
Similar bounds can be found for (¢2) 7, ..., (¢m )7, in particular
7o' ((a7)n) C (g7)v © (™) HNGT), G =1, (13)
i>0
Some researchers attempted to extract learned automaton from a trained recurrent network
[17], [8], [37], [31]. Extraction procedures rely on the assumption that equivalent network states
are grouped together in well-separated regions in the recurrent neurons’ activation space. After
training, the network state space is partitioned into clusters using some clustering tool and for each
q € Q, the region (q) is approximated by (possibly) several of such obtained clusters. For example,
in [17] the network state neurons’ activation space is divided into several equal hypercubes. When
the number of hypercubes is sufficiently high, each hypercube is believed to contain only mutually
equal states. After training, Tino and Sajda [31] present a large number of input words to the
network input. All states the network passes through during the presentation are saved. Then
the clustering of those states is performed using Kohonen map with ”star” topology of neural field
consisting of several “branches” of neurons connected to one “central” neuron. Such a topology
helped to reduce great sensitivity to initial conditions found in vector-coding algorithms using
independent cluster centers, while avoiding time consuming approximation of input space topology
typical of classical regular-grid topologies of Kohonen Map [30]. Other approaches to RNN state
space clustering are discussed in [31].
Having approximated the regions (¢), the automaton A/ is constructed via determining arcs in
the corresponding transition diagram, followed by non-determinism eliminating and minimization

procedures.

12



All ideas presented in this section stem from the assumption, that the network N exactly mimics
the FSM M it was trained with. However, it is possible that a correct automaton is extracted from
trained RNN even though the network is known to generalize poorly on long, unseen input words

[17]. This is discussed in section 8.

5.1 Experiments

Number of experiments were performed in which RNNs with two or three state neurons were trained
simple FSMs. To show how the network learned to organize its state space in order to mimic a given
FSM, the regions corresponding to (q)nr were detected. The network state space was “covered”
with a regular grid G of R x R points (R is of order of hundreds) and a finite vocabulary I' of
distinguishing sequences of M was created. Regions (¢) were approximated by grouping together
those network states from the grid that, for each input word from the vocabulary, lead to equal
output strings. In other words, (¢)a = Nyex+ N&,\ﬂq’w) were approximated by (e /\/'u);‘Jr(q’w) ngG.
For example, in figure 3 approximations of regions of equivalent network states corresponding to
states of a FSM shown in figure 2 can be seen. Figure 3 should be compared with figure 4 showing
activations of state neurons during presentation of training set to the RNN after training.
Generally, in our experiments, regions approximating (¢) were observed to be connected and
of “simple shape”. Further study needs to be devoted to that matter. However, at least empirically
and for simple tasks, our use of the Kohonen Map as a clustering tool [31], as well as the use of

simple clustering technique introduced in [17] are supported.

6 RNN as a Collection of Dynamical Systems

RNNSs can be viewed as discrete-time DSs. Literature dealing with the relationship between RNNs
and DSs is quite rich: [20], [3], [16], [6], [7] [24], [26], [35], [36], [34], [2], [21], for example. However,
as it has been already mentioned, the task of complete understanding of the global dynamical
behaviour of a given DS is not at all an easy one. In [36] it is shown that networks with just two
recurrent neurons can exhibit chaos and hence the asymptotic network dynamical behaviour (on a
chaotic attractor) can be very complex.

In order to describe the behaviour of the RNN N by an iterative map, we confine ourselves
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Figure 2: FSM M used for training RNN. M =(X,Y,S, fs, fo, S0) is represented as a directed graph
called the state transition diagram. The graph has node for each state, and every node has | X|
(|X| denotes the number of elements of a finite set X ) outgoing arcs labeled with z|y (z€X, y€Y')
according to the rule: The arc from the node labeled with s1€S to the node labeled with s9€S is
labeled with z|y if sy = fs(s1,x), and y = f,(s1,z). The node corresponding to the initial state

is indicated by an arrow labeled with START.

Figure 3: Regions of equivalent network states. Capital letter inside each region indicates to which
state of M the network states from that region are equivalent. A = 0.1. Two lines stemming from
the origin are the lines 7,(s)1 = 1/2 and 74(s)2 = 1/2, between them is the region P, (1) (see

section 6).
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Figure 4: Activations of state neurons when training set is presented to the network after training

process has finished (weights are frozen).

to only one input symbol z from the input alphabet of the FSM used for training N, the code of
which is repeatedly presented to the network input. The evolution of the network is described in
terms of trajectories {S,7,(9),72(S),...} in (0,1)*. The iterative map 7, : (0,1)* — (0,1)" is
defined in (9).

As in the previous section, here we also assume that a RNN N exactly mimics the behaviour of
a reduced, connected FSM M= (X,Y,Q,d, \, s,). In this section we deal with the problem of how
certain features of M found in its STD (such as loops and cycles) induce some specific features
(such as attractive points and periodic orbits) of network global dynamical behaviour.

Assume that there is an z-loop in a state ¢ of M and A(¢q,z) = y. Then according to (11), (¢)n
is a positively invariant set of 7, and hence an absorbing set of itself under 7,. From (8) it follows
that, under 7., (¢)n is an absorbing set of all sets (p)ar such that ¢ is z-accessible from p. If there
is an open set B such that B C (¢)x and 7,(B) C B, or (q¢)x C B and 7,(B) C (), then there
is an attractive set (5o f™(B) of 7, in (g)x that constitutes a stable network representation of
the z-loop in a state ¢ of M.

Similarly, assume that there is an z-cycle 7 of length m passing through states qi, ..., ¢, with
outputs y; = X(gj,x), 7 = 1,...,m. Then according to (13), (¢j)» are positively invariant sets of 7"
and U;-”Zl(qj) N 1s positively invariant set of 7,. A statement concerning the existence of attractive

sets of 7, inside (g;)» (or an attractive set of 7, inside UjL,(g;)ar ) can be made analogically to
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the statement above. Considering (8) it can be seen that under 7, e, (g)n is an absorbing set
of itself and all sets (p)x such that y is z-accessible from p.

Observation 1 formulates these ideas in a more compact form.

Observation 1: Assume that a RNN N ezactly mimics the behaviour of a reduced, connected FSM

M=(X,Y,Q,6,\, s,). Then

e if there is an z-loop in a state q of M, then (q)x C ./\fé\(q’x) is positively invariant set of 7,

and '* UqGAcc(w,p)(p)N - ATz ((Q)J\f)

o if there is an x-cycle v of length m passing through states qi,...,qm of M, then (gj)n, J =
1,...,m are positively invariant sets of 7" and U;-”Zl(qj)/\/ s positively invariant set of 7.
(@1)A; -y (gm) & are periodically visited in the process of iteration of 74, and U, c ace(zp)(P)N C

Az, (Uger (@)

When there was an z-loop in a state ¢ of M in all our experiments an attractive fixed point S, of
7, “near” a vertex v € {0,1}1 was detected (see subsection Experiments bellow). If S, € (q)xr, S«
constitutes a plausible network representation of the z-loop. If furthermore S, is the only attractive
set of 7, inside (g)ar, then quAcc(w,p)(p)N is a subset of its basin of attraction.

For each input symbol x of M and each vertex v = (v1,...,v) € {0,1}" define the set '°

1 1
Prw = {s € §RL| T2(8)i < 3 if v, =0; 7,(s); > 3 ifv,=1; i= 1,...,L} .

Hyperplanes 7,(s); = 1/2 separate R into 2° partitions P,,. The map 7, is transformed to
the map 7# by multiplying weights W, by a scalar p > 0, i.e. 7H(s) = 7z(ps). p is also called
the neuron gain. The following Lemma was proved by Li [27]. It is stated for maps 7, and
accommodated with our notation. It tells us under what conditions one may expect an attractive

fixed point of 7/ to exist “near” a vertex v € {0, 1}~.

Lemma 1: (Li, 1992) Suppose that for some input symbol x of M there exists a vertex v €
Prw N Ty(Pyyp). Then there exists a neuron gain po such that for all p > po there is an attractive

fized point of TF in Py N T4 (Pry).

Yrecall that A-, ((q)n) is the absorbing region of (¢)a under map 7

157, (s); denotes the i-th component of 7,(s). When viewed as an iterative map, 7. operates on (0,1)Z, but here

we allow s € RE.
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It was also shown that as p tends to infinity, the attractive fixed point tends to the vertex v. For
two recurrent neurons, under certain conditions on weights Wj;,, this is made more specific in the

next section (Corollary 1).

Theorem 1: In addition to the assumptions in Observation 1, assume there is an z-loop in a
state q of M. Suppose there is a vertez v € {0,1} such that (q)y C Puw and v € 74((q)n)-
Then there exists a neuron gain po such that for all > po there exists an attractive fized point

Sy € Pyw N Ty (Pyw) of TH.

Proof: From

(@) C (@ C Papw and 75((Q)n) € 72 (Payw)

it follows that 7,((¢)a) € Prw N T2(Pyp). Hence

v € T((9)A) € Pow N 70(Paw)-
Employing Lemma 1, the result follows immediately. O

Loosely speaking, Theorem 1 says that if arbitrarily close to a vertex v € {0, 1} there is a network
state from 7,((¢)a) € ()& € Py, ie. if network states that are equivalent to the state ¢ of M
in which there is an z-loop are “accumulated” around the vertex v within P, ,, then if the weights
are “large enough”, so that pug < 1, an attractive fixed point of 7, exists in a neighborhood of v
(figures 3 and 5).

As mentioned in the introduction, the approach presented in [6] addresses representational issues
concerning recurrent neural networks trained to act as regular language recognizers. Recurrent
neural networks are assumed to operate in a noisy environment. Such an assumption can be
supported by an argument that in any system implemented on a digital computer there is a finite
amount of noise due to round-off errors and “we are only interested in solutions wich work in spite
of round-off errors” [6]. Orbits of points under a map f and attractive sets of f are substituted
for by the notions of e-pseudo-orbit of points under f and e-pseudo-attractor of f. These concepts
correspond to the idea that instead of the precise trajectory of a point under a map we should
consider each sequence of points (pseudotrajectory) having the distance from the precise trajectory

less than € > 0. It is proved that when there is a loop in the reduced acceptor of a regular language
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also recognized by the network, then there must be an e-pseudo-attractor (and hence an attractor)
of the corresponding map in the network state space. The network accepts and rejects a string
of symbols if e-pseudo-orbits driven by the string end in subregions denoted by accept and reject
regions respectively. It is assumed that the accept and reject regions are closed in the network state

space.

6.1 Experiments

To see how loops and cycles of a FSM M are transformed into global dynamical properties of a
RNN N that is able to exactly mimic M, the following experiments were performed:

Consider again the FSM M presented in figure 2. In figure 3 it can be seen how the RNN
N with two state neurons organizes its state space, (0,1)2, into three distinct, connected regions
(A)n, (B)nr, and (C)y, corresponding to states A, B, and C respectively. It was observed!® that
trajectories starting in (A)x converged to a single attractive point placed inside (A)xr. The same
applies to the state C, and its corresponding region (C)xr. So the a-loops in the states A and C
induce attractive points of 7, placed inside the corresponding regions of equivalent RNN states.
Actually, this represents the only RNN stable representation of loops in M we have observed during
our simulations.

(A)n and (C)a are absorbing sets of themselves under the map 7,. Since the state C' is a-
accessible from B, (C)ar is an absorbing set of (B)x under 7,. Absorption diagrams of (A), and
(C)n under 7, together with the attractive points are presented in figure 5.

If we presented M only with input symbol b, we would end up either in a b-cycle of length
two involving states A and B, or in a b-loop in the state C. When, during the experiments, we
started in a state from (C)ar, and presented to the network input only the code of the symbol b,
the trajectory converged to an attractive point inside (C')ar. An absorption diagram of (C') s under
Tp together with the attractive point can be seen in figure 6.

On the other hand, when started in a state from (A)as, the trajectory jumped between the sets
(A)n and (B)x converging to a periodic orbit of length two. Again, this was observed to be the

typical stable RNN representation of a cycle corresponding to an input symbol of M. The states

16 As before, during the simulations, the network state space was “covered” with a regular grid of points and only

the orbits starting from these points were taken into account.
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Figure 5: Absorption diagrams of (A)x and (C)x under the map 7,. Network states lying in the
lightest region need one or no iteration step under the map G, to get to their absorption set. The
more iteration steps are needed, the darker the region is, with the exception of the region ”close
to” the "border line” between the two absorption diagrams. The region is light so that the border
contours are clearly visible. The figure should be compared with the figure in the previous section
showing (A)n and (C)x. Note the two attractive points of 7, placed inside (A)x and (C) s induced

by a-loops in states A and C respectively.
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Figure 6: Absorption diagram of (C)x under the map 7,. Network states from the two white
regions do not belong to the absorption region of (C')ar. The figure should be compared with the
figure in the previous section showing (C)xr. Note the attractive point of 7, placed inside (C)nr
induced by the b-loop in the state C, as well as, two periodic points of 7, placed inside (A)x and
(B)n constituting an attractive periodic orbit of period two. The orbit is induced by the b-cycle
{A,B}.

constituting the orbit can be seen in figure 6.

In the second experiment, a FSM M shown in figure 7 was used to generate the training set for a
RNN N with three state neurons. The a-cycle {A, B,C, D, E} of length five induced an attractive
periodic orbit of 7, of period five. Projections of the orbit to a two-dimensional subspace (0,1)?
of the network state space can be seen in figures 8, 9, 10. To illustrate the convergence of orbits,
the orbits were plotted after 60, 100, and 300 pre-iterations (figures 8, 9, and 10 respectively). No

plotting occurred during the pre-iterations.

7 RNN with Two State Neurons

Usually, studies of the asymptotic behaviour of recurrent neural networks assume some form of
structure in the weight matrix describing connectivity pattern among recurrent neurons. For ex-
ample, symmetric connectivity and absence of self-interactions enabled Hopfield [22] to interpret
the network as a physical system having energy minima in attractive fixed points of the network.

These rather strict conditions were weakened in [7], where a more easily satisfied conditions are
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Figure 7: FSM M whose state transition diagram contains cycle of length five.

Figure 9:
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Figure 10:

formulated. Blum and Wang [3] globally analyze networks with nonsymmetrical connectivity pat-
terns of special types. In case of two recurrent neurons with sigmoidal activation function g, they
give results for weight matrices with diagonal elements equal to zero'”. Recently, Jin, Nikifiruk
and Gupta [25] reported new results on the absolute stability for a rather general class of recur-
rent neural networks. Conditions under which all fixed points of the network are attractive were
determined by the weight matrix of the network.

The purpose of this section is to investigate the position and stability types of fixed points of
maps T, under certain assumptions concerning the signs and magnitudes of weights Wy;,,. The

iterative map under consideration can be written as follows:

(Un+1,Vn41) = (g(auy + Bog), g(yun + dvp)), (14)

where (uy,v,) € (0,1)? is the state of recurrent network with two state neurons at the time step n,
and «,d and (3,7 are positive and negative real coefficients respectively. Thus we investigate the
case when the two recurrent neurons are self-exciting (a, d > 0), with the tendency to inhibit each
other (3,7 < 0).

For ¢ > 4, define

In the following it will be shown how the network state space (0,1)? can be partitioned into regions

'"In such a case the recurrent network is shown to have only one fixed point and no “genuine” periodic orbits (of

period greater than one)
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Figure 11: Partitioning of RNN state space according to stability types of fixed points of maps 7.

according to the stability types of fixed points of (14) found in the regions.

Regions

and

are denoted by Ry, Ry, and RE respectively. Regions symmetrical to Ry, Ry, and RE with respect

to the line u = 1/2 are denoted by Rf‘o, Rfo and Rf respectively:

1 1
R = (5 + Aa), 1) x (0, 5= A(5)> ,
11 1 1 1 1
S o— |2 = i - - -
Ry = 505+ @) x (03 -20)) u (5 +2w@.1) x (5 - 2605
11 1 1
Rl = 505+ A) x (5 -40)3].
Similarly, let Ry, Ry, and RE denote the regions symmetrical to R{,, Ry, and RE, with respect to

the line v = 1/2. Finally, R{}, Rf} and R denote regions that are symmetrical to R{;, R5; and

RE with respect to the line u = 1/2 (figure 11).
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Theorem 2: Suppose o > 4,5 < 0,7 < 0,0 >4, > |B|,0 > |y|. Then the following can be said
about the fized points of (14):

e attractive and repulsive points can lie only in U;cr R and Uiez RE respectively. T is the

indezx set T = {00,10,01,11}. If maz{a(d —4),06(a —4)} < By, there are no repellors.

e all fived points in );cz RY are saddle points'S.

Proof: Any fixed point (u,v) of (14) satisfies

(u,v) = (g(aw + Bv), g(yu + 0v)). (15)
Jacobian J(u,v) of (14) in (u,v) is given by

aGy(u,v) BG1(u,v)
vGo(u,v) 0G2(u,v)

where G1(u,v) = ¢'(au + fv) and Ga(u,v) = ¢'(yu + dv). Since ¢'(p) = g(p)(1 — g(p)), considering
(15) we have
(G1(u,v), Go(u,v)) = (u(l —u),v(1 —v)) = ¢(u,v). (16)

The eigenvalues of .J are!”

aG1+ 0G4 + VD
A2 = 5 ;

where D = (aG1 — §G2)? + 4G 1 G2 3y.

D is always positive and so is aG1 + 0G5. It follows that to identify possible values of G and

G so that |A\j 2] < 1, it is sufficient to solve the inequality oG + 0G2 + VD < 2, or equivalently
2 —aG, — 6Gy > VD. (17)

Consider only G4, G5 such that G1+3dG2 < 2, that is, (G1, G2) lies under the line p : aG1+0Gy = 2.
All (G1,G9) above p lead to at least one eigenvalue of J greater than 1. Squaring both sides of
(17) we arrive at

(a5 — ,B'y)Gng —aGy — 606Gy > —1. (18)

18Note that this does not exclude the existence of saddle fixed points in other regions.

9to simplify the notation, the identification (u,v) of a fixed point in which (14) is linearized is omitted
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Figure 12:

The “border” curve k : (ad — 3y)G1Gy — aGy — 6Gy = —1 in (G1,G2)-space is a hyperbola
Gy = H(Gl) = A[l + B/(G1 — C)], where

1 C = ! and B:C—l.

4 =
B ? B ?

Since 0 < § — fy/a < 6 and 0 < a — Bv/d < a, it follows that A > 1/6,C > 1/« and B > 0.
k(1/a) =0,k(0) = 1/6 and (G1, G2) satisfying (18) lie under the “left branch” and above the “right
branch” of k (see figure 12). It is easy to see that since we are confined to the space below the line
p, only (G1,G9) under the left branch of x will be considered. Indeed, p is a decreasing line going
through (C,P) and A — P = 2(A —1/0) > 0, so it never intersects the right branch of k.

A necessary (not sufficient) condition for a fixed point (u,v) of (14) to be attractive is that the
corresponding (G, G2) = ¢(u,v) € (0,1/4]% lies in (0,1/a) x (0,1/6), where the map ¢ is defined

by (16). For each (G1,G2) € (0,1/4]?, under ¢, there are four preimages

(u,v):¢_1(G1,G2):{(%iA(é),%iA(é))}. (19)
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The set of preimages of (0,1/a) x (0,1/0) is the set U;cr R, T = {00,10,01,11}.
A fixed point (u,v) of (14) is a saddle if |A2| < 1 and |A;| = A; > 1. Since ad > (7,

0 < \/(aG1 +6G2)? —4G1Ga(ad — fy) = VD < aG\ + §G.

It follows that if aGy + 060Gy < 2, i.e. (G1,G2) lies under the line p, 0 < aGy + 6Gy — VD < 2
holds and 0 < Ay < 1. For (G1,G2) above the line p, i.e. oGy 4+ §G2 > 2, we solve the inequality
aG + 6Gy — 2 < /D, that leads to the “border” curve Gy = k(G1) we have already described.
This time, only (G1,G2) “between” the two branches of hyperbola x are considered.

It can be seen that in all fixed points (u,v) of (14) with

< (omin (. 1) 0 (omin {0, 11) ¢ o,

the eigenvalue Ay > 0 is less than 1. This is certainly true for all (u,v) such that ¢(u,v) €

s (0.5

)

(0,1/4] x (0,1/0) U (0,1/cx) x (0,1/4]. In particular, the preimages of (G1,G2) € (1/,1/4] x
(0,1/8) U (0,1/a) x (1/8,1/4] under ¢ define the region ;c; R where only saddle fixed points of
(14) can lie.

Fixed points (u,v) whose images under ¢ lie above the right branch of s are repellors. No
(G1,G2) can lie in that region, if C; A > 1/4, that is, if §(a — 4) < vy and «(d —4) < B, which is

equivalent to maz{a(d — 4),0(a —4)} < B. O

The condition maz{a(d—4),5(e—4)} < [y implies that when self-excitations of recurrent neurons
are not significantly higher than their mutual inhibition, there are no repulsive fixed points of (14).
As self-excitations @ and § grow, stable fixed points of (14) move closer towards {0,1}2. More

precisely:

Corollary 1: Same assumptions as in Theorem 2. All attractive fized points of (14) lie in the

e-neighborhood of vertices of unit square, where

e=1/(05 — A(e)? + (0.5 — A(8))2,

The tendency of attractive fixed points in discrete-time RNNs with exclusively self-exciting recur-

rent neurons to move towards saturation values as neural gain grows is also discussed in [21].
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So far, we have confined the areas of the network state space (0,1)? where (under some assump-
tions on weights) fixed points of (14) of particular stability types can lie. In the following, it will
be shown that those regions correspond to monotonicity intervals of functions defining fixed points
of (14). The reasoning about the stability type of a fixed point can be based on the knowledge of
where the functions intersect.

Recall that any fixed point (u.,v,) of (14) satisfies

(s, v4) = (g(aus + Boi), g(yus + dvy)),

or equivalently, (v,,v,) lies on the intersection of two curves v = f, 3(u),u = f5,(v), where
feieo 1 (0,1) = R,
14

__a, 1, £
foreall) = =+ =gy (20)

limy_, g+ fey.e0(£) = 00, limy_y 1~ fe, er(£) = =00, f., ¢, is convex and concave on (0,0.5) and (0.5, 1)
respectively. If ¢; <4, f;, ¢, is nonincreasing, otherwise it is decreasing on (0,0.5 — A(cq)) U (0.5 +
A(ep), 1) and increasing on (0.5 — A(ep), 0.5 + A(ep)). Graph of f¢, ¢,(¢) is presented in figure 13.

The “bended” graph of f., ., for ¢; > 4 gives rise to a potentially complicated intersection
pattern of f, 3(u) and fs,(v). In the following, we shall consider only the case ¢; > |ca|, since it
is sufficient to explain some interesting features of training process observed in our experiments.
Note that ¢; > |c2| means that for both neurons, the self-excitation is higher than the inhibition

from the other neuron.

Lemma 2: Assume o > 0,5 < 0,7 <0,0 > 0. If « > |3] and 6 > ||, then fop3(u) and f5,(v) do

not intersect in (0,0.5)2.

Proof: Assume that both f, g(u) and f5.,(v) lie in (0,0.5)%, otherwise the result follows trivially.
For u € (0,0.5), both (In(u/(1 —u))/B and —au/B are positive. It follows that in (0,0.5)2,
fa,5(u) lies above the line v=cu/|B|. Similarly, in (0,0.5)%, f5,(v) lies above the line u=dv/|y|.
In terms of the co-ordinate system (u,wv), this can be restated as follows: in (0,0.5)2, the graph
of fo g lies above the line v =ou/|3| while the graph of f5, lies bellow the line v = |y|u/d. Since

Iv/6 <1< a/|B|, fap(u) and f5,(v) do not intersect in (0,0.5)%. O

ZOnote that since a,d and 8, are assumed to be positive and negative respectively, we have ¢; > 0 and ¢2 < 0
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Figure 13:
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The correspondence between regions R, i

1,7 =0,1, Q@ = A, S, R, and the regions of monotonicity
of fop(u) and f5,(v) enables us to interpret training process as a process of “shaping” f, s and
fs5,4 so that the desired behaviour of (14), as prescribed by the training set, is achieved.

Denote the set {(u, fo,5(u))| ©v€(0,0.5—A(c))} of points lying on the “first decreasing branch”
of fap(u) by fa[]%. Analogically, the set of points {(u, fo,g(u))| u € (0.5 + A(a),1)} in the “sec-
ond decreasing branch” of f, g(u) is denoted by folé% Finally, let fc': 3 denote the set of points
{(u, fa,3(u))] v e (0.5 — A(x),0.5 + A(a))} on the increasing part of f, g(u). Similarly, fg;,fal;
and f(;fy are used to denote the sets {(f;,(v),v)| v€(0,0.5—=A(5))}, {(f5(v),v)] vE(0.54+A(d),1)}
and {(fs(v),v)| v€(0.5 — A(d),0.5 + A(5))} respectively. Using the Theorem 2 and Lemma 2 we

state the following corollary:

Corollary 2: Same assumptions as in Theorem 2. Attractive fized points of (14) can lie only on
the intersection of decreasing parts of fo g and fs5,. Whenever the increasing part of fo g intersects
with a decreasing part of f5. (or vice-versa), it corresponds to a saddle point of (14). In particular,
all attractive fized points of (14) are from fg:B N 51;, 5:3 N f(sl,; or f;:B N fg; Every point from
otﬂ N fﬁl’; or 014;3 N f(;;y is a saddle point of (14).

The usual scenario of creation of a new attractive fixed point of (14) is that typical of saddle-
node bifurcation in which a pair attractive + saddle fixed point is created. Attractive fixed points
disappear in a reverse manner: an attractive point coalesces with with a saddle and they are
annihilated. This is illustrated in figure 14. f5,(v) shown as dashed curve intersects f, g(u) in
three points. By increasing d, f5, bends further (solid curve) and intersects with f, 3 in five
points?!. Saddle and attractive points are marked with squares and circles respectively. Note that
as 0 increases attractive fixed points move closer to vertices {0, 1}2.

A similar approach to determining the number and stability types of fixed points of the under-

lying dynamical systems in continuous—time recurrent neural networks can be found in [2].

2L At the same time, |v] has to be also appropriately increased so as to compensate for the increase in d so that the

“bended” part of fs5, does not move radically to higher values of u.
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Figure 14: Geometrical illustration of saddle-node bifurcation in RNN with two state neurons.
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Figure 15: FSM M with four a-loops and “transition” input symbol b.

8 Experiments — Learning loops of FSM

A RNN with two state neurons was trained with the FSM M presented in figure 15. In each of
its four states there is an a-loop. Input symbol b causes subsequent transitions between states up
to the “trap” state D. Training set representing M was constructed as follows: Transitions to
states B,C and D from the initial state A are represented by one, two and three consecutive b’s
respectively. Apart from transition, each a-loop is represented by strings of consecutive a’s up to
length 5. b-loop in the state D is represented by a string of 5 consecutive b’s. To each input string
w, its corresponding output string A* (A4, w) is determined.

During the training, after each epoch, attractive sets of 7, were numerically detected. The

evolution of position and number of attractive fixed point(s) of 7, in (0,1)? can be seen in figure 16.
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Figure 16: Evolution of position of attractive sets of 7, during RNN training on FSM M (two state

neurons).

Near the points the corresponding epoch numbers are shown. At the beginning, there is only one
fixed point of 7,. A bifurcation during the 59th epoch produces two attractive fixed points. Since
the 138th epoch till the 321st epoch there are three attractive fixed points and two saddle points
of 7,. These are determined by the intersection of the corresponding lines f,, 5, and fs, ., where
g, BayYa and §, are coefficients of the map 7, as in (14). The episode of existence of the attractive
fixed point f Olé; 5.1 f 51(;% begins when f,, 5, is “bended” enough so that f 51(;% intersects with both
increasing and decreasing parts f;ra Ba and folé;ﬂa respectively. At the same time, in order for the
intersection fé;,@a N f(;; e b0 exist, f5, ., needs also to be sufficiently “bended” (figure 17). The
degree to which f,, 5, and fs, ., are “bended” is primarily controlled by «, and J, respectively,
while the vertical positions of bended parts are mainly determined by respectively G, and 7,. During
the 322nd epoch, the attractive fixed point foll; 3, N f(sll;% together with saddle point foll; 3, N fg; e
disappear because the increase in |y,| pushes the "bended” part of f;, . inside the state space
(0,1)? (figure 18).

The training error was 0.08, yet the only attractive sets of 7, that were detected were two

attractive fixed points S4 and Sp near vertices (0,1) and (1,0) corresponding to a-loops in states
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Figure 17: f,, 3,(u) and f5, ,,(v) after 150th training epoch. Coefficients of the map 7, are
Qg = 521, B = —2.58, 70 = —2.63,, = 5.23.

1.8 B

1.6 b

1.8 2

Figure 18: fo, 3,(v) and fs, 5, (v) after 1000th training epoch. Coefficients of the map 7, are
g = 8.61, 08, = —3.96,7, = —3.08,0, = 5.17.
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A and D respectively. Starting in a small neighborhood of S4 and Sp, upon repeated presentation
of input a, the decoded network outputs are 1 and 4 with trajectories of 7, approaching S, and
Sp respectively. There is no stable representation of the a-loops in states B and C, i.e. there are
no positively invariant sets of 7, leading to the network output 2 and 3 respectively when input o
is presented to the network.

However, the net is able to simulate the training set perfectly. It follows that after it is reset??
and presented with b, when five consecutive a’s arrive, the decoded output will be five consecutive
2’s. Hence, the network must have developed a mechanism for acting as if the a-loops in B and C
were represented in a stable manner, at least for strings having no more than five consecutive a’s.
It turns out that the underlying mechanism for pretending that there are stable representations
of a-loops for short input strings involves a behaviour of trajectories starting “near” the stable
manifold W? of the saddle fixed point Sg lying “between” attractive points S4 and Sp, with W*
constituting the border of regions of attraction of S4 and Sp.

Consider a point S “near” W#. Due to the continuity of 74, the orbit of S under 7, first moves
towards Sg along W* and then away from Sg along a branch of the unstable manifold W" of
Sg gradually approaching one of the attractive points S4, Sp. To which of the two points the
trajectory actually converges is determined by the “side” of W* on which the initial point S lies.
Assume that the trajectory of S converges to S4. If we slightly displace S into S’ on “the other
side” of the curve W*, trajectories trajectories of S and S’ move towards Sg close to each other, but
as they approach Sg, the trajectory of S’ follows the other branch of W* towards Sp (see figure 19).
As we move starting point S towards S4 and Sp, the trajectories less and less follow the pattern

23 and approach a vicinity

described above, move towards S4 and Sp in a straightforward manner
of S4 and Sp respectively much faster than trajectories starting “near” W?#. Hence, the network is
able to “cheat” by pretending stable behaviour as described by the a-loop in the state B because
it takes advantage of different convergence rates of orbits starting near W# and Sp. The decoded

output of the net with input a and a state near Sp is 4 (region D ), while for states involving first

several steps in trajectories starting near W#, the output is 2 (region B ). Analogical statement can

*2with (possibly repeated) presentation of “reset” input #

%Due to the coefficients of 7,, eigenvalues of its Jacobian in every point from (0,1)> are real thus implying an

absence of rotation in neighborhoods of fixed points.
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0 1

Figure 19: Illustration of a mechanism that enables RNN to “pretend” stable representation of

loops in M for short input strings.

be made about trajectories starting near S4 and W#, and regions 4 and C respectively. Most of the
time towards the end of learning session was spent on learning the output function v,(S) = v(S,a)
in closely neighboring regions of B and C so that the outputs for states from B and C are 2 and 3
respectively (see figures 20, 21). The map 74 associated with the “reset” input symbol # has one
attractive fixed point in the region A. Under the “reset” map T4, trajectories of network states
S€(0,1)? quickly approach region A thus preparing ground for processing of a new input word.
The key role, however, is played by the transfer function 7. It simulates transition between
states with a-loops in M. Starting in S € A, 7,(S) € B and 72(S) € C lie near W* and the

behaviour of 7, in B and C appears to be stable for several iterations. Upon repeated presentation
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Figure 20: The map (v,)2 representing the output of the second output neuron that corresponds
to the output symbol 2. Note the sharp activity change along border of regions of attraction of S4

and Sp.

Figure 21: The map (1,)3 representing the output of the third output neuron that corresponds to
the output symbol 3. A sharp activity change along border of regions of attraction of S4 and Sp

is clearly visible.
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of a, 73(S) € D converges to Sp with network output 4.

The delicate role of 7, responsible for transitions A — B — C — D with jumping on the
“appropriate” sides of W# while staying close to W?#, together with different convergence rates of
orbits under 7, starting close to W# and near S4, Sp are principal tools enabling the net to behave
nicely for testing strings of smaller length, although it generalizes poorly on strings with many
consecutive a’s after b or bb. In particular, the outputs of the net for input strings ba™ and bba™
are consistent with training set for n = 8 and m = 10. As further a’s keep coming, trajectories of
T, move away from B and C towards Sp and Sy4 respectively.

To visualize the process of state degradation upon repeated presentation of input a a state
degradation diagram for input a is constructed as follows (M, denotes the set of states of M in

which there is an a-loop):

e Construct a finite vocabulary T" of short distinguishing words for M,, such that I" does not
contain a word ua’v,i > 2, where v is leading to a state of M in which there is an a-loop.

With each state g of M, associate a minimal input word m, leading to g.
e For each i € {1,2,..., Njpas }

— For each w €T

* For each state g€ M,
- present the reset network with mqai and then
- present the network with w and check whether the net output equals A" (g, w).

If not, check whether there is a state p of M such that the network output equals

At (p,w) — if so, draw an arrow in a diagram from q to p.

State degradation diagram for input a is presented in figure 22. Note that when only short input
strings are presented to the network, and quantization of network state space individually captures
regions A, B,C, D a correct state transition diagram can be obtained, even though, on longer input
strings the net generalizes poorly.

When the network with three state neurons was trained with the FSM M, it generalized cor-
rectly over the training set by forming four attractive fixed points of 7, corresponding to loops

in states A, B,C, D of M. The training process looked at from the point of view of asymptotic
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Figure 22: State degradation diagram for input a. Np,q; = 100.

behaviour of 7, is illustrated in figure 23. Horizontal axis correspond to time (in epochs), network
state space (0,1)? is orthogonally projected into 2-dimensional space of activations of a couple of
state neurons. Bifurcations leading to formation of new attractive fixed points appeared during
the 53rd,115th and the 121st epoch. If the network is able to exactly mimic the FSM M the state
degradation diagram for each input symbol has no arrows.

As another example, Consider a FSM M in figure 24. It is a FSM taken from the database
of the International Symposium on Circuits and Systems (Portland, Oregon, 1989) [4]. In each of
its 7 states there is an a-loop with output 0 except for a-loops in states 4 and 7. The training
set consists of 3500 training strings®* of input string length 3-35 and is ordered according to their
length starting with the shortest ones. The machine M is hard to learn because the training set
is very sparse in output symbols other than 0. Training process is disrupted by a tendency to find
trivial solution represented by the automaton with only one state and loops for every input symbol
with the output 0. An example of a part of the training set is given in table 1.

After 53 training epochs RNN with 6 state neurons is able to perform well on short test strings
(training error was 0.06). Generalization on long test strings was found to be poor. Part of the
problem was unstable network representation of a-loops in M. The state degradation diagram for
input a can be seen in figure 25. a-loops in states 4,6 and 7 are “well represented” by fixed points
S4,S¢ and S7 respectively in that when starting in a small neighborhood of Sy, ¢ = 4,6,7 , the
resulting output sequences of RNN for input words a*w, w € ', i > 0 equal A*(q, a’w). This is not
true of a-loops in states 1,2,3 and 5. When the net is reset and presented with my, ¢ =1,2,3,5 ,
for 4 > N, it does not emulate A (q,a'w), w € T. Sates 5 and 3 degradate to states 1 and 2
respectively. In particular, N5 = 8 and N3 = 5. Both states 1 and 2 degradate to attractive
fixed point Sy with Ny = 27 and No = 40. The network state Sy does not represent any state
of M even for short input strings. Sj, j = 0,4,6,7, are the only attractive sets of 7, that were

detected. There are trajectories of 7, starting near border of regions of attraction of Sy and some

*input word w — corresponding output word A (go, w)
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Figure 23: Evolution of position of attractive sets of 7, during RNN training on FSM M (three

state neurons).
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dddeadfdaecaafaaadddaddadfeeedeacee#

affedfeefaedeededfdefddaafeceecadd#

dffdadedfadaddffeeafeafdffdffefaad#

fdaadaafddafafdadfdffdeaffaaefeade#

ddfaddadfaaddddeafdafdfaecedaedeeda#

defadedefdeffdefdafdaaadeaeddaaefd#

ddfedaaffdedeacadeefdfefaadadeaaff#

aafaaecefafeaffeeefeafaefeecadaefafa#

dddeeafffafeaadaddfdffadfeafdddefd#

fdaaddaadadffefaecadddfeddeafdddaca#

dedaddadaafeaaddaafaaefaefdeeffafe#

ddaeeafddfaaffffaececefeadaefdfedfee#

dddedeeafdfddfaeceaddafdfafadedfaaf#

Table 1: A part of the training set characterizing the FSM M. Output strings are sparse in output

symbols other than 0.

0000000000000000000000000000000002x
0000000000000000000000000000022200x
0000000000000000000000000000000000x
0000000000000000000000000000000000x
0000000000000000000000000000000000x
0000000000000000000000000000000000x
0000000000000000000000000000000000x
0000000000000000000000000000000000x
0000000001100000000000000000000000x
0000000000000000000000000000000000x
0000000000000000000000000000000000x
0000000000000011100000000000000000x

0000000000000000000000000000000000x
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other attractive fixed point of 7, that pass through the region assuming the role of state 5 of M
for short input strings. Then, further towards Sy, they pass through the region of network states
that for short input strings seem to be equivalent to the state 1 of M, finally making their way to
a close neighborhood of Sy and converge to it. A similar statement can be made about states 3

and 2 of M.

9 Discussion

Two views on the relationship between a RNN and a FSM M such that the RNN exactly mimics
M were presented. First, the network was treated as a state machine. The notion of regions of
equivalent network states that are also equivalent to a state of M link the first approach with the
second, dynamical systems’ approach to the RNN.

Our experiments suggest that the most usual stable RNN N representations of loops and cycles
in M can be described as follows: An z-loop in a state g of M induces an attractive fixed point of
7, inside (¢) a7, and an z-cycle {qi, ..., ¢ } of M induces an attractive periodic orbit of period m of
7, periodically visiting (q1)ars -+ (qm) N -

The present paper provides us with the opportunity to look at the learning process from the
point of view of bifurcation analysis. If the network is supposed to operate as a FSM, its state space
must have multiple attractor basins to store distinct internal states. The network solves the task
of FSM simulation by location of point and periodic attractors and the shaping of their respective
basins of attraction [9]. Before training, the connection weights are set to small random values and
as a consequence, the network has only one attractor basin. This implies that the network must
undergo several bifurcations [13]. This can have an undesirable effect on the training process, since
the gradient descent learning may get into trouble. At bifurcations points, the output of a network
can change discontinuously with the change of parameters and therefore convergence of gradient
descent algorithms is not guaranteed [14].

In the following a possible application of these ideas to the problem of determination of the
complexity of language recognition by neural networks will be discussed briefly.

Any FSM with binary output alphabet {0,1} can function as a recognizer of a regular language.

A word over the input alphabet belongs to the language only if the output symbol after presentation
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Figure 24: FSM M taken from the database of the International Symposium on Circuits and Sys-
tems (Portland, Oregon, 1989). M is the reduced form of a machine defined in the file bbara.kiss?2.
Inputs ——01,——10 and ——00 are represented as the input symbol « since, in every state, they
initiate the same transition with the same output. Inputs 0011, —111 and 1011 are represented
as input symbols d,e and f respectively. Outputs 00,01 and 10 are coded as output symbols

0,1 and 2 respectively.
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0

S

0

Figure 25: State degradation diagram for input a extended with network state Sy not representing
any state of M. Sy = (0.89,0.01,0.55,0.95,0.99,0.92), S, = (0.16,0.98,0.02,0.87,0.04,0.92), Sg =
(0.98,0.03,0.97,0.09,0.99,0.87), S7 = (0.94,0.98,0.95,0.01,0.05,0.15). Nppaz = 100.

of word’s last symbol is 1. Hence, the network output is used to decide whether a word does belong
to the language, or not. One of the most promising neural acceptors of regular languages [32] is the
second-order RNN introduced by Giles et al. [17]. However, the practical aspects of the acceptance
issue are still unclear [33]. The difficulty of acceptance of a given language by a neural network (the
neural complexity of the language) can be quantified by the minimal number of neurons needed
to recognize the language. In the context of mealy machines and threshold networks a similar
problem was attacked by Alon et al. [1] and Horne and Hush [23]. An attempt to predict the
minimal second-order RNN size so that the network can learn to accept a given regular language
is presented in [33]. The predicted numbers of neurons were shown to correlate well with the
experimental findings.

Essentially, a good starting point for the estimation of neural complexity of a given regular
language is the representation of the language with the reduced recognizer. The most usual, very
rough, approach to the neural complexity estimation takes into account only the number of states
of such a recognizer [33]. What plays a principal role in making the internal structure of a regular

language rich is
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the number of input symbols of the recognizer

the number of loops associated with each input symbol

the number and corresponding lengths of cycles associated with each input symbol

the relationship among loops and/or cycles (i.e. a zj-cycle is passing through a state ¢ in

which there exists a z9-loop, etc... ).

In every recognizer of a regular language, for each input symbol there exists at least one loop or a
cycle. During the training process, the weights of a network are modified so that the corresponding
attractive sets evolve in dynamical systems defined by the iterative maps 7,. A hint for a lower
bound on the minimal number of neurons can be obtained by exploring the possibilities of the
existence of attractive points and/or periodic orbits that are to be induced during the training
process. The expected relationship among their basins of attraction has to be taken into account
at the same time [5].

As an example consider the FSMs M; and M5 presented in figures 26, and 27 respectively.
Apparently, the the internal structure of a regular language accepted by My is “more complex”
than that of accepted by M. In the latter case, only one attractive fixed point of 7, is sufficient
to represent the a-loop in the state E. The same applies to the b-loop in F, and the map 75. In the
former case, an attractive periodic orbit of period four of the map 7,, and four attractive points of
the map 7, have to be induced. Even though the FSM M has only four states, the RNN needed
four state neurons to accomplish a successful learning. On the other hand, two state neurons were
sufficient for the RNN to learn the FSM M;.

A mechanism underlying generalization loss on longer input strings due to unstable represen-
tation of loops in a FSM to be learned was investigated. It was shown that even in such cases a
correct state transition diagram of the FSM can potentially be extracted even though the network
performs badly on longer input strings (as reported by Giles et al. [17]). The state degradation
diagram for an input symbol z illustrates how regions of network state space, initially acting as if
they assumed the role of states of the FSM in which there is an z-loop, gradually degradate upon
repeated presentation of z. The degradation may lead to a network state not representing any state

of the FSM even for short input strings.
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Figure 26: Acceptor of the language L = L U Lo, L; = {a,b}"b, n € {0,2,4,5,6,...}, Ly =
{a,b}"a, m € {1,3}.

Figure 27: Acceptor of the language L = L3, where L3 = b*ab* U (b*a)?b™ U (b*a)*.
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Zeng et al. [39] and Das and Mozer [11] view the RNN state space quantization as an integral
part of the learning process in which the network is trained to mimic a finite state machine. In
particular, in [39] state units’ activation pattern is mapped at each time step to the nearest corner
of a hypercube as if state neurons had a hard threshold activation function. Das and Mozer [11]
used a “soft” version of the gaussian mixture model®® in a supervised mode as a clustering tool.
The mixture model parameters were adjusted so as to minimize the overall performance error of
the whole system (recurrent network + clustering tool). Both Zeng et al., and Das and Mozer
report better assymptotical behaviour for long, unseen test input strings. It would be interesting
to investigate such approaches to training RNN on finite state problems as a form of “dynamical
self-reinforcement” learning encouraging bifurcations to attractive fixed points and periodic orbits

of the underlying dynamical systems.
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