A Reinforcement Learning Approach to Job-shop Scheduling

Wei Zhang
Department of Computer Science
Oregon State University
Corvallis, Oregon  97331-3202
U.S. Al

Abstract

We apply reinforcement learning methods to
learn domain-specific heuristics for job shop
scheduling. A repair-based scheduler starts
with a critical-path schedule and incrementally
repairs constraint violations with the goal of
finding a short conflict-free schedule. The tem-
poral difference algorithm 7'D(A) is applied
to train a neural network to learn a heuris-
tic evaluation function over states. This eval-
uation function is used by a one-step looka-
head search procedure to find good solutions to
new scheduling problems. We evaluate this ap-
proach on synthetic problems and on problems
from a NASA space shuttle payload process-
ing task. The evaluation function is trained on
problems involving a small number of jobs and
then tested on larger problems. The TD sched-
uler performs better than the best known exist-
ing algorithm for this task—Zweben’s iterative
repair method based on simulated annealing.
The results suggest that reinforcement learn-
ing can provide a new method for constructing
high-performance scheduling systems.

1 Introduction

Many problems of commercial interest—including job
shop scheduling—are instances of NP-Complete prob-
lems. Hence, there is little hope of finding general-
purpose solutions to these problems. However, in any
particular application setting, there are usually domain-
specific constraints and regularities that can be exploited
to construct fast, domain-specific heuristic algorithms.
While such domain-specific heuristics can be engineered
by hand, the process is expensive and time-consuming.
The goal of the research described in this paper is to ex-
plore the possibility of applying reinforcement learning
algorithms to discover good domain-specific heuristics
automatically.

Reinforcement learning algorithms learn policies for
state-space problem-solving tasks. For each state, the
policy specifies what action should be performed. Dur-
ing learning, the learning system receives a reinforce-
ment signal (called a “reward”) after each action. The

Thomas G. Dietterich
Department of Computer Science
Oregon State University
Corvallis, Oregon  97331-3202
U.S. Al

goal of the learning system is to find a policy that maxi-
mizes the expected reinforcement over future actions. In
the context of job shop scheduling, the policy tells what
scheduling action to make next in order to maximize
some measure of the quality of the final schedule.

In this paper, we focus on the application domain of
space shuttle payload processing for NASA. The goal is
to schedule a set of tasks to satisfy a set of temporal and
resource constraints while also seeking to minimize the
total duration (makespan) of the schedule. Of particular
interest to NASA are scheduling methods that can also
be used to repair a schedule when some unforeseen diffi-
culty arises. In previous work on this task, Zweben and
colleagues [Zweben et al., 1994] developed an iterative
repair-based scheduling procedure that combines a set of
heuristics with a simulated annealing search procedure.
The resulting scheduling system provides an efficient and
flexible facility for scheduling space shuttle ground op-
erations. It is in regular use at the Kennedy Space Cen-
ter [Deale et al., 1994]. The challenge for a learning
approach is to discover scheduling heuristics that can
match or exceed the quality and efficiency of this itera-
tive repair method.

In the remainder of the paper, we describe the
scheduling task in greater detail. We then briefly de-
scribe Zweben’s iterative repair-based scheduler. Follow-
ing this, we review the reinforcement learning method
known as TD(A) and describe how the scheduling task
can be formulated so that TD(A) can be applied. We
then describe our experiments on simulated problem sets
and discuss the results. These results indicate that re-
inforcement learning can outperform the iterative repair
scheduler on realistic scheduling tasks. Furthermore, the
knowledge learned through reinforcement learning can
be applied to scheduling problems that are larger and
more complex than the ones that were studied during
training. These initial results suggest that reinforce-
ment learning has an important role to play in devel-
oping high-performance Al scheduling systems.

2 The NASA Domain and the Iterative
Repair Method

The NASA space shuttle payload processing (SSPP) do-
main requires scheduling the various tasks that must
be performed to install and test the payloads that are



placed in the cargo bay of the space shuttle. In job-
shop scheduling terminology, each shuttle mission is a
job. Each job consists of a partially-ordered set of tasks
that must be performed. Each task has a duration and
a list of resource requirements. For example, the task
MISSION-SEQUENCE-TEST has a duration of 7200 and re-
quires two quality-control officers, two technicians, one
ATE, one SPCDS, and one HITS. There are 35 different
types of resources. There may be many units of a re-
source available. For example, there are 8 quality con-
trol officers available and 25 technicians. However, these
available resources may be split into resource pools, so
that, for example, the 8 quality control officers might be
subdivided into three pools of size 2, 2, and 4. If a task
requires two quality control officers, they must both be
drawn from the same pool. Resource pools model multi-
ple work shifts and multiple physical locations. A com-
plete schedule must specify the start time of each task
and the resource pool by which each resource require-
ment of each task is satisfied.

A typical SSPP problem involves the simultaneous
scheduling of between two and six shuttle missions; each
mission involves between 32 and 164 tasks. Hence, the
SSPP domain requires solving scheduling problems con-
taining several hundred tasks. Most of these tasks must
be performed prior to launch, but some also take place
after the shuttle has landed. Each shuttle mission has a
fixed launch date, but no starting date or ending date.
Hence, tasks prior to launch have deadlines but no ready
times; tasks after landing have ready times but no dead-
lines. A key goal of the scheduling system is to minimize
the total duration of the schedule. This is much more
challenging than simply finding a feasible schedule.

Zweben et al. 1994 developed the following iterative re-
pair method for solving this scheduling problem. First,
a critical path schedule is constructed by working back-
ward and forward from the launch and landing dates.
Each task prior to launch is scheduled as late as the tem-
poral partial order will permit; each task after landing is
scheduled as early as the temporal partial order will per-
mit. Resource constraints are ignored; resource requests
are randomly assigned to resource pools. This critical
path schedule can be constructed very efficiently, and it
provides the starting state for the scheduling problem
space. In each state of this problem space, there are two
possible operators that can be applied. The REASSIGN-
PooL operator changes the pool assignment for one of
the resource requirements of a task. It is only applied
when the pool reassignment would allow the resource re-
quirement to be successfully satisfied. The MOVE opera-
tor moves a task to a different time and then reschedules
all of the temporal dependents of the task using the crit-
ical path method (leaving the resource pool assignments
of the dependents unchanged). The MOVE operator is
only applied to move a task to the first earlier or the first
later time at which the violated resource requirement can
be satisfied.

These two operators are applied by the iterative repair
method as follows. At each step, the earliest constraint
violation (i.e., where a resource pool is over-allocated) is
identified. If a REASSIGN-POOL operator can be applied

to reduce this over-allocation, then it is applied. If not,
then the MoVE operator is applied to move one of the
offending tasks to an earlier or later time. If several dif-
ferent pool reassignments are possible, one is chosen at
random. If both an earlier and a later move are possi-
ble, then one is chosen at random. Of the several tasks
involved in the resource violation, one is chosen at ran-
dom based on a heuristic that prefers to move the task
that (a) requires an amount of resource nearly equal to
the amount that is over allocated, (b) has few tempo-
ral dependents, and (c¢) needs to be moved only a short
distance to satisfy the resource request.

The overall control structure of the algorithm applies
simulated annealing to minimize the number of resource
pool violations. After each operator is applied, the num-
ber of violations in the resulting schedule is computed. If
this has decreased, the resulting schedule is accepted as
the “current” schedule. If it has increased, the resulting
schedule is accepted only with probability exp(—AV/T),
where AV is the change in the number of violations and
T is the current temperature. The temperature is gradu-
ally decreased. Search proceeds until no constraints are
violated. To obtain a short schedule, the algorithm is
run several times, and the shortest resulting schedule is
selected.

3 Reinforcement Learning, Temporal
Difference Learning, and Scheduling

Reinforcement learning methods learn a policy for select-
ing actions in a problem space. The policy tells for each
state which action is to be performed in that state. After
an action a is chosen and applied in state s, the problem
space shifts to state s’ and the learning system receives
reinforcement R(s, a, s').

To view the scheduling problem as a reinforcement
learning problem, we must describe the problem space
and the reinforcement function R. We employ the same
problem space as Zweben et al. The starting state sg
is the critical path schedule as discussed above. We
define the reinforcement function R(s,a,s’) to give a
reinforcement of —0.001 for each schedule s’ that still
contains constraint violations. This assesses a small
penalty for each scheduling action (REASSIGN-PooL or
MovE), and it is intended to encourage reinforcement
learning to prefer actions that quickly find a good sched-
ule. For any schedule s’ that is free of violations, the rein-
forcement is the negative of the resource dilation factor,
—RDF(s',sg). The RDF attempts to provide a scale-
independent measure of the length of the schedule, and
this final reinforcement is intended to encourage rein-
forcement learning to find short final schedules. Because
the reinforcement function depends only on the resulting
state, we will write it as R(s').

The RDF is defined as follows. Let capacity(i) be the
(fixed) capacity of resource type i—that is, the combined
capacity of all resource pools of resource type i. At each
time ¢ in the schedule, let u(i,¢) be the current utilization
of resources of type i. If u(i,t) > capacity(i), then the
resource of type i is overallocated at time ¢t (no matter
how we assign resource requests to resource pools of this
type). We define the resource utilization index RUI(i,t)



for resource type i at time ¢ to be

RUI(i,t) = max{l, M} .
capacity(i)
If the resource is not over-allocated, RUI(i,1) is 1; oth-
erwise 1t is the fraction of overallocation.
The total resource utilitization index (TRUI) for a
schedule of length [ is the sum of the resource utiliza-
tion index taken over all n resources and all { times:

n l
TRUI= Y RUI(i,1).
i=1 t=1
Given these definitions, the resource dilation factor is
defined as
_ TRUI(s)
~ TRUI(so)

To understand the rationale behind this formula, first
note that in the final schedule s, TRUI(s) is just n times
the length of the schedule. This is because in the final
schedule, no resource is overallocated, so RUI(i,t) = 1.
Hence, TRUI(s) = { x n. We could have used the neg-
ative of this value as the reinforcement function, but re-
inforcement learning is easier if the reinforcement func-
tion is independent of the difficulty of the scheduling
problem. A very difficult problem (e.g., with many jobs
that have simultaneous deadlines) would require a very
long schedule, whereas a simple problem would require
a much shorter schedule. The total resource utilization
index of the initial schedule, TRUI(sy), measures the
amount of overallocation of resources in the initial state,
and hence, provides a crude measure of the difficulty of
the scheduling problem. Hence, we use this to normalize
the final schedule length to produce the resource dilation
factor.

Now that we have specified how to view repair-based
scheduling as a reinforcement learning problem, we turn
our attention to the learning algorithm. Suppose at a
given point in the learning process we have developed
policy m, which says that in state s the best action to
select is a = m(s). We can define an associated function
[z, called the value function, such that fr(s) tells the cu-
mulative reward that we will receive if we follow policy 7

RDF(s,sq)

from state s onward. Formally, fz(s) = Zj»\;o R(sjt+1),
where N is the number of steps until a conflict-free sched-
ule is found.

As in most reinforcement learning work, we will at-
tempt to learn the value function of the optimal policy
7%, denoted f* = fr«, rather than directly learning 7*.
Once we have learned this optimal value function, we
can transform it into the optimal policy via a simple
one-step lookahead search: To choose the best action
in state s, we compute the state a(s) that would result
from applying each possible action a to state s. For each
such action, we compute the value of the resulting state,
f*(a(s)), and choose the action @ that maximizes this
value. Note that this approach requires that we know
the effects of our operators—which is certainly true for
repair-based scheduling operators.

To learn the value function, we can apply the method
of temporal difference learning known as T'D(X) devel-
oped by Sutton 1988. In T'D()), the value function is

represented by a feed-forward neural network, f(s, W),
where W is the vector of weights in the network. If the
policy m were fixed, TD(A) could be applied to learn
the value function f,; as follows. Let sg,s1,...,sy be a
sequence of states visited by following policy = with as-
sociated reinforcements R(s1),..., R(sn). At step j+1,
we can compute the temporal difference error at step j

as
Tj = [f(sj41, W) + R(sj+1)] — f(s5, W).
TD(A) then computes the smoothed gradient

¢j = Vi f(s;, W)+ Aej
and updates the weights of the network according to
AW = aJe;.

Here, A is a smoothing parameter that combines previous
gradients with the current gradient in e;, and o is the
learning rate.

The TD(A) algorithm was designed to learn the value
function for a stationary Markov random process such as
would result from following a fized policy. In reinforce-
ment learning, however, we want to apply it to learn
the value function of the optimal policy starting with an
initial, random policy. To do this, we employ a form of
value iteration. T'D()) is applied online to the sequences
of states and reinforcements that result from choosing ac-
tions according to the current estimated value function,

f. At each state s during learning, we conduct a one-
step lookahead search using the current estimated value
function f to evaluate the states resulting from apply-
ing each possible operator. We then select the action
that maximizes the predicted value of the resulting state
s'. After applying this action and receiving the reward,
we update our estimate of f to reflect the difference be-
tween the value of f(s) and the more informed value
R(s")+ f(s’). (We actually employ a slightly more com-
plex procedure described below.) This means that the
policy is continually changing during the learning pro-
cess. Fortunately, TD(A? will still converge under these
conditions [Sutton, 1988].

There are five further modifications that we made to
this algorithm based on preliminary experiments. First,
for any reinforcement learning algorithm it is critical to
perform some kind of exploration to discover new and
better ways of getting from the start state to the goal.
We employed the following simple exploration strategy.
At each state, with probability # we choose a random
action instead of the action recommended by the current
value function and policy. Initially, 5 is set to 1. After
each action, 3 is decreased by an amount AS until it
reaches a final value of 0.05. (The values used for AfS
are given below.)

Second, we do not perform weight updates in the neu-
ral network after each action. Instead, we remember the
sequence of states visited along the path from the start-
ing state to the final conflict-free schedule. Then we up-
date the network starting with the final action and work-
ing backward to the start of the action sequence. Exper-
imentally, this works better than simple online training,
because the values being backed up are more up-to-date.



Third, we employ Lin’s experience replay method.
During learning, the best sequence of moves from start
to goal is remembered, and after every four training se-
quences, we update the network using this best training
sequence. This improved learning and performance sig-
nificantly.

Fourth, we do not employ a full one-step lookahead
search to select actions, because the branching factor in
this problem space is typically 20, and it is costly to
compute the value of each of these 20 successor states.
Instead, we employ random sample greedy search, which
generates a random subset of the possible operators and
evaluates their resulting states. The best of these oper-
ators is then chosen. The size of the random sample is
determined incrementally. An initial sample of four ac-
tions is chosen. Based on the resulting computed values
and a permitted amount of error € and desired confidence
1 — 6, we can compute the probability that the value of
the best sampled action is within € of the best possible
action. We continue sampling possible actions until this
probability exceeds 1 — ¢ (we set ¢ = 0.1 and 6 = 0.1).
Random-sample greedy search is employed during both
training and execution.

The final change in the learning algorithm is that we
do not use the actual states of the scheduling process as
input to the neural network. The neural network can
accept only a fixed vector of feature values describing
each state (i.e., each current schedule). Schedules, on the
other hand, are variable-length objects. Hence, it was
necessary to define a set of useful features that extract
important aspects of the current schedule that the neural
network can use to predict the value of the state. We
defined the following features (based on a very modest
amount of experimentation):

Mean and standard deviation of the free pool
capacity for bottleneck pools: Simple experiments
showed that only the technician, logistics, electrical en-
gineer, mechanical engineer, and quality control officer
resource types became major bottleneck resources. For
each bottleneck pool, the number of unallocated units
(the free capacity) is measured over the whole sched-
ule period and the mean and standard deviation of this
quantity provide two features for each pool.

Mean and standard deviation of slacks: The
slack time between a task and one of its temporal prereq-
uisites 1s the difference between the end time of the pre-
requisite task and the scheduled start time of the task.
We measure the minimum slack for each task (and all
of its temporal prerequisites) and the average slack for
each task. The mean and standard deviation of these
two quantities taken over all tasks provide four features.

Modified RDF: We used a slightly modified version
of the resource dilation factor of the current schedule.
The numerator of the modified RDF is computed using
the capacity and allocation of individual resource-pools
rather than of resource types.

Over-allocation index: This is the total number of
units of over-allocated resources in the current schedule
divided by the total number of units of over-allocated
resources in the starting schedule.

Percentage of windows in violation: A window

is defined to be a maximal period of time during which
the set of currently scheduled tasks does not change. A
schedule can be segmented into a sequence of windows.
We compute the percentage of windows that contain a
constraint violation. We also find the earliest window
that contains a constraint violation and compute the per-
centage of the following 9 windows that have violations.

Percentage of windows in violation that can be
resolved by pool reassignment: This is the fraction
of those windows having constraint violations where the
total amount of resources assigned is actually less than
the total capacity, so that—if the resources were not sub-
divided into pools—the resource requirements could be
met.

Percentage of time units in violation: This is
measured over the whole schedule period.

First violated window index (normalized): Let
wg be the index of the earliest window that has a viola-
tion. Let W be the total number of windows. Then this
feature is (W — wg)/W. As violations are repaired, this
value decreases to zero. If no window has a violation, we
set wg = W.

Each of these features was developed by studying small
scheduling problems to find quantities that had some
ability to predict RDF. However, we believe that these
features can be improved substantially, and this is a goal
of our ongoing research.

A consequence of using these features instead of the
full state is that the learned policy may enter infinite
loops. We have taken two steps to detect and prevent
these loops. First, the randomness introduced by the
random sample greedy procedure and by the random
exploration process tends to avoid loops, because even
when the same state is revisited, the same action may
not be chosen. Second, all states visited while solving
a particular problem are recorded and checked to detect
loops. When a loop is detected, we apply the learned
value function to compute the second best action and
choose it. If a loop is detected again at the same state,
we backtrack to the preceeding state and again take the
second best action. If this were to create a loop also, we
would continue backtracking to earlier states.

4 Methods

We briefly describe the methods applied to generate the
training and test problems, the network architecture,
and the parameters employed in the learning algorithm.

4.1 Problem Sets

We constructed two problem sets: an artificial prob-
lem set and a problem set based on specifications for
the NASA SSPP problem. The artificial problems were
generated as follows. First, we generated a pool of 20
jobs. From these, we constructed scheduling problems
by choosing random subsets of these jobs. This was in-
tended to model the NASA setting where there are only
a limited number of possible shuttle-cargo-bay configura-
tions (i.e., jobs), but where each scheduling problem is a
unique combination of such shuttle missions. More gen-
erally, this models a job shop where each new scheduling



interval requires scheduling a unique mix of more-or-less
standard jobs.

To generate a synthetic job, we choose the number
of tasks randomly in the range 6 to 10. A set of tem-
poral constraints among these tasks is then randomly
generated such that approximately 60% of all possible
pairwise precedence constraints are asserted.

Next, resource requirements are determined for each
task. There are two types of resources. Each resource
has two pools—one pool has a capacity of 6 units, and
the other has a capacity of 8 units. Resource require-
ments are randomly assigned to each task uniformly in
the range from 0 to 6 units for each resource type.

Once the pool of 20 jobs is generated in this way, 50
training problems and 50 test problems are constructed.
To generate a problem, we first choose the number of
jobs in the problem to be either 3 or 4 (with equal prob-
ability). The desired number of jobs is selected ran-
domly with replacement from the 20-job pool. Each job
is assigned a completion deadline with the deadlines ran-
domly separated by between 8 and 15 time units.

Sixteen input features are computed to represent
schedules for these problems: 8 pool capacity features
for the 4 pools, 4 slack features, and features describ-
ing the modified RDF, percentage of windows and time
units in violation, and percentage of violated windows
in which the violation can be resolved by pool reassign-
ment.

During training, 15 of the 50 training problems were
held out as a validation set to determine when to halt
training. The remaining 35 problems were repeatedly
processed to train the value function networks.

In addition to the 50 test problems, we generated a
second test set of 20 larger problems to evaluate the abil-
ity of the learned value functions to scale up to larger
scheduling problems. Each of these larger problems was
generated in the same way as the smaller problems ex-
cept that the number of jobs was chosen uniformly be-
tween 15 and 20.

For the space shuttle payload processing task, a prob-
lem consists of a set of shuttle missions with launch dates
one to three months apart. Each mission can have one
or two payloads. We considered three kinds of payloads:
long module (LM), mission peculiar equipment support
structure (MPESS), and pallet and igloo (PALLET &
IGLOO). These have 65, 32, and 82 tasks, respectively.
There are 35 types of resources of which only five are
major bottleneck resources.

We randomly generated a training set of 20 problems
and a test set of 20 problems. The training problems
each contained between two and four shuttle missions.
Of the 20 training problems, 5 were held out for valida-
tion to determine when to stop training. The test prob-
lems each contained 3 to 6 shuttle missions. The test
problems thus assess the ability of the learned policy to
scale up to larger problems.

For the shuttle problems, 20 input features are used:
10 features for pool capacity, 4 slack features, modified
RDF, 2 features describing windows in violation, per-
centage of time units in violation, index of first violated
window, and the overallocation index.

4.2 Network Architecture and Training
Procedure

To represent the value function, we trained feed-forward
networks having 40 sigmoidal hidden units and 8 sig-
moidal output units. The 8 output units encode the pre-
dicted RDF using the technique of overlapping gaussian
ranges [Pomerleau, 1991] as follows. Each output unit
represents one assigned RDF value, v; (j = 1,...,8).
For the artificial problems, these RDF values are v; =
0.8,v2=1.0,... ,vg = 2.2. For the SSPP problems, the
RDF values are v; = 0.9,v3 = 1.0,... ,v5 = 1.6. During
training, the target output activation for each output
unit is set to be target; = ¢(RDF — v;,0.2)/¢(0,0.2),
where ¢(u,0) is the standard normal probability den-
sity function with mean p and standard deviation o.
During testing, the predicted RDF value is computed as
(Ej act; 'Uj)/(zj act;), where act; is the actual output
activation for output unit j.

For each problem, we trained eight different net-
works using all combinations of the following parame-
ters: learning rate @ = 0.1 or 0.05, exploration schedule
AB = 0.001 or 0.0005, and A = 0.2 or 0.7. (Prelimi-
nary experiments showed that A = 0 did not perform
as well.) The training set problems are processed in
round-robin fashion. Each problem is solved using one
of the networks to obtain a sequence of states and ac-
tions. That network is then updated (via backpropaga-
tion with T"D(X)) by processing the state sequence work-
ing backward from the final state. After every 50 passes
through the training set, a cross-validation test is con-
ducted to compute the average RDF of the final sched-
ules produced over all cross-validation problems. The
best network found during cross-validation (for each of
the eight parameter sets) is retained. For each network,
training continues until the cross-validated RDF of that
network is worse than the previous nine measured values
for cross-validated RDF.

Six networks are chosen for testing as follows. The
three best networks found during cross-validation are re-
tained along with their corresponding final networks. We
retain the final networks to compensate for variance in
the cross-validation measurements.

For the simulated annealing component of the iterative
repair method, we set the starting temperature to 100 for
the synthetic scheduling task and to 200 for the SSPP
task. After every 10 accepted repairs to the schedule,
the temperature is reduced according to 7" := 0.957".

5 Results

Figure 1 shows the average cross-validation RDF for the
four value function networks trained with @ = 0.1. The
horizontal axis gives the number of training sequences
processed. This figure shows that the performance of
the trained networks is improving on the cross-validation
problems. Figure 2 plots the number of repair actions
for these same networks. This shows that there is some
reduction in the number of actions required to convert
the starting schedule into a conflict-free final schedule.
Figures 3 compares the performance of temporal dif-
ference (TD) scheduling with the iterative repair (IR)



17 T T T T T T T T
1.65
16
1.55
15
1.45

Average RDF

14
13 L L L L L L L

0 200 400 600 800 1000 1200 1400 1600 1800
Number of Sequences Trained

Figure 1: Average RDF over 15 CV Problems

44 T T T T T T T T T
a2t
40
38
36 |
34 [k
32
30 NS R e
28 | T 1

26 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
Number of Sequences Trained

Average Number of Repairs

Figure 2: Average Number of Repairs over 15

CV Problems

method of Zweben. The vertical axis is the RDF of the
best conflict-free schedule found so far. The horizontal
axis is a machine-independent proxy for the amount of
CPU time consumed by each method. For IR, the hori-
zontal axis gives the number of restarts of the simulated
annealing procedure, and the vertical axis records the
RDF of the best conflict-free schedule found so far. The
longer IR is run, the better its performance.

For the TD scheduler, the horizontal axis represents
the number of neural network evaluation functions em-
ployed. When k networks are used to solve a schedul-
ing problem, the problem is solved k times, once with
each network, and the schedule having the best RDF is
returned as the answer. The best k networks, as deter-
mined by cross-validation, are used. The curves stop at
k = 6, because only six networks were used (once each).

Some care must be taken in interpreting the horizontal
axis as a measure of CPU time. Each step of the TD
scheduler requires more CPU time than a step of the IR
scheduler, because the TD scheduler must perform the
random sample lookahead search and check for loops. On
the average, TD spends 2.2 times as much CPU time per
step as IR. On the other hand, TD requires fewer steps
to find a conflict-free schedule. The average sequence
length for an iteration of TD is 82% as long as an average
IR sequence. The net effect is that one iteration of TD
is equivalent to approximately 1.8 iterations of IR.

Bearing this in mind, the key point to notice is that the
curve for the TD scheduler always lies below the curve for
iterative repair. This means that given the same amount
of CPU time, TD always finds a better schedule (i.e.,
with lower RDF). For example, with 6 networks, TD ob-
tains an RDF of 1.320 compared to IR’s RDF of 1.371
(at 1.8 -6 = 11 iterations). This is a 3.9% improvement,
which in a schedule lasting a year is a savings of 14 days

1.6 T T T T T T T T T

m —
155 IR - b
. 15 14 |
[a) \
145 F O\ i
<3
© \ .
g 14 |
< asst -
125 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

Figure 3: Performance Comparison of TD to IR
on 50 Small-scale Problems

148 T T T T T T T . .
k ™ —
146 -\ D |
R |
o N,
@ | \\ |
g 142 |
@ .
z  1ar |
138 - |
1.36 S T S e e

0 5 10 15 20 25 30 35 40 45 50
Number of Iterations

Figure 4: Performance Comparison of TD to IR
on 20 Medium-scale Problems

(and thousands of dollars). The curve also shows that
iterative repair always requires much more time (29 iter-
ations vs. 11) to find a schedule whose quality matches
the RDF found by TD.

Figure 4 shows a similar comparison for TD and IR on
the 20 larger test problems. Here the difference between
the algorithms is even more pronounced. Temporal dif-
ference scheduling scales better to larger problems, even
though it has only been trained on smaller problems.

Figure 5 shows analogous results for temporal differ-
ence and iterative repair on the 20 test-set SSPP prob-
lems. Here the horizontal axis is log CPU time. We see
that TD maintains a constant factor advantage over iter-
ative repair. Temporal difference scheduling finds better
schedules faster than iterative repair.

Note, however, that this figure just gives the average
RDF over the whole test set. Because of the random
components of both algorithms, this hides considerable
variation. Figure 6 reveals this variation. Let us say
that TD “wins” on a particular problem if the RDF of
its best schedule computed so far is better than the RDF
of the best IR schedule computed with the same amount
of CPU time. The two algorithms will be said to “tie” if
they find schedules with identical RDF values. Figure 6
plots the fraction of TD “wins” and TD “wins + ties”
as a function of log CPU time. We see that at low CPU
costs, TD wins on almost every problem. Eventually, as
CPU time becomes larger, TD still wins or ties slightly
more than 50% of the time.

6 Discussion and Concluding Remarks

These results show that temporal difference (TD) meth-
ods outperform the best previous algorithm for schedul-
ing space shuttle payload processing jobs. Furthermore,



1.38 T T T T T T T
1.36 ™ — |
134 | g
132} 1
13 | E
128 | |
126 |
124 |

Average RDF

1.22
1024 2048 4096 8192 16384 32768 65536 131072
Running Time (seconds)

Figure 5: Performance Comparison of TD to IR
on 20 PPS Problems (RDF)

1 T T T T
TD Win+Tie -—
@ 0.9 |- TD Win -x---
£
H
a 0.8 |- |
a
e 07F i
g Y
< 06 | * * i
5 X X b
o 05 K- B
<
04 1 1 1 1
4096 8192 16384 32768 65536 131072

Running Time (seconds)

Figure 6: Performance Comparison of TD to IR
on 20 PPS Problems (% Wins)

there are clearly many ways that the TD methods can be
improved. For example, the current set of features needs
to be improved so that the learning procedure can cap-
ture more domain-specific knowledge. There is also some
evidence to suggest that the training procedure could be
improved.

Several authors [Bradtke, 1993; Thrun and Schwartz,
1993; Boyan and Moore, 1995; Schraudolph et al., 1994]
have shown that there are pitfalls associated with us-
ing neural networks (and other function approximation
schemes) to represent value functions in reinforcement
learning. However, the results of this paper and the no-
table success of Tesauro’s [1992] TD backgammon sys-
tem show that in some situations, these pitfalls are not
encountered. An important open question is to under-
stand why T'D(A) works in this and other applications.

We suspect that the success of TD methods in this
domain results from two factors. First, there are prob-
ably many good solutions to each scheduling problem.
Certainly there are many good solution paths, because
the search space is highly redundant. Second, TD is es-
sentially a technique for smoothing adjacent estimates of
the final RDF. This smoothing can remove local minima
even if it does a poor job of predicting the final RDF.
These two properties may permit a simple greedy algo-
rithm to find good schedules.

These same two properties may explain why the iter-
ative repair method with simulated annealing also suc-
ceeds in this domain. Simulated annealing is a stochastic
method for locally smoothing an objective function. As
applied in this domain, simulated annealing is not run
long enough to find a global optimum, but it may be able
to escape local minima and find an acceptable solution

in spite of this.

Industrial scheduling problems abound, and general-
purpose solutions to these problems probably do not ex-
ist. This research has shown that reinforcement learn-
ing methods have the potential for quickly finding high-
quality solutions to these scheduling problems. The goal
of future research must be to improve these learning
methods so that they can be applied with a minimum
of domain-specific engineering to produce a new, cost-
effective scheduling technology.

Acknowledgements

The authors thank Rich Sutton and Monte Zweben for
several helpful discussions. The authors gratefully ac-
knowledge the support of NASA grant NAG 2-630 from
NASA Ames Research Center. Additional support was
provided by NSF grants CDA-9216172 and TRI-9204129.

References

[Boyan and Moore, 1995] J. A. Boyan and A. W. Moore.
Generalization in reinforcement learning: safely ap-
proximating the value function. In Advances in Neu-
ral Information Processing Systems 7, San Mateo, CA,
1995. Morgan Kaufmann.

[Bradtke, 1993] S. J. Bradtke. Reinforcement learning
applied to linear quadratic regulation. In Advances in
Neural Information Processing Systems 5, pages 295—
302, San Mateo, CA, 1993. Morgan Kaufmann.

[Deale et al., 1994] M. Deale, M. Yvanovich, D. Schnitz-
ius, D. Kautz, M. Carpenter, M. Zweben, G. Davis,
and B. Daun. The space shuttle ground processing
scheduling system. In M. Zweben and M. S. Fox, ed-
itors, Intelligent Scheduling, chapter 15, pages 423-
449. Morgan Kaufmann, San Francisco, CA, 1994.

[Pomerleau, 1991] D. A. Pomerleau. Efficient training of
artificial neural networks for autonomous navigation.

Neural Computation, 3(1):88-97, 1991.

[Schraudolph et al., 1994] N. Schraudolph, P. Dayan,
and T. Sejnowski. Using TD(X) to learn an evalu-
ation function for the game of go. In Advances in

Neural Information Processing Systems 6, San Mateo,
CA, 1994. Morgan Kaufmann.

[Sutton, 1988] R. S. Sutton. Learning to predict by the
methods of temporal differences. Machine Learning,
3(1):9-44, August 1988.

[Tesauro, 1992] G. Tesauro. Practical issues in tempo-

ral difference learning. Machine Learning, 8:257-278,
1992.

[Thrun and Schwartz, 1993] S. Thrun and A. Schwartz.
Issues in using approximation for reinforcement learn-
ing. In Proceedings of the Fourth Connectionist Mod-
els Summer School Hillsdale, NJ, 1993. Lawrence Erl-
baum Publisher.

[Zweben et al., 1994] M. Zweben, B. Daun,
and M. Deale. Scheduling and rescheduling with it-
erative repair. In M. Zweben and M. S. Fox, editors,
Intelligent Scheduling, chapter 8, pages 241-255. Mor-
gan Kaufmann, San Francisco, CA, 1994.



