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Summary. We define a general methodology to deal with a large family of
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Introduction

The aim of this paper is to describe a general strategy to deal with schedul-
ing problems and to illustrate its use on an example: the resolution of jigsaw
puzzles. We will assume we can put our scheduling problem in the form of a
task assignment problem, and we will turn it into the minimization of a cost
function defined on a suitable search space. This cost function will be minimized
by a Monte Carlo algorithm of the Metropolis kind: either simulated annealing
or our recently introduced iterated energy transformation method. We have al-
ready studied some of the theoretical aspects of these two methods in previous
papers (see [5], [6]).

We have chosen to experiment on a jigsaw puzzle problem with rectangular
pieces, because this is a typical instance of the kind of difficulties encountered
when building time-tables, and because it is in itself a difficult problem (it is
N.P.-complete), which deserves a special interest. In the course of this exper-
imentation, we will compare four algorithms: a randomized descent algorithm
(the Metropolis dynamic at temperature zero), the Metropolis algorithm, simu-
lated annealing and the iterated energy transformation algorithm.

1. An abstract task assignment framework

Let B be a finite set of tasks. Let E be a set of resources needed to perform
these tasks. The set £ may be any kind of set, a finite set, a domain in R etc..
In applications it can represent various things, such as a set of people who are
to perform the tasks, in which case it is natural to see it as a finite set, or it can
represent also space and time needed for the tasks, in which case it is sometimes
natural to see it as a domain in R™. More often 1t is a product space of both kinds.
Anyhow, we will only consider a finite collection of subsets of F, therefore it will
be always possible to consider that F is a finite set from the theoretical point
of view. This is reasonable since a computer can only handle a finite number of
possible ways to allocate resources, and also because in many problems of the
time-table type, continuous quantities, such as time, are discretized (for instance
when one tries to schedule lectures, they are usually constrained to start at full
hours). Anyhow the reader should think of F as of a large set and our methods,
inherited from statistical mechanics, are precisely meant to cope with a large
state space.

The abstract scheduling problem we will consider is to allocate to each task
in B a set of resources in a way which satisfies a set of constraints.

At this level of generality, we will not represent the constraints by equations
or logical relations, we will merely view them as a subset S of P(B x E) (where
P(A) is the set of subsets of the set A). We will call § the “solution space”. A
solution z in § is a subset of the product space B x E. We will use the notations
wp and g for projections on B and E. The fact that (b, ¢) € z means that the
task b uses the resource e. The set of resources used by b is ﬂ'E(ﬂ'El(b) Nz), for
which we will use the functional notation z(b).

We will assume that each solution z € § is a complete assignment, in the
sense that all the tasks are scheduled:

ap(z) =B forany z € S.
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Our scheduling problem is to construct a solution z belonging to the solution
space S.

2. The jigsaw puzzle example

This example is meant to be a benchmark where the main algorithmic issues of
scheduling problems are present.
The set of resources F will be a discretized rectangular frame

E={0,....M—-1}x{0,...,.N -1} c Z%

The set of tasks B will be the set of pieces of the jigsaw puzzle. Each piece
r has a rectangular shape defined by its width w, and by its height h,. The
constraint is that pieces should not overlap. Thus the solution space is

S={xCBxE : z(r)=lar,ar + we[x[br, by + h.[, (ar,b.)€E Z?, reB,
and z(r)Nz(r')=0, r#r' € B}.
The problem is to build the jigsaw puzzle, that is to construct z € S. Al-
though the shape of pieces is very simple, this problem can be seen to be very
complex. In fact, it is easy to see that it is N.P. complete, because it contains

the partition problem among its instances. Indeed, the partition of given integers
{c1,...,en} into two sets T and J such that

PILEDIL
iel jed

can be viewed as a jigsaw puzzle with N pieces of width ¢;, and height 1, and a

N
. 1 .
frame of width 2 E ¢; and height 2.

i=1

Jigsaw Puzzle

3. A method of resolution based on the Metropolis dynamic

In this section we will sketch a methodology to solve the abstract problem of
section 1. The general idea is to perform a random search for a solution in a
state space larger than the solution space. This search space should be easy
to describe and easy to search by a Markov chain performing a succession of
elementary moves. Of course, we will not use a Markov chain which samples
uniformly the search space, because usually the search space we will be able
to build will be very large when compared to the solution space, and drawing
points at random in the search space would lead to discover a solution hopelessly
seldom.
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Instead we will use a Markov chain with rare transitions, whose invariant
measure is concentrated in a neighbourhood of the solution space. This op-
timization technique is well known, but its improvement is still a subject of
active research. The prototype algorithm we will start from is the Metropolis
dynamic at low temperature. The Metropolis dynamic has been designed to sim-
ulate statistical mechanics systems, and not for optimization purposes. In order
to improve its performance as an optimization algorithm, some speed-up tech-
niques have been proposed. The most famous one is simulated annealing. We
have also proposed recently another one, which we called “the iterated energy
transformation method” [6]. We will describe and use both of these.

3.1. Choice of a search space

The first step of the method is to choose a search space S containing the solution
space S§. The most popular way to construct & is to relax some constraints
about the solution and to measure instead how much the constraints have been
violated by a score function one has afterwards to minimize. For instance in
circuits placement applications (one of the earliest applications of simulated
annealing) the constraint that circuits should not overlap is often relaxed, and
the overlapping of circuits is instead merely discouraged by some score function
of the surface of the overlap. Our strategy will be somehow of the same kind,
with the difference that we will not relax a constraint which is specific to the
problem. Instead, we will allow partial solutions, where only some proportion
of the tasks have been scheduled. Defining partial solutions is usually very easy
and very natural. Most of the time, this i1s how the problem is posed from the
beginning. Indeed the constraints come usually from incompatibilities between
tasks, such as sharing the same resource or needing to be performed in a given
order, and can be expressed without assuming that all the tasks are already
scheduled.

From the technical point of view, we will assume that the search space (the
space of partial solutions) satisfies the following properties:

— The empty solution is in the search space: §f € S. _

— There 1s a path from the empty solution leading to any partial solution z € S
along which tasks are scheduled one after the other. This can be expressed
in the following way:

Forany z € S,z # 0, there is b € mp(z) such that =\ Tél(b) €S.

— All complete solutions in the search space satisfy the constraints. In other
words, the solution space is exactly made of the complete solutions of the
search space. This is expressed by the following equation:

S={reS : m5(x) = B}.

Let us notice that the “best” choice for S would be {zNz5'(C) : ¢ € S,C C
B}, the set of all partial solutions contained in global solutions. Anyhow, this
set 1s in practical situations never defined by simple relations, because when you
have scheduled some of the tasks, it is never possible (except for trivial problems)
to foretell whether there will remain suitable resources to schedule the remaining
ones. Therefore the search space S is most of the time much broader than & and
contains many dead ends.
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3.2. Building the dynamic: constructions and destructions

The next idea is to define on S two kinds of dynamics, a constructive dynamic
and a destructive dynamic. These two random dynamics are characterized by
two Markov matrices q¢ and qp),

gc - Sx8—10,1]
ap : Sx8—10,1]

We will assume that the transitions allowed by g¢ consist either in keeping
the current partial solution or in scheduling one more task. In a similar way
the transitions allowed by ¢p consist in unscheduling a given number of tasks.
We allow to unschedule more than one task at a time, because it is in some
situations more sensible to do so. For instance, if many tasks have to share the
same resource, it may sometimes speed-up the allocation process to unschedule
all of them at the same time (think of students sharing the same teacher ...).

This conception of constructions and destructions can be expressed by the
following equations, where |A| is the number of elements in the finite set A:

~{(z,y) : qc(z,y) > 0,2 # y}
={(z,y) : yNag'(7p(x)) = 2, |78(y)| = |75(x)| + 1},
—{(=,y) : ¢qc(y,z) > 0,2 # y}

C{(z,y) : ¢ep(z,y) > 0}

+o0
c Ul ) : de(x,y) >0}

Let us remark that usually constructions will decompose into two steps, one
being to choose an unscheduled task b € B\ 7p(z) and the second one being to
try to allocate to it a set of resources. This second step is sometimes unsuccessful
(either because it is impossible or the proper allocation has not been discovered),
therefore, as a rule, we have qc(z,z) > 0 for a substantial number of partial
solutions. On the contrary, destructions are simple moves, where you have only
to choose a scheduled task b in wp(z) and to remove it. Therefore, as a rule, we
will have qp(z,z) = 0, except when z = (), for which ¢p(0,0) = 1.

When the two above assumptions are satisfied, the whole search space S can
be constructed by qc starting from the empty solution (), and reversely, any
solution can be shrunk to the empty solution by successive applications of ¢p.
More precisely, the following proposition holds:

Proposition 1.
S = Uy : q20.9)>0}
n=0

“+co
= U{:c : ¢ (z,0) >0}
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3.3. Building the cost function

Now we will build a cost, or energy, function defined on the search space, which
penalizes partial solutions: we will call it U : & — R. Namely we will require
the following properties to hold:

—argminU(z) = S,
ze
(2) — There is a positive constant

v such that U(y) > U(z) + v
when z # y and qp(z,y) > 0.

A typical example for U is

Uz) = p(B\ (),
where p is a positive measure on B. In this case the assumptions on U are
satisfied and the largest choice of 7 is

7 = min u(b).

3.4. Building a Metropolis dynamic

From Prop. 1, we see that any Markov matrix of the form Age + (1 — A)gp with
A €]0, 1] is irreducible. Therefore a straightforward way to build a Metropolis
dynamic would be to consider the Markov matrix

(Agc(@,y) + (1= N gp(z,y))e” T@-UEHT =y oy

pT(x’y): 1_EPT(m:z)a =Y.

zET

In fact we can do better, using the fact that we know in advance that during a
construction the energy will decrease and that during a destruction the energy
will increase by a quantity at least equal to . This avoids applying uselessly the
kernel gp at low temperatures, in situations where we know that it will most of
the time generate a move to be rejected.

More precisely, we will use the following Markov matrix:

pr(z,y) =X e Tqp(z,y)e~ UW=U@)=-1"/T

(3) +qc(m’ y) 1 — A Z QD(fEa Z)e_(U(Z)_U(x)_’y)-'—/T_’Y/T
zE‘S:

where ) is again a positive parameter in the interval 0 < A < 1. The presence
of X avoids that destructions should always be chosen at high temperatures.
Usually we will take A = 1/2 or A = 1. The positive part in (U(y) — U(z) —y)*
is needed only to cover the case when z = y.

The computer implementation of this Metropolis dynamic is the following;:
starting from the state z,
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— First flip a coin with odds Ae™?/7 and 1 — Xe="/T to decide whether to try
a destruction or not.
— In case a destruction is tried,

— choose a transition (z,y), drawing y according to the probability distri-
bution ¢p(z,y).

— then flip a second coin with odds exp —((U(y) — U(z) — v)*/T) and
1—exp—((U(y) — U(z) —v)"/T) to decide whether to apply this move
or not.

— If the answer to one of the two previous tosses was no, then choose a transition
(z,y) where y is chosen according to the distribution q¢(z,y) and apply it.

The hypothesis we made about q¢, gp and U are what is needed to prove
the following proposition:

Proposition 2. For any temperature T > 0, the mairiz pp is an irreducible
Markov matriz. L
Considering the rate function V : 8§ x & — R U {+oo} defined by

Viz,y) = { U) -U@)N" ifap(z,y) +qc(,y) > 0 and z # y,

+00 otherwise

we see that there s a positive constant k such that whenever z,y € 3, z # vy,
ke VENIT < pn gy < 2 =V EDIT,
K

Moreover V satisfies the weak reversibility condition of Hajek-Trouvé with
respect to U. More precisely of I'y , ts the set of paths from x to y, we put for

anyy=Mm==2a,...,% =Y) € o,y
H(y) =, _max_ U(y)+ V(7 7i+1)

=1,...,r—

and

H(z,y)= V1g}win H(v).

The weak reversibility condition of Hajek- Trouvé states that for any z,y € S
H(z,y) = H(y, z).

Due to this reversibility property, U is a quasi-potential for pr. We mean by this
statement that the (unique) invariant probability measure pr of pr satisfies for

some positive constant « (independent of T) and for any x € S
a< 'uT(l,)e(U(a:)—minU)/T < 1/01.

Corollary 1. We can build optimization algorithms based on pr following the
results of Catoni [6] and Trouvé [20]. More precisely, for any fized value of
the temperature T, the homogeneous Markov chain with transition matriz pr s
a generalized Metropolis algorithm with quasi-potential function U. In the same
way, for any decreasing sequence of temperatures (T, )nen, the non-homogeneous
Markov chain (Xp)nen on S with transitions

P(Xn: : Xn—lzm):an(xay)
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1s a generalized simulated annealing algorithm. Its behaviour has been studied
in [20], [22] and is very similar to the behaviour of classical simulated annealing
as studied in [5].

We can also apply the iterated energy transformation method to py, which
will be described in a further section of this paper and is studied in [6].

Proof:

The only non straightforward point to check is the Hajek-Trouvé weak re-
versibility condition. Let us consider z,y € S and v € Iy ;. We build a path
from y to z in the following way. Replace any edge (z,t) € ¥ by the edge (,2)
if gqc(z,t) > 0 or pr(z,t) = 0. If non of the above two conditions is true, this
means that ¢p(z,t) > 0, then there is a path ¢ € I}, such that ¢c(u,v) > 0
for any edge (u,v) € ¢, and we replace (z,t) by ¢. The path ¢ is such that
H(p) = U(z) + V(z,t) = U(t) because for any (u,v) € ¢, U(v) < U(u) and
V(u,v) = 0. Therefore by concatenating all these reversed edges and paths
in reverse order we get a path ¢ € Iy ; such that H(¢) < H(y). Therefore
H(y,z) < H(z,y) and consequently H(y,z) = H(z,y). O
Remarks:

— In the search space we consider, there 1s a natural starting point for opti-
mization algorithms, which is the empty schedule 0.

— In many scheduling problems, it is not known in advance whether a complete
solution exists, or whether one can possibly be found within the available
computer time. Our method has the advantage to find at least a partial
solution, where some proportion of the tasks are scheduled in a coherent way.
This is not the case if other constraints are relaxed as is usually done. For
instance, if the aim is to schedule the lectures in a University, a solution where
some lectures share the same room at the same time has no practical interest,
whereas a solution where some proportion of the lectures are scheduled in a
coherent way can be applied.

— A slight variant of the present set-up is the case when the search space satis-
fies condition (1), but one does not know whether it is possible to schedule all
the tasks, and wants instead to schedule as many tasks as possible. In this
situation the energy can weight (through a positive measure) the relative
importance of tasks.

In the three following sections, we are going to recall briefly some theoretical
results about the speed of convergence of three optimization algorithms.

3.5. Rate of convergence of the Metropolis algorithm

In this section we consider the canonical process (X, )nen on the canonical space
(SN, B) defined by X,(2) = z,, where B is the sigma field generated by the
events depending on a finite number of coordinates.

For any temperature T € Ry, Pr will be the probability distribution on
(SN, B) of a Markov chain with transition matrix pr (where pr is as in Prop. 2).
Under this distribution, (X, )nen is a Metropolis algorithm and has the following
convergence speed:
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Proposition 3. There exists a positive constant d, depending only on the choice
of the search space S, of the constructive and destructive dynamics qc and qp
and of the parameter X\, 0 < A < 1, such that for any energy function U satisfying
the hypothesis (2) of section 3.3, for any positive constant 1,

maXPT(U(XN) > Umin + 1 | Xo = 13)
TES

<d <exp— <%6_H1/T) —}—e_"/T) ,

where Hi(V') is the first critical depth of the rate function V defined in Prop. 2.
The exponent H1(V)/T is optimal when n is small, and when T tends to 0 and
N tends to +o0o. With the notations of proposition 2,

Hy(V) = maxmin H(z,y) — U(z).

T@S YyES
1 NH
As a consequence, considering 1/T = H—llog <m), we see that there is

a constant d (independent of U and n), such that

inf max Pr(U(XN) > Unin + 1| Xo = 2)
TeERy 8

< d77 logN 77/H1(V).
- H(V) N

Moreover the exponent n/H1(V) is optimal for small enough values of n €
(U(E) = Unin)-

For a proof see for instance Cot and Catoni [8].

This proposition shows that the convergence speed of the Metropolis algo-
rithm is slow when there are states with energies close to Upin. Indeed if one
wants to study the convergence to &, one has to choose

n=min{U(z) — Unin, ¢ € 3\8}

If 5 is small, then it will reflect on the exponent n/Hq (V).

This is a theoretical justification for the introduction of simulated annealing,
which will not suffer from this draw-back, when proper robust cooling schedules
are used.

3.6. Rate of convergence of simulated annealing

We consider now a non-increasing triangular sequence TV > T4V > ... > T
of temperatures and the measure P(T{V’MTAJ\;) on SN of the non-homogeneous
Markov chain with transitions

Py miy(Xn =y Xn1 = 2) = pry(2,y).

The rate of convergence of such an algorithm has been studied in [5] and [20]
(translated into English in [22]). We give here a simple result, for more precise
estimates, we refer to the original papers.
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Proposition 4 (Catoni, Trouvé). There is a posilive constant K such that

KNP < inf maxPagnx  ony(U(XN) > Unin | Xo = 2) < KN~P7
S gt T2 ..oy (U(XN) | Xo=12) <

where the constant D = D(V') is the difficulty of the rate function V. With the

notations of proposition 2, the definition of D(V') is

D(V) = max min M.
ced\syesS U(x) —minU

For any A > 0, there is a positive constant K such that the triangular exponential

schedule P
7™ — l 714
" A\ (log N)?

gives a convergence speed of

max Ppwx(U(XN) > Unin [ Xo =2) < K

<log N loglog N) by
TES ’

N

for N large enough.

1/D
(meaning that

1
N
the logarithms of both sides of this equation are equivalent when N tends to
infinity). The important feature of this theoretical result is that the exponent
1/D is independent of the precision with which we want to reach Upin, but
depends on the contrary only on the structure of the local minima of U.

One other interesting point is that the exponential triangular cooling schedule

In the case of simulated annealing, we have € <o

A n/N
TN = A~1 <m) is robust: it gives a convergence rate with the optimal
0g

exponent 1/D(V) for any energy function U.

3.7. Rate of convergence of the energy transformation method

We introduced in [6] the iterated energy transformation method as another mean
to discourage uphill moves from low energy states more than from high energy
states. In simulated annealing this effect is produced by an exogenous control of
the temperature parameter: in “typical” successful runs of simulated annealing,
the energy of the current state i1s moving downwards on the average, and in the
same time uphill moves are more and more discouraged. In the iterated energy
transformation method, a temporary hypothesis is made about the value of Uy,
and a concave transformation is applied to U on the basis of this hypothesis.
Then the algorithm is run at constant temperature using the transformed energy.
This produces the desired effect of discouraging more uphill moves from low en-
ergy states. Of course, in the beginning, the hypothesis about Upyi, is necessarily
grossly underestimated, so that the energy transform is not very efficient, but
after some iterations, it can be improved (this will work with a probability close
to one) depending on the values of the energies of the explored states.
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The convergence of the lower bound estimate for Uy, towards the true value
of Unin is exponentially fast (with a probability close to one), and therefore, the
energy transformation is quickly tuned to an efficient value.

The iterated energy transformation method applied to our problem describes
as follows. For any strictly concave, strictly increasing energy transformation
F : [Umin, +00o[— R, we consider the Markov matrix

pr(e, ) = AePUEN=FU@AN L 3 (FUEHD=FU )
+ic(z,y) (1 =AY an(z, z)eF(U(f))—F(U(f)+7)+(F(U(f)+7)—F(U(Z)))_) .

Consider for any positive constant «, any real shift 7 such that Uy +7 > 0,
any positive temperature 7, the transformation

1
For.(U)=alU+ Tlog(U + 7).

Let us introduce the simplified notation p, 7 , = pr, 1 .-

Given parameters M € N, (number of iterations performed with each energy
transform), two real numbers p > 0 and 7 > 0, (two parameters for the update
of the shift 7), and an initial lower bound § < Upin, we consider the canonical
process (X, )nen on SY with probability distribution Py 7 ,6,pm, defined by the
following conditional distributions:

Pa,T,M,p,nD(Xn = yl (XO’ .- ':Xn—l) = (IO’ .- 'J‘En—l)) =
pa,T,Tn(:cg,...,xn_l)(xn—l:y)'

with

Tr

770—5, 0<T§M
1

= - — 1 < .
ThM4r TE M 1—+—p<n,rILI£]£lMU(Xn)+TkM)+nO’ 0<kO<r<M

We have proved in [6] the following theorem:

Theorem 1 (Catoni). For any fized « > 0 the family of processes described
above satisfies for some positive constants B and K, for any r € N,

max Py 7(U(Xr i) 20| Xo=2) <,

TES
where
Vo B( e )—log(1+5no)/log(1+P)lo K_r’
Kr €
B L N\1YT
= log(l+p) <1+Dnu) :
T
r—1
p
= Umin + a— Umin -6 + + 1+ )
U] p<1+p> ( 10) + nop(1 + p)

and where the constant DnD(V) s given by
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- )i _
Dy, (V) = max min (z.y) — U2)
1:65\8 yeS U(I) - Umin + o
< D(V).

Corollary 2.

1
li log N)~?1 inf P(U(X min | Xo=2) < ——————.
Jifniilif( og N) OgT,J%/Fno,p (U(XN) > Unin | Xo = 2) < 4 log(1+ D)

The interest of this theorem lies mainly in its corollary, which shows that a
proper tuning of the parameters leads to a faster scale of convergence speed than
the one achieved by simulated annealing (see [6]). This remark of course deals
with the comparison of two long runs of both algorithms. For repeated trials of
bounded length, which we will consider in a following paragraph, the question
of knowing which algorithm is faster is open.

We will discuss practical means of choosing the parameters in connection
with the jigsaw puzzle benchmark.

4. Solving jigsaw puzzles

We will illustrate on jigsaw puzzles the different steps of the general method of
resolution.

First of all, we have to choose a search space. This will be the set of partial
solutions where only some of the pieces are put in the frame.

S = {2 CBxFE:z(r)=lar,ar +we[x[br,br + h,[,
reap(z),z(r)Nz(r)=0,r# " € ap(x)}.

Let us define now q¢(z,.), the constructive dynamic starting from state :

— First choose r € B\ wp(x) according to the uniform distribution on this set.

— Then choose (z,t) € E'\ wg(z) according to the uniform distribution.

— Then try to expend this germ to a rectangle [a,, ar + w,[X[by, by + h,[ of the
desired size by adding alternatively a column to the left (or else to the right)
and a line to the top (or else to the bottom). If it is not possible to grow the
germ to its final size, just abandon the construction.

— Then draw a number k at random in the interval [0, max_drift[ and move the
location of [a,, br[ k steps along the direction (—1,—1) (that is to the upper
left corner, according to usual image indexing) if there is enough room to do
so, or else move it as far as possible in this direction (until it bumps into
other pieces).

The last two actions are better described by the following self-explanatory
pseudo-C code, where [a,c[x[b,d[is the current germ:

int expend() {
a=z; c=z+1; b=t; d=t+1;
while((testi=(c-a<w))||(test2=(d-b<h))) {
if (testl&&grow_left()&&grow_right()) return 1;
if (test2&&grow_up()&&grow_down()) return 1;

}
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for (k=rand(0,max_drift);k;k—-) {
if (move_left()&move_up()) break;
} return 0O;

X

where the functions expend (), grow_left (), grow_right(), grow_up(),
grow_down(),move_left (), and move_up() return 0 on success and 1 on failure.
The destructive dynamic ¢qp is simpler:

— Draw r € mp(z) at random,

— Formy =2znN Tél(B \ {r}), the partial solution where the piece labeled “r”
has been removed from the frame.

The mechanism which was chosen for the constructions is meant to discourage
the formation of small gaps between pieces. If nothing were done, when the
discretization step of the grid is fine, small gaps would be left between the
pieces with a large probability and a complete solution to the puzzle, where
pieces necessarily stick together, would never be discovered.

We have now to choose an energy function. Here again we will discourage
the formation of gaps between pieces by introducing a term proportional to
the contact-length. By contact-length, we mean the sum of the contact-lengths
between pieces and between pieces and the edge of the frame.

Let p be the counting measure on F. We take

U(z) = —p(re(z)) — a x contact-length.

For this choice of U, we can take the constant v in equation (2) to be equal
to the size of the smallest piece:

v = minw, h,.
reEB

5. Minimizing a loss function
5.1. Statement of the problem

We will discuss in the next two sections the case when some loss function
V ' 8§ — R has to be minimized on the state space S of global solutions
of a task assignment problem. We consider the same framework as in the first
section, with the difference that the problem is now to find a solution z belonging
to arg l’l’élg‘l V(y).

Y

5.2. A general method of resolution

We will extend the method of section 3 to deal with a loss function.

The two first steps, building the search space and the constructive and de-
structive dynamics will be the same as in section 3.

The change comes from the choice of the energy function. First we need to
extend the loss function V' to the search space S of partial solutions. Ideally, we
would like to use the extension V : & — R defined by
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V(m) =min{V(y) : y€ S,z C y}.

Usually this is not an easily computable function, but in many situations, there
is a natural way to define a loss function for partial solutions. A simple way to
do so, if there is nothing else at hand, is to set V(y) = ¢ for y € S\ S, where ¢

is a constant and ¢ > max V(z). Then we build a compound energy function
T€

W) =alU(z)+V(z), z€8,

where the real positive coefficient « is chosen such that for some positive constant
v

TES ~
W(y) —W(x)<—y<0, zCy, t#y€eS.

These conditions are always satisfied for « large enough. However, the difficulty
D of the energy landscape, related to the performance of simulated annealing,
tends to +00 when « tends to +o0o. Therefore, it is better to keep « as small as
possible. In the next section, we will give an example for which we can take «
arbitrarily small; and even a = 0 if we are satisfied with ¥ = 0.

Equipped with this new energy function, we can proceed just as in the simpler
case of section 3.

{ argminW(z) C S

5.8. Some example of useful loss function

Often in task assignment problems, we would like some resources to be dis-
tributed according to some prescribed distribution. For instance in a time-table
problem, we may want to schedule an equal number of hours in each week of the
year.

This can be formalized in the following way. We consider first some function
¢ : B x E — F where F is a finite set (which may be the discretization of a
domain in R™). Typically, & will be the projection on the time axis in a time-
table problem. Then we consider a target distribution p defined on F'. Let us
consider some reference measure g on B x E (such as the counting measure).
To each partial solution z C B x E, we may associate the restriction p, of u to

x, defined by
e(A) = (01 A),
This induces a measure p, o ! on F. The constraint we would like to

represent by a loss function is that we would like g, 0 ' to be approximately
proportional to the reference measure p. This can be reflected in a loss function

of the type
g0 P!
Viz) = /h <7,u ° ) dp,
p

where h(z) = (1 —z)? or h(z) = 1 — z + zlogz. The function h is in both cases
strictly convex, satisfies h(1) = h/(1) = 0 and A’ is strictly increasing, therefore
pr 0o =1 = p if and only if V(z) = 0 and the minimum of V(z) on the set
pz(B x E) = constant is attained when p, 0o ®~! is proportional to p, when this
is feasible.

The following proposition holds:
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Proposition 5. Assume that the total weight p;(B x E) of any solution is a
function of the tasks to be scheduled only. This means that there is a measure fi
on B such that

4a(B x B) = p(z) = ji(mp (@), z €8,

Then for all global solutions x € S, p(B X E) = p(z) = ji(B) is a constant.
Assume moreover that the measure p defining the constraint is such that
p(F) > ji(B) and assume also that

god!
{res: e 2T = constant £ 0.
p
Then )
s0®”
argminV(z) ={s€ S : He®Z = constant I3
SES p

meaning that the partial solutions minimizing V are exactly the global solutions
x for which pu, o @~ is proportional to the constraint p.

The assumptions of the proposition will be satisfied when p; (B x F) measures
the amount of assigned resources and the amount of resources to be allocated to
a task depends only on the task and not on the way it is scheduled. Typically
for instance, the number of hours of a course of teaching will be prescribed in
advance and will not depend on the choice of a schedule for the lectures.

T

N p

z € 8. We can always make this assumption true by increasing p by a suitable
multiplicative factor (at least when p is strictly positive on F'). In some cases we

pg 0 @71 <

Now let us make the supplementary assumption that < 1 for any

may on the contrary want to restrict S by adding the new constraint

p

1. This will be done when the constraint has a practical meaning for the problem.

For instance, if y, o @~ measures the number of lectures taking place in each

hour of time in the week, we may want to fix p to a constant equal to the total
-1

fig 0P

number of available lecture rooms, add the constraint < 1, to indicate

p
that there is to be enough rooms to schedule all the lectures, and use the loss
@—1
function /h <&) dp to indicate that we would like the rooms to be
p

evenly occupied during the week (in a weekly time-table problem).
T @_1 o .
If the assumption HeOF <1, z € § holds, then only the decreasing part

of h is used, and the loss function V is always increasing during a destruction and
decreasing during a construction. Therefore if 4 is the constant corresponding
to U in Eq. (2), we will have

W(y) > W(z)+ay, z,yeS8, z#yqp(z,y)>0.
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6. The practical issue of the choice of parameters

In practical situations, the critical constants of the energy landscape are usually
unknown. Therefore it 1s not possible to rely on the theoretical results we recalled
in preceding sections to choose the parameters of algorithms. In the following
paragraphs, we explain how we set the parameters in the experiments about
jigsaw puzzles.

6.1. Stmulated annealing

The cooling schedule can be written as

1 ﬂmax nIN
T_N = ﬂmin <ﬂmin ) .

We choose Bmin and fmax by looking at the repartition function of the energies of
the explored states in simulations at constant temperatures. We keep a value of
OBmin for which the slope of the repartition function stays large up to the largest
values of the energies, meaning that states with high energies have a significant
probability to be explored. For (pax, We require on the contrary a repartition
function concentrated on the lowest energy values.

The theory tells us that we can safely underestimate fnin and overestimate
Bmax, which makes their choice possible from a qualitative inspection of repar-
tition functions.

Here are two examples of repartition functions, corresponding to values of
OBemin and Bmax which have been retained during the experiments.

rep h.t.,beta=0.0005

x 10
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rep l.t.,beta=0.001
1 T T

0.9

0.8

0.6

0.5F

0.2

0.1

1.8 2
x 10

6.2. The tterated energy transformation method

In this case, the choice of parameters is may-be less straightforward. The analogy
with simulated annealing can serve as a guideline: the high temperature regime
corresponds to the case 7 = 7 (i.e. to the first energy transform used). The low
temperature regime corresponds to

T = (1 + P)UO - Umin~

In order to test the behaviour of the algorithm in these two configurations, we
make a short test using a small value of p (p << 1). The law of evolution of
7, shows that for a small value of p, the algorithm will quickly switch from
the high temperature regime during the first step, to a low temperature regime,
during the following steps. In fact the value p = 0 may even sometimes be used.
However when this is done, the algorithm sometimes encounters a state with a
non defined energy transform too quickly, and there are not enough iterations
to compute a reliable repartition function for the low temperature regime. This
problem, when encountered, can be circumvented by using a low but non zero
value of p.

We compute the repartition function of energies during the first step of the
test run and during the last. The first function describes the equivalent of the
“high temperature regime”, and is tuned by the choice of the constant a and
of the temperature parameter 7', the second function corresponds to the “low
temperature regime” | and is tuned by a proper choice of 75 = no(1 + p).

Once these two choices are made, there remains a free parameter, namely p.
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The theory [6] indicates an optimal choice of p of order V/N and an optimal
choice of r = N/M of order v/N log(N). On the other hand, as soon as log(1 +
p) > 1, the convergence rate will be better than for simulated annealing. This
indicates that a large value of p may safely be chosen, and that r can then be
set to make

p (r-1)
(Umin — v + n0)p <m)

small. This will ensure a small dependence of the final value of the shift 7 with
respect to its initial value 7 = 6 — 7.

6.3. Repeated optimizations

In this paragraph, we will consider that N iterations are to be divided into N/M
trials of length M, and that we will keep the best solution found out of these
N/M trials. In this context, the probability of failure in the worst case with

respect to the starting point of each trial is el(l\J)J\f/M7 where

a(M) = mz?(P(U(XN) > Unin | Xo = 2) .

S

The first remark to be made (see Azencott [2]) is that for all the algorithms
1
we have considered Mlim i logei (M) = 0. Therefore, when N is large enough,

— 400

the optimal value for M is independent of N.

In this paragraph we will discuss the choice of the length M of each run of the
algorithm. For simulated annealing, we can, on the basis of the theoretical bound

N/M

on the probability of failure, namely <W) for N iterations divided into
N/M runs of length M, conjecture that an overestimation of M will be relatively
harmless, whereas an underestimation would be more penalizing. This can be
seen on the derivative

0 (A N/M_ A N/MN(a(logM—l)—logA)
OM \ M« A\ Me M? ’

but is may be more vividly illustrated by a small numerical application. If we take

A \NM
for example A = e* o = 1 and N = 1000, and if we put (M) = (W) ,
we see that

minc(M) = ¢(148) ~ 0.0012,

and that for this optimal value the probability of failure in each run is ~ 0.37.
Here are some values taken by ¢(M)

M 74 100 148 300 | 500 | 1000
¢(M) || 0.016 | 0.0024 | 0.0012 | 0.0034 | 0.012 | 0.055

and a graphic of this function:
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fplot(exp(1000*(4—-log(x))/x),[70 1001])
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These figures show that, as far as this rough theoretical bound is a good
guideline, there is a clear benefit in performing multiple runs instead of one
long run, but that an overestimation of a factor two of the length of each run
is relatively harmless. We remark also that a quite low confidence level for each
run is favourable in this example where the difficulty is 1.

The same kind of reasoning would also hold for the theoretical bound of

A
Molog M
method. In this case the derivative of the confidence level e(M) is

N/M
order ¢(M) = < ) obtained for the iterated energy transformation

5, B N (a((log M)? —21log M) —log A)
Dy = e(an) —

This is a plot of this function for some choice of the parameters o, N and A:
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fplot(exp(5000*(2 — log(x)*log(x)/16)/x),[350 5001])
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The tolerance with respect to an overestimation of M is even better than for
simulated annealing.

For a comparison between repeated searches and interacting parallel searches,
we refer to Graffigne [14] and to Azencott and Graffigne [3].

7. Experimental results

We tried to solve two kinds of puzzles: a small “tight” puzzle with 9 pieces and
no loss function, and a big “loose” 60 pieces puzzle with a loss function. By
“tight” we mean that there is just enough room in the frame to put all the
pieces, and by “loose” we mean on the contrary that there is some extra-room
left in the frame, the difficulty being then to minimize the loss function.

7.1. Small “tight” jigsaw puzzle

Our small jigsaw puzzle is a 9 pieces problem. The algorithm we used to solve
it corresponds to the description given in section 4. The frame is a 40 x 50 grid.
The size of the pieces are (14,27), (8,36), (8,9), (6,14), (34,5), (18,9), (22,9),
(18,21), (18, 15). The problem has several solutions, due to symmetry properties.
This is one solution:
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Jigsaw Puzzle

The parameters of the algorithms were set using the heuristics described in
section 6.

We performed 40 runs of the simulated annealing algorithm and the same
number of runs or the I.LE.T. algorithm. For each algorithm we computed the
repartition function of the energy of the best solution encountered during each
run, and the repartition function of the energy of the final state of the algorithm.
Of course, the former repartition function is always above the latter, therefore
we can unambiguously plot them on the same diagram. In order to perform
a “fair” comparison, we allowed the same number of iterations in both cases,
namely N = 5000 iterations per run.



22

O. Catoni

Performance of simulated annealing

rep of ener and ener_min

1 T T

Performance of the iterated energy transformation method

rep of ener and ener_min
1 T T T
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The results are of the same order, with some advantage in favour of the I.E.T.
method. This is especially true when the energy of the final state is considered.
An interpretation of this fact is that the I.E.T. algorithm is more efficient in
preventing the process from leaving the global minimum once it has reached it.

We were also able to check the influence of the drift towards the upper left
corner. In the two previous experiments, the maximum number of steps of the
drift (the constant max_drift in the pseudo code of section 4) is 10. We have
also tried a maximum number of steps of 50, for simulated annealing. We got
the following improvement in the performance on 40 runs:

rep of ener and ener_min
1 T T T T T

0.9

0.7F

0.6

0.5F
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7.2. A big “loose” jigsaw puzzle

Our big jigsaw puzzle has 60 pieces, covering an area of 230 unit squares. The
frame is a grid of size 30 x 10. The sizes of the pieces are the following:

| number of pieces | width | height ||

15 3 2
15 2 1
5 ) 2
5 : 4
20 1 1

The loss function is of the type described in the previous section. The function
& here is the projection on the second axis, &((r,a,b)) = b, (r,a,b) € B x E,
so that the constraint indicates how much of each line the pieces should fill. On
the following diagram, we have plotted the constraint function p.
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With this choice of p, the constraint is tight, meaning that p(F) is equal
to the area of the pieces. When we use tight constraints, we build problems of
the partition type, which are therefore N.P. complete. We chose the size of the
pieces such that the set of global solutions is not empty. However, for a 60 pieces
problem, it is very difficult to find a (complete) solution.

We have chosen a coarse discretization step to keep the difficulty of the prob-
lem to a reasonable level, since we had to switch off the vertical drift. Indeed
keeping a vertical drift would have decreased the stability of minimizing config-
urations in a non favourable way.

We tried two kinds of energies. In order to have a point of comparison, we
tried to use the simple energy U(z) = —pu(z)+max pu(y), where p is the counting

yes

measure.
Then we tried a compound energy W(z) = U(z) + aV(z) for a large value

fgp 0D ?
of @ and for V(z) = 1——— | dp.
p

Eventually, we tried to relax the constraint, changing p to g = 6/5 x p.

7.2.1. Experiments with a simple energy function

In order to have a point of comparison, we recorded first the performance of
repeated relaxations. The relaxation algorithm we used corresponds to a choice
of A = 0, or equivalently to a choice of 3 = +00 in the Metropolis algorithm.
Then we considered the Metropolis algorithm for different values of A and of
G. We tried A = 1 and A = 0.5, two “natural” choices for A. The former let us
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inhibit destructions only according to the energy increment, whereas the latter
let constructions and destructions have equal frequencies at infinite temperature.

The first conclusion we reached was that a significative improvement over
the relaxation scheme could be obtained, using the Metropolis algorithm with
a moderate number of steps. We compared relaxation with 300 steps (for which
convergence was always reached) with Metropolis with A =1, 8 =1and N =
4000. In order to compare methods using the same number of iterations, we

4 2
repeated Metropolis 20 times and the relaxation algorithm % = 266

times. On the following diagram we plotted the repartition functions of the best
solution found for each of the 20 runs of Metropolis (dashed lines) with the best
20 results out of the 266 runs of the relaxation algorithm (solid lines).

comp. of ener_min
1 T -

0.7h — :

06 - =1 : .
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0 Il Il Il Il Il
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We obtained very suggestive evolutions for the Metropolis algorithm, such
as the following:
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Energy/time for the Metropolis algorithm
45 T T T T T

af il 1
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On this plot of u, = U(X,) for n = 300,...,4000, we see the “staircase”
shape of the trajectories of the Metropolis algorithm. The algorithm “falls”
into deeper and deeper maximal cycles of the domain &\ §. We refer to [4]
for a theoretical study of the exit path of the Metropolis algorithm from a
domain at low temperature. For a study of the trajectories of simulated annealing
algorithms, we refer to [5] and [20], which rely on more complex but also more
general induction proofs which cover the time inhomogeneous case. For a semi-
group approach of the same question in the continuous time case, we refer to [18]
and [19].

The energy evolution can be decomposed into a decreasing part u, =

ming<p, ¥y and a “wandering” part @, = u, — u,,, as in the following diagram:
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Decomposition of energy/time for the Metropolis algorithm
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The repartition function of the wandering part gives informations about the
depth of secondary attractors from which the algorithm is able to escape within
the time of the simulation. It is a useful tool to choose the inverse temperature
parameter (. This is the repartition function corresponding to the preceding
plot:
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Repartition of the stationary part (Met. alg.)
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The best results for the Metropolis algorithm of time length N = 4000 were
obtained for 3 = 1 and A = 1 or for # = 0.8 and A = 0.5. This shows that
in this case, the choice of X is not crucial. In the following, we will use A = 1,
because we can hope to take a better advantage of the discrimination made by
the energy function between small and big pieces when we use this value of A.

Then we used the Metropolis algorithm and simulated annealing on long
time intervals. Namely we took N = 20000, Bmin = 0.7, Bmax = 1.1 for simulated
annealing and # = 1 for the Metropolis algorithm. On ten runs of each algorithm,
we could notice a clear gain in performance in favour of simulated annealing.

We tried eventually to get a better improvement using the I.LE.T. algorithm.
Since the state space is already rather large, we followed the idea introduced
in [6] to use transformations Fy 7 » with a non zero value of «.

1
We took @ = 0.3, 8 = 1/T = 30, T, =05, r =4 and g = 15. We

obtained the following comparative results for the best energy found in each of
10 runs of each algorithm. The mean values are 16.2 for the Metropolis algorithm
(solid lines), 11.6 for simulated annealing (dashed lines) and 10.9 for the I.LE.T.
algorithm (dash-dot lines). The repartition functions are plotted on the next
diagram:
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7.2.2. Experiments with a compound energy function

We used the energy
W(z)=U(z)+ aV(z),

with a huge value of & = 10000.

The range of this energy is very large, when compared with the previous one,
since Wiax = 2300230, whereas Wiy, = 0 and removing a piece of size 1 x 1 from
a complete solution in a line of weight p(y) = 30 costs AW ~ 334.33. Therefore
we may expect more spectacular improvements from the speed-up techniques.

We tried different temperatures for the Metropolis algorithm with N =
20000. The best results were obtained when # = 8 x 10=*. On 10 runs, the
average best value was 15853.

Using simulated annealing with Bmin = 107, fmax = 1073, we improved
the performance on the average, as shown in the next diagram. On 10 runs, the
average best energy value was 8765.

We obtained some more improvement using the I.E.T. algorithm (with v =
5x 1075, 3 =10 and ng = 2000). On 10 runs the average best energy value was
6280.

This 1s a diagram of the repartition functions of the best energy value for
ten runs of the Metropolis algorithm (solid lines), simulated annealing (dashed
lines), and the I.LE.T. algorithm (dash-dot lines).
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7.2.3. Experiments with a relaxed constraint

We explored also an alternative in the optimization design, which consists in
replacing p by p = gp. We considered accordingly a larger search space & where

the constraint % < 11s relaxed to % < 1. We took again a compound

energy of the type W(z) = U(z) + a V(z), with a = 10000. The range of W is
between Wi, = 76666.66 and Wpax = 2760230.

On this example, we can perform the same kind of comparison as in the case
of tight constraints. We made 10 runs of length N = 20000 of each algorithm.
The average of the best energy value found in each run is 8731 for the Metropo-
lis algorithm, 8685 for simulated annealing, and 8567 for the I.LE.T. algorithm.
This is a diagram of the corresponding repartition functions (solid lines for the
Metropolis algorithm, dashed lines for simulated annealing and dash-dot lines
for the I.E.T. algorithm).
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The best solution was found by the I.LE.T. algorithm. It has an energy of
W(z) = 78750 and is shown below.

=l Jigsaw Puzzle

In this solution, all the pieces are set in the frame. We can judge of the quality
of the solution with respect to the proportionality constraint on the following
diagram, where we have plotted p (dashed lines), the measure expressing the
constraint, and gz 0@~ (solid lines), giving the number of unit squares actually
filled on each line by the solution. The optimum would be i, 0®~1 = p = 5/6 x p.
We are not too far from that: the two entries p, o ®~1(2) and p, o ®~1(4) are
one unit too large, and p ; o ®~1(9) is two units short from the optimum. This is
the best approximation to an optimal solution we were able to compute on this
example. This seems to show that relaxing slightly the constraint and introducing
the loss function V() in the energy eases the optimization process.



32 O. Catoni

35

30t S
|
|
|

L |

10- 1

0 | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

This should be compared with the best solution found without relaxing the
constraint:

=l Jigsaw Puzzle

and its constraint diagram:
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For this solution U(z) = 6. Solutions of energy U(z) = 6 were also found
using the simple energy U to guide the search. Therefore the advantage of in-
troducing the V component in the energy function is not obvious when the
constraint is really tight.

It is also interesting to consider typical energy evolutions of those three al-
gorithms. On the following diagrams, we have plotted the sequence

up = U(X,)

As we have already mentioned, these sequences of energy values can be decom-
posed into a decreasing component

u,

n, = min{uy : k < n},

and a wandering component

Up = Up — U,.
The repartition functions of (d,,n = 1,...,N) can help to set properly the
parameters. It indicates the depth of the attractors from which the algorithm is
able to escape.
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x 10° Energy/time for the I.E.T. algorithm
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It is interesting to compare the energy evolutions of the three algorithms. The
comparison between the Metropolis algorithm and simulated annealing shows
clearly that the temperature used in Metropolis is too low during the 4000
first iterations and too high during the 8000 last iterations. As for the I.LE.T.
algorithm, we can see that the fluctuations of the wandering part are decreasing
with time, as in the case of simulated annealing, but that the evolution of the
energy is more unstable: it can go up and down faster (in other words its peaks
are sharper). This explains why it is able to sample more efficiently a state space
containing many local minima.

Conclusion

We touched in this paper three related topics with various degrees of generality.
The first one was to bring experimental evidences comforting theoretical results
about the behaviour of algorithms. We wanted to show that the theory was
not concerned with “never reached” asymptotic and led to the same qualitative
ranking of performances as an experimental benchmark would do. Our second
aim was to describe a general purpose methodology to deal with scheduling
tasks. We insisted on two problems which are likely to be encountered in many
situations: the creation of small gaps in the allocation of resources and the way
to handle “proportionality constraints”.

The third aspect of the paper is to account for experiments on a benchmark
of the “jigsaw puzzle” type. This was the occasion to be confronted with the
practical problem of the choice of parameters and of optimization design op-
tions (such as relaxing some of the constraints). Our conclusion on this third
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point is that we have acquired some know-how about the choice of parameters,
which we tried to reflect in section 6, but that we have presently no systematic
rule to choose them. We worked very much in a trial and error way, looking
at the repartition functions we mentioned to guide our intuition. A trial and
error procedure is somehow justified by the theoretical result that many trials
of moderate length are preferable to a long one. This gives the opportunity to
tune the parameters trial after trial.

Anyhow we have to admit that the choice of parameters requires some skill,
especially for simulated annealing and the I.E.T. algorithms, where there are
more than one parameter to tune. What we did not find too hard to do was,
starting from a given Metropolis algorithm at inverse temperature Fyfet, to
find Bmin < PMet < Omax for which simulated annealing performs better than
Metropolis. Then we could get some more improvement using the I.LE.T. al-
gorithm, where again we chose the parameters in relation with those used for
simulated annealing. We are not sure at all that this is the best way to tune simu-
lated annealing or the I.E.T. algorithm, but it shows at least that the theoretical
gains of one algorithm upon the previous one could be obtained in practice.

Another positive result of these experiments is that it is possible to get good,
if not optimal, solutions even in the case when very non-monotonous evolutions
of the energy are needed, as it is the case here, since the only way to move a piece
of the puzzle is to remove it and put it somewhere else afterwards, a succession
of two moves the first of which implies an energy increase.

Of course we have touched in this paper only a limited number of questions.
For instance, we let open the practical question of the best choice of parameters
for simulated annealing and for the I.LE.T. algorithm, since we used only robust
“all purposes” set of parameters, namely exponential temperature sequences
in the case of simulated annealing and logarithmic energy transforms for the
I.LE.T. algorithm. Another question we let purposely in the dark is the choice of
elementary moves. Although it is clear that a benefit can be obtained from the
use of more complex compound moves, we felt such an investigation would have
been too much dependent on the precise examples we chose to study. We rather
tried to lay the stress on general ideas and tools, with the hope that they could
be useful in a variety of situations.
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Remark about the bibliography: [21] and [22] are partial English translations of [20].
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