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Genetic Doping Algorithm (GenD) 
 
Massimo Buscema (2000) 
Direttore del Centro Ricerche Semeion di Roma 
 
 
 
 
 
 
1. Caratteristiche fondamentali 

 
L’algoritmo GenD ha l’obiettivo di rendere più naturale, e meno centrato sul 

concetto culturale di liberismo individuale, il processo evolutivo di popolazioni 
artificiali; ciò allo scopo di migliorare la velocità e la qualità delle soluzioni che si 
tenta di ottimizzare. 

L’algoritmo GenD, come primo passo, calcola il punteggio di fitness di ogni 
individuo, in accordo alla funzione che si intende ottimizzare. Il valore della salute 
media dell’intera popolazione non è, però, un semplice indice. 

In GenD la salute media costituisce il criterio di vulnerabilità, prima, e di 
accoppiabilità, dopo, di tutti gli individui della popolazione ad ogni generazione e 
ad ogni generazione muta. 

Quindi, GenD è un algoritmo che non ha nell’individuo la propria unità fonda-
mentale, come gli Algoritmi Genetici e molti altri algoritmi evolutivi. Per GenD, 
l’unità di riferimento è la specie, che agisce, ad ogni generazione, sull’evoluzione degli 
individui sotto forma di salute media [Eldredge, 1995]. 

Il feedback loop tra individui e salute media della popolazione (specie) 
permette, in GenD, di trasformare evolutivamente la popolazione stessa da una 
lista di individui (come nei sistemi evolutivi tradizionali) in un sistema dinamico 
di soggetti. 

 
 

2. Criterio di vulnerabilità 
 

Tutti gli individui, la cui salute è inferiore o uguale alla salute media della po-
polazione, vengono iscritti in una lista di vulnerabilità. Non vengono, perciò, eli-
minati, ma continuano a partecipare al processo; tuttavia sono segnati. 

Il numero degli individui vulnerabili stabilisce automaticamente il numero 
massimo di matrimoni permessi in quella generazione. 

Il numero di matrimoni possibili ad ogni generazione, quindi, è variabile ed in 
funzione della salute media della popolazione. 

Il terzo passo di GenD consiste nell’accoppiamento tra gli individui. Tutta la 
popolazione partecipa a questa possibilità. Il numero massimo di chiamate casuali 
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all’accoppiamento sarà uguale alla metà del numero di individui segnati come 
vulnerabili. 

 
 

3. Criterio di accoppiabilità 
 
Perché un accoppiamento generi prole, entrambi gli individui candidati devono 

avere una salute il cui valore sia vicino alla media di salute dell’intera popolazione 
(media ± k, dove 2k definisce l’ampiezza della banda di accoppiabilità). 

GenD può usare anche un altro criterio di accoppiabilità: ogni coppia di 
individui può generare prole se la fitness di almeno uno di loro è maggiore della 
media. 

Gli effetti di questi due criteri sono molto simili: la distribuzione normale di 
ogni fitness individuale, rispetto alla media, lavora ad ogni generazione come una 
banda dinamica di cross-over. 

L’algoritmo GenD, quindi, assume che gli individui “sui generis”, troppo deboli 
o troppo sani, tendano a non sposarsi tra loro. In pratica, il matrimonio non si 
addice ai migliori e ai peggiori. Sono i soggetti “più normali” che tendono a 
sposarsi. 

Inoltre, in GenD esiste il principio del Sex Free: sono ammessi “incesti” e 
“poligamie”. 

I “figli” di ogni matrimonio vanno ad occupare i posti dei soggetti segnati nella 
lista di vulnerabilità. Può accadere, quindi, che un individuo debole abbia la 
possibilità di continuare ad esistere tramite la propria prole. 

 
 

4. Criterio dell’ultima opportunità 
 
Il numero di matrimoni possibili è stabilito in funzione del numero di soggetti 

segnati come vulnerabili, e della salute media della popolazione. Il criterio di 
accoppiabilità, tuttavia, spinge il sistema ad avere un minore numero di matrimoni 
celebrati rispetto a quelli possibili. La differenza tra matrimoni disponibili e 
matrimoni realizzati definisce il numero delle mutazioni. 

Vengono, così, mutati quei soggetti presenti nella lista di vulnerabilità che non 
sono stati sostituiti dai figli generati dai matrimoni realizzati precedentemente.  

A questo numero variabile di soggetti deboli, quindi, viene concessa, tramite una 
mutazione, un’ultima opportunità per rientrare nel gioco evolutivo. 

 
 

5. Il nuovo Cross Over 
 
Il criterio di accoppiabilità permette matrimoni tra gli individui solo quando: 
1. entrambi hanno una salute i cui valori rientrino in una banda specifica 
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intorno alla salute media della popolazione; 
2. almeno uno possiede una salute i cui valori siano maggiori della media 

dell’intera popolazione. 
Ciò significa che 

 

SE Fi = Salute individuo i-esimo;  
F = Salute media;  
σ = Varianza della salute della popolazione. 

 

ALLORA Fi è un candidato al matrimonio se:  
 

σ−= 1k ; 

( ) ( )kFFkF i +≤≤− . 
 

 

Nel secondo caso: 
  

 SE ( )FFFF ji ≥∪≥  
 

 ALLORA i candidati possono generare prole. 
 

L’accoppiamento, tuttavia, in GenD non consiste nel semplice scambio di geni 
tra marito e moglie intorno a un punto di incrocio (Cross Over); es.: 
 

 

Marito:

Moglie: 

1º figlio:

2º figlio:

A´ A´´ B´´ 

A´´ B´ B´´ B´ 

Cross over point 

A´ 

 
 

In GenD l’accoppiamento di geni tra genitori è effettuato in modo selettivo.  
Abbiamo programmato due tipi di accoppiabilità: 
1. una logica di Cross Over: quando sono ammesse ripetizioni; 
2. un opportunistic Cross Over: quando non sono permesse ripetizioni. 

 

La logica di Cross Over considera quattro casi: 
1. Salute del padre e della madre maggiori della salute media dell’intera 

popolazione: 
 

(P > m) & (M > m) 
 

2. Salute di entrambi i genitori minore della salute media dell’intera 
popolazione: 

 

(P < m) & (M < m) 
3 e 4. Salute di uno dei genitori minore e quella dell’altro maggiore della salute 

media dell’intera popolazione: 
 

(P > m) & (M < m) oppure (P < m) & (M > m) 
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Nel primo caso, la generazione dei due figli (supponiamo, per semplicità, il 
caso con due figli e un solo punto di Cross Over) avviene nel modo tradizionale: 
 

1. (P > m) & (M > m):  
321321

figligenitori

AB
BA

BB
AA

′′+′
′′+′

⇒
′′+′
′′+′

 

Nel secondo caso, la generazione dei due figli avviene tramite la negazione dei 
geni dei genitori: 
 

2. (P < m) & (M < m): 
321321

figligenitori
AB
BA

BB
AA

′′+′
′′+′

⇒
′′+′
′′+′

 

 

Nel terzo e nel quarto caso, solo il genitore la cui salute è superiore alla salute 
media trasmette i propri geni, mentre quelli dell’altro vengono negati: 
 

3. (P > m) & (M < m): 
321321

figligenitori
AB
BA

BB
AA

′′+′
′′+′

⇒
′′+′
′′+′

 

oppure: 
 

4. (P < m) & (M > m): 
321321

figligenitori
AB
BA

BB
AA

′′+′
′′+′

⇒
′′+′
′′+′

 

 

Il concetto di negazione genetica, in GenD, non corrisponde all’annullamento 
dei geni del genitore più debole, neppure ad un loro rimpiazzo effettuato 
casualmente. Si tratta, invece, di una sostituzione genica effettuata con il criterio di 
una finestra mobile che scorre, da destra o da sinistra, le opzioni genetiche 
alternative per ogni singolo gene in ogni specifica posizione. 

 

Se, ad esempio, un certo gene presenta due sole alternative g[0,1], allora la 
finestra mobile avrà la seguente forma: 

 

10
01

T
↓

  

0 1 

T 

T  
Allo stesso modo si procederà con un gene che presenta quattro stati possibili; 

g[A,B,C,D]: 
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ADCBT
DCBA↓

 
 D B 

A 

C 
 

 

Il criterio della negazione tramite finestra mobile è applicabile anche quando i 
vari stati possibili di un gene non sono tra loro ordinati. Questo metodo, infatti, si 
fonda sulla sistematicità di esplorazione dello spazio delle fasi e sul mantenimento 
di uno stesso criterio di sistematicità. 

L’opportunistic Cross Over lavora quando non sono permesse ripetizioni. 
In questo caso, i genitori sono allineati rispetto ad un punto di Cross Over 

casuale; in seguito, è generata la prole selezionando il gene più efficace dei 
genitori. Questo algoritmo è ripetuto finché tutti i geni dei genitori sono completi; 
questa regola è molto simile ad una variante dell’algoritmo di Greedy. 

In definitiva, il numero dei matrimoni e delle mutazioni in GenD non sono 
parametri esterni, ma variabili interne che si autodefiniscono in modo adattivo, tenendo 
conto della dinamica complessiva del “sistema popolazione”.  

 
 

6. Le caratteristiche di GenD 
 
La caratteristica più evidente di GenD consiste nel presentare un algoritmo per 

certi aspetti molto più culturale, e per altri più naturale, rispetto ai classici 
algoritmi genetici. 

Ciò ci ha indotto ad immaginare una nuova famiglia di algoritmi adattivi ed 
evolutivi che abbiamo definito “Algoritmi Naturali”, in opposizione agli algoritmi 
“occidentali” presenti nella letteratura scientifica. 

In GenD, il numero dei matrimoni e delle mutazioni varia di generazione in 
generazione. Questi valori sono tra loro connessi, ed entrambi dipendono dai valori 
della salute media della popolazione ad ogni generazione. 

Queste caratteristiche rendono più naturale GenD rispetto alle soluzioni 
tradizionali: in GenD nulla è fisso, ma tutto dipende dal contesto e il contesto varia 
nel tempo. 

In GenD, inoltre, l’evoluzione degli individui è centrata intorno alla media 
della loro salute; le soluzioni estreme, quindi, (i migliori o i peggiori individui) 
vengono considerate come rumore e non come criterio evolutivo. 

Ciò non toglie che, dal punto di vista ingegneristico, gli individui migliori siano 
un rumore utile.  

 

La promozione dei matrimoni tra individui medi, in GenD, ha degli effetti 
positivi: 

a. la salute media di tutta la popolazione cresce in modo lineare e compatto nel 
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tempo; questo significa che, per uno stesso problema, vengono fornite più 
soluzioni ottime. 

 In breve: la salute media tende alla salute del migliore individuo, per cui 
molti individui presentano soluzioni diverse ma tutte ottimali. 
Inoltre, GenD ha un suo criterio di convergenza: quando la salute media 
coincide per più generazioni con la salute del migliore individuo, allora il 
massimo della funzione è stato raggiunto; 

b. GenD implica, senza bisogno di regole apposite, l’aumento della 
biodiversità degli individui, in modo proporzionale all’aumento della salute 
media della popolazione: più la salute media cresce, più aumentano gli 
individui vulnerabili, e, di conseguenza, i matrimoni e le mutazioni. 

 L’aumento della biodiversità, comunque, non incide sugli individui migliori (in 
genere non toccati dai matrimoni e dalle mutazioni), ma sulla media: questa, 
infatti, subisce una decrescita, per poi riprendere la sua ascesa. 

 In breve: all’aumento della biodiversità, le soluzioni migliori restano stabili, 
ma la riorganizzazione degli individui “medi” può produrre altre soluzioni, 
migliori o equivalenti a quelle precedenti. 

 Questo significa che GenD può uscire spontaneamente dai massimi locali 
che lo intrappolano, per mirare ai valori più prossimi al massimo globale 
della funzione. 

 

In GenD la produzione spontanea di biodiversità ha un ulteriore vantaggio: non 
è necessario ricorrere alla mutazione per mantenere flessibili gli individui 
dell’intera popolazione. 

Crediamo, infatti, che fondare la biodiversità, cioè la ricchezza della varianza, 
su un errore casuale, sia un errore sistematico. Nei processi naturali la diversità è 
metodo, non contingenza. 

Il processo di mutazione, in GenD, viene collocato, invece, come 
un’opportunità per gli individui più deboli e non come motore evolutivo. 

Le caratteristiche culturali di GenD sono altresì evidenti: i matrimoni non 
generano figli tautologici rispetto ai genitori. Le parti migliori dei genitori vengono 
trasmesse ai figli, mentre le caratteristiche più deboli vengono cambiate tramite una 
esplorazione sistematica dello spazio delle possibilità. 

Questo mutamento sistematico ha due conseguenze importanti: 
a. trasforma i matrimoni in generatori di biodiversità; 
b. permette ai “nuovi nati” di rubare e fare proprie quelle caratteristiche 

genetiche, presenti nel contesto della popolazione, che si sono dimostrate 
efficaci. 

 

Il rapporto dialettico, che GenD crea tra crescita della salute media e crescita 
della biodiversità, rende la dinamica del sistema strutturalmente instabile. Si 
tratta di una instabilità strutturale, ma tendenzialmente locale: solo gli individui la 
cui salute è uguale o inferiore alla salute media entrano nelle liste di vulnerabilità. 
E solo questi rischiano l’eliminazione. 

Questa dinamica instabile obbliga il sistema ad un andamento ritmico, che per-
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mette di “saltare”, da un massimo locale ad un altro, in modo spesso vantaggioso 
per l’aumento della fitness della funzione. 

 
 

G.A. classico GenD 
• Valuta la salute individuale • Valuta la salute individuale 
• Crea la ruota delle probabilità • Calcola la media 

• Calcola la varianza 
• Crea una banda sulla media 

• Crea una nuova popolazione 
sul criterio della ruota delle 
probabilità 

• Crea una lista di vulnerabilità sul 
criterio della media 

• Effettua una % fissa di 
matrimoni in funzione della 
ruota delle probabilità - (si 
sposano i migliori) 

• Effettua una % variabile di Matri-
moni in funzione della lista di 
vulnerabilità (numero) e della 
media (qualità) - (si sposano i 
normali) 

• Ogni matrimonio ha N Cross 
Over e incrocia i geni dei 
genitori (produce possibili 
miglioramenti) 

• Ogni matrimonio ha N Cross Over e 
consiste in una ricerca degli stati 
possibili tra genitori e popolazione 
(produce possibili miglioramenti e 
aumenta la biodiversità) 

• La percentuale delle mutazioni 
è fissa e serve a produrre 
biodiversità 

• La % delle mutazioni è variabile, in 
funzione dei matrimoni non 
celebrati, e serve a offrire solo ad 
alcuni dei più vulnerabili un’ultima 
opportunità 

• La biodiversità è fornita dagli 
errori (mutazioni) e decresce al 
crescere della media 

• La biodiversità è generata dai matri-
moni e cresce al crescere della media 

• Il sistema tende alla stabilità • Il sistema diventa instabile quanto 
più si approssima alla stabilità 

• Non c’è evoluzione dell’evolu-
zione 

• C’è evoluzione dell’evoluzione 

• I peggiori e i medi individui 
tendono a non generare 

• I peggiori individui e i migliori ten-
dono a non generare 

 

Tab. 1 – Differenze tra G.A. classico e GenD. 
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7. Confronto tra GenD e Genetic Algorithm tradizionali (G.A.) 
 
Per valutare le proprietà di GenD abbiamo scelto un problema classico di 

ottimizzazione, già affrontato tramite i G.A. tradizionali. 
Si tratta di un problema-giocattolo presentato da L. Davis [Davis, 1991], in un 

articolo tecnico e accompagnato da un software specifico dei G.A. per affrontarlo. 
Si tratta del problema dei “3 colori”: data una griglia N×N, ogni cella della 

griglia deve essere riempita da un colore, a partire da una tavolozza di 3 colori 
costanti (poniamo verde, rosso e blu). 

È necessario, però, impostare alcuni vincoli; questi sono: 
a. ogni cella deve aver un colore non uguale sia nella cella sopra che in quella 

sotto; 
b. ogni cella deve aver un colore non uguale sia nella cella destra che in quella 

sinistra; 
c. l’ultima colonna della griglia è contigua alla prima colonna; 
d. l’ultima riga della griglia è contigua alla prima riga. 

 

Tali vincoli elementari rendono questo problema-giocattolo semplice da 
comprendere ed efficace per effettuare un test. 

Abbiamo utilizzato il software che accompagna l’articolo di Davis per valutare le 
prove del G.A. tradizionale. Per valutare GenD abbiamo usato il nostro software, ma 
abbiamo codificato il problema e scritto la funzione di fitness di GenD in modo 
identico a come la codifica è stata effettuata nel software di Davis: ogni individuo è 
composto di N×N geni ed ogni gene ha un alfabeto di 3 caratteri, uno per colore; 
inoltre la fitness massima che ogni individuo può raggiungere è data da 2×(N×N); cioè: 
il massimo di non contiguità di colore per riga (N×N) ed il massimo di non 
contiguità di colore per colonna (N×N). 

Ad esempio: se la griglia da colorare è 5 × 5, allora ogni “individuo” sarà for-
mato da 25 geni e una fitness di 50 indicherà tutti gli individui che rispettano tutti e 
quattro i vincoli (a, b, c, d) che abbiamo prima esposto. 

Possiamo ricordare che in una griglia 5 × 5 le colorazioni possibili sono 
847.288.609.443, mentre le combinazioni accettabili (50/50 punti) sono 1.000 
[Davis, 1991]. 

I criteri di valutazione che proponiamo per questo confronto sono quattro: 
1. il numero di generazioni che il G.A. tradizionale e GenD impiegano per 

trovare la prima soluzione (più piccolo è, meglio è); 
2. il numero di individui necessari per trovare almeno una soluzione (meno 

è, meglio è); 
3. il numero di generazioni utili per trovare la prima soluzione al crescere 

delle dimensioni della griglia, tenendo costante il numero degli individui 
(poche generazioni e grandi griglie è meglio); 

4. il numero e la rapidità di individuazione di soluzioni accettabili, ma 
diverse tra di loro, dopo la prima soluzione (più è, meglio è). 

La tab. 2 riporta i risultati ottenuti in una griglia 5 × 5 e 100 individui. Nel G.A. 
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classico si è usato un tasso di mutazione dell’1% (come preimpostato da Davis per 
questo test). 

Sono stati eseguiti otto test per ciascun algoritmo, uno di seguito all’altro, 
usando lo stesso generatore di numeri random e si sono scelti i sette risultati 
migliori di ogni algoritmo. 
 

G.A. Classic GenD 

N. Test Generazioni per 
prima soluzione N. Test Generazioni per 

prima soluzione 
Soluzioni nuove 
per generazione 

1 53 1 76 4.5 
2 627** 2 60 17.5 
3 133 3 50 7.9 
4 109 4 74 4.3 
5 29* 5 81** 2 
6 31 6 30* 3.7 
7 134 7 53 4.9 

Media ≅ 145 Media ≅ 60 ≅ 6.4 
* test migliore - ** test peggiore 
 

Tab. 2 – Tre colori: 5 × 5: 100 individui. 
 
Nota: ogni soluzione diversa, in G.A. equivale a riattivare l’algoritmo dall’i-

nizio. Nell’ultima colonna viene espresso il numero medio di generazioni 
dopo il quale GenD trova una soluzione nuova rispetto alle precedenti; 
questo test è effettuato per 100 generazioni dalla prima soluzione. 

 

La tab. 3 mostra i risultati raggiunti dai due algoritmi con una popolazione di 50 
individui. I criteri utilizzati per il test sono analoghi a quelli precedenti. 

 
G.A. Classic GenD 

N. Test Generazioni per 
prima soluzione N. Test Generazioni per 

prima soluzione 
Soluzioni nuove 
per generazione 

1 156 1 84 11.6 
2 158 2 91 13.6 
3 549** 3 50* 5.5 
4 541 4 66 10.3 
5 230 5 66 3.6 
6 152* 6 50* 10.7 
7 284 7 129** 7.7 

Media ≅ 295 Media ≅ 89 ≅ 8.9 
* test migliore - ** test peggiore 
 

Tab. 3 - Tre colori: 5 × 5: 50 individui 
 
 
 
Nella tab. 4, il test è stato effettuato con una griglia 6 × 6 e 100 individui di 
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popolazione. La procedura è stata analoga a quella dei test precedenti. 
 

G.A. Classic GenD 

N. Test Generazioni per 
Prima Soluzione N. Test Generazioni per 

Prima Soluzione 
Soluzioni Nuove 
per Generazione 

1 225 1 61 0.62 
2 243 2 48 1.08 
3 273** 3 61 0.95 
4 147 4 42* 0.65 
5 154 5 47 0.73 
6 140 6 62** 0.79 
7 104* 7 58 0.89 

Media ≅ 183 Media ≅ 54 ≅ 0.81 
* test migliore - ** test peggiore 
 

Tab. 4 - Tre colori: 6 × 6: 100 individui. 
 
Nella tab. 5, è stato effettuato il test con una matrice 7 × 7 con 200 individui. 
Superate le 1000 generazioni, la prova è stata considerata fallita (F). 

 
G.A. Classic GenD 

N. Test Generazioni per 
prima soluzione N. Test Generazioni per 

prima soluzione 
Soluzioni nuove 
per generazione 

1 991 1  92 0.73 
2 F 2 214 1.03 
3 F 3 F / 
4 F 4 102 1.03 
5 F 5 141 1.14 
6 F 6 87* 2.1 
7 510* 7 137 1.06 

Media ≅ 750 (29% di 
capacità risolutiva) Media 

≅ 128 (≅ 85% di 
capacità 

risolutiva) 
≅ 1.18 

* test migliore 
 

Tab. 5 - Tre colori: 7 × 7: 200 individui. 
 
Lo stesso test è stato effettuato dotando i due algoritmi di 300 individui di 

popolazione. Le procedure sono state analoghe a quelle degli esperimenti 
precedenti (vedi tab. 6). 

Considerando il non efficace funzionamento del G.A. classico, si è condotto un 
ulteriore test, sulla stessa matrice 7 × 7, dotando, però, i due algoritmi di una 
popolazione di 400 individui (la tab. 7 mostra i risultati). 
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G.A. Classic GenD 

N. Test Generazioni per 
prima soluzione N. Test Generazioni per 

prima soluzione 
Soluzioni nuove 
per generazione 

1 F 1 84* 0.38 
2 471 2 114 0.87 
3 F 3 154 1.30 
4 F 4 F / 
5 F 5 122 2.02 
6 F 6 117 0.95 
7 F 7 255 0.66 

Media 
471 (14% di 

capacità 
risolutiva) 

Media ≅ 141 (≅ 85% di 
capacità risolutiva) ≅ 1.03 

* test migliore 
 

Tab. 6 - Tre colori: 7 × 7: 300 individui. 
 

 
G.A. Classic GenD 

N. Test Generazioni per 
prima soluzione N. Test Generazioni per 

prima soluzione 
Soluzioni nuove 
per generazione 

1 599 1 92 0.85 
2 452 2 131 2.3 
3 749 3 131 1.07 
4 F 4 91 0.5 
5 F 5 87* 0.32 
6 F 6 139** 0.54 
7 341* 7 89 0.25 

Media ≅ 535 (57% di 
capacità risolutiva) Media ≅ 108 ≅ 0.83 

* test migliore - ** test peggiore 
 

Tab. 7 - Tre colori: 7 × 7: 400 individui. 
 
 
8. GenD e il TSP 

 
8.1. Il problema 
 

Per misurare le capacità di modellizzazione di GenD, abbiamo affrontato quesiti 
di natura diversa, tra cui quello dell’ottimizzazione di una sequenza non 
ripetitiva. Un classico esempio di questi problemi è quello noto come TSP 
(Travelling Sales Person Problem), che appartiene alla classe dei problemi NP 
completi. 

La notorietà di TSP ha consentito di confrontare GenD con altri algoritmi 
(Greedy e varie implementazioni di Genetic Algorithm) sullo stesso Data Base.  
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Dato un insieme di punti P(x, y), trovare il cammino minimo che connette tutti 
i punti in un grafo hamiltoniano (in modo tale che ogni punto sia connesso a due 
soli altri punti e il grafo sia chiuso). Il numero di percorsi possibili cresce 
esponenzialmente al crescere del numero dei punti, secondo l’equazione 

 

Numero Percorsi = 
2

1)Punti Numero( −  
 

L’algoritmo di GenD, per questa tipologia di problemi, è rimasto lo stesso, 
salvo i necessari adattamenti apportati data la natura del quesito. 

 
 

8.2. La codifica del problema  
 

Dati N punti, l’individuo è costituito da 40 geni ed ogni gene ha un alfabeto di 
40 opzioni; ogni gene rappresenta la porzione di un punto, ed ogni opzione il 
punto x, y specifico in quella posizione. 

 

Esempio: 
 

 
1º 2º 3º 4º N ….. 

1º 

2º 

3º 

N 

….. 

Quarta posizione 

Punto 1 

Punto 2 

Punto 3 

Punto N 

….. 

Possibili opzioni 
per la prima 
posizione 

 
Questa codifica è la più economica ed usata per questo tipo di problema.  
Gli altri tipi di Algoritmi Genetici che sono stati confrontati con GenD hanno 

codificato il problema nello stesso modo. Ciò rende pertinente un confronto. 
 
 

8.3. Gli adattamenti di GenD 
 

Per adattare GenD alla specificità del problema sono stati effettuati i seguenti 
adattamenti: 
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a. Cross Over con ottimizzazione locale (Opportunistic Recombination): due 
individui vengono accoppiati per produrre un solo offspring. L’accop-
piamento avviene con una ottimizzazione locale: ogni gene viene scelto dal 
“padre” o dalla “madre” a seconda di quale dei due “genitori” offra la 
soluzione più conveniente, escludendo e scorrendo in parallelo i geni dei due 
genitori, partendo da un gene casuale; per il resto si tratta del tipico Cross 
Over previsto da GenD. 

b. Mutazione: le mutazioni vengono effettuate in modo usuale, scambiando 
due geni a caso dalle loro posizioni. 

c. Operatori di Ottimizzazione Locale:  su ogni individuo si provano  ad 
effettuare dei cambiamenti nei geni e solo se l’operazione migliora il 
risultato è accettata, altrimenti è ignorata. 

d. Tribù e Contaminazioni: questa architettura non è specifica per il proble-
ma TSP e può essere vista come un ulteriore sviluppo dell’algoritmo di 
GenD. 
Se, per risolvere il problema, la popolazione di individui viene fissata a M, 
allora si possono immaginare T tribù (sottopopolazioni) di T

M  individui 
ciascuna. 
Nella fase cooperativa avviene che, ad ogni generazione, ogni tribù offre ad 
ogni altra il suo migliore individuo di quella generazione ed una copia 
dello stesso leggermente mutata. Ogni tribù ricevente controlla quale dei 
due individui offerti non è presente nella propria sottopopolazione e, di 
conseguenza, accetta o rifiuta l’offerta. 
Abbiamo definito “Contaminazione” (o anche “Immigrazione”) questo 
operatore, in quanto consente ad ogni tribù di essere contaminata dai modelli 
delle altre tribù da variazioni di questi.   
Parliamo quindi di EsoMatrimonio quando individui provenienti da 2 tribù 
diverse generano un figlio che andrà a sostituire nella tribù del genitore che 
ha il fitness più alto l’individuo con il fitness più basso.  

e. E’ presente, inoltre, l’operatore di duplicazione che controlla in modo 
random tutte le sottopopolazioni e, quando trova in una tribù due individui 
uguali, produce una mutazione casuale su uno dei due. 

 
 

8.3.1. Gli Operatori di Ottimizzazione Locale 
 
Gli Operatori di Ottimizzazione Locale intervengono ad ogni ciclo evolutivo 

sul singolo individuo sperimentando degli adattamenti dei geni che vengono 
effettuati solo se migliorano la fitness : 
 

1. Inversion: l’operatore “Inversione” si serve di due geni scelti casualmente 
dallo stesso individuo e prova ad invertire l’ordine “prima–dopo” tra i geni 
selezionati. 
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2. Exchange: l’operatore “Exchange” sceglie due geni a caso (G1 e G2) 
(distanti tra loro di almeno 2 posizioni) e li scambia tra di loro. 

3. Swaping: l’operatore “Swapping” sceglie un gene a caso (G1) e lo scambia 
con il successivo. 

4. Neighbourhood: l’operatore di “Neighbourhood ” sceglie un gene casuale 
(G1), definisce un intorno (R) di quel gene, casuale anch’esso; 
successivamente sceglie, fuori dall’intorno il gene (G2) più vicino al primo 
(G1); dopodiché mette G2 in un punto dell’intorno R di G1, facendo 
scorrere di una posizione gli altri geni. 

5. Self-generation: l’operatore di “Self-generation” divide i geni in tre blocchi 
casuali ABC, in modo tale che ogni blocco contenga più di un gene, e li 
riscrive in ordine BAC. 

6. Altruism: l’operatore di “Altruism” sceglie un gene casuale (Cross1) e 
quindi definisce un intorno (Bound) in proporzione al numero di geni 
((numGeni/4)-1). All’interno dei limiti di Bound si sceglie quindi un gene 
(Cross2), casuale anch’esso. Si invertono quindi Cross1 con Cross2. 

7. Shuffle: l’operatore di “Shuffle” sceglie 3 geni casuali (Cross1, Cross2, 
Cross3). Sulla base della posizione occupata dai tre geni divide il genoma in 
4 parti A,B,C,D e li ricombina nella sequenza B,D,C,A. 

8. Slip: l’operatore “Slip” sceglie due geni a caso (G1 e G2), distanti tra loro 
di almeno 3 posizioni, e fa slittare i geni compresi tra essi di una posizione. 

9. Insertion: l’operatore di “Insertion” sceglie due geni casuali (First e Last) 
che siano ad una certa vicinanza tra loro. Sceglie quindi casualmente 2 altri 
geni (NewFirst) e (NewLast), al di fuori dei geni compresi tra First-
1(BeforeFirst)  e Last-1(AfterLast). Scambia quindi tra loro newFirst con 
BeforeFirst e NewLast con AfterLast. 

10.  Annealing: l’operatore “Annealing” sceglie un gene a caso (G1) e quindi 
ridistribuisce casualmente i 5 geni che occupano le posizioni successive. 

 
 

8.4. Gli esperimenti 
 

Gli esperimenti che abbiamo condotto sono stati effettuati su punti generati 
casualmente dal programma “Randxy.c” di B.Reetz in “Greedy Solutions to the 
Travelling Sales Person Problem” Advanced Technology for Develojers (ATD), 
volume 2, Maggio 1993, pp.8-14). 

Abbiamo confrontato GenD con quattro algoritmi diversi: 
1. “Greedy”, nella versione fornita da B. Reetz in ATD, vol. 2, maggio 1993, 

pp.8-14; 
2. “Classic Genetic Algorithm” (CGA), nella versione software scritta da C. 

Klimasauskas (in ATD, vol. 2, Feb. 1993, pp.9-17) 
3. “Enanched Genetic Algorithm” (EGA), nella versione scritta da C. 

Klimasauskas (in ATD, vol. 2, Feb. 1993, pp.9-17) 
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4. “Simulating Anneal” (SA), nella versione scritta da C. Klimasauskas (in 
ATD, vol. 2, June 1993, pp. 9-16). 

 

I confronti sono stati eseguiti su 18 classi di punti. 
E’ stata effettuata una sola prova per ogni algoritmo e la popolazioni degli 

algoritmi genetici è stata fissata a 50 individui, mentre nel caso di GenD si è 
lavorato con 5 tribù di 10 individui ciascuna. 

 
 

8.5. I risultati  
 

La tabella 8 riporta i risultati del confronto. 
Tranne che per quello di Greedy, che ha un sistema di calcolo diverso, gli altri 

tre tipi di Algoritmi Genetici sono stati lasciati evolvere fino al punto che la 
soluzione non si stabilizzasse; è comunque stato assunto un limite di 10.000 
generazioni. 

Non è stato possibile effettuare confronti sulle rapidità di computazione, in 
quanto le tecniche software dei tre Algoritmi Genetici sono molto diverse (GenD, 
ad esempio, si serve di una grafica dinamica); l’algoritmo di Greedy ha nella 
rapidità il suo punto forte, per cui le tabelle dei risultati vanno lette tenendo questo 
dato nella dovuta importanza. 

Siccome i risultati ottenuti da GenD sono risultati sempre i migliori, abbiamo 
deciso di allegare la soluzione grafica trovata da GenD per ogni prova (fig. 2–19). 

L’indice MST (Minimo Spanning Tree) è stato ricavato tramite il programma 
MST.EXE fornito da B.Reetz in “Greedy Solutions to the Traveling sales Person 
Problem” in ATD, vol. 2, Maggio 1993, pp.8-14. 

Nel grafico in figura 1, mostriamo le distanze (espresse in percentuali) per ogni 
algoritmo dall’indice MST. 
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 Algorithms   Approaching in % to MST 
Points 
Num Greedy G.A. E.G.A. S.A. GenD MST No 

Optimized* Greedy G.A. E.G.A. S.A. GenD 

City 30 473 425.51 423.74 423.74 423.74 324 953 54.01 68.67 69.22 69.22 69.22 
City 35 529 540.25 519.44 508.45 508.45 429 1877 76.69 74.07 78.92 81.48 81.48 
City 40 570 592.34 485.23 475.29 475.29 384 1736 51.56 45.74 73.64 76.23 76.23 
City 50 603.68 620.78 558.8 536.27 536.22 429 2741 59.28 55.30 69.74 75.00 75.01 
City 60 696.79 771.91 624.99 624.21 619.27 494 2623 58.95 43.74 73.48 73.64 74.64 
City 65 679.9 791.76 647.83 649.92 628.23 541 3326 74.33 53.65 80.25 79.87 83.92 
City 70 804.92 881.67 740.26 677.7 663.96 540 3844 50.94 36.73 62.91 74.50 77.04 
City 75 755.88 828 720 683.78 662.07 537 3643 59.24 45.81 65.92 72.67 76.71 
City 80 730.63 880.54 716.78 702.64 673.48 549 3859 66.92 39.61 69.44 72.01 77.33 
City 90 819.2 1206 806.35 793.59 748.48 606 4011 64.82 0.99 66.94 69.04 76.06 
City 100 892.05 902 782 800.34 761.52 606 5502 52.80 51.16 70.96 67.93 74.34 
City 120 906.34 1128.53 861.9 908.91 806.12 666 5797 63.91 30.55 70.59 63.53 77.74 
Eil 51 496.4 484 437 435.45 428.87 376 1271 67.98 71.28 83.78 84.19 85.94 
Eil 76 606.77 632 566.95 567.79 544.36 441 1950 62.41 56.69 71.44 71.25 76.56 
Eil 101 736.36 986.55 687.89 685.75 642.03 516 2064 57.29 8.81 66.69 67.10 75.77 
Berlin 52 8182.19 8618.92 7958.05 7544.36 7544.36 5988 21802 63.36 56.06 67.10 74.01 74.01 
Bier 127 125023 161428.59 123062.75 123969 118562 93844 390833 66.78 27.98 68.86 67.90 73.66 
Ch 130 7195.33 9425.41 6478.14 6457.17 6147.82 5072 47503 58.14 14.17 72.28 72.69 78.79 

 

(*) Il valore riportato in colonna corrisponde alla media di N prove di calcolo random della distanza di un set di punti. 
 
Tab. 8 – Risultati del confronto di alcuni algoritmi sul problema TSP. 
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Fig. 1 - Grafico delle distanze in % di ogni algoritmo dall’indice MST  
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Fig. 2 – Soluzione grafica trovata da GenD su 30 punti (323.74). 
 
 

 
 

Fig. 3 – Soluzione grafica trovata da GenD su 35 punti (508.45). 
 
 

 
 

Fig. 4 – Soluzione grafica trovata da GenD su 40 punti (475.29). 
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Fig. 5 – Soluzione grafica trovata da GenD su 50 punti (536.27). 
 
 

 
 
Fig. 6 – Soluzione grafica trovata da GenD su 60 punti (619.27). 
 
 

 
 

Fig. 7 – Soluzione grafica trovata da GenD su 65 punti (628.23). 
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Fig. 8 – Soluzione grafica trovata da GenD su 70 punti (663.96). 
 
 

 
 

Fig. 9 – Soluzione grafica trovata da GenD su 75 punti (662.07). 
 
 

 
 

Fig. 10 – Soluzione grafica trovata da GenD su 80 punti (673.48). 
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Fig. 11 – Soluzione grafica trovata da GenD su 90 punti (748.48). 
 
 

 
 

Fig. 12 – Soluzione grafica trovata da GenD su 100 punti (761.52). 
 
 

 
Fig. 13 – Soluzione grafica trovata da GenD su 120 punti (806.12). 
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Fig. 14 – Soluzione grafica trovata da GenD su 51 punti (428.87). 
 
 

 
 

Fig. 15 – Soluzione grafica trovata da GenD su 76 punti (544.36). 
 
 

 
 

Fig. 16 – Soluzione grafica trovata da GenD su 101 punti (642.03). 
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Fig. 17 – Soluzione grafica trovata da GenD su 52 punti (7544.36). 
 
 

 
 

Fig. 18 – Soluzione grafica trovata da GenD su 127 punti (118562). 
 
 

 
 

Fig. 19 – Soluzione grafica trovata da GenD su 130 punti (6147.82). 
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