SEMEION
CENTRO RICERCHE DI SCIENZE DELLA
COMUNICAZIONE

MASSIMO BUSCEMA

Genetic Doping Algorithm

(GenD)

ANNO 2000

EDIZIONI SEMEION

Technical Paper n. 22



MASSIMO BUSCEMA

Genetic Doping Algorithm

(GenD)

2001

EDIZIONI SEMEION
Technical Paper n. 22



Tutti 1 diritti sono riservati. Ogni tipo di riproduzione, parziale o integrale,
anche in fotocopia, ¢ vietata.

Tutte le procedure e i modelli presenti nel paper sono originali del Semeion
e non possono essere informatizzati senza previa autorizzazione scritta del
Centro Ricerche Semeion, che possiede i programmi informatici protetti.

Copyright © SEMEION 2000

Via Sersale 117/119 — 00128 Roma, Italy



Sommario

Capitolo primo: Caratteristiche Fondamentali
Capitolo secondo: Criterio di vulnerabilita
Capitolo terzo: Criterio di accoppiabilita
Capitolo quarto: Criterio dell’ultima opportunita
Capitolo quinto: Il nuovo Cross Over

Capitolo sesto: Le caratteristiche di GenD

Capitolo settimo: Confronto tra GenD e Genetic Algorithm
tradizionali (G.A.)

Capitolo ottavo.: GenD & TSP
8.1 Il problema
8.2 La codifica del problema
8.3 Gli adattamenti di GenD
8.4 Gli esperimenti
8.5 Irisultati

Riferimenti bibliografici

»

»
»
»
»
»
»

»

12

15
15
16
16
18
19

28



Genetic Doping Algorithm (GenD)

Massimo Buscema (2000)
Direttore del Centro Ricerche Semeion di Roma

1. Caratteristiche fondamentali

L’algoritmo GenD ha 1’obiettivo di rendere piu naturale, ¢ meno centrato sul
concetto culturale di liberismo individuale, il processo evolutivo di popolazioni
artificiali; cio allo scopo di migliorare la velocita e la qualita delle soluzioni che si
tenta di ottimizzare.

L’algoritmo GenD, come primo passo, calcola il punteggio di fitness di ogni
individuo, in accordo alla funzione che si intende ottimizzare. 11 valore della salute
media dell’intera popolazione non ¢, perd, un semplice indice.

In GenD la salute media costituisce il criterio di vulnerabilita, prima, e di
accoppiabilita, dopo, di tutti gli individui della popolazione ad ogni generazione e
ad ogni generazione muta.

Quindi, GenD ¢ un algoritmo che non ha nell’individuo la propria unita fonda-
mentale, come gli Algoritmi Genetici ¢ molti altri algoritmi evolutivi. Per GenD,
’unita di riferimento ¢ la specie, che agisce, ad ogni generazione, sull’evoluzione degli
individui sotto forma di salute media [Eldredge, 1995].

Il feedback loop tra individui e salute media della popolazione (specie)
permette, in GenD, di trasformare evolutivamente la popolazione stessa da una
lista di individui (come nei sistemi evolutivi tradizionali) in un sistema dinamico
di soggetti.

2. Criterio di vulnerabilita

Tutti gli individui, la cui salute ¢ inferiore o uguale alla salute media della po-
polazione, vengono iscritti in una lista di vulnerabilita. Non vengono, percio, eli-
minati, ma continuano a partecipare al processo; tuttavia sono segnati.

Il numero degli individui vulnerabili stabilisce automaticamente il numero
massimo di matrimoni permessi in quella generazione.

Il numero di matrimoni possibili ad ogni generazione, quindi, ¢ variabile ed in
funzione della salute media della popolazione.

Il terzo passo di GenD consiste nell’accoppiamento tra gli individui. Tutta la
popolazione partecipa a questa possibilita. Il numero massimo di chiamate casuali
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all’accoppiamento sara uguale alla meta del numero di individui segnati come
vulnerabili.

3. Criterio di accoppiabilita

Perché un accoppiamento generi prole, entrambi gli individui candidati devono
avere una salute il cui valore sia vicino alla media di salute dell’intera popolazione
(media £ &, dove 2k definisce 1’ampiezza della banda di accoppiabilita).

GenD puo usare anche un altro criterio di accoppiabilita: ogni coppia di
individui puo generare prole se la fitness di almeno uno di loro ¢ maggiore della
media.

Gli effetti di questi due criteri sono molto simili: la distribuzione normale di
ogni fitness individuale, rispetto alla media, lavora ad ogni generazione come una
banda dinamica di cross-over.

L’algoritmo GenD, quindi, assume che gli individui “sui generis”, troppo deboli
o troppo sani, tendano a non sposarsi tra loro. In pratica, il matrimonio non si
addice ai migliori ¢ ai peggiori. Sono i soggetti “pit normali” che tendono a
sposarsi.

Inoltre, in GenD esiste il principio del Sex Free: sono ammessi “incesti” e
“poligamie”.

I “figli” di ogni matrimonio vanno ad occupare i posti dei soggetti segnati nella
lista di vulnerabilita. Puo accadere, quindi, che un individuo debole abbia la
possibilita di continuare ad esistere tramite la propria prole.

4. Criterio dell’ultima opportunita

Il numero di matrimoni possibili ¢ stabilito in funzione del numero di soggetti
segnati come vulnerabili, e della salute media della popolazione. Il criterio di
accoppiabilita, tuttavia, spinge il sistema ad avere un minore numero di matrimoni
celebrati rispetto a quelli possibili. La differenza tra matrimoni disponibili e
matrimoni realizzati definisce il numero delle mutazioni.

Vengono, cosi, mutati quei soggetti presenti nella lista di vulnerabilita che non
sono stati sostituiti dai figli generati dai matrimoni realizzati precedentemente.

A questo numero variabile di soggetti deboli, quindi, viene concessa, tramite una
mutazione, un’ultima opportunita per rientrare nel gioco evolutivo.

5. Il nuovo Cross Over

1l criterio di accoppiabilita permette matrimoni tra gli individui solo quando:
1. entrambi hanno una salute i cui valori rientrino in una banda specifica

Genetic Doping Algorithm 6



intorno alla salute media della popolazione;

2. almeno uno possiede una salute i cui valori siano maggiori della media
dell’intera popolazione.

Cio significa che

SE F; = Salute individuo i-esimo;
F = Salute media;
o= Varianza della salute della popolazione.

ALLORA F; € un candidato al matrimonio se:
k=1-0;
(F-k)<F <(F+k).
Nel secondo caso:
SE (F>FUF >F)
ALLORA i candidati possono generare prole.

L’accoppiamento, tuttavia, in GenD non consiste nel semplice scambio di geni
tra marito € moglie intorno a un punto di incrocio (Cross Over); es.:

P P P o

Marito: CTLTTTTTT] 1° figlio: (LTI T T[T T
. o = . p

Moglie: CLLTTTITT] 2 figlio: CCLT LT T T

Cross over point

In GenD I’accoppiamento di geni tra genitori € effettuato in modo selettivo.
Abbiamo programmato due tipi di accoppiabilita:

1. una logica di Cross Over: quando sono ammesse ripetizioni;

2. un opportunistic Cross Over: quando non sono permesse ripetizioni.

La logica di Cross Over considera quattro casi:

1. Salute del padre e della madre maggiori della salute media dell’intera
popolazione:

P>m) & (M>m)

2. Salute di entrambi i genitori minore della salute media dell’intera
popolazione:

(P<m)& (M <m)
3 e 4. Salute di uno dei genitori minore e quella dell’altro maggiore della salute
media dell’intera popolazione:

(P>m) & (M <m) oppure (P <m) & (M >m)

Genetic Doping Algorithm 7



Nel primo caso, la generazione dei due figli (supponiamo, per semplicita, il
caso con due figli e un solo punto di Cross Over) avviene nel modo tradizionale:

A'+A4" A +B"
=
B'+B" B'+A4"

genitori figli

1. (P>m)& (M>m):

Nel secondo caso, la generazione dei due figli avviene tramite la negazione dei
geni dei genitori:

A+A" A+B"
2. (P <m) & (M < m): A ArE
B +B BI+AN
%{—{ —
genitori figli

Nel terzo e nel quarto caso, solo il genitore la cui salute ¢ superiore alla salute
media trasmette i propri geni, mentre quelli dell’altro vengono negati:

A+A4" A+B"
3.(P>m) & (M <m): =
B'+B" B'+4"
%{_{ —
genitori figli
oppure:
A+A" A+B"
4.(P<m)& (M>m): A 4B
B +B BVJ’_AN
7 —
genitori figli

Il concetto di negazione genetica, in GenD, non corrisponde all’annullamento
dei geni del genitore piu debole, neppure ad un loro rimpiazzo effettuato
casualmente. Si tratta, invece, di una sostituzione genica effettuata con il criterio di
una finestra mobile che scorre, da destra o da sinistra, le opzioni genetiche
alternative per ogni singolo gene in ogni specifica posizione.

Se, ad esempio, un certo gene presenta due sole alternative g[0,1], allora la
finestra mobile avra la seguente forma:

T

11 0 0 :

T10 1 \/
T

Allo stesso modo si procedera con un gene che presenta quattro stati possibili;
g[4,B,C.D]:
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/ A \
D B
r\ c /

11 criterio della negazione tramite finestra mobile ¢ applicabile anche quando i
vari stati possibili di un gene non sono tra loro ordinati. Questo metodo, infatti, si
fonda sulla sistematicita di esplorazione dello spazio delle fasi e sul mantenimento
di uno stesso criterio di sistematicita.

L’opportunistic Cross Over lavora quando non sono permesse ripetizioni.

In questo caso, i genitori sono allineati rispetto ad un punto di Cross Over
casuale; in seguito, ¢ generata la prole selezionando il gene piu efficace dei
genitori. Questo algoritmo ¢ ripetuto finché tutti i geni dei genitori sono completi;
questa regola ¢ molto simile ad una variante dell’algoritmo di Greedy.

In definitiva, il numero dei matrimoni e delle mutazioni in GenD non sono

parametri esterni, ma variabili interne che si autodefiniscono in modo adattivo, tenendo
conto della dinamica complessiva del “sistema popolazione”.

V|4 B C D
T|B ¢ D 4

6. Le caratteristiche di GenD

La caratteristica piu evidente di GenD consiste nel presentare un algoritmo per
certi aspetti molto piu culturale, e per altri piu naturale, rispetto ai classici
algoritmi genetici.

Cio ci ha indotto ad immaginare una nuova famiglia di algoritmi adattivi ed
evolutivi che abbiamo definito “Algoritmi Naturali”, in opposizione agli algoritmi
“occidentali” presenti nella letteratura scientifica.

In GenD, il numero dei matrimoni ¢ delle mutazioni varia di generazione in
generazione. Questi valori sono tra loro connessi, ed entrambi dipendono dai valori
della salute media della popolazione ad ogni generazione.

Queste caratteristiche rendono piu naturale GenD rispetto alle soluzioni
tradizionali: in GenD nulla ¢ fisso, ma tutto dipende dal contesto e il contesto varia
nel tempo.

In GenD, inoltre, I’evoluzione degli individui ¢ centrata intorno alla media
della loro salute; le soluzioni estreme, quindi, (i migliori o i peggiori individui)
vengono considerate come rumore € non come criterio evolutivo.

Ci0 non toglie che, dal punto di vista ingegneristico, gli individui migliori siano
un rumore utile.

La promozione dei matrimoni tra individui medi, in GenD, ha degli effetti
positivi:
a. la salute media di tutta la popolazione cresce in modo lineare e compatto nel
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tempo; questo significa che, per uno stesso problema, vengono fornite piu
soluzioni ottime.

In breve: la salute media tende alla salute del migliore individuo, per cui
molti individui presentano soluzioni diverse ma tutte ottimali.

Inoltre, GenD ha un suo criterio di convergenza: quando la salute media
coincide per piu generazioni con la salute del migliore individuo, allora il
massimo della funzione ¢ stato raggiunto;

b. GenD implica, senza bisogno di regole apposite, 1’aumento della
biodiversita degli individui, in modo proporzionale all’aumento della salute
media della popolazione: piu la salute media cresce, pit aumentano gli
individui vulnerabili, e, di conseguenza, i matrimoni e le mutazioni.
L’aumento della biodiversita, comunque, non incide sugli individui migliori (in
genere non toccati dai matrimoni e dalle mutazioni), ma sulla media: questa,
infatti, subisce una decrescita, per poi riprendere la sua ascesa.

In breve: all’aumento della biodiversita, le soluzioni migliori restano stabili,
ma la riorganizzazione degli individui “medi” pud produrre altre soluzioni,
migliori o equivalenti a quelle precedenti.

Questo significa che GenD pud uscire spontaneamente dai massimi locali
che lo intrappolano, per mirare ai valori pitu prossimi al massimo globale
della funzione.

In GenD la produzione spontanea di biodiversita ha un ulteriore vantaggio: non
¢ necessario ricorrere alla mutazione per mantenere flessibili gli individui
dell’intera popolazione.

Crediamo, infatti, che fondare la biodiversita, cio€ la ricchezza della varianza,
su un errore casuale, sia un errore sistematico. Nei processi naturali la diversita ¢
metodo, non contingenza.

Il processo di mutazione, in GenD, viene collocato, invece, come
un’opportunita per gli individui piu deboli e non come motore evolutivo.

Le caratteristiche culturali di GenD sono altresi evidenti: i matrimoni non
generano figli tautologici rispetto ai genitori. Le parti migliori dei genitori vengono
trasmesse ai figli, mentre le caratteristiche piu deboli vengono cambiate tramite una
esplorazione sistematica dello spazio delle possibilita.

Questo mutamento sistematico ha due conseguenze importanti:

a. trasforma i matrimoni in generatori di biodiversita;

b. permette ai “nuovi nati” di rubare e fare proprie quelle caratteristiche

genetiche, presenti nel contesto della popolazione, che si sono dimostrate
efficaci.

Il rapporto dialettico, che GenD crea tra crescita della salute media e crescita
della biodiversita, rende la dinamica del sistema strutturalmente instabile. Si
tratta di una instabilita strutturale, ma tendenzialmente locale: solo gli individui la
cui salute € uguale o inferiore alla salute media entrano nelle liste di vulnerabilita.
E solo questi rischiano 1’eliminazione.

Questa dinamica instabile obbliga il sistema ad un andamento ritmico, che per-
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G.A. classico

GenD

e Valuta la salute individuale

e Valuta la salute individuale

¢ Crea la ruota delle probabilita

e Calcola la media
e Calcola la varianza
e Crea una banda sulla media

e Crea una nuova popolazione
sul criterio della ruota delle
probabilita

e Crea una lista di vulnerabilita sul
criterio della media

Effettua una % fissa di
matrimoni in funzione della
ruota delle probabilita - (si
sposano i migliori)

e Effettua una % variabile di Matri-
moni in funzione della lista di
vulnerabilita (numero) e della
media (qualitd) - (si sposano i
normali)

Ogni matrimonio ha N Cross
Over e incrocia i geni dei
genitori  (produce possibili
miglioramenti)

e Ogni matrimonio ha N Cross Over e
consiste in una ricerca degli stati
possibili tra genitori e popolazione
(produce possibili miglioramenti e
aumenta la biodiversita)

La percentuale delle mutazioni
¢ fissa e serve a produrre
biodiversita

e La % delle mutazioni € variabile, in
funzione dei matrimoni non
celebrati, e serve a offrire solo ad
alcuni dei piu vulnerabili un’ultima
opportunita

La biodiversita ¢ fornita dagli
errori (mutazioni) e decresce al
crescere della media

¢ La biodiversita ¢ generata dai matri-
moni e cresce al crescere della media

Il sistema tende alla stabilita

o Il sistema diventa instabile quanto
piu si approssima alla stabilita

Non c¢’¢ evoluzione dell’evolu-
zione

e C’¢ evoluzione dell’evoluzione

I peggiori e i medi individui
tendono a non generare

e [ peggiori individui e i migliori ten-
dono a non generare

Tab. 1 — Differenze tra G.A. classico e GenD.

Genetic Doping Algorithm

mette di “saltare”, da un massimo locale ad un altro, in modo spesso vantaggioso
per ’aumento della fitness della funzione.
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7. Confronto tra GenD e Genetic Algorithm tradizionali (G.A.)

Per valutare le proprieta di GenD abbiamo scelto un problema classico di
ottimizzazione, gia affrontato tramite i G.A. tradizionali.
Si tratta di un problema-giocattolo presentato da L. Davis [Davis, 1991], in un
articolo tecnico e accompagnato da un software specifico dei G.A. per affrontarlo.
Si tratta del problema dei “3 colori”: data una griglia NN, ogni cella della
griglia deve essere riempita da un colore, a partire da una tavolozza di 3 colori
costanti (poniamo verde, rosso ¢ blu).
E necessario, perd, impostare alcuni vincoli; questi sono:
a. ogni cella deve aver un colore non uguale sia nella cella sopra che in quella
sotto;
b. ogni cella deve aver un colore non uguale sia nella cella destra che in quella
sinistra;
c. I'ultima colonna della griglia ¢ contigua alla prima colonna;
d. T’ultima riga della griglia ¢ contigua alla prima riga.

Tali vincoli elementari rendono questo problema-giocattolo semplice da
comprendere ed efficace per effettuare un test.

Abbiamo utilizzato il software che accompagna I’articolo di Davis per valutare le
prove del G.A. tradizionale. Per valutare GenD abbiamo usato il nostro software, ma
abbiamo codificato il problema e scritto la funzione di fitness di GenD in modo
identico a come la codifica ¢ stata effettuata nel software di Davis: ogni individuo ¢
composto di NxN geni ed ogni gene ha un alfabeto di 3 caratteri, uno per colore;
inoltre la fitness massima che ogni individuo puo raggiungere ¢ data da 2x(N xN); ciog:
il massimo di non contiguita di colore per riga (NVxN) ed il massimo di non
contiguita di colore per colonna (NxN).

Ad esempio: se la griglia da colorare ¢ 5 x 5, allora ogni “individuo” sara for-
mato da 25 geni e una fitness di 50 indichera tutti gli individui che rispettano tutti e
quattro i vincoli (a, b, ¢, d) che abbiamo prima esposto.

Possiamo ricordare che in una griglia 5 x 5 le colorazioni possibili sono
847.288.609.443, mentre le combinazioni accettabili (50/50 punti) sono 1.000
[Davis, 1991].

I criteri di valutazione che proponiamo per questo confronto sono quattro:

1. il numero di generazioni che il G.A. tradizionale ¢ GenD impiegano per

trovare la prima soluzione (piu piccolo ¢, meglio ¢);

2. il numero di individui necessari per trovare almeno una soluzione (meno
¢, meglio ¢);

3. il numero di generazioni utili per trovare la prima soluzione al crescere
delle dimensioni della griglia, tenendo costante il numero degli individui
(poche generazioni e grandi griglie ¢ meglio);

4. il numero ¢ la rapidita di individuazione di soluzioni accettabili, ma
diverse tra di loro, dopo la prima soluzione (piu ¢, meglio ¢).

La tab. 2 riporta i risultati ottenuti in una griglia 5 x 5 ¢ 100 individui. Nel G.A.
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classico si ¢ usato un tasso di mutazione dell’1% (come preimpostato da Davis per
questo test).

Sono stati eseguiti otto test per ciascun algoritmo, uno di seguito all’altro,
usando lo stesso generatore di numeri random e si sono scelti i sette risultati
migliori di ogni algoritmo.

G.A. Classic GenD
N. Test Ge‘nerazioni' Per | N Test Ge'nerazioni' per | Soluzioni nuove
prima soluzione prima soluzione | per generazione

1 53 1 76 4.5

2 627%* 2 60 17.5

3 133 3 50 7.9

4 109 4 74 4.3

5 29% 5 81** 2

6 31 6 30%* 3.7

7 134 7 53 4.9
Media =145 Media =60 =64

* test migliore - ** test peggiore

Tab. 2 — Tre colori: 5 x 5: 100 individui.

Nota: ogni soluzione diversa, in G.A. equivale a riattivare 1’algoritmo dall’i-
nizio. Nell’ultima colonna viene espresso il numero medio di generazioni
dopo il quale GenD trova una soluzione nuova rispetto alle precedenti;
questo test ¢ effettuato per 100 generazioni dalla prima soluzione.

La tab. 3 mostra i risultati raggiunti dai due algoritmi con una popolazione di 50

individui. I criteri utilizzati per il test sono analoghi a quelli precedenti.

G.A. Classic GenD
N. Test Ge'nerazioni‘ Per | N Test Ge‘nerazioni' per | Soluzioni nuove
prima soluzione prima soluzione | per generazione
1 156 1 84 11.6
2 158 2 91 13.6
3 549%* 3 50% 5.5
4 541 4 66 10.3
5 230 5 66 3.6
6 152* 6 50% 10.7
7 284 7 129%** 7.7
Media =295 Media =89 =89

* test migliore - ** test peggiore

Tab. 3 - Tre colori: 5 x5: 50 individui

Nella tab. 4, il test ¢ stato effettuato con una griglia 6 x 6 e 100 individui di
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popolazione. La procedura ¢ stata analoga a quella dei test precedenti.

G.A. Classic GenD
N. Test Ge'nerazioni Per |\ Tost Ge.nerazioni per Soluzioni Nu.ove
Prima Soluzione Prima Soluzione | per Generazione
1 225 1 61 0.62
2 243 2 48 1.08
3 273%* 3 61 0.95
4 147 4 42% 0.65
5 154 5 47 0.73
6 140 6 62%* 0.79
7 104* 7 58 0.89
Media =183 Media =54 =0.81

* test migliore - ** test peggiore

Tab. 4 - Tre colori: 6 x 6: 100 individui.

Nella tab. 5, € stato effettuato il test con una matrice 7 x 7 con 200 individui.
Superate le 1000 generazioni, la prova ¢ stata considerata fallita (F).

G.A. Classic GenD
N. Test Ge.nerazioni. Per |\ N Test Geﬁerazioni. per | Soluzioni nuove
prima soluzione prima soluzione | per generazione
1 991 1 92 0.73
2 F 2 214 1.03
3 F 3 F /
4 F 4 102 1.03
5 F 5 141 1.14
6 F 6 87* 2.1
7 510%* 7 137 1.06
- . =128 (=2 85% di
Media N 750 (29% (.h Media capacita =1.18
capacita risolutiva) . .
risolutiva)

* test migliore

Tab. 5 - Tre colori: 7 x 7: 200 individui.

Lo stesso test ¢ stato effettuato dotando i due algoritmi di 300 individui di
popolazione. Le procedure sono state analoghe a quelle degli esperimenti
precedenti (vedi tab. 6).

Considerando il non efficace funzionamento del G.A. classico, si € condotto un
ulteriore test, sulla stessa matrice 7 x 7, dotando, pero, i due algoritmi di una
popolazione di 400 individui (la tab. 7 mostra i risultati).
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G.A. Classic GenD
N Test Ge.nerazioni. Per | n Tost Ge.nerazioni. per | Soluzioni nuove
prima soluzione prima soluzione | per generazione
1 F 1 84* 0.38
2 471 2 114 0.87
3 F 3 154 1.30
4 F 4 F /
5 F 5 122 2.02
6 F 6 117 0.95
7 F 7 255 0.66
471 (14% di - - .
Media capacita Media | =141 ,(:.85%.d1 =1.03
. . capacita risolutiva)
risolutiva)

* test migliore

Tab. 6 - Tre colori: 7 x 7: 300 individui.

G.A. Classic GenD
N. Test Ge'nerazioni' Per | N Test Ge‘nerazioni' per | Soluzioni nuove
prima soluzione prima soluzione | per generazione
1 599 1 92 0.85
2 452 2 131 2.3
3 749 3 131 1.07
4 F 4 91 0.5
5 F 5 87* 0.32
6 F 6 139%* 0.54
7 341* 7 89 0.25
Media | =33507%di 1y, =108 =0.83
capacita risolutiva)

* test migliore - ** test peggiore

Tab. 7 - Tre colori: 7 x 7: 400 individui.

8. GenD e il TSP
8.1. Il problema

Per misurare le capacita di modellizzazione di GenD, abbiamo affrontato quesiti
di natura diversa, tra cui quello dell’ottimizzazione di una sequenza non
ripetitiva. Un classico esempio di questi problemi ¢ quello noto come 7SP
(Travelling Sales Person Problem), che appartiene alla classe dei problemi NP
completi.

La notorieta di 7SP ha consentito di confrontare GenD con altri algoritmi
(Greedy e varie implementazioni di Genetic Algorithm) sullo stesso Data Base.
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Dato un insieme di punti P(x, y), trovare il cammino minimo che connette tutti
1 punti in un grafo hamiltoniano (in modo tale che ogni punto sia connesso a due
soli altri punti e il grafo sia chiuso). Il numero di percorsi possibili cresce
esponenzialmente al crescere del numero dei punti, secondo 1’equazione

( Numero Punti—1)
2

L’algoritmo di GenD, per questa tipologia di problemi, ¢ rimasto lo stesso,
salvo 1 necessari adattamenti apportati data la natura del quesito.

Numero Percorsi =

8.2. La codifica del problema

Dati N punti, I’individuo ¢ costituito da 40 geni ed ogni gene ha un alfabeto di
40 opzioni; ogni gene rappresenta la porzione di un punto, ed ogni opzione il
punto x, y specifico in quella posizione.

Esempio:

1° 2° 3° 4° | ... N

/K Quarta posizione

2° Punto 1 )

10

3° Punto 2
Possibili opzioni
Punto 3 > per la prima
posizione

Punto N
Questa codifica ¢ la pit economica ed usata per questo tipo di problema.
Gli altri tipi di Algoritmi Genetici che sono stati confrontati con GenD hanno
codificato il problema nello stesso modo. Cio rende pertinente un confronto.

8.3. Gli adattamenti di GenD

Per adattare GenD alla specificita del problema sono stati effettuati i seguenti
adattamenti:
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a. Cross Over con ottimizzazione locale (Opportunistic Recombination): due
individui vengono accoppiati per produrre un solo offspring. L’accop-
piamento avviene con una ottimizzazione locale: ogni gene viene scelto dal
“padre” o dalla “madre” a seconda di quale dei due “genitori” offra la
soluzione piu conveniente, escludendo e scorrendo in parallelo i geni dei due
genitori, partendo da un gene casuale; per il resto si tratta del tipico Cross
Over previsto da GenD.

b. Mutazione: le mutazioni vengono effettuate in modo usuale, scambiando
due geni a caso dalle loro posizioni.

c. Operatori di Ottimizzazione Locale: su ogni individuo si provano ad
effettuare dei cambiamenti nei geni e solo se ’operazione migliora il
risultato ¢ accettata, altrimenti ¢ ignorata.

d. Tribu e Contaminazioni: questa architettura non ¢ specifica per il proble-
ma TSP e puo essere vista come un ulteriore sviluppo dell’algoritmo di
GenD.

Se, per risolvere il problema, la popolazione di individui viene fissata a M,
allora si possono immaginare T tribu (sottopopolazioni) di ™/ individui

ciascuna.
Nella fase cooperativa avviene che, ad ogni generazione, ogni tribu offre ad
ogni altra il suo migliore individuo di quella generazione ed una copia
dello stesso leggermente mutata. Ogni tribu ricevente controlla quale dei
due individui offerti non & presente nella propria sottopopolazione e, di
conseguenza, accetta o rifiuta I’offerta.
Abbiamo definito “Contaminazione” (o anche “Immigrazione”) questo
operatore, in quanto consente ad ogni tribu di essere contaminata dai modelli
delle altre tribu da variazioni di questi.
Parliamo quindi di EsoMatrimonio quando individui provenienti da 2 tribu
diverse generano un figlio che andra a sostituire nella tribu del genitore che
ha il fitness piu alto 1’individuo con il fitness piu basso.

e. E’ presente, inoltre, 1’operatore di duplicazione che controlla in modo
random tutte le sottopopolazioni e, quando trova in una tribu due individui
uguali, produce una mutazione casuale su uno dei due.

8.3.1. Gli Operatori di Ottimizzazione Locale

Gli Operatori di Ottimizzazione Locale intervengono ad ogni ciclo evolutivo
sul singolo individuo sperimentando degli adattamenti dei geni che vengono
effettuati solo se migliorano la fitness :

1. Inversion: I’operatore “Inversione” si serve di due geni scelti casualmente

dallo stesso individuo e prova ad invertire 1’ordine “prima—dopo” tra i geni
selezionati.
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2. Exchange: I'operatore “Exchange” sceglie due geni a caso (Gl e G2)
(distanti tra loro di almeno 2 posizioni) e li scambia tra di loro.

3. Swaping: I’operatore “Swapping” sceglie un gene a caso (G1) e lo scambia
con il successivo.

4. Neighbourhood: I’operatore di “Neighbourhood ™ sceglie un gene casuale
(G1), definisce un intorno (R) di quel gene, casuale anch’esso;
successivamente sceglie, fuori dall’intorno il gene (G2) piu vicino al primo
(G1); dopodiché mette G2 in un punto dell’intorno R di G1, facendo
scorrere di una posizione gli altri geni.

5. Self-generation: I’operatore di “Self-generation” divide i geni in tre blocchi
casuali ABC, in modo tale che ogni blocco contenga piu di un gene, e li
riscrive in ordine BAC.

6. Altruism: D’operatore di “Altruism” sceglic un gene casuale (Crossl) e
quindi definisce un intorno (Bound) in proporzione al numero di geni
((numGeni/4)-1). All’interno dei limiti di Bound si sceglie quindi un gene
(Cross2), casuale anch’esso. Si invertono quindi Cross1 con Cross2.

7. Shuffle: ’operatore di “Shuffle” sceglie 3 geni casuali (Crossl, Cross2,
Cross3). Sulla base della posizione occupata dai tre geni divide il genoma in
4 parti A,B,C,D e li ricombina nella sequenza B,D,C,A.

8. Slip: I’operatore “Slip” sceglie due geni a caso (G1 e G2), distanti tra loro
di almeno 3 posizioni, e fa slittare i geni compresi tra essi di una posizione.

9. Imsertion: I’operatore di “Insertion” sceglie due geni casuali (First e Last)
che siano ad una certa vicinanza tra loro. Sceglie quindi casualmente 2 altri
geni (NewFirst) e (NewLast), al di fuori dei geni compresi tra First-
1(BeforeFirst) e Last-1(AfterLast). Scambia quindi tra loro newFirst con
BeforeFirst e NewLast con AfterLast.

10. Annealing: I’operatore “Annealing” sceglie un gene a caso (G1) e quindi
ridistribuisce casualmente i 5 geni che occupano le posizioni successive.

8.4. Gli esperimenti

Gli esperimenti che abbiamo condotto sono stati effettuati su punti generati
casualmente dal programma “Randxy.c” di B.Reetz in “Greedy Solutions to the
Travelling Sales Person Problem” Advanced Technology for Develojers (ATD),
volume 2, Maggio 1993, pp.8-14).

Abbiamo confrontato GenD con quattro algoritmi diversi:

1. “Greedy”, nella versione fornita da B. Reetz in ATD, vol. 2, maggio 1993,

pp.8-14;

2. “Classic Genetic Algorithm” (CGA), nella versione software scritta da C.

Klimasauskas (in ATD, vol. 2, Feb. 1993, pp.9-17)
3. “Enanched Genetic Algorithm” (EGA), nella versione scritta da C.
Klimasauskas (in ATD, vol. 2, Feb. 1993, pp.9-17)
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4. “Simulating Anneal” (SA), nella versione scritta da C. Klimasauskas (in
ATD, vol. 2, June 1993, pp. 9-16).

I confronti sono stati eseguiti su 18 classi di punti.

E’ stata effettuata una sola prova per ogni algoritmo e la popolazioni degli
algoritmi genetici ¢ stata fissata a 50 individui, mentre nel caso di GenD si ¢
lavorato con 5 tribu di 10 individui ciascuna.

8.5. I risultati

La tabella 8 riporta i risultati del confronto.

Tranne che per quello di Greedy, che ha un sistema di calcolo diverso, gli altri
tre tipi di Algoritmi Genetici sono stati lasciati evolvere fino al punto che la
soluzione non si stabilizzasse; ¢ comunque stato assunto un limite di 10.000
generazioni.

Non ¢ stato possibile effettuare confronti sulle rapidita di computazione, in
quanto le tecniche software dei tre Algoritmi Genetici sono molto diverse (GenD,
ad esempio, si serve di una grafica dinamica); 1’algoritmo di Greedy ha nella
rapidita il suo punto forte, per cui le tabelle dei risultati vanno lette tenendo questo
dato nella dovuta importanza.

Siccome 1 risultati ottenuti da GenD sono risultati sempre 1 migliori, abbiamo
deciso di allegare la soluzione grafica trovata da GenD per ogni prova (fig. 2—19).

L’indice MST (Minimo Spanning Tree) ¢ stato ricavato tramite il programma
MST.EXE fornito da B.Reetz in “Greedy Solutions to the Traveling sales Person
Problem” in ATD, vol. 2, Maggio 1993, pp.8-14.

Nel grafico in figura 1, mostriamo le distanze (espresse in percentuali) per ogni
algoritmo dall’indice MST.
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Algorithms Approaching in % to MST

Points Greedy G.A E.GA.  S.A.  GenD | MST No Greedy G.A. E.GA. S.A  GenD
N A .G.A. A Optimized* A E.GA S.A

City 30 473 42551 42374 42374 42374 | 324 953 5401 68.67 6922 6922 69.22
City 35 529 54025  519.44 50845 50845 | 429 1877 76.69 74.07 78.92 8148 81.48
City 40 570 59234 48523 47529 47529 | 384 1736 51.56 4574 73.64 7623 7623
City50 | 603.68 620.78  558.8 53627 53622 | 429 2741 59.28 5530 69.74 75.00 75.01
City 60 | 696.79 77191  624.99 62421 61927 | 494 2623 58.95 4374 7348 73.64 74.64
City 65 679.9 79176  647.83  649.92 62823 | 541 3326 7433 53.65 8025 79.87 83.92
City70 | 804.92 881.67 74026 677.7 663.96 | 540 3844 50.94 3673 6291 74.50 77.04
City75 | 755.88 828 720 683.78 662.07 | 537 3643 5924 4581 6592 72.67 76.71
City 80 | 730.63 880.54 71678  702.64 67348 | 549 3859 66.92 39.61 69.44 7201 77.33
City 90 8192 1206 80635 793.59 74848 | 606 4011 64.82 099 6694 69.04 76.06
City 100 | 892.05 902 782 80034 76152 | 606 5502 5280 51.16 7096 67.93 7434
City 120 | 906.34 112853  861.9  908.91 806.12 | 666 5797 6391 30.55 70.59 63.53 77.74
Eil 51 4964 484 437 43545 42887 | 376 1271 67.98 7128 83.78 84.19 85.94
Eil 76 606.77 632 566.95 567.79 54436 | 441 1950 6241 56.69 7144 7125 7656
Eil 101 | 736.36 98655  687.89  685.75 642.03 | 516 2064 5729 881 66.69 67.10 75.77
Berlin 52 |8182.19 8618.92 7958.05 7544.36 7544.36| 5988 | 21802 6336 56.06 67.10 74.01 74.01
Bier 127 | 125023 161428.59 123062.75 123969 118562 | 93844 | 390833 | 66.78 27.98 68.86 67.90 73.66
Ch130 |7195.33 942541 6478.14 6457.17 6147.82| 5072 | 47503 58.14  14.17 7228 72.69 78.79

(*) Il valore riportato in colonna corrisponde alla media di N prove di calcolo random della distanza di un set di punti.

Tab. 8 — Risultati del confronto di alcuni algoritmi sul problema TSP.
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Fig. 2 — Soluzione grafica trovata da GenD su 30 punti (323.74).

Fig. 3 — Soluzione grafica trovata da GenD su 35 punti (508.45).

Fig. 4 — Soluzione grafica trovata da GenD su 40 punti (475.29).
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Fig. 5 — Soluzione grafica trovata da GenD su 50 punti (536.27).

Fig. 6 — Soluzione grafica trovata da GenD su 60 punti (619.27).

Fig. 7 — Soluzione grafica trovata da GenD su 65 punti (628.23).
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Fig. 8 — Soluzione grafica trovata da GenD su 70 punti (663.96).

Fig. 9 — Soluzione grafica trovata da GenD su 75 punti (662.07).

Fig. 10— Soluzione grafica trovata da GenD su 80 punti (673.48).
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Fig. 11 — Soluzione grafica trovata da GenD su 90 punti (748.48).

Fig. 12 — Soluzione grafica trovata da GenD su 100 punti (761.52).

Fig. 13 — Soluzione grafica trovata da GenD su 120 punti (806.12).
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Fig. 14 — Soluzione grafica trovata da GenD su 51 punti (428.87).

Fig. 15 — Soluzione grafica trovata da GenD su 76 punti (544.36).

Fig. 16 — Soluzione grafica trovata da GenD su 101 punti (642.03).
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Fig. 17 — Soluzione grafica trovata da GenD su 52 punti (7544.36).

Fig. 18 — Soluzione grafica trovata da GenD su 127 punti (118562).

Fig. 19 — Soluzione grafica trovata da GenD su 130 punti (6147.52).

Genetic Doping Algorithm

27



Riferimenti bibliografici

Ackley D. H. (1987), Connectionist Machine for Genetic Hillclimbing, Kluwer, Boston,
1987.

Arbib M. A. (1995), (Edited by) The Handbook of Brain Theory and Neural Networks, A
Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England, 1995.
Bovet D. P. and P. L. Crescenzi (1992), Teoria della Complessita Computazionale, Franco

Angeli Editore, Milano, 1992 (Theory of Computational Complexity).

Buscema M. & Semeion Group (1999a), Reti Neurali Artificiali e Sistemi Sociali
Complessi, Vol. I: Teoria e Modelli, Franco Angeli, Milano, 1999.

Buscema M. (1999b), “Genetic Doping Algorithm”, in BUSCEMA 1999a, pp. 465—486.

Caudil H. and Ch. Butler (1990), Naturally Intelligent Systems, MIT Press, Cambridge,
MA, 1990.

Chalmers D. J. 1990, “The Evolution of Learning: An Experiment in Genetic
Connectionism”, in TOURETZKY 1990b.

Dagli C. H. and S. Sittisathanchai (1993), “Genetic Neuroschedular for Job Shop
Scheduling”, Computers & Industrial Engineering, 25, 267-270, 1993.

Davis L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, ITP, 1991.

Dawid H. (1999), Adaptive Learning by Genetic Algorithms. Analytical Results and
Applications to Economic Models, Springer-Verlag, Heidelberg, New York, 1999.

Deboeck T. and G. J. Deboeck (1992), “Genetic Optimization of Neural Nets for Trading”,
ATD, vol. 1, October 1992, pg. 1-9.

Eldredge N. (1995), The Great Debote at the High Table of Evolutionary Theory, John
Wiley & Sons, New York, 1995 (in italian: Einaudi, Turin, 1998).

Friedrich C. M. and C. Moraga (1997), “Using genetic Engineering to Find Modular
Structures and Activation Functions for Architectures of Artificial Neural Networks”,
Computation Intelligence, Theory and Applications, Proceedings of the 5th Fuzzy Days,
(LCNS 1226), 150-161, Dortmund, Germany.

Gen M. and R. Cheng (1997), Genetic Algorithms and Engineering Design, Wiley
Interscience, New York, 1997.

Harp S. A., T. Samad and A. Guha (1990), “Designing Application-Specific Neural
Networks Using the Genetic Algorithm”, in TOURETZKY 1990a.

Kohonen T. (1995), Self-Organizing Maps, Springer Verlag, Berlin, Heidelberg, 1995.

Kosko B. (1993), Fuzzy Thinking. The New Science of Fuzzy Logic, Hyperion/Disney
Books, 1993.

Genetic Doping Algorithm 28



Koza J. R. (1992), Genetic Programming On the Programming of Computers by Means of
Natural Selection, A Bradford Book, The MIT Press, Cambridge, Massachusetts
London, England, 1992.

Miller G. F. and P. M. Todd (1990), “Exploring Adaptive Agency I: Theory and Methods
for Simulating the Evolution of Learning”, in TOURETZKY 1990a.

Mitchell M. (1996), An Introduction to Genetic Algorithms, The MIT Press, Cambridge,
MA, 1996.

Nolfi S. (1995), “"Genotypes" for Neural Networks”, in ARBIB 1995.

Quagliarella D., J. Periaux, C. Polani and G. Winter (eds.) (1998), Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science, John Wiley and Sons, Ltd,
England, 1998.

Rao S. S. (1996), Engineering Optimization. Theory and Practice, Wiley Interscience, New
York, 1996.

Rawling G. (1991), Foundations of Genetic Algorithms, Morgan Kaufman, San Mateo,
CA., 1991.

Rogers D. (1990), “Predicting Weather Using a Genetic Memory: A Combination of
Kanerva’s Sparse Distributed Memory with Holland’s Genetic Algorithms”, in
TOURETZKY 1990a.

Rumelhart D. E. and J. L. McClelland (1986), (eds.) Parallel Distributed Proces-sing,
Vol.1 Foundations, Explorations in the Microstructure of Cognition, Vol.2
Psychological and Biological Models. The MIT Press, Cambridge, MA, London,
England 1986.

Touretzky D. S. (ed) (1990a), Advances in Neural Information Processing Systems, vol. 2,
Morgan Kaufman, San Mateo, CA, 1990.

Touretzky D. S., (ed.) (1990b), Connectionist Models, Proceedings of the 1990 Summer
School, Morgan Kaufman, San Mateo, CA, 1990.

Whitley L. D. (ed.) (1993), Foundation of Genetic Algorithms 2, Morgan Kaufmann, San
Mateo, CA, 1993.

Whitley L. D. and M. D. Vose (eds.), (1995) Foundation of Genetic Algorithms 3, Morgan
Kaufmann, San Mateo, CA, 1995.

Genetic Doping Algorithm 29



SEMEION
CENTRO RICERCHE DI SCIENZE DELLA COMUNICAZIONE

Semeion Technical Papers

P1-2 M. BUSCEMA, G. MASSINI, L’immagine
della criminalita nei Mass Media, La Cri-
minalita nei Telefilm, (vers. Ita/Ingl). 1984

TP 3 M. BUSCEMA, Dinamiche Violente,

(vers. Ita/Ingl). 1985

TP 4 M. BUSCEMA, Teoria della Procedura di
Prevenzione, (vers. Ita/Ingl). 1985

TP 5 M. BUSCEMA, Introduzione al Modello
MQ, (vers. Ita/Ingl/Franc). 1987

TP 6 M. BUSCEMA, Intelligenza Artificiale:
Sistemi Esperti e Sistemi Complessi, (vers.
Ita). 1987

TP7 M. BUSCEMA, Il panorama teorico del
Mac P, (vers. Ita/Ingl). 1988

TP 8 M. BUSCEMA, G. MASSINI, L. CASSARDO, 1/

Modello G.T.: Modello per lo studio del-

I’Ergonomiadell’Interfaccia Uomo/Macchina,

(vers. Ita). 1988

TP 9 M. BUSCEMA, Il Cervello nel Cervello,
(vers. Ita/Ingl/Franc). 1989

TP 10 M. BUSCEMA, L. CASSARDO, Osservatorio
Permanente sul Disagio in Incubazione,
(vers. Ita/Ingl/Franc). 1990

TP 11 M. BUSCEMA, Codici e Linguaggi: Intro-
duzione, (vers. Ita). 1991

TP 12

TP 13

TP 14

TP 15

TP 16

TP 17

TP 18

TP 19

TP 20

TP 21

M. BUSCEMA, Dalle Macchine alle Reti,
(vers. Ita). 1992

M. BUSCEMA, Teoria del Disagio in Incu-
bazione, (vers. Ita/Ingl). 1994

M. BUSCEMA, Self-Reflexive Networks.
Theory, Topology, Applications, (vers.
Ingl). 1994

M. BUSCEMA, MAC.P.: Modello di
Autorganizzazione Cognitiva in Parallelo,
(vers. Ita). 1995

G. DIDONE, Studio Dinamico della Rete
AutoRiflessiva Monodedicata, (vers. Ita).
1994

M. PANDIN, Analisi del Comportamento
della Rete AutoRiflessiva, (vers. Ita). 1994
M. BUSCEMA, Reti Neurali Constraint
Satisfaction e Recirculation,
(vers.Ita/Ingl). 1995

M. BREDA, Basic Principles on Back-
Propagation Neural Networks, (vers.Ingl).
1997

M. BUSCEMA, Genetic Doping and PST: a
New Mapping System, (vers.Ingl). 2001

M. BUSCEMA, M. BREDA, S. TERZI, Sine
Net, (vers. Ita). 2000-2002

Via Sersale 117/119, 00128 ROMA ~ Tel. 06/56652350 ~ Fax
Internet - http://www.semeion.it ~ E-mail: semeion@semeion.it
Ente scientifico e morale con personalita giuridica riconosciuta dallo Stato Italiano tramite
il Ministero dell'Universita e della Ricerca Scientifica e Tecnologica con decreto
ministeriale del 12 novembre 1991, Registro 15 Universita e Ricerca, foglio n° 269
Iscrizione Tribunale 2174 Ufficio Provvedimenti Speciali



