
Multiobjective Graph Clustering
with Variable Neighbourhood Descent

by

Igor Naverniouk

B.Sc., The University of British Columbia, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

Computer Science

THE UNIVERSITY OF BRITISH COLUMBIA

April 21, 2005

c© Igor Naverniouk, 2005

Abstract ii

Abstract

Graph clustering is a well-known combinatorial problem that appears in many different
incarnations. The task is to partition the vertex set of a graph in order to minimize a
given cost function. Clustering has applications in VLSI design, protein-protein inter-
action networks, data mining and many other areas. In the context of multiobjective
optimization, we have more than one cost function, and instead of finding a single opti-
mal solution, we are interested in a set of Pareto-optimal solutions. We present a multi-
objective variable neighbourhood descent algorithm for this problem and its results on
a collection of synthetic and real world data. On data sets that have a known “correct”
clustering, our algorithm consistently finds interesting unsupported solutions (those
that can not be found by any linear single-objective restriction of the problem), demon-
strating a clear advantage of the multiobjective approach. Additionally, the shape of the
Pareto front generated by the algorithm can give clues for the areas of the cost function
space that contain non-trivial solutions. We compare our method to a single-objective
clustering algorithm (RNSC, [41]) and a multiobjective algorithm (MOCK, [27]). On
all data sets, our algorithm requires substantially longer CPU time, but produces higher
quality results.

Contents iii

Contents

Abstract . ii

Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . vii

1 Introduction . 1
1.1 Clustering . 1
1.2 Multiobjective Optimization . 2
1.3 Stochastic Local Search . 2
1.4 Ouline of Thesis . 3

2 Related Work . 4
2.1 Single-Objective Clustering . 4

2.1.1 Direct Methods . 4
2.1.2 Stochastic Local Search . 5

2.2 Cost Functions for Clustering . 6
2.2.1 Cost Functions Used in the Literature 6

2.3 Multiobjective Optimization . 8
2.3.1 Single-objective Restrictions 9
2.3.2 Multiobjective Stochastic Local Search 10

3 Algorithm . 11
3.1 Overview . 11

3.1.1 Variable Neighbourhood Descent 11
3.1.2 Cost Functions . 14
3.1.3 Depth Runs . 16
3.1.4 Distributed Computation . 17

3.2 Implementation and Data Structures 17
3.2.1 Input Data . 18
3.2.2 PE-set . 18

Contents iv

4 Experimental Results . 20
4.1 F-measure . 20
4.2 Unweighted Graphs . 21

4.2.1 25-Vertex Scale-Free Graphs 21
4.2.2 100-Vertex Scale-Free Graph 21

4.3 Vector Sets . 22
4.3.1 Square1(100) . 23
4.3.2 Square1(64) . 23
4.3.3 Iris . 23

5 Discussion and Conclusions. 30
5.1 Discussion . 30

5.1.1 Comparison to Single-Objective Clustering 30
5.1.2 Comparison to Other Multiobjective Algorithms 31
5.1.3 Examining the Pareto Front 31
5.1.4 Advantages of Depth Runs 32
5.1.5 Running on Larger Random Graphs 32

5.2 Future Work . 33
5.2.1 Speeding up Updates of the PE-set 34
5.2.2 Adding ’seen’ Flags to Explored Solutions 34
5.2.3 Needle Runs . 35
5.2.4 Using Component-Based Cost Functions 35
5.2.5 Allowing Worsening Diversification Moves 36
5.2.6 Optimizing Parallel Computing 36

Bibliography . 37

List of Tables v

List of Tables

4.1 Dependence of the CPU time and the number of computed solutions
on the number of depth runs for the sf25.gra input. 100 independent
runs were performed in each case. 21

4.2 CPU running times, F-measure quantiles and Pareto front sizes for 5
independent runs of MOVND on the Square1(64) data set. QVC is the
Quartile Variation Coefficient (100 q75−q25

q75+q25). 25
4.3 CPU running times, F-measure quantiles and Pareto front sizes for 5

independent runs of MOVND on the Square1(64) data set. 25

List of Figures vi

List of Figures

4.1 Size of the Pareto front for 50 random 25-vertex scale-free graphs with
5 independent runs, 25 depth runs each. 22

4.2 Comparison of the Pareto front to a single-objective algorithm on a
scale-free graph with 100 vertices. The figure on the right shows the
same plot, but with the y-axis in log scale. 23

4.3 Square1(100) data set. 24
4.4 Pareto front for the Square1(100) data set with transition probabilities

inversely proportional to squared Euclidean distance. The arrow shows
the correct clustering and two solutions similar to it. The plot on the
right displays the y-axis in log scale, which clearly shows that the good
solutions are unsupported. 24

4.5 Iris results with transition probabilities inversely proportional to distance. 26
4.6 Iris results with transition probabilities inversely proportional to squared

distance. 27
4.7 10 best Iris results in terms of the F-measure. 28
4.8 Cumulative distributions of F-measure values in the Pareto fronts for

the Iris data set for a single run of MOCK and our algorithm (MOVND).
Our algorithm has clearly found a number of solutions with higher F-
measure values. 28

4.9 The Pareto front generated after 90 seconds of MOVND running on the
Iris data set. Two depth runs were used. 29

5.1 Pareto front for a 500-vertex weighted graph built by thresholding a
correlation matrix. 33

5.2 Results for a 2000-vertex graph compared to a single run of RNSC.
The y-axis is shown in log scale. 34

Acknowledgements vii

Acknowledgements

I would like to thank my supervisor, Holger Hoos, for invaluable suggestions, ideas,
advice and support. Thank you to Andrew King for the RNSC source code, to Julia
Handl for the MOCK source code and to Raymond Ng, my second reader.

Chapter 1. Introduction 1

Chapter 1

Introduction

In this thesis, we present a new algorithm for multiobjective graph clustering. The
algorithm is a variant of Multiobjective Variable Neighbourood Descent and generates,
for a given graph, a set of clusterings that are Pareto-optimal with respect to a set of
given cost functions.

1.1 Clustering

A graph is a pairG = (V,E), whereV is a finite set ofverticesandE ⊆ V 2 is a set
of edges. In anundirectedgraph,E is symmetric,i.e.if (u, v) ∈ E, then(v, u) ∈ E.
In this case, the edge and itsdual are usually referred to as a single edge.Weighted
graphs associate a number (weight) with each edge. By convention,n denotes|V | and
m denotes|E|. A complete(undirected) graph is a graph that obeysm = n2.

A (crisp)clusteringof a graph is a partitionC = {C0, C1, . . . , Ck} of V , i.e.

∀i, j : Ci ∩ Cj = ∅,

C0 ∪ C1 ∪ . . . ∪ Ck = V.

A cost functionf assigns a real number to any given clustering ofG. The (Single-
Objective) Clustering problem is then to find a clustering that minimizes a given cost
function on a given graph. An example of a cost function is the negative sum of edge
weights between clusters. Other cost functions are discussed in Section 2.2.1. The
elements being clustered are sometimes referred to asnodes, points, sitesor vertices.

Clustering is usually defined in terms of weighted, undirected graphs, where weights
correspond to either similarity scores or distances. Unweighted graphs can be viewed
as a special case of weighted graphs, where each edge has a weight of one. Much of
the literature on clustering deals with sets ofk-dimensional vectors. Such a set can be
viewed as a complete, weighted graph, where each vector is a vertex, and the weight
of each edge is the distance between the two vectors it connects. Distance is usually
Euclidean, but other choices are possible (e.g.correlation).

Applications of clustering range from multiple sequence alignment [10], to gene
expression [2], to galaxy formation [56]. Clustering is one of the most widely used
tools in data mining [38, 58] and natural language processing [53, 48]. Other applica-
tions include image registration, protein-protein interaction networks and VLSI circuit
design. A Google Scholar search for “clustering” brings up 379,000 hits. There are
many formalizations of the Clustering problem, most of which are NP-hard or even
hard to approximate [20, 25, 11].

Chapter 1. Introduction 2

1.2 Multiobjective Optimization

Multiobjective Optimization Problemsare minimization problems that work with a
vector-valued cost function,F . The goal is to find the setS of Pareto-optimal solu-
tions. Such a set has the following properties. For every solutionx /∈ S, there exists a
solutionx̂ ∈ S, such that no component ofF (x̂) is larger than the corresponding com-
ponent ofF (x), and at least one component is smaller. Furthermore,S is the smallest
such set.

There are both theoretical and practical reasons for considering the Clustering prob-
lem in a multiobjetive setting. In practice, there is a multitude of literature that uses
clustering in one form or another, and each author has her own definition of a cost func-
tion and a “good” clustering (see Section 2.2.1). From the theoretical point of view,
Kleinberg [42] proved that there is no single-objective clustering algorithm that works
with an arbitrary cost function and produces results that have three very reasonable
properties (scale-invariance, richness and consistency).

Definition 1.2.1. The Multiobjective Clustering Problemis to compute the Pareto-
optimal setS of clusterings (partitions ofV) for a given graphG = (V,E) with respect
to a given cost functionF = (f1, f2, . . . , fk). This means that for each clustering
s /∈ S, there is a correspondinĝs ∈ S such that

∀ifi(ŝ) ≤ fi(s),

∃jfj(ŝ) < fj(s).

Furthermore,S is the smallest such set.

The multiobjective version of the Clustering problem is a generalization of the
single-objective case and is, therefore, even more difficult. Most people are interested
in computing approximations to the Pareto-optimal set,S. The algorithm presented in
this thesis uses Stochastic Local Search to compute such an approximation.

1.3 Stochastic Local Search

Stochastic Local Search (SLS) is a class of algorithms (or meta-heuristics) that use
randomness to search the set of all possible solutions to a combinatorial problem. The
majority of effort in SLS research is spent on coming up with clever strategies for pre-
venting such algorithms from getting stuck in local minima. A defining characteristic
of SLS algorithms is their focus on making quick, local updates to an existing approx-
imate solution in order to generate a better approximate solution. An update involves
generating a neighbouring solution and modifying the cost function value(s) appropri-
ately. Often, recomputing the value of a cost function for each new solution is too
costly, and a better approach is to compute the change in value that is associated with
the corresponding local update.

Most of these meta-heuristics maintain a set of approximate solutions (often, just
one solution). At each step, we pick a solution from the set and locally modify it
to obtain another valid approximate solution. Then, according to some criterion, we

Chapter 1. Introduction 3

decide whether to keep this new solution or discard it. This decision can be based on the
solutions’ cost function values, previous search history and/or randomness. Eventually,
a termination condition causes the algorithm to stop and produce a result.

Different independent runs of a stochastic algorithm may produce different results.
This is why these algorithms are usually executed multiple times, which also allows
for a more robust performance analysis and comparison of results.

SLS algorithms are a popular approach to solving a variety of NP-hard problems.
The best known algorithms for Travelling Salesman, 3-Satisfiability, Constraint Satis-
faction and many other problems are SLS algorithms [1, 35]. Examples of SLS include
Iterated Local Search, Dynamic Local Search, Simulated Annealing, Evolutionary Al-
gorithms, Ant Colony Optimization, Memetic Algorithm and more. For some NP-hard
problems, SLS provides the only known method of obtaining non-trivial results. There
is a variety of SLS algorithms for Single-Objective Clustering [37, 23, 14, 39, 41].

The algorithm presented in this thesis is based on Variable Neighbourhood Descent.
VND takes an approximate solution and modifies it, creating a sequence of successively
better solutions. Eventually, it reaches a local minimum and uses a different search
neighbourhood (local changes of a different sort) to find solutions that are not locally
minimal. Having escaped the local minimum, it then continues as before, alternating
between the neighbourhoods.

1.4 Ouline of Thesis

Chapter 2 describes previous work on single-objective clustering (Section 2.1), cost
functions that have been used in the literature on single- and multi-objective clustering
(Section 2.2) and related work on multiobjective optimization problems (Section 2.3).

In Chapter 3, we describe our algorithm (Multiobjective Variable Neighbourhood
Descent). Section 3.1 presents a high-level overview of the most important procedures.
Section 3.2 gives the implementation details for the non-trivial datastructures used.

In Chapter 4, we present our experimental results. Section 4.1 describes the F-
measure – a mechanism for assigning a score to a clustering, given that the “correct”
clustering for the data set is known. Section 4.2 presents our results for randomly
generated unweighted graphs. We compare our algorithm to a state-of-the-art single
objective algorithm (RNSC). Section 4.3 shows our results on a randomly generated
vector set and a real-world data set, both with known expected clusterings. We compare
our results to an evolutionary multiobjective algorithm (MOCK).

Chapter 5 contains a discussion of the results (Section 5.1), our conclusions and a
number of improvements that can be made to our algorithm (Section 5.2).

Chapter 2. Related Work 4

Chapter 2

Related Work

The algorithm we present computes an approximate solution to the multiobjective clus-
tering problem. This chapter describers some of the existing approaches for doing clus-
tering, previous work on multiobjective optimization in general and related applications
of stochastic local search.

2.1 Single-Objective Clustering

There are several variants of the clustering problem.(Crisp) graph clusteringis the
problem of partitioning the vertex set of a given graph in a way that minimizes a certain
cost function. The cost function assigns a value to every partition (clustering) of the
graph. Section 2.2 lists several cost functions that are used in the literature. When each
vertex in the graph is a point inn-dimensional space, then clustering is sometimes
referred to asvector quantization. Non-crisp clustering allows for overlapping clusters
and unclustered vertices. The Maximum Clique problem can be considered a special
case of non-crisp clustering.

2.1.1 Direct Methods

By “direct” methods, we mainly mean deterministic algorithms and randomized greedy
algorithms (e.g., k-means clustering [26]). Most classic methods for clustering come
in one of two varieties –agglomerative clusteringandpartitive clustering.

Agglomerative methods initialize each element to belong to its own cluster. They
then proceed to merge clusters until a certain terminating condition is met. Examples
of the use of agglomerative clustering algorithms can be found in [3, 57, 44].

Partitive clustering starts with a single cluster containing all elements and proceeds
by splitting clusters until a terminating condition is satisfied. Examples of the use of
partitive clustering algorithms are [54, 52, 40].

A different single-objective clustering algorithm isk-means clustering [26]. It
works for datasets that consist of points inn-dimensional space. This algorithm re-
quiresk as an input parameter and generates a clustering withk clusters in it. The
most basick-means implementation starts with a randomk-clustering and improves
it in a sequence of modifying iterations. In each iteration, we first compute the cen-
troids of each existing cluster. We then assign each data point to the cluster defined
by the centroid that is closest to that data point (in terms of Euclidean distance). The
algorithm terminates when no change has been made in the last iteration. Thek-means

Chapter 2. Related Work 5

algorithm essentially performs hill-climbing – the simplest example of stochastic local
search.

Thek-means algorithm is the best-known member of the class of representation-
based algorithms, where each cluster is represented by a data point – either a member
of the original data set or a new point constructed during the execution of the algorithm
(e.g., the means ink-means). Other representation-based algorithms include Fuzzy-c-
means [6] and Expectation Maximization [13].

Sultanet al.[52] combinek-means clustering with the partitive clustering frame-
work and Kohonen’s self-organizing maps [43] to produce an algorithm for point (or
vector) clustering and visualization calledBinary Tree-Structured Vector Quantization
(BTSVQ). The algorithm starts with a single cluster containing every data point and re-
cursively splits it into two usingk-means clustering withk = 2. Recursion terminates
once a variance condition on the child clusters is satisfied. The result is a binary tree
that has potential clusters at the leaf nodes. The next stage uses self-organizing maps
to visualize the contents of each node (subtree). A human observer can then decide
which subtrees correspond to true clusters.

2.1.2 Stochastic Local Search

Stochastic Local Search (SLS) is a class of algorithms that make use of randomized
choices in generating or selecting candidate solutions for a given combinatorial prob-
lem instance [35]. This section describes some of the SLS approaches to clustering.

King [41] describes a single-objectiveRestricted Neighbourhood Search Clustering
(RNSC) algorithm that uses two different cost function in succession. The algorithm
is based ontabu search[24]. The first function (naive cost) is fast to compute and
is used to quickly generate a near-optimal clustering. In the next stage, a slower, but
more accurate function (scaled cost) is used to converge to a more optimal solution.
The cost functions are described in detail in Section 2.2.1. King’s algorithm uses a
search neighbourhood consisting of moves, each of which takes a vertex to a different
cluster. A tabu list stores the last few moves and prohibits returning to a previous
configuration. After seeing a number of non-improving moves, the algorithm runs a
diversification step that splits and recombines clusters in order to escape from a local
minimum.

Handl and Knowles [27] use two competing cost functions for clustering (see Sec-
tion 2.2.1) and apply a multiobjective evolutionary algorithm [34, 50]. The algorithm
maintains a population of non-dominated solutions and creates new solutions by us-
ing a single mutation operator and no crossover. The mutation operator is applied to
each gene with equal probability and results in the move of a vertex and itsg nearest
neighbours to a different cluster.g is an external parameter. The algorithm was tested
on a number of synthetic and real life datasets and produced better clusterings than the
same algorithm used to optimize just one objective function. Moreover, the multiobjec-
tive algorithm was found to be more robust thank-means clustering and average-link
agglomerative clustering.

Chapter 2. Related Work 6

2.2 Cost Functions for Clustering

A big obstacle in clustering is the fact that the problem is poorly defined. The opti-
mal clustering entirely depends on the choice of the cost function used to evaluate the
goodness of a clustering, and the choice of a cost function is to some extent subjective
and depends on the particular clustering goal.

There are two competing criteria that define a “good” clustering – high intra-cluster
homogeneity and low inter-cluster connectivity. Intuitively, if graph edges represent
relationships between vertices, then we want many edges within clusters and few edges
between clusters. However, if we define the cost function to be the number of inter-
cluster edges, then the problem of minimizing it is trivial – pick the clustering that
contains a single cluster. When defining a cost function, it is easy to fall into this trap
and get a trivial minimizer.

This problem can be largely avoided by fixing the number of clusters, as is done in
thek-means [26] andk-modes [36] clustering algorithms. If the number of clusters is
fixed, then one only needs to define a pairwise dissimilarity metric on the data points
and make the cost function be the sum of the dissimilarities between pairs of points that
share a cluster. In a review paper on vector clustering, Estivill-Castro [19] describes
several popular cost functions (maximum likelihood, least squared error, least absolute
error), all of which rely heavily on the assumption of either a fixed number of clusters
or a particular random distribution of the data points.

On the other hand, Estivill-Castro argues that, “propenents of [clustering] methods
[often] leave undefined what are ’good clusters’. They delegate this responsibility to
the user by making the algorithms depend on arguments supplied by the user (so called
parameters of the algorithm). As a consequence, the results vary widely with changes
to these user-supplied arguments.” [19]. This is certainly an indication of how difficult
it is to define a robust cost function.

2.2.1 Cost Functions Used in the Literature

As was noted in the previous section, fixing the number of clusters greatly simplifies
the task of defining a cost function. Only some measure of inter-cluster distance or
intra-cluster similarity is required. However, if the number of clusters is unknown and
allowed to vary, the task becomes more difficult.

Edacheryet al.[17] recast the clustering problem as the problem of finding the
minimum number of distance-k cliques that cover the graph, where a distance-k clique
is a subgraph of diameterk. In this form, the cost function is simply the number of
clusters (distance-k cliques). Unfortunately, the algorithm requires the clique diameter
k as a parameter, which is, arguably, as difficult for a human to estimate from the input
data as the number of clusters is.

Handl and Knowles [27] apply a multiobjective evolutionary algorithm (MOCK) to
the problem of clustering a set ofd-dimensional vectors, where edge weights are dis-
tances between the vectors (points). They use two competing cost functions –deviation

Chapter 2. Related Work 7

(D) andconnectivity(E) defined for a given clusteringP as

centroid(C) =
1
|C|

∑
v∈C

v,

D :=
∑
C∈P

∑
u∈C

dist(u, centroid(C)),

E := − 1
|V |

∑
u∈V

1
h

h∑
j=1

neigh(u, nnu(j)),

wheredist(u, v) is the weight of the edge(u, v), h is a user-defined parameter and
nnu(j) is thej’th nearest neighbour ofu according to thedist() function.neigh(u, v)
is 1 if u andv are in the same cluster and 0 otherwise. MOCK only works with vector
sets, not with general weighted graphs.

The two distance functions used in [27] are Euclidean distance and Cosine sim-
ilarity of the normalized data. To compute the Cosine similarity, the data were first
normalized to have a mean of 0 and a standard deviation of 1 in each dimension. Then
for any two vectorsu andv,

CS(u, v) =
u · v
‖u‖‖v‖

.

King [41] solves the clustering problem on unweighted, undirected graphsG =
(U, V) using a stochastic local search algorithm. There are two cost functions used:
the naive cost functionf and the scaled cost functiong. In any given clustering, let
c(v) denote the unique identifier of the cluster to whichv is assigned. Then for any
clusteringC, f(C) = f1(C) + f2(C), where

f1(C) =
∑

(u,v)∈E

I(c(u) 6= c(v)),

f2(C) =
∑

(u,v)∈V×V

I(c(u) = c(v))I((u, v) /∈ E).

Here, I(P) is the indicator function that is equal to 1 when P is true and 0 when P
is false. f1 counts the number of edges between different clusters, andf2 counts the
number of edges that are missing inside each cluster. Ideally, a clustering would be a
set of disconnected cliques, in which case bothf1 andf2 would be zero. The fact that
f1 andf2 are added together to define the naive clustering cost function is somewhat
subjective and will be addressed in Section 2.3.

The second cost function used in [41] isg(C) = g1(C) + g2(C), where

g1(C) =
∑
u∈V

∑
(u,v)∈E

I(c(u) 6= c(v))
|Cu ∪N(u)|

,

g2(C) =
∑
u∈V

∑
v∈Cu

I((u, v) /∈ E)
|Cu ∪N(u)|

.

Chapter 2. Related Work 8

Here,Cu ⊆ V is the cluster containingu, andN(u) = {v ∈ V : (u, v) ∈ E} is
the set of neighbours ofu in G. The scaled costs are less sensitive to large clusters
in sparse graphs than the naive cost functions, but they require more computational
resources to maintain [41]. Note thatg2 does not penalize a large, space cluster as
much asf2 does. Once again, it is unclear that simply addingg1 andg2 is the best way
of combining these two functions into a single clustering cost function, and this issue
will be addressed in Section 2.3.

Note that bothf1 andg1 measure inter-cluster connectivity (which should be min-
imized in an optimal clustering), whilef2 and g2 measure intra-cluster difference
(which should also be minimized). Bothf andg have the advantage of not requir-
ing the number of clusters to be fixed. Together, they do not favour trivial clusterings
where all nodes are assigned to the same cluster, or each node is assigned to its own
cluster. Note also that none off1, f2, g1 or g2 separately have this important property.

Both the naive and scaled costs are constant multiples of those introduced by van
Dongen [15, 16], who also describes criteria for evaluating the quality of clusterings
on a weighted graph. Van Dongen’s idea is to consider edge weights to be proportional
to transition probabilities between vertices. He views the graph as a flow network and
proposes a clustering algorithm that simulates this flow. The key observation is that
there should be little flow between clusters and much flow within clusters. Note that
this use of edge weights as similarity measures is opposite to the usual notion of edge
“length”.

Given a rowu of the adjacency matrix, letπ = cu, wherec is a scalar such that∑
πi = 1. Then themass centre(of order 2) ofu is defined as

ctr(u) =
n∑

i=1

π2
i .

Given any clustering where the vertexu is assigned to the clusterCu, van Dongen then
defines the weighted coverage measure associated withu as

Cov(u) = 1−
|Cu| − 1

ctr(u) (
∑

v∈Cu
πv −

∑
v/∈Cu

πv)

n
. (2.1)

The total weighted coverage measure for a clustering is
∑

u∈V Cov(u).
He then argues that the quantity1/ctr(u) is the size of the “ideal” clustering foru.

This is easily seen in the case where each transition vectoru is homogeneous (including
an equal probability of a self-loop) because this case is similar to an unweighted graph.

Note once again the two sums in the numerator, one measuring intra-cluster con-
nectivity and the other – inter-cluster separation. The constants1 andn are only there
to ensure that0 ≤ Cov(u) ≤ n for all u. They can be dropped if we are usingCov(u)
as a cost function in a clustering algorithm.

2.3 Multiobjective Optimization

Multiobjective Optimization is a well studied class of problems (see Section 1.2 for a
definition). Clustering is a naturally multiobjective problem because a “good” cluster-
ing maximizes both inter-cluster separation and intra-cluster connectivity [15, 16, 41].

Chapter 2. Related Work 9

There are many different clustering algorithms, each one with its own cost function and
its own preferred definition of an acceptable cluster [19]. This led to an approach of
treating the different algorithms as multiple cost functions and combining them into a
single multiobjective clustering framework of Lawet al.[45].

The following definitions are often used when discussing Multiobjective Optimizaition
Problems (MOP’s).

Definition 2.3.1. Given twon-dimensional vectorsu andv, u ≤ v is defined to be true
iff ∀i ∈ {1, . . . , n}ui ≤ vi and∃j ∈ {1, . . . , n}uj < vj .

Definition 2.3.2. A solutionx is efficient (also non-dominatedor Pareto-optimal) in
the feasible setX with respect to the (vector-valued) cost functionf , iff there is no
x′ ∈ X such thatf(x′) ≤ f(x).

Note that the≤ relation is irreflexive, which might seem counter-intuitive when
trying to associate it with its usual meaning of “less than or equal to”. For the special
case of 1-dimensional vectors, this relation reduces to<. However, this notation is
standard.

Most of the MOP’s studied in the literature are multiobjective extensions of single-
objective combinatorial optimization problems (e.g., traveling salesman, knapsack, set
covering, scheduling and minimum spanning tree) [18]. Most of these are NP-hard
even in the single-objective case; thus, the majority of recent literature on multiob-
jective optimization focuses on heuristics and stochastic local search (SLS) methods
[18].

2.3.1 Single-objective Restrictions

Some of the heuristic methods for MOP’s are based on taking weighted sums of the
cost function components and reducing the problem to a set of single-objective cases.
However, in general, multiobjective optimization problems can haveunsupportedso-
lutions.

Definition 2.3.3. A solution x̂ to a MOP with ap-dimensional cost function,f , is
supportedif there exists ap-dimensional weight vectorλ such thatx̂ is an optimal
solution of the corresponding single-objective problem with the cost function

g(x) =
p∑

k=1

λkfk(x).

Otherwise,̂x is calledunsupported.

The existence of unsupported solutions is easy to demonstrate in the case of two
cost functions. Consider the following geometric interpretation of the set of efficient
solutions. Associate the x- and y-axes with the two cost functions and plot the setE of
efficient solutions as a set of points in the xy-plane. Then the fact that no member ofE
is dominated implies that for each plotted pointp = (px, py), the quadrant[px,∞) ×
[py,∞) is empty of points.

Chapter 2. Related Work 10

Take any two points,P and Q and draw a line through them. In general, it is
possible to have another pointR be in the bounding box ofP andQ and above the
line. In this case,R would correspond to an unsupported solution because no linear
combinationαf + βg of the two cost functions would be minimized atR. Of course,
we have to assume that bothα andβ are non-negative, which is true for any reasonable
cost function since we are talking about a minimization problem [18].

2.3.2 Multiobjective Stochastic Local Search

Because of unsupported solutions, solving any number of single-objective instances of
a problem is not necessarily sufficient for finding all of the efficient solutions to the
multiobjective problem. Another approach involves adapting existing stochastic local
search (SLS) algorithms to handle the multiobjective case.

In a survey paper, Ehrgott and Gandibleux [18] describe a multitude of such al-
gorithms including multiobjective versions of genetic algorithms, simulated annealing,
tabu search, ant colony optimization, artificial neural networks, greedy randomized
adaptive search and others. Most of these algorithms rely on maintaining a set of po-
tentially efficient solutions (PE-set orPareto front). This set is usually initialized at
the beginning of the algorithm using random solutions or solutions generated by single-
objective optimization. During the course of the algorithm, new solutions are added to
the set, and dominated solutions are removed from it.

After the algorithm terminates, thePE-set represents the algorithm’s best guess at
the true set of efficient solutions. Just like in single-objective SLS, all such algorithms
may get stuck in local minima and produce a sub-optimal set of solutions in the end.
It is also worth noting that any multiobjective local search algorithm is most likely
doomed to be slower than its single-objective version because it has to maintain a set
of solutions at any time, while most single-objective algorithms only maintain and
update a single solution.

One of the most popular classes of multiobjective algorithms is the class of Multi-
objective Evolutionary Algorithms (MOEA). Evolutionary algorithms seem naturally
suited for multiobjective optimization because they maintain a population of solutions
[9]. Handl and Knowles’ MOCK [27, 28] is an example of a MOEA for clustering.

The algorithm for multiobjective clustering that is described in this thesis is a mul-
tiobjective version of Variable Neighbourhood Descent (VND). Single-objective VND
[35] is a popular SLS algorithm that has been applied to a variety of problems, such as
Vehicle Routing [12], Undirected Capacitated Arc Routing [33] and Scheduling [5].

Chapter 3. Algorithm 11

Chapter 3

Algorithm

This section describes our algorithm for the multiobjective clustering problem. Section
3.1 presents a high-level view of the most important routines. Section 3.2 talks about
the data structures and important implementation details.

The pseudocode style used in this section is that of Cormenet al.[8]. The triangle
(�) is used to denote comments. The left arrow (←) denotes variable assignment.

3.1 Overview

Our algorithm is an application of Multiobjective Variable Neighbourhood Descent. It
maintains a set of potentially efficient (non-dominated) solutions (PE-set) and manip-
ulates this set by performing a VND run on a randomly chosen element of thePE-set
to thePE-set. After each insertion, all the dominated solutions are removed from the
set. When the algorithm terminates, the output is the contents of thePE-set.

3.1.1 Variable Neighbourhood Descent

At the core, our algorithm is a variant of Variable Neighbourhood Descent (VND) [35]
in a multiobjective framework. The algorithm maintains two data structures – the graph
(represented as an adjacency list and matrix) and thePE-set (a set of solutions). Each
solution is a clustering with an associated vector of cost function values.

Top level algorithm

The PE-set is initialized to contain at least one solution. This is done with either a
greedy or a random clustering. Section 3.1.3 discusses initialization. Then a number of
VND runs are performed on randomly picked members of thePE-set. The members
are picked uniformly at random. Each VND run attempts to add all of the solutions it
visits to thePE-set. Some might be rejected because they are dominated by existing
members of the set. This process continues until the termination condition described
below is met.

Maintaining a set of non-dominated solutions

Addition of solutions to the PE-set works in the following way:

Chapter 3. Algorithm 12

PE-INSERT(x)
1 for eachy ∈ PE
2 do if y ≤ x
3 then return false

� Inserty into the set
4 for eachy ∈ PE
5 do if x ≤ y
6 then� Removey from PE
7 return true

The≤ relation on the solutions is introduced in Definition 2.3.1. More efficient ways
of implementing PE-set insertion are discussed in the Future Work section.

Solution Neighbourhoods

A neighbourhoodin SLS is a function that maps a solutions to a set of solutions that
can be obtained froms by performing a local modification [35]. Our algorithm uses
three different neighbourhoods,N1, N2 andN3.

The algorithm relies on an efficient implementation of moves in the neighbourhood
N1. This includes both creating a modified clustering and updating the cost functions.
Therefore, we choseN1 to be very simple. It is the neighbourhood obtained by moving
a vertex,v from its cluster to a neighbouring cluster (a cluster that contains at least
one vertex connected tov by an edge). King [41] uses the same neighbourhood in
his single-objective tabu-based clustering algorithm. Handl and Knowles [27] use a
slightly more complicated one, where several ofv’s nearest neighbours are also moved
to the same cluster.

The neighbourhoodsN2 andN3 are a mechanism for escaping from local minima.
We choseN2 to be the neighbourhood obtained by splitting an existing cluster along
its diameter. This is done by running the Floyd-Warshall [22, 55, 8] algorithm on the
cluster to compute the diameter. Then we find two endpoint vertices of a diameter,du
anddv. If there is a tie, we pick the largest numbereddu. If there is still a tie, we pick
the largest numbereddv (these are arbitrary choices). Finally, we create a new cluster
and move to it all the vertices that are closer todv than todu in the sense of the shortest
path. Vertices for whichdu anddv are equidistant are moved with probability0.5.

N3 is obtained by joining together two existing clusters.N1 andN2 moves are
more expensive to compute than theN1 moves and cause larger structural changes to
the clustering. The three neighbourhoods are used during a VND run.

Performing a VND run

At each step of the multiobjective VND algorithm, the algorithm picks a random solu-
tion s from the PE-set and performs the following VND run on it.

Chapter 3. Algorithm 13

VND(s)
1 A: while TRUE

2 do PE-INSERT(s)
3 for i← 1 to 3
4 do for eacht ∈ Ni(s)
5 do if t ≤ s
6 then s← t
7 continueA
8 break

N1, N2 andN3 are the three solution neighbourhoods described above. The VND
procedure simply performs iterative first improvement (or hill climbing) in the first
neighbourhood,N1. Once a local minimum (w.r.t.N1) is reached, VND switches to
the neighbourhoodN2. When no improvement can be made there either, it triesN3. If
a better solutiont is found in eitherN2 or N3 (one that dominatess), then we substitute
t for s and start again in the neighbourhoodN1.

This approach of using three neighbourhoods is a standard application of Variable
Neighbourhood Descent [47, 32, 35]. On the other hand, it is not VND in the strict
sense because decision whether any given move is an improvement or not depends on
the wholePE-set, not only on the solution whose neighbourhood we are considering.
VND is closely related to Iterated Local Search (ILS). In fact, if we allowed worsening
moves in neighbourhoodsN2 andN3, the algorithm could be considered an ILS. See
the Future Work section for a further discussion about worsening moves.

The Termination Criterion

The algorithm ensures that the set of potentially efficient solutions that is eventually re-
turned when it terminates is a true local optimum with respect to all 3 neighbourhoods.
This means that ifs ∈ PE andt ∈ N1(s) ∪ N2(s) ∪ N3(s), thent is dominated by
some member of PE (∃r ∈ PEr ≤ t). This is guaranteed by the algorithm because this
condition is the termination criterion and is explicitly checked in the following way.

Each step of the algorithm involves picking a random member of thePE-set (uni-
formly at random) and performing a VND run on it. If this run results in no changes
made to thePE-set (no new non-dominated solutions found), then the run is consid-
ered unsuccessful. If we make a certain number,T , (see below) of unsuccessful runs
in a row, then instead of picking out random members of thePE-set, the algorithm
will switch to the less efficient strategy of scanning the wholePE-set and performing
VND runs on each of the solutions. If at least one of them is successful, we revert back
to the random strategy. Otherwise, we have checked the neighbourhoods of each of
the elements of thePE-set, and a local optimum is found. At this point, the algorithm
terminates.

This is the core of our multiobjective VND algorithm.

Chapter 3. Algorithm 14

MOVND()
1 INIT-PE()
2 noChangeFor ← 0
3 while noChangeFor < T
4 do s← PICK-RANDOM-ELEMENT(PE)
5 if VND(s) is successful
6 then noChangeFor ← 0
7 else noChangeFor ← noChangeFor +1
8 if noChangeFor = T
9 then for eachs ∈ PE

10 do if VND(s) is successful
11 then noChangeFor ← 0
12 break

The value ofT is set to be half of the size of thePE-set. It is a parameter that
affects the running time of the algorithm. An alternative, more efficient strategy for
ensuring termination at a local minimum is discussed in the Future Work section. The
INIT-PE procedure is described in Section 3.1.3.

3.1.2 Cost Functions

We tested our algorithm on two types of data – unweighted graphs and vector sets,
both of which can be viewed as a special case of weighted graphs. Theoretically, our
algorithm can work with an unlimited number of cost functions, but using more that
two usually makes thePE-set unreasonably large and inefficient to work with. (See
Section 3.1.3 for a technique aimed at keeping thePE-set small.)

Unweighted Graphs

For unweighted graphs, we used a pair of cost functions derived from King’s naive cost
[41], which was, in turn, taken from van Dongen [15]. The cost function is a sum of
two quantities, one measuring inter-cluster connectivity and the other measuring intra-
cluster separation. Here,I(P) is the indicator function that is equal to 1 when P is true
and 0 when P is false.

f(C) =
∑

(u,v)∈E

I(c(u) 6= c(v)) +
∑

(u,v)∈V×V

I(c(u) = c(v))I((u, v) /∈ E).

The first term is simply the number of edges connecting two clusters. The second term
is the minimum number of edges that need to be added in order to make each cluster
a clique. King [41] himself argues that it is unclear whether simply adding the two
values is the best way of combining them into a single cost function. He suggests using
a linear (or a convex) combination instead.

We have the option of avoiding this question altogether and separating the naive
cost function into two functions, which is what our algorithm does. The two cost

Chapter 3. Algorithm 15

functions used for unweighted graphs aref1 andf2, defined as:

f1(C) =
∑

(u,v)∈E

I(c(u) 6= c(v)),

f2(C) =
∑

(u,v)∈V×V

I(c(u) = c(v))I((u, v) /∈ E).

We use three local search neighbourhoods. The first one involves moving a vertexv
to a neighbouring cluster. ”Neighbouring” here means a cluster to whichv is connected
by an edge. Updatingf1 andf2 here means looking at the neighbours ofv, which can
be done in time proportional to the degree ofv using the adjacency list. Whenv is
moved from its cluster,Cv, to another cluster,D, the changes inf1 andf2 are

∆f1(v,D) =
∑

(u,v)∈E

(I(u ∈ Cv)− I(u ∈ D)) ,

∆f2(v,D) = |D| − |Cv|+ 1 +
∑

(u,v)∈E

(I(u ∈ Cv)− I(u ∈ D)) ,

Moves in the other two neighbourhoods (merging two clusters and splitting a clus-
ter along its diameter) are not as frequent as the moves inN1 because VND gives
priority to N1 moves. During the moves inN2 andN3, the two cost functions are sim-
ply recomputed. This is sub-optimal because it is possible to compute the local change
in cost functions faster than recomputing all off1 andf2. However, the gain in perfor-
mance would be negligible because the vast majority of local improvement moves take
place in the first neighbourhood. (Over 85% of moves were made inN1 during a test
run on the synthetic data set Square1(64).)

Vector Sets

For vector sets, the naive cost functions are inappropriate for two reasons. First of all,
the naive cost functions only work for unweighted graphs, and it would be a waste of
information to disregard distances between data points or use a user-supplied threshold.
Secondly, without thresholding, a vector set is best modelled by a complete graph. This
means that there is only one optimal clustering – that one consisting of a single cluster.
It is a trivial solution in this case.

Fortunately, van Dongen [15] describes a generalization of the naive cost function
to weighted graphs. See Section 2.2.1 for a description of his weighted coverage mea-
sure (Equation (2.1)).

First of all, the constants1 andn are irrelevant to the minimization problem. Fur-
thermore, the numerator can be split into two competing criteria:

h1(C) =
∑
u∈V

(
|Cu| −

∑
v∈Cu

πv

ctr(u)

)
,

h2(C) =
∑
u∈V

 1
ctr(u)

∑
v/∈Cu

πv

 .

Chapter 3. Algorithm 16

Note that in the case when all edges have the same weight, this definition ofh1 andh2

reduces to the naive functionsf1 andf2. After simplifying the sums, we get

h1(C) =
∑
u∈V

|Cu|+
∑

(u,v)∈E

I(Cu = Cv)Πuv,

h2(C) =
∑

(u,v)∈E

I(Cu 6= Cv)Πuv,

where
Πuv =

πuv

ctr(u)
πvu

ctr(v)
.

It is important to note that van Dongen’s coverage measure works only if the edge
weights correspond to transition probabilities. In other words, a higher weight of the
edge(u, v) corresponds to a higher probability ofu andv being in the same cluster.
The usual definition of an edge weight is that of a distance betweenu andv. In the
case of a vector set, edges correspond to Euclidean distances. To convert them to
probabilities, we used both inverse distances and inverse square distances. See Results
for a discussion.

Updatingh1 andh2 just before a vertexv is moved from its clusterCv to another
cluster,D, is very similar to updating the naive costs.

∆h1(v,D) = 2 (|D| − |Cu|+ 1) +
∑

(u,v)∈E

(I(Cu = Cv)− I(Cu = D))Πuv,

∆h2(v,D) =
∑

(u,v)∈E

(I(Cu = Cv)− I(Cu = D))Πuv.

The Π values can be pre-computed, and the updates performed in time linear in the
number of vertices. For neighbourhoodsN2 andN3, the function values are recom-
puted from scratch after each move.

3.1.3 Depth Runs

Ideally, we wouuld like to keep the size of thePE-set small because the algorithm’s
running time depends heavily on the time required to update the set. Therefore, it
could be useful to generate an initialPE-set that contains a small number of fairly
good solutions that are likely to dominate a large number of other solutions. This set
should be both small (at most a few hundred solutions) and diverse (able to dominate a
large portion of the cost function space).

We solve this problem by starting the algortihm with a sequence of ”depth runs”.
Each depth run is a simple first improvement hill climbing run in the neighbourhood
N1 (moving a vertex to a neighbouring cluster). These depth runs are relatively fast
and terminate at a local minimum. Each one is initialized with a random clustering and
is performed independently of the other runs and the currentPE-set.

The first depth run is always initialized to a greedy clustering. The greedy clus-
tering is constructed by taking the smallest numbered vertex and building a cluster

Chapter 3. Algorithm 17

consisting of it and its neighbours in the graph. Then we take the next smallest num-
bered vertex and its neighbours to build the second cluster,etc.. All subsequent depth
runs start from random clusterings. The greedy clustering is often trivial (especially in
the case of a complete graph); therefore, we never use fewer than 2 depth runs to avoid
getting meaningless results.

Alternative approaches to doing depth runs include optimizing just one objective
function or a linear combination of the objective functions using a single-objective
algorithm. The former approach was used by Paquete and Stützle [49] in their two-
phase algorithm for the biobjective travelling salesman problem. The latter method is
discussed in more detail in the Future Work section.

3.1.4 Distributed Computation

The core of our multiobjective local search algorithm is thePE-set. Each step begins
by taking a random element of the set. Then we perform certain operations on the
element. Finally, we add one or more new elements to the set. This operation is
highly parallelizable. As long as thePE-set is protected from concurrent modification,
there is nothing stopping us from picking two or more solutions simultaneously and
exploring their neighbourhoods in parallel.

The only drawback to this is that thePE-set itself becomes a bottleneck. A more
scalable approach is to maintain multiple copies of thePE-set and periodically syn-
chronize them by performing a union and subsequent elimination of dominant solu-
tions. Our implementation is capable of spawning a number of worker processes, each
one maintaining its ownPE-set. Once everyW seconds (wall clock time), each worker
process connects to the server, sends its copy of thePE-set and receives the server’s
copy. Both the worker and the server then perform the union and dominant solution
elimination.

The constantW is a parameter that depends on the number of worker processes and
the expected size of thePE-set. For now, it is determined by the user, but ideally, it
should be changed adaptively in order to be kept as small as possible without causing a
bottleneck at the server. Low values ofW are preferable because this way, thePE-set
copies are kept as synchronized as possible between the worker threads, which reduces
the chances of a process exploring the neighbourhood of a dominated solution.

We ran the distributed version of the algorithm on a Sun N1 Grid Engine 6 con-
sisting of 20 dual x86 2GHz Linux machines. For most distributed experiments, we
used 20 parallel worker processes, plus a centralPE-set server responsible for collect-
ing and redistributing solution sets. See Results for a more detailed description of the
hardware.

3.2 Implementation and Data Structures

The algorithm was implemented using C++ (g++ 3.3 on SuSE Linux) and is portable
to other flavours of UNIX. The code makes use of no external libraries other than the
Standard Template Library. This section describes the data structures used for the non-
trivial parts of the algorithm.

Chapter 3. Algorithm 18

3.2.1 Input Data

Thee are two different types of input data – unweighted graphs and vector sets. An
unweighted graph is stored in three different forms simultaneously: as an adjacency
matrix, an adjacency list and an edge list. These structures require a fair amount of
memory, but are nonetheless small compared to the size of thePE-set.

The adjacency matrix allowsO(1)-time checks for whether an edge exists or not
and can store the weight of an edge in a weighted graph (for future extensions to the
algorithm).

The adjacency list allowsO(vertexDegree)-time traversal of the neighbour set of
a vertex. This is required when updating certain cost functions, for instance the naive
cost of [41].

The edge list allowsO(|E|)-time traversals of all edges. Technically, the same
time complexity can be achieved by scanning the adjacency list of each vertex in order.
However, this way is slightly more efficient and elegant. The cost in memory is not a
big concern in comparison to thePE-set (see Section 3.2.2).

The second kind of input data is a set ofn k-dimensional vectors (points). Such a
set is modelled by a complete graph onn vertices. Each edge has a weight equal to the
Euclidean distance between the corresponding pair of vectors. The cost functions used
for this type of data are the van Dongen weighted functions, so we need to precompute
the mass center of each vertes, as well as theπ matrix. In fact, since theπ values are
always used in the form ofΠuv (see Section 3.1.2), we simply store the symmetric
matrixΠ, where

Πuv =
πuv

ctr(u)
πvu

ctr(v)
.

3.2.2 PE-set

The PE-set is a set of non-dominated solutions found so far. More formally, ifs ∈
PE, then there exists not ∈ PE such thatt ≤ s, where the≤ relation on the solutions
(i.e.their cost function vectors) is defined in Definition 2.3.1.

A solution is represented by an ordered pair(C, f), whereC is a clustering andf
is a vector of cost function values. When comparing two solutions,s andt, one must
be careful to deal with the case when thef -values ofs andt are equal. In this case,
if C-values are also equal, then the solutions are the same and one of them can be
ignored. Otherwise, neither solution is dominated by the other one, and both need to
be kept in thePE-set.

The data structure for the set itself is implemented in the simplest possible way –
as an array of solutions. The only operation allowed on thePE-set is PE-INSERT(x).
If x is dominated by an element of thePE-set, then PE-INSERT(x) does nothing.
Otherwise, all the solutions dominated byx are removed from the set, andx itself is
inserted. This is implemented by a simple linear scan through the array. In the vast
majority of the cases,x is indeed dominated, and no modification needs to be done.
Otherwise, another linear-time scan is performed, and all of the dominated solutions
are removed.

In total, PE-INSERT(x) requires a number of solution comparisons that is linear in
the size of thePE-set in the worst case. This is far from optimal. Roughly 80% of

Chapter 3. Algorithm 19

the CPU time is spent in PE-INSERT(x). See the Future Work section for a way to
improve this data structure so that PE-INSERT(x) runs in amortized logarithmic time.

Chapter 4. Experimental Results 20

Chapter 4

Experimental Results

We tested the algorithm on two different types of input data – vector sets and un-
weighted graphs. The former are data sets with known ”correct” clusterings and were
used to evaluate the quality of produced results. The latter are random graphs that are
hard to cluster and were used to evaluate the algorithm’s performance characteristics.

All parallel experiments were performed on a Sun N1 Grid Engine Linux cluster
consisting of 20 dual 2 GHz Intel XEON machines with 512 kB of cache, 4 GB of
RAM and 5 GB of swap space, running SuSE Linux with kernel 2.6.4-52-smp. All
reported time values are wall clock times, not CPU times and may have been affected
by other processes running at the same time.

All one-machine experiments were performed on a 1 GHz Pentium III with 256
kB of cache, 256 MB of RAM and 512 MB of swap space, running SuSE Linux with
kernel 2.6.5-7.151-default. The reported times in this case are CPU times.

4.1 F-measure

The F-measure [51] is a function used often in the clustering literature to compare the
similarity between two clusterings. More precisely, it is used to compare the quality
of a clustering with respect to a known correct clustering for a given instance of the
clustering problem.

Let C = (C1, C2, . . . , Cx) be a given clustering andD = (D1, D2, . . . , Dy) be
the correct clustering. Then we call each of theDi setsclasses. The F-measure of a
given clusterCi with respect to a classDj is then

F (Ci, Dj) =
2|Ci ∪Dj |
|Ci|+ |Dj |

.

Let n be the total number of elements in all of the classes ofD. Then the F-measure
for the whole clusteringC with respect toD is defined as

F (C,D) =
∑

j

|Dj |
n

max
i

F (Ci, Dj).

The value of the F-measure is always between 0 and 1 with 1 possible only in the
case of a perfect match. Intuitively, it weights each of the classes according to its size
and picks the cluster that best matches that class. The F-measure is used by Handl and
Knowles [27] to report the results of a multiobjective evolutionary clustering algorithm
(see Section 4.3.3).

Chapter 4. Experimental Results 21

Varying the number of depth runs on sf25.gra.
number of CPU time PE-set size
depth runs Min. Avg. Max. Min. Avg. Max.

2 1.443 s 3.168 s 6.271 s 108 117.9 147
25 1.527 s 2.649 s 6.211 s 107 117.8 144

100 1.961 s 2.972 s 4.931 s 106 119.5 144
1000 8.989 s 9.827 s 11.634 s 109 120.3 141

Table 4.1: Dependence of the CPU time and the number of computed solutions on the
number of depth runs for the sf25.gra input. 100 independent runs were
performed in each case.

4.2 Unweighted Graphs

For unweighted graphs, we used two slightly different cost functions. These were de-
rived from the van Dongen naive cost function [15] and are the same as those used dur-
ing the first stage of King’s single-objective RNSC algorithm [41] (see Section 2.2.1).

4.2.1 25-Vertex Scale-Free Graphs

A scale-free graph is an unweighted, undirected graph whose vertex degrees obey a
power law. Such a graph is constructed by starting withk vertices and 0 edges and
adding the othern − k vertices iteratively. Each new vertex,v, is connected withk
existing vertices uniformly at random. The probability of connectingv to u is propor-
tional to the current degree of u. Scale-free graphs are believed to be good models of
certain types of biological networks and other types of naturally occurring graphs [41].

To evaluate the effect of depth runs on the performance of the algorithm, we used
a small scale-free graph (sf25.gra in King’s RNSC data set). The smallest number of
depth runs that we used was 2 (see Section 3.1.3 for the explanation). Table 4.1 shows
that a small number of depth runs seems to improve the running time.

With this in mind, we ran the algorithm on 50 randomly generated 25-vertex scale-
free graphs using 5 independent runs, initialized with 25 depth runs each. Figure 4.1
shows the distribution of the average size of the resultingPE-set versus the average
CPU time (in seconds, using one machine) for each of the 50 random graphs. The figure
clearly shows a positive correlation, which is not surprising because the algorithm’s
running time critically depends on the size of thePE-set. It also shows quite a large
variation in the average CPU times andPE-set sizes.

4.2.2 100-Vertex Scale-Free Graph

Figure 4.2 shows the results of running our multiobjective algorithm on a 100-vertex
scale-free graph (sf100.gra from King’s RNSC data set). There are 18176 Pareto opti-
mal clusterings. Also shown are the 1018 different clusterings produced using 10000
independent runs of RNSC (single-objective algorithm) with the naive cost function
only. Our algorithm took 30 hours to run on a single machine, while RNSC required

Chapter 4. Experimental Results 22

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1 1 10 100 1000

nu
m

be
r o

f s
ol

ut
io

ns
 in

 th
e

Pa
re

to
 fr

on
t

CPU time in seconds (log scale)

Figure 4.1: Size of the Pareto front for 50 random 25-vertex scale-free graphs with 5
independent runs, 25 depth runs each.

10 minutes. RNSC was executed with the naive stopping toleance set to 15 and the
scaled stopping tolerance set to zero. No other parameters were changed from their de-
fault values. The value of 15 was chosen higher than the default to give the algorithm
an opportunity to use more time in order to find a better solution.

4.3 Vector Sets

A vector set is a collection ofn k-dimensional real vectors. It can be modelled by a
weighted complete graph onn nodes, where each edge(u, v) has a weight that depends
only on u andv. For these data sets, we used two cost functions based on the van
Dongen weighted coverage measure. For general graphs, the weighted, scaled coverage
measure would be a better choice, but in the case of complete graphs, the two are
identical [15].

The weighted coverage measure works on weighted graphs where the graph is mod-
elled as a stochastic flow network, and each edge’s weight is a transition probability.
To generate such a graph from a vector set, we chose to make each edge weight propor-
tional to the inverse of the squared Euclidean distance between the two corresponding
vertices. This makes sense if the vertices are considered to be embedded in the plane
with a uniformly random distribution because in this case the number of vertices that
are a distancer away from a given vertexu is proportional tor2. Other ways of as-
signing transition probabilities are possible (correlation, nearest neighbours,etc.).

The two vector sets that we used are the Square1(100) data set and the Iris data set
from the UCI Machine Learning Database [21].

Chapter 4. Experimental Results 23

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

N
um

be
r o

f m
is

si
ng

 e
dg

es
 in

 c
lu

st
er

s

Number of edges between clusters

MOVND
RNSC

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800

N
um

be
r o

f m
is

si
ng

 e
dg

es
 in

 c
lu

st
er

s
(l

og
 s

ca
le

)

Number of edges between clusters

MOVND
RNSC

Figure 4.2: Comparison of the Pareto front to a single-objective algorithm on a scale-
free graph with 100 vertices. The figure on the right shows the same plot,
but with the y-axis in log scale.

4.3.1 Square1(100)

The first vector set we considered is a smaller version of the widely used Square1
dataset [46, 27, 31]. This one consists of 100 2-dimensional points grouped into 4 25-
point clusters. Each cluster has a 2D Gaussian distribution with means(±1,±1) and
standard deviation of 0.3, forming 4 globular clusters with centers at the corners of a
2x2 square (see Figure 4.3). We generated this data set locally.

Figure 4.4 shows the clusterings that were found after running 1 process with 100
depth runs for 4 hours and 40 minutes until termination. The curve represents the 1179
Pareto optimal solutions found during this run of the algorithm. The 3 noted solutions
are those containing exactly 4 clusters and similar to the correct clustering (after human
inspection). They are unsupported and are not likely to be found by any algorithm that
optimizes linear combinations of the two cost functions. One of those dots is precisely
the correct clustering (the one with F-measure equal to 1.0).

4.3.2 Square1(64)

In order to be able to run multiple experiments, we built an even smaller version of the
Square1 data set, consisting of only 64 points in 4 clusters, with the same mean and
standard deviation as in the Square1(100) data set. Five independent runs of MOVND
are described in Table 4.2. All 5 runs found the correct (F-measure 1.0) clustering.
Table 4.3 shows the same results for 5 independent runs of MOCK. MOCK finishes
much faster, but finds much fewer solutions. Note that the variability in F-measure
values and Pareto front sizes produced by MOCK is much greater than that of our
algorithm. All 5 runs of MOCK found the correct (F-measure 1.0) clustering.

4.3.3 Iris

This dataset contains 150 4-dimensional vectors with 3 known clusters of size 50 each.
Each of the 4 components of the vectors corresponds to a geometric property of the
Iris flower. We used two cost functions based on the van Dongen weighted coverage

Chapter 4. Experimental Results 24

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.3: Square1(100) data set.

 0

 50

 100

 150

 200

 250

 300

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

va
n

D
on

ge
n

sc
al

ed
 c

os
t;

pa
rt

 2

van Dongen scaled cost; part 1

Good solutions

Pareto front
Good solutions

 0.1

 1

 10

 100

 1000

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

va
n

D
on

ge
n

sc
al

ed
 c

os
t;

pa
rt

 2

van Dongen scaled cost; part 1

Good solutions

Pareto front
Good solutions

Figure 4.4: Pareto front for the Square1(100) data set with transition probabilities in-
versely proportional to squared Euclidean distance. The arrow shows the
correct clustering and two solutions similar to it. The plot on the right dis-
plays the y-axis in log scale, which clearly shows that the good solutions
are unsupported.

Chapter 4. Experimental Results 25

Independent runs of MOVND on Square1(64).
CPU F-measure quantiles Size of the
time q25 q50 q75 QVC Pareto front

13m51.587s 0.75132 0.83598 0.90509 9.28333 298
9m2.162s 0.75016 0.83598 0.90509 9.35992 298

8m21.262s 0.75016 0.83598 0.90509 9.35992 300
8m45.138s 0.75132 0.84583 0.90509 9.28333 293
6m55.745s 0.75132 0.84091 0.90509 9.28333 297

Table 4.2: CPU running times, F-measure quantiles and Pareto front sizes for 5 inde-
pendent runs of MOVND on the Square1(64) data set. QVC is the Quartile
Variation Coefficient (100 q75−q25

q75+q25).

Independent runs of MOCK on Square1(64).
CPU F-measure quantiles Size of the
time q25 q50 q75 QVC Pareto front

13.277s 0.76921 0.82784 0.91117 8.44809 52
13.392s 0.85503 0.89074 0.93704 4.57627 36
11.374s 0.79227 0.84911 0.91419 7.14462 49
12.308s 0.75657 0.83921 0.90171 8.75244 50
11.548s 0.74619 0.83132 0.90436 9.58287 54

Table 4.3: CPU running times, F-measure quantiles and Pareto front sizes for 5 inde-
pendent runs of MOVND on the Square1(64) data set.

Chapter 4. Experimental Results 26

 0

 1000

 2000

 3000

 4000

 5000

 6000

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000

va
n

D
on

ge
n

w
ei

gh
te

d
co

st
; p

ar
t2

van Dongen weighted cost; part1

Pareto front
3-cluster solutions

Figure 4.5: Iris with transition probabilities inversely proportional to Euclidean dis-
tance. Thex- and y-axes are the cost functionsh1 and h2 respectively
(see Section 3.1.2). The curve represents all of the 3854 Pareto optimal
solutions. The marked solutions are those with exactly 3 clusters.

measure (see Section 3.1.2). Since those functions work on a graph where edges corre-
spond to transition probabilities, there is the question of generating such a graph from
a set of 4-dimensional vectors. We used two methods. First, we made the probability
inversely proportional to the Euclidean distance between the 4D points. This approach
yielded poor results (see Figure 4.5). The curve shows all of the 3854 Pareto optimal
solutions generated after about 60 hours of computation with 20 parallel processes,
each one performing 50 depth runs and a subsequent multiobjective VND. The circles
correspond to all of the clusterings that contained exactly 3 clusters. After a quick hu-
man inspection, all of those were found to be very different from the provided “correct”
clustering.

The second approach was to make the transition probabilities inversely proportional
to the square of the Euclidean distance. In this case (see Figure 4.6), the algorithm
took 27 hours to run until termination and produced 2715 solutions (curve), 35 of them
consisting of 3 clusters, 4 of which were similar to the expected clustering provided
with the Iris dataset. ThePE-set was obtained by running 20 parallel processes, each
one performing 20 depth runs with subsequent multiobjective VND. Note in particular
that the interesting solutions are all unsupported. Not one of them can be a minimizer
of any linear function ofh1 andh2 (x andy). Therefore, they would not be found
by any algorithm that minimized only a linear combination of the two cost functions
(unless the algorithm were lucky to terminate at just the right local minimum).

The good solutions displayed in Figure 4.6 are in fact not the best clusterings found

Chapter 4. Experimental Results 27

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

va
n

D
on

ge
n

w
ei

gh
te

d
co

st
; p

ar
t2

van Dongen weighted cost; part1

Good solutions

Pareto front
3-cluster solutions

Good 3-cluster solutions

Figure 4.6: Iris results with transition probabilities inversely proportional to squared
Euclidean distance. Note the marked unsupported solutions.

by our algorithm. They are certainly the best out of the ones that have exactly 3 clusters,
but if we use the F-measure (see Section 4.1) to evaluate the quality of each clustering,
we get a different, but conceptually very similar picture. Figure 4.7 again shows the
computed Pareto front with the 10 “best” solutions marked. They are the best in terms
of the highest value of the F-measure (it is 0.909676 for each of the marked clusterings,
with a value of 1.0 corresponding to the correct clustering). These solutions have 6,
7, 8 or 10 clusters in them with 3 large clusters that closely match the 3 correct ones.
Once again, note that these solutions are unsupported – they are found on a concave
(up) portion of the Pareto front.

We ran the Handl and Knowles MOCK algorithm [27] on the Iris data. The al-
gorithm terminated in under one minute and produced 98 solutions. The highest F-
measure attained by a solution was 0.843172. Figure 4.8 shows a cumulative distribu-
tion of F-measure values of our algorithm and MOCK. Firstly, our algorithm produced
substantially more solutions. Secondly, a large number of our solutions had higher F-
measure values. The former could be attributed to the choice of cost functions and is
certainly influenced by the differences in running time. It was impossible to change
MOCK’s parameters in order to increase its running time without a thorough under-
standing of the source code. We used the default external parameters, except for the
maximum number of clusters, which was set equal to the size of the data set.

In hopes of making a closer comparison between MOVND and MOCK, we ran
our algorithm on the Iris data set for 90 seconds (comparable to the running time of
MOCK). We used the minimum of 2 depth runs, the first was initialized to the greedy
clustering and finished immediately. The second depth run took 60 seconds to finish.

Chapter 4. Experimental Results 28

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

va
n

D
on

ge
n

w
ei

gh
te

d
co

st
; p

ar
t2

van Dongen weighted cost; part1

10 best solutions

Pareto front
10 best solutions by F-measure

Figure 4.7: 10 best Iris results in terms of the F-measure.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
F-measure

MOVND
MOCK

Figure 4.8: Cumulative distributions of F-measure values in the Pareto fronts for the
Iris data set for a single run of MOCK and our algorithm (MOVND). Our
algorithm has clearly found a number of solutions with higher F-measure
values.

Chapter 4. Experimental Results 29

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

va
n

D
on

ge
n

sc
al

ed
 c

os
t;

pa
rt

 2

van Dongen scaled cost; part 1

Figure 4.9: The Pareto front generated after 90 seconds of MOVND running on the Iris
data set. Two depth runs were used.

The remaining 30 seconds were spent exploring the neighbourhood of the solution
produced by the single non-trivial depth run. Figure 4.9 shows the pareto front with
the 1-cluster solution on the bottom-right and a small number (47) of solutions on the
top-left. The best of those solutions has an F-measure of 0.536440, which is worse
than most of the solutions found by MOCK in the same CPU time.

Chapter 5. Discussion and Conclusions 30

Chapter 5

Discussion and Conclusions

We have described a Multiobjective Variable Neighbourhood Descent algorithm for the
clustering problem and presented our results for a collection of data sets, some of which
had random structure and others had known correct clusterings. On the structured data
sets, the algorithm found interesting unsupported solutions, which is a clear advantage
over single-objective clustering. On the random inputs, the algorithm required a sub-
stantial amount of running time, but in the end, produced a very wide Pareto front,
covering a much larger portion of the search space than a set of independent runs of a
single-objective algorithm did.

5.1 Discussion

In this section, we discuss the results and argue for the usefulness of our approach.
After that, we describe several improvements that can be made to our algorithm.

5.1.1 Comparison to Single-Objective Clustering

The major advantage of multiobjective clustering over single-objective clustering can
be clearly seen in the results. For both the Iris and Square1(100) data sets, our algorithm
found unsupported solutions that are of interest and are not the minimizers of any linear
combination of the two cost functions. Hence, no single-objective algorithm that looks
for such minimizers will be able to find those solutions (except by accident).

The second advantage is conceptual. The Clustering problem is by its nature multi-
objective. Defining the problem using a single cost function is a very difficult task, and
many people avoid it by fixing the number of clusters (see Section 2.2). If the ”cor-
rect” number of clusters is unknown, then in most of the literature, the cost function is
defined as the sum or product of two competing quality measures [19]. To avoid non-
uniformity, sometimes those functions are somehow normalized or converted to similar
”units”. All of these difficulties can be avoided by using a multiobjective algorithm.

The main disadvantage of the multiobjective approach is its running time. Our
algorithm has to maintain a large set of solutions, while a single-objective algorithm
can usually keep just one solution. On the other hand, first of all, our algorithm’s
can be improved substantially (see Section 5.2). Secondly, the algorithm is highly
parallelizable.

We can take advantage of the relative efficiency of single-objective algorithms by
solving single-objective restrictions of the problem as a part in the multiobjective algo-
rithm. As our results show, the single-objective RNSC algorithm is superiour to ours on

Chapter 5. Discussion and Conclusions 31

large graphs (2000 vertices). Section 5.2.3 talks about a way of exploiting the efficiency
of single-objective algorithms without sacrificing the multiobjective advantages.

5.1.2 Comparison to Other Multiobjective Algorithms

Our algorithm is not the first one for multiobjective clustering. Handl and Knowles
[27] applied a multiobjective evolutionary algorithm (MOCK) to solve the clustering
problem. They used a different pair of cost functions (see Section 2.2.1) and also
compared their approach to single-objective algorithms (k-means and average-link ag-
glomerative clustering). Their algorithm found clusterings with a higher value of the
F -measure than either of the single-objective algorithms.

They have results for the Iris dataset and report an F-measure of 0.840924 for the
best clustering found by MOCK [27]. Our algorithm found 2715 Pareto optimal clus-
terings, 351 of which had an F-measure higher than 0.840924. We obtained an im-
proved version of MOCK from the authors and performed a number of experiments
on the Iris data set. Figure 4.8 shows that our algorithm produced a large number of
solutions that were better (in terms of the F-measure) than the best solution found by
MOCK. However, our running time was substantially longer.

In general, it is difficult to compare two multiobjective algorithms because it in-
volves comparing two Pareto fronts, which is a non-trivial task. In the case of our
algorithm vs.MOCK, performing a fair comparison would involve making substan-
tial modifications to the MOCK source code. According to [30], the latest version of
MOCK, which we used to run the experiments, uses a fixed number of generations
(500) and a maximum external population size (1000) in the evolutionary algorithm.
MOCK was designed to compete with single-objective clustering algorithms. The im-
plementation also contains a post-processing stage that selects the best solutions based
on the properties of the Pareto front. These selected solutions are shown to be better
in most cases than those produced byk-means and agglomerative clustering (on data
sets with known expected clusterings). All three algorithms have comparable running
times. When executing on the Iris data set, our algorithm’sPE-set size grew substan-
tially beyond 1000, and the algorithm needed thousands of iterations of the VND()
procedure to converge to a multiobjective local minimum. It would be interesting to
modify the internal parameters of MOCK to allow for a comparable running time.

The fact that our algorithm and MOCK optimize completely different cost functions
is another obstacle to making a fair comparison. We believe that our cost functions
(those based on the van Dongen coverage measures) are better than the ones in [27]
because they require no external parameters. However, substantially more comparison
testing is required before such a claim can be verified in practice with any degree of
certainty. In any case, it would be interesting to implement their cost functions in
our algorithm and run both to see a comparison in terms of running time and memory
usage.

5.1.3 Examining the Pareto Front

In both the Iris and Square1(100) data sets, the interesting solutions were found near
the kinks in the otherwise smooth Pareto front (Figures 4.6 and 4.3). This suggests

Chapter 5. Discussion and Conclusions 32

that perhaps those are the places where one should look for interesting solutions, in
general. One could speculate that the smooth, convex portions of the Pareto front are
unimportant because they correspond to sequences of solutions that all incur a large
local penalty in one of the cost functions. On the other hand, portions of the front
that are concave (up) or have sudden jumps deserve more attention because something
unusual is happening there.

Brankeet al.[7] talk about “knees” in multiobjective optimization – solutions that
corresponds to irregular sections of the Pareto front. More precisely, they argue that
interesting solutions are those that have the property that making a small change in one
cost function leads to a large change in the cost objective function.

The idea of examining the Pareto front in order to automatically select the best clus-
terings is not new. Handl and Knowles [29, 28] use a similar idea in MOCK (a mul-
tiobjective evolutionary algorithm). Although their approach is application-specific,
experimental results show that it improves the quality of the computed clusterings.

One could go further and make a claim that if the Pareto front for a given problem
instance looks “smooth” and convex, then the input is too random and has no good
clusterings. This observation seems to be supported by our results for the randomly
generated graphs. If a number of human observers were given the task of clustering
a random scale-free graph, for instance, they would probably come up with different
answers. It would be very interesting to investigate this properly, with human subjects,
but due to time constraints, we did not pursue this direction.

5.1.4 Advantages of Depth Runs

Depth runs (see Section 3.1.3) serve the purpose of initializing thePE-set to a diverse
set of fairly good solutions that are likely to dominate most of the solutions that will
be found during the execution of the algorithm. This is important because the speed
of the algorithm depends on the size of thePE-set, and we would like to keep this set
relatively small. The danger, however, is that too many solutions will be rejected, and
the multiobjective VND will hit a local minimum very quickly.

The other purpose of the depth runs is to initialize thePE-set with a diverse family
of solutions in hopes of covering as much of the search space as possible. Our tests on a
small (25-vertex) scale-free graph show that a moderate number of depth runs improved
the running time of the algorithm (see Section 4.2.1) without adversely affecting the
solution quality. Section 5.2.3 describes an alternate approach that can replace depth
runs.

5.1.5 Running on Larger Random Graphs

To evaluate the scalability of the algorithm, we ran it on a weighted graph built by
thresholding a 500x500 correlation matrix that came from an gene expression experi-
ment on an Affymetrix microarray. In this case, we replaced the first cost function (the
number of edges between clusters) by its weighted version (the sum of edge weights
between clusters). The second function was kept the same (the number of missing
edges in each cluster). This way, the first function was real-valued and the second one
was integer valued.

Chapter 5. Discussion and Conclusions 33

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

N
um

be
r o

f m
is

si
ng

 e
dg

es
 in

 c
lu

st
er

s

Sum of edges between clusters

Figure 5.1: Pareto front for a 500-vertex weighted graph built by thresholding a corre-
lation matrix.

After 38.5 hours running as a single process, with 1000 depth runs, the algorithm
terminated with the 357 results shown in Figure 5.1. In this experiment, we used only
the first two neighbourhoods (N1 andN2). N3 had not been implemented yet. This is
the largest graph that the algorithm could handle, and it was difficult to cluster, which
is indicated by the smooth Pareto front.

Another type of graph we have considered is a 2000-vertex graph (11.gra from
King’s RNSC data set). The graph proved to be virtually impossible to cluster with the
current version of our algorithm. After several days of running 5 parallel processes, it
found only the few results shown in Figure 5.2. A single run of the RNSC algorithm
immediately produced an undominated clustering. Hopefully, adding some of the im-
provements discussed in Future Work will make our implementation more scalable. It
is also unclear how scalable Handl and Knowles’ MOCK algorithm is. Alghough it
can handle much larger input instances, our algorithm produces better results on the
Iris data set.

5.2 Future Work

This section describes some of the improvements that can and should be made to the
algorithm and its implementation in order to achieve the best performance. They are
listed in decreasing order of importance, according to our best judgement.

Chapter 5. Discussion and Conclusions 34

 1000

 10000

 100000

 1e+06

 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

N
um

be
r o

f m
is

si
ng

 e
dg

es
 in

 c
lu

st
er

s

Number of edges between clusters

Pareto front
Single RNSC solution

Figure 5.2: Results for a 2000-vertex graph compared to a single run of RNSC. The
y-axis is shown in log scale.

5.2.1 Speeding up Updates of the PE-set

Majority of the time in the algorithm is spent updating the set of potentially efficient
solutions (PE-set). The datastructure used to represent thePE-set is trivial and inef-
ficient. A much better implementation would use a range tree, a BSP-tree or a kd-tree
[4], all of which would allow sub-linear time queries and insertions.

If we restrict attention to only two cost functions, then a simple balanced binary
search tree would allowO(log n) amortized time queries and insertions. The tree of
solutions can be kept sorted by the values of the first cost function (non-decreasing).
The non-dominance condition on thePE-set would then guarantee that the solutions
are also sorted by the values of the second cost function (non-increasing). Checking
whether a given solution is dominated by the set is then a simple matter of binary
searching the tree. Inserting a solution and removing all existing solutions that are
dominated by it can be done inO(log n + r) worst-case time, orO(log n) amortized
time, wherer is the number of solutions to be removed from the set during one inser-
tion.

5.2.2 Adding ’seen’ Flags to Explored Solutions

One very useful idea can be borrowed from “don’t look” bits and Tabu search [35]. In
the current implementation, the algorithm proceeds by picking a random solution from
thePE-set and exploring its neighbourhood. The next randomly picked solution could
happen to be one of those that have been picked previously. This constitutes a waste of
computation time.

Chapter 5. Discussion and Conclusions 35

A simple fix is to add a ’seen’ flag to each solution in thePE-set to ensure its neigh-
bourhood is never explored twice. These flags need to be taken care of in the distributed
context as well. If worker process number 1 has explored solutions, then it needs to
relay the fact thats’s ’seen’ flag is now true to all of the other worker processes through
the server. This would slightly increase the bandwidth requirements, and due to syn-
chronization issues, using ’seen’ flags alone would not completely eliminate wasted
computation. Nevertheless, this change is very likely to improve the algorithm’s per-
formance.

5.2.3 Needle Runs

Our algorithm relies on a sequence of depth runs (see Section 3.1.3) to initialize the
PE-set. The advantage of depth runs is their efficiency. They do not use thePE-set
and try to converge to a local minimum as quickly as possible. A similar idea can be
used during the execution of the algorithm. We could use single-objective restrictions
of the multiobjective problem in order to ”poke a hole” in the Pareto optimal frontier
and quickly find a new potentially efficient solution. This idea was used before by
Paquete and Stützle [49] for the multiobjective Traveling Salesman problem.

Consider a Pareto optimal set of solutions (an instance of thePE-set). Now pick
any solutions ∈ PE. Consider a convex combination of the objective functions
f1, f2, . . . , fk:

f =
k∑

i=1

wifi,
∑

wi = 1.

The functionf defines a single-objective restriction of the problem. Now we can use
a faster single-objective optimization algorithm to get a locally optimal solutionŝ that
minimizesf . Geometrically, imagine thePE set as a set of points in ak-dimensional
objective space. Then optimizing a single-objective restriction, looking forŝ, corre-
sponds to starting at points and looking for better solutions in the direction defined
by the weight vectorw = (w1, w2, . . . , wk). In essence, we are trying to poke a hole
through our existing Pareto optimal frontier and get a new non-dominated solution.

These “needle runs” have the advantage of being computationally inexpensive,
compared to the multiobjective optimization algorithm. On the other hand, they are
unlikely to find unsupported solutions (see Definition 2.3.3). This is why we cannot
rely exclusively on the needle runs to generate thePE-set, although they are likely to
improve the running time of the algorithm and the quality of the solutions.

5.2.4 Using Component-Based Cost Functions

To cluster a set ofk-dimensional vectors, we first treat each one as a point and compute
pairwise Euclidean distances. Other distance metrics can be used instead, such as cor-
relation or Cosine measure [27]. The distances are then used to compute the transition
probabilities for the stochastic flow simulation network that is used to define the van
Dongen cost function. However, real world data sets may have vectors for which the
Euclidean distance has little meaning. In the Iris data set, the vectors are 4-dimensional,
and the 4 values correspond to some geometric characteristics of the flower’s shape.

Chapter 5. Discussion and Conclusions 36

It would be in keeping with the core idea of multiobjective optimization to define 4
separate cost functions, one for each component of the vectors. Perhaps, we could even
use 2 cost functions per component, for a total of 8. The problem essentially reduces
to defining a good pair of cost functions for clustering a set of real numbers. This is
a difficult task in itself, and our initial attempt at defining a pair of simple functions
failed.

A possible downside of this approach is the fact that the running time will be ad-
versely affected by the large number of cost functions. What is worse, the size of the
PE-set will probably grow substantially. In our preliminary experiments, adding an
extra cost function has caused thePE-set to increase in size to the point of becoming
unmanageable.

5.2.5 Allowing Worsening Diversification Moves

Our Multiobjective Variable Neighbourhood Descent algorithm, as described above,
simply performs first-improvement hill climbing while switching between three solu-
tion neighbourhoods. In addition, we keep a set of potentially efficient solutions found
so far that affects whether any new solution is considered an improvement or not. In
theory, this approach might get stuck in local minima fairly easily.

A potentially beneficial idea to investigate is the possibility of allowing worsening
diversification steps in the neighbourhoodsN2 andN3. Some care needs to be taken
to ensure that these sub-optimal solutions are kept separate from thePE-set in order
to maintain the mutual non-dominance invariant. MOCK [27] uses a similar idea by
keeping two solution populations – external (the Pareto front) and internal (dominated).
It would be interesting to see how extending the algorithm into a multiobjective iterated
local search would affect the algorithm’s overall performance.

5.2.6 Optimizing Parallel Computing

In the current implementation, a number of worker processes generate new solutions
and periodically synchronize their copies of thePE-set with a server process. The
timeout for synchronization is a constant,W , which is a severely limiting condition.
Ideally, W should be kept as low as possible to ensure little or no duplicated work
among the worker processes. However, settingW too low would create a bottleneck
at the server process. The value ofW should depend on the size of thePE-set and
on the overall real-time performance of the system. If the workers find themselves
waiting for the server, thenW should be increased automatically. Otherwise, it should
be decreased.

A more sophisticated strategy for maintaining several copies of thePE-set is also
possible. For instance, a hierarchy imposed on the worker nodes could help reduce the
bottleneck that appears at the server process. Each node could be made to communicate
with its parent and at most two children, thus distributing the networking costs at the
price of decreased synchronization of thePE-set copies.

Bibliography 37

Bibliography

[1] E. H. L. Aarts, J. K. Lenstra, ”Local Search in Combinatorial Optimization,”
Wiley-Interscience, ISBN 0471948225, 1997.

[2] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack and A. J.
Levine, ”Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonucleotide arrays,” In Proceedings
of National Academy of Science, USA. 96(12):6745-6750, 1999.

[3] D. Beeferman and A. Berger, ”Agglomerative clustering of a search engine query
log,” In Proceedings ofACM SIGKDD International Conference, pages 407-415,
2000.

[4] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf,Computational
Geometry: Algorithms and Applications,Springer-Verlag, 1997.

[5] M. den Besten and T. Stützle, ”Neighborhoods Revisited: An Experimental Inves-
tigation into the Effectiveness of Variable Neighborhood Descent for Scheduling,”
MIC’2001 – 4th Metaheuristics International Conference, pp. 545-549, 2001.

[6] J. Bezdek, ”Pattern recognition with fuzzy objective function algorithms,”
Plenum Press, New York, 1981.

[7] J. Branke, K. Deb, H. Dierolf and M. Osswald, ”Finding Knees in Multi-objective
Optimization,” In Proceedings ofThe Eighth International Conference on Paral-
lel Problem Solving from Nature, pp. 722-731, Springer, Heidelberg, 2004.

[8] T. H. Cormen, C. E. Leiserson and R. L. Rivest,Introduction to Algorithms, The
MIT Press, Massachusetts, 1990.

[9] C. A. Coello, ”A comprehensive survey of evolutionary-based multiobjective op-
timization techniques,”Knowledge and Information Systems, 1:269-308, 1999.

[10] F. Corpet, ”Multiple sequence alignment with hierarchical clustering,”Nucleic
Acids Research, v. 16(22):10881-10890, 1988.

[11] P. Crescenzi and V. Kann, ”A compendium of NP optimization problems,”
Manuscript, available athttp://www.nada.kth.se/theory/problemlist.html, 1997.

[12] J. Crispim and J. Brandão, ”Reactive Tabu Search and Variable Neighbourhood
Descent Applied to the Vehicle Routing Problem with Backhauls,”MIC’2001 –
4th Metaheuristics International Conference, pages 631-636, 2001.

Bibliography 38

[13] A. Dempster, N. Laird and D. Rubin, ”Maximum likelihood from incomplete data
via the EM algorithm,”Journal of the Royal Statistical Society B, 39:1-38, 1977.

[14] I. S. Dhillon, Y. Guan and J. Kogan, ”Iterative Clustering of High Dimensional
Text Data Augmented by Local Search,” In Proceedings ofThe 2002 IEEE Inter-
national Conference on Data Mining, 2002.

[15] S. van Dongen, ”Performance Criteria for Graph Clustering and Markov
Cluster Experiments,”Information Systems, Center for Mathematics and
Computer Science (CWI), Amsterdam, report INS-R0012 ISSN 1386-3681,
ftp://ftp.cwi.nl/pub/CWIreports/INS/INS-R0012.pdf 2000.

[16] S. Van Dongen, ”Graph clustering by flow simulation,” PhD Thesis, University
of Utrecht, The Netherlands, 2000.

[17] J. Edachery, A. Sen and F. J. Brandenbur, ”Graph Clustering Using Distance-k
Cliques,” In Proceedings ofThe 7th International Symposium on Graph Drawing,
GD ’99, (Jan Kratochv́ıl, editor), volume 1731 of Lecture notes in Computer
Science, Springer, pages 98-106, 1999.

[18] M. Ehrgott and X. Gandibleux, ”Approximative Solution Methods for Multiob-
jective Combinatorial Optimization,”Top, 12(1):1-90, 2004.

[19] V. Estivill-Castro, ”Why so many clustering algorithms: a position paper,”ACM
SIGKDD Explorations Newsletter, 4(1):65-75, 2002.

[20] T. Feder and D. Greene, ”Optimal algorithms for approximate clustering,” In Pro-
ceedings ofThe 20th Annual ACM Symposium on Theory of Computing, Chicago,
Ill., May 2-4, ACM, New York, pages 434-444, 1988.

[21] R. A. Fisher, ”The use of multiple measurments in taxonomic problems,”Annals
of Eugenics, 7:179-188, 1936.

[22] R. W. Floyd, ”Algorithm 97: Shortest Path,” C.ACM, 5(6):345, 1963.

[23] P. Fr̈anti and J. Kivij̈arvi, ”Randomised Local Search Algorithm for the Clustering
Problem,”Pattern Analysis and Applications, 3(4):358-369, 2000.

[24] F. Glover, E. Taillard and D. de Werra, ”A user’s guide to tabu search,”Annals of
Operations Research, 41(1,4):3-28, 1993.

[25] T. F. Gonzalez, ”Clustering to minimize the maximum intercluster distance,”The-
oretical Computer Science38:293-306, 1985.

[26] J. A. Hartigan and M. A. Wong, ”A k-means clustering algorithm,”Applied Statis-
tics28(100), 1979.

[27] J. Handl and J. Knowles, ”Evolutionary Multiobjective Clustering,” In Proceed-
ings of The Eighth International Conference on Parallel Problem Solving from
Nature, (PPSN VIII), pages 1081-1091, 2004.

Bibliography 39

[28] J. Handl and J. Knowles, ”Multiobjective clustering with automatic determina-
tion of the number of clusters,” Technical Report TR-COMPSYSBIO-2004-02,
UMIST, Manchester, UK. Under submission, 2004.

[29] J. Handl and J. Knowles, ”Exploiting the trade-off – the benefits of multiple objec-
tives in data clustering,”Third International Conference on Evolutionary Multi-
Criterion Optimization, EMO, 2005.

[30] J. Handl and J. Knowles, ”Improving the scalability of multiobjective clustering,”
Technical Report TR-COMPSYSBIO-2005-03. UMIST, Manchester, UK, 2005.

[31] J. Handl, J. Knowles and M. Dorigo, ”Strategies for the Increased Robustness of
Ant-Based Clustering,” Postproceedings ofThe First International Workshop on
Engineering Self-Organising Applications (ESOA 2003), 2003.

[32] P. Hansen and N. Mladenović, ”An introduction to variable neighborhood search,”
In S. Voss, S. Martello, I. H. Osman and C. Roucairol, editors,Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, pages 422-
458. Kluwer Academic Publishers, Boston, MA, USA, 1999.

[33] A. Hertz and M. Mittaz, ”A Variable Neighborhood Descent Algorithm for
the Undirected Capacitated Arc Routing Problem,”Transportation Science,
35(4):425-434, 2001.

[34] J. H. Holland, ”Adaptation in natural and artificial systems,” The University of
Michigan Press, Ann Arbor, 1975.

[35] H. Hoos and T. Sẗutzle, ”Stochastic Local Search: Foundations and Applications,”
Morgan Kaufmann Publishers, ISBN:1-55860-872-9, 2005.

[36] Z. Huang, ”A Fast Clustering Algorithm to Cluster Very Large Categorical Data
Sets in Data Mining,”Research Issues on Data Mining and Knowledge Discovery,
1997.

[37] S.-W. Hur and J. Lillis, ”Relaxation and Clustering in a Local Search Framework:
Application to Linear Placement,”VLSI Design14(2):143-154, 2002.

[38] A. K. Jain, M. N. Murty and P. J. Flynn, ”Data clustering: A review,”ACM Com-
puting Surveys, 31:264-323, 1999.

[39] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A.
Y. Wu, ”A Local Search Approximation Algorithm for k-Means Clustering,” In
Proceedings ofThe 18th Annual ACM Symposium on Computational Geometry,
pages 10-18, 2002.

[40] M. Y. Kiang, ”Extending the Kohonen self-organizing map networks for cluster-
ing analysis,”Computational Statistics and Data Analysis, 38:161-180, 2001.

[41] A. D. King, ”Graph Clustering with Restricted Neighbourhood Search,” MSc
Thesis, University of Toronto, Graduate Department of Computer Science, 2004.

Bibliography 40

[42] J. Kleinberg, ”An impossibility theorem for clustering,” In Proceedings ofThe
15th Conference on Neural Information Processing Systems, Vancouver, Canada,
2002.

[43] T. Kohonen, ”Self-organizing maps”,Springer-Verlag, New York, USA, 1997.

[44] T. Kurita, ”An efficient agglomerative clustering algorithm using a heap,”Pattern
Recognition, 24(3):205-209, 1991.

[45] M. H. C. Law, A. P. Topchy and A. K. Jain, ”Multiobjective Data Clustering,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004.

[46] D. Merkle, M. Middendorf and A. Scheidler, ”Decentralized Packet Clustering
in Networks,” In Proceedings ofThe 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), 2004.

[47] N. Mladenovíc and P. Hansen, ”Variable neighborhood search,”Computers and
Operations Research, 24(11):1097-1100, 1997.

[48] P. Pantel and D. Lin, ”Discovering word senses from text,” In Proceedings ofThe
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
613-619, 2002.

[49] L. Paquete and T. Stützle, ”A Two-Phase Local Search for the Biobjective Trav-
eling Salesman Problem,” In Proceedings ofEvolutionary Multi-Criterion Opti-
mization: Second International Conference, EMO 2003, Faro, Portugal, pages
479-493, April 8-11, 2003.

[50] H.-P. Schwefel, ”Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie,”Interdisciplinary systems research, 26, Birkhauser, Basel,
1977.

[51] M. Steinbach, G. Karypis and V. Kumar, ”A Comparison of Document Clustering
Techniques,” Univesity of Minnesota, dept. of Computer Science and Engineer-
ing, Technical Report #00-034, 2000.

[52] M. Sultan, D. A. Wigle, C. A. Cumbaa, M. Maziarz, J. Glasgow, M. S. Tsao and
I. Jurisica, ”Binary tree-structured vector quantization approach to clustering and
visualizing microarray data,”Bioinformatics, 18(1):S111-S119, 2002.

[53] A. Ushioda and J. Kawasaki, ”Hierarchical clustering of words and application to
NLP tasks,” In E. Ejerhed and I. Dagan (Eds.),Fourth Workshop on Very Large
Corporapages 28-41, Somerset, New Jersey: Association for Computational Lin-
guistics, 1996.

[54] J. Vesanto and E. Alhoniemi, ”Clustering of the Self-Organizing Map,”IEEE
Transactions on Neural Networks, 11(3):586-600, 2000.

[55] S. Warshall, ”A Theorem on Boolean Matrices,”Jounal of the ACM, 9(1):11-12,
1963.

Bibliography 41

[56] S. D. M. White, C. S. Frenk, ”Galaxy formation through hierarchical clustering,”
Astrophysical Journal, Part 1 (ISSN 0004-637X), 379:52-79, 1991.

[57] Y. Yaari, ”Segmentation of expository texts by hierarchical agglomerative clus-
tering,” In Proceedings ofRANLP’97, Bulgaria, 1997.

[58] T. Zhang, R. Ramakrishnan and M. Livny, ”BIRCH: an efficient data clustering
method for very large databases,” In Proceedings ofACM SIGMOD, 25(2):103-
114, 1996.

