[Mathe Home]
[LS NAM]
|
Lehrstuhl für Mathematik, insbesondere
Numerische und Angewandte Mathematik |
Forschungsschwerpunkt
Genetische Algorithmen
When Holland (1975) proposed genetic
algorithms, he envisioned them as methods that were going to be efficient, easy
to use, and applicable to a wide range of problems. But one thing that stands
out from the current literature, is that genetic algorithms seem to require
quite a bit of expertise in order to make them work well for a particular
application. The expertise is needed because users are generally clueless on how
to decide among the various codings and operators, as well as on deciding on a
good set of parameter values for the GA. In the end, instead of being a robust
and an easy-to-use method, the genetic algorithm turns out to be a method that
needs a lot of tuning and parameter fiddling. This state of affairs is a kind of
a paradox, and contradicts Holland's original goals.
The decisions that a user must make before
applying a GA can be grouped in two categories. The first, is the choice of an
appropriate coding and operators. The second, is the choice of appropriate
parameter settings.
From the user's point of view, setting the
parameters of a genetic algorithm (GA) is far from a trivial task. Moreover, the
user is typically not interested in population sizes, crossover probabilities,
selection rates, and other GA technicalities. He is just interested in solving a
problem, and what he would really like to do, is to hand-in the problem to a
blackbox algorithm, and simply press a start button. We investigate the
development of a GA that fulfils this requirement. It has no parameters
whatsoever. The development of the algorithm takes into account several aspects
of the theory of GAs, including previous research works on population sizing,
the schema theorem, building block mixing, and genetic drift.
If Genetic Algorithms should be made accessible
for a broader public, further convergence criteria and proofs must be developed
- in particular in order to place the selection of numerous parameters on a
solid base.
Related Literature (Some of the publications
which I have read.)
- Antonisse, J. (1989). A new interpretation
of schema notation that overturns the binary encoding constraint. In Schaffer,
J. D., editor, Proceedings of the Third International Conference on Genetic
Algorithms (ICGA ’89), pages 86–91. Morgan Kaufmann Publishers.
- Bäck, T. (1991). Optimization by means of
genetic algorithms. In Köhler, E., editor, 36. Internationales
wissenschaftliches Kolloquium, pages 163–169. Technische Universität
Ilmenau.
- Bäck, T. (1992a). The interaction of
mutation rate, selection, and self-adaption within a genetic algorithm. In
Männer, R. and Manderick, B., editors, Parallel Problem Solving from Nature 2,
pages 85–94. Elsevier Science Publishers.
- Bäck, T. (1992b). Self-adaptation in genetic
algorithms. In Proceedings of the 1st European Conference on Artificial Life
(1991), pages 263–271. MIT Press.
- Bäck, T. (1993). Optimal mutation rates in
genetic search. In Forrest, S., editor, Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA ’93), pages 2–9, San Mateo, CA. Morgan
Kaufmann Publishers.
- Bäck, T., Hammel, U., and Schwefel, H.-P.
(1997). Evolutionary computation: Comments on the history and current state.
IEEE Transactions on Evolutionary Computation, 1(1):3–17.
- Bäck, T. and Hoffmeister, F. (1991).
Extended selection mechanisms in genetic algorithms. In Belew, R. K. and
Booker, L. B., editors, Proceedings of the Fourth International Conference on
Genetic Algorithms (ICGA ’91), pages 92–99. Morgan Kaufmann Publishers.
- Bäck, T., Hoffmeister, F., and Schwefel,
H.-P. (1991). A survey of evolution strategies. In Belew, R. K. and Booker, L.
B., editors, Proceedings of the Fourth International Conference on Genetic
Algorithms (ICGA ’91), pages 2–9. Morgan Kaufmann Publishers.
- Bäck, T. and Schwefel, H.-P. (1995a).
Evolution Strategies I: Variants and their computational implementation. In
Winter, G., Périeaux, J., Galá, M., and Cuesta, P., editors, Genetic
Algorithms in Engineering and Computer Science, pages 111–126, Chicester.
Wiley.
- Bäck, T. and Schwefel, H.-P. (1995b).
Evolution Strategies II: Theoretical aspects implementation. In Winter, G.,
Périeaux, J., Galá, M., and Cuesta, P., editors, Genetic Algorithms in
Engineering and Computer Science, pages 127–140, Chicester.
Wiley.
- Beasley, D., Bull, D. R., and Martin, R. R.
(1993a). An overview of genetic algorithms: Part 1, fundamentals. University
Computing, 15(2):58–69.
- Beasley, D., Bull, D. R., and Martin, R. R.
(1993b). An overview of genetic algorithms: Part 2, research topics.
University Computing, 15(4):170–181.
- Beasley, D., Bull, D. R., and Martin, R. R.
(1993c). A sequential niche technique for multimodal function optimization.
Evolutionary Computation, 1(2):101–125.
- Belding, T. C. (1995). The distributed
genetic algorithm revisited. In Eshelman, D., editor, Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA ’95), San Francisco.
Morgan Kaufmann Publishers.
- Benyahia, I. and Potvin, J.-Y. (1995).
Generalization and refinement of route construction heuristics using genetic
algorithms. In Proceedings of the IEEE International conference on
Evolutionary Computation (ICEC 95), pages 39–43.
- Bertoni, A. and Dorigo, M. (1993). Implicit
parallelism in genetic algorithms. Artificial Intelligence,
2(61):307–314.
- Brittain, D., Sims Williams, J., and
McMahon, C. A. (1997). A genetic algorithm approach to planning the
telecommunications access. In Proceedings of the Seventh International
Conference on Genetic Algorithms (ICGA ’97). Morgan Kaufmann
Publishers.
- Bruns, R. (1995). Integration of constraint
solving techniques in genetic algorithms. In Proceedings of the IEEE
International conference on Evolutionary Computation (ICEC 95), pages
33–38.
- Bussieck, M. R., Kreuzer, P., and
Zimmermann, U. T. (1996). Optimal lines for railway systems. European Journal
of Operational Research, 96:54–63.
- Cantú-Paz, E. (1995). A summary of research
on parallel genetic algorithms. Technical Report IlliGAL Report No. 95007,
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Chang, C. S., Wang, W., Liew, A. C., Wen, F.
S., and Srinivasan, D. (1995). Genetic algorithm based bicriterion
optimisation for traction substations in dc railway system. In Proceedings of
the IEEE International conference on Evolutionary Computation (ICEC 95), pages
11–16.
- Cleveland, G. A. and Smith, S. F. (1989).
Using genetic algorithms to schedule flow shop releases. In Schaffer, J. D.,
editor, Proceedings of the Third International Conference on Genetic
Algorithms (ICGA ’89), pages 160–169. Morgan Kaufmann Publishers.
- Coli, M. and Palazzari, P. (1995). Searching
for the optimal coding in genetic algorithms. In Proceedings of the IEEE
International conference on Evolutionary Computation (ICEC 95), pages
92–96.
- Corno, F., Sonza Reorda, M., and Squillero,
G. (1998). The selfish gene algorithm: a new evolutionary optimization
strategy. In SAC’98: 13th Annual ACM Symposium on Applied Computing, Atlanta,
Georgia (USA). Politecnico di Torino, Dipartimento di Automatica e
Informatica, Torino, Italy.
- Davis, L. (1989). Adapting operator
probabilities in genetic algorithms. In Schaffer, J. D., editor, Proceedings
of the Third International Conference on Genetic Algorithms (ICGA ’89), pages
61–69. Morgan Kaufmann Publishers.
- de la Maza, M. and Tidor, B. (1993). An
analysis of selection procedures with particular attention paid to
proportional and boltzmann selection. In Forrest, S., editor, Proceedings of
the Fifth International Conference on Genetic Algorithms (ICGA ’93), pages
124–131. Morgan Kaufmann Publishers.
- Deb, K. and Goldberg, D. E. (1989). An
investigation of niche and species formation in genetic function optimization.
In Schaffer, J. D., editor, Proceedings of the Third International Conference
on Genetic Algorithms (ICGA ’89), pages 42–50. Morgan Kaufmann
Publishers.
- Deb, K. and Goldberg, D. E. (1991). mga in
c: A messy genetic algorithm in c. Technical Report IlliGAL Report No. 91008,
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Derrida, B. (1981). Random-energy model: An
exactly solvable model of disordered systems. Physical Review B,
24(5):2613–2626.
- Dupas, R., Fourmaux, D., and Goncalvez, G.
(1997). Optimizing machine stoppages by a genetic algorithm in the context of
multiple machines assigned to one operator. In Sydow, A., editor, Proceedings
of the 15th IMACS World Congress on Scientific Computation, Modelling and
Applied Mathematics, volume 2 : Numerical Mathematics, pages 627–631.
Wissenschaft & Technik Verlag, Berlin, August 1997.
- Eddelbüttel, D. (1992). A genetic algorithm
for passive management. Master’s thesis, GREQE-EHESS, Centre de la Vieille
Charit’e, Marseille.
- Eshelman, L. J., Caruana, R. A., and
Schaffer, J. D. (1989). Biases in the crossover landscape. In Schaffer, J. D.,
editor, Proceedings of the Third International Conference on Genetic
Algorithms (ICGA ’89), pages 10–19. Morgan Kaufmann Publishers.
- Fang, H.-L., Ross, P., and Corne, D. (1993).
A promising genetic algorithm approach to job-shop scheduling, rescheduling,
and open-shop scheduling problems. In Forrest, S., editor, Proceedings of the
Fifth International Conference on Genetic Algorithms (ICGA ’93), pages
375–382, San Mateo. Morgan Kaufmann Publishers.
- Field, P. (1994). Walsh and partition
functions made easy. In missing. Presented as a poster at the 1994 AISB
Workshop on Evolutionary Computing.
- Filho, J., Alippi, C., and Treleaven, P.
(1994). Genetic algorithm programming environments. IEEE Computer,
(February/1994).
- Fleury, G., Goujon, J.-Y., Gourgand, M., and
Lacomme, P. (1997). Stochastic optimization for manufacturing systems with
random events. In Sydow, A., editor, Proceedings of the 15th IMACS World
Congress on Scientific Computation, Modelling and Applied Mathematics, volume
5 : Systems Engineering, pages 427–432. Wissenschaft & Technik Verlag,
Berlin, August 1997.
- Floréen, P. B. and Kok, J. N. (1994).
Tracing the moments of distributions in genetic algorithms. In Alander, J. T.,
editor, Proceedings of the Second Finnish Workshop on Genetic Algorithms and
their Applications (2FWGA), pages 51–60. Department of Information Technology
and Production Economics, University of Vaasa, Finland.
- Frick, A. (1997). A universal
object-oriented framework for evolution programs. In Sydow, A., editor,
Proceedings of the 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics, volume 2 : Numerical Mathematics, pages
639–644. Wissenschaft & Technik Verlag, Berlin, August 1997.
- Fukunaga, A. S. and Kahng, A. B. (1995).
Improving the performance of evolutionary optimization by dynamically scaling
the evaluation function. In Proceedings of the IEEE International conference
on Evolutionary Computation (ICEC 95), pages 182–187.
- Galavíz, J. and Kuri, A. (1996). A
self-adaptive genetic algorithm for function optimization. In Proceedings of
the Nineth International Symposium on Artificial Intelligence
(ISAI-96).
- Goldberg, D. E. (1989). Sizing population
for serial anf parallel genetic algorithms. In Schaffer, J. D., editor,
Proceedings of the Third International Conference on Genetic Algorithms (ICGA
’89), pages 70–79. Morgan Kaufmann Publishers.
- Goldberg, D. E. (1991). Real-coded genetic
algorithms, virtual alphabets, and blocking. Complex Systems,
5(2):139–167.
- Goldberg, D. E. (1992). Construction of
high-order deceptive functions using low-order walsh coefficients. Annals of
Mathematics and Artificial Intelligence, 5(1):35–48.
- Goldberg, D. E. (1994a). Change in
engineering education: One myth, two scenarios, and three foci. Technical
Report IlliGAL Report No. 94003, Illinois Genetic Algorithms Laboratory
(IlliGAL).
- Goldberg, D. E. (1994b). The existential
pleasures of genetic algorithms. Technical Report IlliGAL Report No. 94010,
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Goldberg, D. E. (1994c). First flights at
genetic-algorithm kitty hawk. Technical Report IlliGAL Report No. 94008,
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Goldberg, D. E., Deb, K., and Clark, J. H.
(1991). Genetic algorithms, noise, and the sizing of populations. Technical
Report IlliGAL Report No. 91010, Illinois Genetic Algorithms Laboratory
(IlliGAL).
- Goldberg, D. E., Deb, K., and Horn, J.
(1992a). Massive multimodality, deception, and genetic algorithms. In Männer,
R. and Manderick, B., editors, Parallel Problem Solving from Nature (PPSN),
number 2, pages 37–46, Amsterdam. North-Holland.
- Goldberg, D. E., Deb, K., Kargupta, H., and
Harik, G. (1993). Rapid, accurate optimization of difficult problems using
fast messy genetic algorithms. Technical Report IlliGAL Report No. 93004,
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Goldberg, D. E., Deb, K., and Thierens, D.
(1992b). Toward a better understanding of mixing in genetic algorithms.
Technical Report IlliGAL Report No. 92009, Illinois Genetic Algorithms
Laboratory (IlliGAL).
- Goldberg, D. E., Horn, J., and Deb, K.
(1992c). What makes a problem hard for a classifier system? Technical Report
IlliGAL Report No. 92007, Illinois Genetic Algorithms Laboratory
(IlliGAL).
- Goldberg, D. E., Milman, K., and Tidd, C.
(1992d). Genetic algorithms: A bibliography. Technical Report IlliGAL Report
No. 92008, Illinois Genetic Algorithms Laboratory (IlliGAL).
- Grefenstette, J. J. (1989). A system for
learning control strategies with genetic algorithms. In Schaffer, J. D.,
editor, Proceedings of the Third International Conference on Genetic
Algorithms (ICGA ’89), pages 183–190. Morgan Kaufmann Publishers.
- Grefenstette, J. J. and Baker, J. E. (1989).
How genetic algorithms work: A critical look at implicit parallelism. In
Schaffer, J. D., editor, Proceedings of the Third International Conference on
Genetic Algorithms (ICGA ’89), pages 20–27. Morgan Kaufmann
Publishers.
- Handa, K. and Kuga, S. (1995). Polycell
placement for analog lsi chip designs by genetic algorithms and tabu search.
In Proceedings of the IEEE International conference on Evolutionary
Computation (ICEC 95), pages 716–721.
- Harik, G. (1994). Finding multiple solutions
in problems of bounded difficulty. Technical Report IlliGAL Report No. 94002,
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Harik, G., Cantú-Paz, E., Goldberg, D. E.,
and Miller, B. L. (1997). The gambler’s ruin problem, genetic algorithms and
the sizing of populations. In Bäck, T., editor, Proceedings of the 1997 IEEE
Conference on Evolutionary Computation, pages 7–12. IEEE Press.
- Harvey, I. (1993). The puzzle of the
persistent question marks: A case study of genetic drift. In Forrest, S.,
editor, Proceedings of the Fifth International Conference on Genetic
Algorithms (ICGA ’93), pages 15–22. Morgan Kaufmann Publishers.
- Hong, I., Kahng, A. B., and Moon, B. R.
(1995). Exploiting synergies of multiple crossovers: Initial studies. In
Proceedings of the IEEE International conference on Evolutionary Computation
(ICEC 95), pages 245–250.
- Horn, J. (1993a). Finite markov chain
analysis of genetic algorithms with niching. In Forrest, S., editor,
Proceedings of The Fifth International Conference on Genetic Algorithms (ICGA
’93), number III, pages 110–117, San Mateo, CA. Illinois Genetic Algorithms
Laboratory (IlliGAL), Morgan Kaufmann Publishers.
- Horn, J. (1993b). Finite markov chain
analysis of genetic algorithms with niching. In Forrest, S., editor,
Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA
’93), pages 110–117. Morgan Kaufmann Publishers.
- Horn, J. (1995). Genetic algorithms, problem
difficulty, and the modality of fitness landscapes. Technical Report IlliGAL
Report No. 95004, Illinois Genetic Algorithms Laboratory
(IlliGAL).
- Horn, J. and Goldberg, D. E. (1994). Genetic
algorithm difficulty and the modality of fitness landscapes. In Proceedings of
the Foundations of Genetic Algorithms (FOGA) 3 workshop. Illinois Genetic
Algorithms Laboratory (IlliGAL).
- Horn, J., Goldberg, D. E., and Deb, K.
(1992). Research note: Long path problems for mutation-based algorithms. In
Davidor, Y., Schwefel, H.-P., and Männer, R., editors, Proceedings of The
Third Conference on Parallel Problem Solving from Nature (1994), number III,
pages 149–158, Berlin, Germany. Illinois Genetic Algorithms Laboratory
(IlliGAL), Springer-Verlag.
- Horn, J., Goldberg, D. E., and Deb, K.
(1994). Implicit niching in a learning classifier system: Nature’s way. In
Evolutionary Computation, 1994, number 2(1). Illinois Genetic Algorithms
Laboratory (IlliGAL).
- Horn, J. and Nafpliotis, N. (1993).
Multiobjective optimization using the niched pareto genetic algorithm. In
Proceedings of The First IEEE Conference on Computational Intelligence (ICEC
’94), number I, pages 82–87, Piscataway, NJ. Illinois Genetic Algorithms
Laboratory (IlliGAL), IEEE Service Center.
- Jones, T. C. (1995a). Crossover,
macromutation, and population-based search. In Eshelman, L. J., editor,
Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA
’95), pages 73–80.
- Jones, T. C. (1995b). Evolutionary
Algorithms, Fitness Landscapes and Search. PhD thesis, University of New
Mexico.
- Jones, T. C. and Forrest, S. (1995). Fitness
distance correlation as a measure of problem difficulty for genetic
algorithms. In Eshelman, L. J., editor, Proceedings of the Sixth International
Conference on Genetic Algorithms (ICGA ’95), pages 184–192.
- Juels, A. and Wattenberg, M. (1994).
Stochastic hillclimbing as a baseline method for evaluating genetic
algorithms. Technical Report csd-94-834, University of
California.
- Kargupta, H. (1993). Information
transmission in genetic algorithm and shannon’s second theorem. In missing.
Illinois Genetic Algorithms Laboratory (IlliGAL).
- Kargupta, H. and Goldberg, D. E. (1994).
Decision making in genetic algorithms: A signal-to-noise perspective.
Technical Report IlliGAL Report No. 94004, Illinois Genetic Algorithms
Laboratory (IlliGAL).
- Keller, B. and Lutz, R. (1997). A new
crossover operator for rapid function optimisation using a genetic algorithm.
In Proceedings of the Eight Ireland Conference on Artificial Intelligence
(AI-97), volume 2, pages 48–55. School of Information and Software
Engineering, Faculty of Informatics, University of Ulster, Magee College,
Northern Ireland.
- Khuri, S. (1994). Walsh and haar functions
in genetic algorithms. In Proceedings of the 1994 ACM Symposium on Applied
Computing (SAC’94) ”Genetic Algorithms and Optimization Track”. Phoenix
Arizona, ACM Press.
- Khuri, S. and Bäck, T. (1994). An
evolutionary heuristic for the minimum vertex cover problem. In Hopf, J.,
editor, Genetic Algorithms within the Framework of Evolutionary Computation,
pages 86–90. Max Planck Institut für Informatik, Saarbrücken.
- Khuri, S., Bäck, T., and Heitkötter, J.
(1994a). An evolutionary approach to combinatorial optimization problems. In
Proceedings of the 1994 Computer Science Conference (CSC’94), pages 66–73.
Phoenix Arizona, ACM Press.
- Khuri, S., Bäck, T., and Heitkötter, J.
(1994b). The zero/one multiple knapsack problem and genetic algorithms. In
Proceedings of the 1994 ACM Symposium on Applied Computing (SAC’94) ”Genetic
Algorithms and Optimization Track”, pages 188–193. Phoenix Arizona, ACM
Press.
- Khuri, S., Schütz, M., and Heitkötter, J.
(1995). Evolutionary heuristics for the bin packing problem. In The
proceedings of ICANNGA ’95 Int’l Conf on Artificial NNs and GAs.
- Kolarov, K. (1995). The role of selection in
evolutionary algorithms. In Proceedings of the IEEE International conference
on Evolutionary Computation (ICEC 95), pages 86–91.
- Krishnakumar, K. (1989). Micro-genetic
algorithms for stationary and non-stationary function optimization. SPIE -
Intelligent Control and Adaptive Systems, 1196:289–296.
- Kwasnicka, H. (1997). The role of redundant
genes in evolutionary algorithms - simulation study. In Sydow, A., editor,
Proceedings of the 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics, volume 2 : Numerical Mathematics, pages
645–650. Wissenschaft & Technik Verlag, Berlin, August 1997.
- Leitch, D. D. (1995). A New Genetic
Algorithm for the Evolution of Fuzzy Systems. PhD thesis, Robotics Research
Group, Department of Engineering Science, University of Oxford.
- Levine, D. (1994). A parallel genetic
algorithm for the set partitioning problem. Technical Report ANL-94/23,
Argonne National Laboratory.
- Mahfoud, S. W. (1992). Crowding and
preselection revisited. In Manner, R. and Manderick, B., editors, Parallel
Problem Solving from Nature, number 2, pages 27–36, Amsterdam. Illinois
Genetic Algorithms Laboratory (IlliGAL), Elsevier Science Publishers (North
Holland).
- Mahfoud, S. W. (1993a). Finite markov chain
models of an alternative selection strategy for the genetic algorithm. Complex
Systems, 7(2):155–170.
- Mahfoud, S. W. (1993b). Simple analytical
models of genetic algorithms for multimodal function optimization. Technical
Report IlliGAL Report No. 93001, Illinois Genetic Algorithms Laboratory
(IlliGAL).
- Mahfoud, S. W. (1994). Population sizing for
sharing methods. In The Proceedings of the Third Workshop on Foundations of
Genetic Algorithms. Illinois Genetic Algorithms Laboratory (IlliGAL).
- Mahfoud, S. W. (1995). Niching methods for
genetic algorithms. Technical Report IlliGAL Report No. 95001, Illinois
Genetic Algorithms Laboratory (IlliGAL).
- Mahfoud, S. W. and Goldberg, D. E. (1995).
Parallel recombinative simulated annealing: A genetic algorithm. Parallel
Computing, 21(1):1–28.
- Mason, A. (1995). A non-linearity measure of
a problem’s crossover suitability. In Proceedings of the IEEE International
conference on Evolutionary Computation (ICEC 95), pages 68–73.
- Mesghouni, K. and Hammadi, S.and Borne, P.
(1997). Hybrid representation for genetic algorithm to solve flexible job shop
scheduling. In Sydow, A., editor, Proceedings of the 15th IMACS World Congress
on Scientific Computation, Modelling and Applied Mathematics, volume 5 :
Systems Engineering, pages 433–438. Wissenschaft & Technik Verlag, Berlin,
August 1997.
- Miller, B. L. and Goldberg, D. E. (1995).
Genetic algorithms, tournament selection, and the effects of noise. Technical
Report IlliGAL Report No. 95006, Illinois Genetic Algorithms Laboratory
(IlliGAL).
- Mitchell, M. and Forrest, S. (1993). Genetic
algorithms and artificial life. Technical Report 93-11-072, SFI.
- Monteiro, J. (missing). Optimal finite state
machine encoding using genetic algorithms. In missing. Department of EECS.
Massachusetts Institute of Technology, Cambridge.
- Mühlenbein, H. (missing). Evolutionary
algorithms: Theory and applications. In missing.
- Mühlenbein, H. and Schlierkamp-Voosen, D.
(1993a). Optimal interaction of mutation and crossover in the breeder genetic
algorithm. In Forrest, S., editor, Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA ’93), pages 648–657. Morgan Kaufmann
Publishers.
- Mühlenbein, H. and Schlierkamp-Voosen, D.
(1993b). Predictive models for the breeder genetic algorithm, i. continuous
parameter optimization. Evolutionary Computation, 1(4):25–49.
- Mühlenbein, H. and Schlierkamp-Voosen, D.
(1994). The science of breeding and its application to the breeder genetic
algorithm bga. Evolutionary Computation, 1(4):335–360.
- Oei, C. K., Goldberg, D. E., and Chang,
S.-J. (1991). Tournament selection, niching, and the preservation of
diversity. Technical Report IlliGAL Report No. 91011, Illinois Genetic
Algorithms Laboratory (IlliGAL).
- Ohmori, K. (1995). High-level synthesis
using genetic algorithm. In Proceedings of the IEEE International conference
on Evolutionary Computation (ICEC 95), pages 209–213.
- Palmer, C. C. (1994). An Appproach To A
Problem In Network Design Using Genetic Algorithms. PhD thesis, Department of
Computer Science.
- Palmer, C. C. and Kershenbaum, A. (1994).
Representing trees in genetic algorithms. In missing. Presented at WCCI
1994.
- Parmee, I. and Vekeria, H. (1997).
Evolutionary/adaptive search strategies and model representation in
engineering design. In Sydow, A., editor, Proceedings of the 15th IMACS World
Congress on Scientific Computation, Modelling and Applied Mathematics, volume
2 : Numerical Mathematics, pages 615–620. Wissenschaft & Technik Verlag,
Berlin, August 1997.
- Prügel-Bennett, A. and Shapiro, J. L.
(1994). Analysis of genetic algorithms using statistical mechanics. Physical
Review Letters, 72(9):1305–1309.
- Prügel-Bennett, A. and Shapiro, J. L.
(1997). The dynamics of a genetic algorithm for simple random ising systems.
Physica D, 104:75–114.
- Rudolph, G. (1994). Convergence analysis of
canonical genetic algorithms. IEEE Transactions on Neural Networks, Special
Issue on Evolutionary Programming. (In print)
- Rudolph, G. and Schwefel, H.-P. (1994).
Evolutionäre Algorithmen: Ein robustes Optimierkonzept. Physikalische Blätter,
50(3):236–238.
- Santos, A. and Dourado, A. (1997).
Production and energy optimization in an industrial complex: A genetic
algorithm approach. In Sydow, A., editor, Proceedings of the 15th IMACS World
Congress on Scientific Computation, Modelling and Applied Mathematics, volume
4 : Knowledge-based Systems and Computer Science, pages 43–48. Wissenschaft
& Technik Verlag, Berlin, August 1997.
- Schaerf, A., Shoham, Y., and Tennenholtz, M.
(1995). Adaptive load balancing: A study in multi-agent learning. Journal of
Artificial Intelligence Research, (2):475–500.
- Schaffer, J., Caruana, R. A., Eshelman, L.
J., and Das, R. (1989). A study of control parameters affecting online
performance of genetic algorithms for function optimization. In Schaffer, J.
D., editor, Proceedings of the Third International Conference on Genetic
Algorithms (ICGA ’89), pages 51–60. Morgan Kaufmann Publishers.
- Schraudolph, N. N. and Belew, R. K. (1992).
Dynamic parameter encoding for genetic algorithms. Technical Report UCSD CS
90-175, University of California.
- Schwefel, H.-P. and Bäck, T. (1992).
Künstliche Evolution — eine intelligente Problemlösungsstrategie? KI —
Künstliche Intelligenz, 6(2):20–27.
- Syswerda, G. (1989). Uniform crossover in
genetic algorithms. In Schaffer, J. D., editor, Proceedings of the Third
International Conference on Genetic Algorithms (ICGA ’89), pages 2–9. Morgan
Kaufmann Publishers.
- Thierens, D. and Goldberg, D. E. (1993).
Mixing in genetic algorithms. In Forrest, S., editor, Proceedings of the Fifth
International Conference on Genetic Algorithms (ICGA ’93), pages 38–45.
- Whitley, D. (1989). The genitor algorithm
and selection pressure: Why rank-based allocation of reproductive trials is
best. In Schaffer, J. D., editor, Proceedings of the Third International
Conference on Genetic Algorithms (ICGA ’89), pages 116–121. Morgan Kaufmann
Publishers.
- Whitley, D. (1994). A genetic algorithm
tutorial. Statistics and Computing, (4):65–85.
- Whitley, D., Starkweather, T., and Fuquay,
D. (1989). Scheduling problems and traveling salesmen: The genetic edge
recombination operator. In Schaffer, J. D., editor, Proceedings of the Third
International Conference on Genetic Algorithms (ICGA ’89), pages 133–140.
Morgan Kaufmann Publishers.
- Wilcox, J. R. (1995). Organizational
learning within a learning classifier system. Technical Report IlliGAL Report
No. 95003, Illinois Genetic Algorithms Laboratory (IlliGAL).
- Wolpert, D. H. and Macready, W. G. (1997).
No free lunch theorem for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82.
Weitere Veröffentlichungen zu diesem
und anderen Forschungschwerpunkten unseres Lehrstuhls finden Sie auf unserer Publikationsseite.
Ansprechpartner: Dipl.-Math. Stephan Würll
[Mathe Home]
[LS NAM]