
Messy Genetic Algorithms for Subset Feature Selection

D. Whitley, J. R. Beveridge, C. Guerra-Salcedo, C. Graves

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523 USA

(303) 491-5373

whitley, ross, guerra, gravesc@cs.colostate.edu

Abstract

Subset Feature Selection problems can have

several attributes which may make Messy Ge-

netic Algorithms an appropriate optimization

method. First, competitive solutions may of-

ten use only a small percentage of the total

available features; this can not only o�er an

advantage to Messy Genetic Algorithms, it

may also cause di�culties for other types of

evolutionary algorithms. Second, the evalu-

ation of small blocks of features is naturally

decomposable. Thus, there is no di�culty

evaluating underspeci�ed strings. A Messy

Genetic Algorithm yields new state of the

art results on di�cult matching problems in

computer vision. We also apply variants of

the Fast Messy Genetic Algorithm to syn-

thethic test problems.

Keywords: messy genetic algorithms, subset feature

selection, computer vision, geometric matching

1 Introduction

The subset feature selection problem occurs in several

domains, including machine learning and computer vi-

sion. In machine learning, many features may be avail-

able as potential inputs to a learning system. Learning

is often faster and potentially more robust if the set of

inputs can be reduced to a subset which captures all

or most of the information contained in the larger fea-

ture set. Applications are found in the construction of

decision trees (Bala et al. 1995) and neural networks

(Brill et al. 1992).

Messy Genetic Algorithms (Goldberg et al. 1989) are

well suited to some types of subset feature selection

problems. Messy Genetic Algorithms allow variable-

length strings that may be underspeci�ed or overspec-

i�ed with respect to the problem being solved. A

messy gene is a pair: (GeneNumber;AlleleV alue).
The messy chromosome is a collection of messy genes.

For example ((5; 0)(2; 1)(2; 0)(1; 0)) is a chromosome

with 3 genes. This chromosome is overspeci�ed since

gene 2 has two di�erent allele values: 0 and 1. A

messy chromosome may also be underspeci�ed in that

not all chromosomes have allele values for all possi-

ble genes. In this case, genes 3 and 4 (and perhaps

others) are not represented. One di�culty with Messy

Genetic Algorithms is that relatively complex methods

for evaluating underspeci�ed strings must be used.

When the Messy Genetic Algorithm is applied to sub-

set feature selection problems, it is sometimes conve-

nient to modify the algorithm. Rather than sampling

subsets of genes which may have allele value 0 or 1,

we can sample small subsets of features. In e�ect, we

only generate subsets of genes that have allele value 1.

All unspeci�ed genes are assumed to have allele value

0. In this case, evaluation is simple.

In section 2, we present a subset feature selection ap-

plication in computer vision. The Messy Genetic Algo-

rithm produces an order of magnitude improvement in

performance in terms of time to solution when com-

pared to other genetic algorithms and to the previ-

ous best known search methods. Messy Genetic Algo-

rithms work well for this computer vision application

in part because the best solutions tend to use only a

small subset of available features. Hence solutions tend

to be \sparse" with the majority of bits being set to

zero; this causes serious problems for other algorithms

such as CHC (Eshelman 1991).

To further motivate the application of Messy Genetic

Algorithms to subset selection problems, in section 3

variants of the Fast Messy Genetic Algorithm (FMGA)

are applied to synthetic subset selection problems pre-

viously studied by Radcli�e and George (1993) and

Crawford et al. (1997); tests are also done using de-

ceptive trap functions (Deb and Goldberg 1993). Fi-

nally, we also apply the FMGA to a new, more dif-

�cult synthetic problem which has a sparse solution;

the performance of the FMGA is particular strong on

this problem.

The application of a Messy Genetic Algorithm to the

computer vision geometric matching problem and the

application of a variant of the Fast Messy Genetic

Algorithm to synthetic test problems suggests that

Messy Genetic Algorithms may be particularly well

suited to sparse subset feature selection problems.

2 The Geometric Matching Problem

Object recognition problems in computer vision can

be solved by �nding a discrete correspondence map-

ping between an object model and a subset of image

features such that projected model features align with

corresponding image features. There are two interre-

lated parts to this problem: the correspondence prob-

lem and the pose problem. The correspondence prob-

lem involves correctly pairing features of the model

with a subset of features extracted from a 2D image.

The pose problem is to best estimate the 3D position

and orientation of the object relative to the camera.

Given a pose algorithm which places the camera rela-

tive to the object for speci�c correspondences and an

objective function to measure the relative quality of al-

ternative correspondences, object recognition becomes

a combinatorial subset feature selection problem. A

variety of techniques have been suggested for search-

ing the correspondence space. Of these, perhaps the

best analyzed approach is tree search as formalized by

Grimson (1990). Unfortunately, Grimson has shown

that tree search requires exponential time to �nd an

acceptable match under many common circumstances.

Beveridge's (1993; Beveridge and Riseman 1995) work

on object recognition shows local search in the form of

bit-climbing algorithms to be a powerful tool for �nd-

ing optimal matches between features on 3D geometric

object models and features in 2D images. These algo-

rithms excel on problems involving poor quality image

data and cluttered scenes.

An example problem involving 2D object models is

shown Figure 1. The line segments making up the

model are labeled with letters and are shown on the

left. Data line segments including three instances of

the \tree" are shown to the right. The model is over-

laid on top of the data in the best match position. In

matching, the model may be rotated, translated and

scaled so as to best �t the data.

A

B
C
D

E
F
G
H
I
J
K
L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

L K

D

F

J

H

E

G

I

B A

C
10

17

7

5

2

0

31

33

32
34

35
36

39

4344
42

4540
37

38
41

24

28 27
30

25
29

26
23

22

21

20
19

18

15 16 11
12

13
14

9

8

6

3

4

1

Figure 1: Example of a best match for one of the 48

test problems.

The set of pairs denoted by S is the cross product of

the model featuresM and data featuresD. The match

space C includes all possible subsets of S. A bit string

of length l = jSj can encode a match c = C using a

1 in the ith bit to indicate inclusion of the pair si 2 c.
The correspondence matrix in Figure 1 indicates which

pairs of model and data segments are part of the best

match: the �lled squares correspond to 1's in the bit

encoding.

An objective function is de�ned over the correspon-

dence space. The best match c� minimizes:

E (c�) � E (c) 8c 2 C (1)

The match error, E, includes two terms: a �t error

and an omission error (Beveridge 1993). When E is

evaluated for a correspondence c, the best global 2D

similarity transformation from object model to data is

computed. The speci�c �t error minimized is the in-

tegrated, squared perpendicular distance between in-

�nitely extended model lines and the data line seg-

ments; this allows matches to arbitrarily fragmented

data. The best �t for any c, neglecting undercon-

strained cases, is computed by solving a quadratic

polynomial. The omission part of E is computed by

transforming the model to the best-�t pose and mea-

suring how well the data covers the model.

Due to the manner in which E is computed, it is pos-

sible to rapidly compute a highly reliable estimate of

the �E associated with a single bit toggle. The details

of this incremental update procedure are explained by

Beveridge (1993:83). The partial evaluation is one or

two orders of magnitude faster than a full evaluation

of E and gives local search an inherent advantage over

genetic algorithms that make larger jumps in the rep-

resentation space.

2.1 A Modi�ed Messy Genetic Algorithms

A Messy Genetic Algorithm typically has three

phases:

1. Initialization.

2. Primordial Phase.

3. Juxtapositional Phase.

During initialization, a population containing one copy

of all substrings of length k is created. The expecta-

tion is that recombination will �nd the proper build-

ing blocks and assemble them into good solutions.

Given a problem with size l and building block size

k, the initialization phase requires a population size of

popsize = 2k
�

l
k

�
. There are a total of

�
l
k

�
gene

combinations of size k, and for each gene combination

there are 2k di�erent allele combinations.

For the matching problem, it is not necessary to gen-

erate all possible substrings of size k. Only spatially

proximal triples of line segments are used. Let M be

the set of model lines and D the set of data line seg-

ments. For each model line mi 2 M , determine the

closest two neighbors mi1 and mi2 as de�ned by Eu-

clidean distance �:

� (mi;mi1) � � (mi;mk) 8 mk 2 M � fmig

� (mi;mi2) � � (mi;mk) 8 mk 2 M � fmi;mi1g

Also �nd the analogous nearest neighbors dj1 and dj2
for each data line segment dj 2 D.

Given a matching problem between M and D, each

pair of segments (mi; dj) 2 S form two spatially prox-

imate triples f1 and f2:

f1 = ((mi; dj) ; (mi1; dj1) ; (mi2; dj2))

f2 = ((mi; dj) ; (mi1; dj2) ; (mi2; dj1))

(2)

Since each of the l pairs of model and data segments

in S leads to 2 triples, there are 2l spatially proximate

triples.

A messy gene is a pair of model-data features s 2 S.
The modi�ed initialization phase creates the 2l triples:
thus developing substrings of length k = 3 to seed

the initial population. This modi�ed form of initial-

ization does not create all possible \building blocks".

However, the spatial proximity heuristic creates a set

of building blocks that is likely to contain elements of

the optimal match. We then rely on later phases of the

Messy Genetic Algorithm to correctly assemble these

blocks.

In a simpli�ed primordial phase, the error E is com-

puted for each to the 2l triples. These triples are then
sorted, and some fraction of the best form the initial

population. In the experiments presented here, the top

50% of triples are used. This simple selection of the

better triples produces high quality building blocks.

During Juxtapostion, selection is used together with

two operators: cut and splice. Cut 'cuts' the chro-

mosome at random position. Splice 'attaches' two cut

chromosomes together. These two operators are the

equivalents of crossover in a traditional GA. It is here

that the Messy Genetic algorithm begins to construct

the match out of small building blocks that appear to

be good partial matches to some subset of features in

the model.

At some point, recombination will typically construct

enough of the match for local search to easily and

quickly �ll out the rest. For this reason, a pass of

the bit-climbing algorithm described above is periodi-

cally applied to individuals from the population. The

frequency with which local search is run increases as

population size decreases.

To help drive the Messy Genetic Algorithm to a so-

lution, every three generations the least �t individual

in the population is dropped and the population size

correspondingly shrinks by one. Every f = popsize

2

generations, an individual is selected from the popula-

tion and local search is run using the selected match

as an initial state. If the result is better than the

worst currently in the population, then it is inserted

back into the population. This hybridization strategy

is similar to the one we previously used in conjunction

with CHC and Genitor (Whitley et al., 1995).

2.2 Results On Matching Problems

Figure 2 shows examples of 6 out of 48 test prob-

lems created from stick �gure models. Model seg-

ments are randomly scaled and placed in the data

images and are potentially fragmented, skewed and

omitted. Random clutter and structured clutter are

added to the data. In 24 problems, 0, 10, 20 and

30 additional clutter segments are randomly placed

about the image for each model. In the other 24

problems, 0, 1, 2 and 3 additional more highly cor-

rupted model instances are added. This dataset and

local search results are available through our website:

http://www.cs.colostate.edu/�vision.

The CHC and Genitor algorithms have been shown to

perform poorly on this data; implementation details

Figure 2: Test suite with Random clutter. From left

to right, top row: box, telephone pole and dandelion.

Bottom row: deer, tree and leaf.

concerning these algorithms along with their perfor-

mance on the geometric matching problem are given

by Whitley et al. (1995). In contrast, this dataset of

geometric matching problems is readily solved using

bit-climbing algorithms (Beveridge et al., 1995). The

bit-climbing algorithm is enhanced by using a partial

restart mechanism after it becomes trapped in a lo-

cal optima. This local search algorithm with partial

restarts is the best known algorithm for solving these

geometric matching problems.

Hybridizing a steady state genetic algorithm (Genitor)

with the bit-climbing algorithm yields results roughly

comparable to those obtained using bit-climbing alone;

a hybrid algorithm that combined CHC with the bit-

climbing algorithm failed to yield competitive results

(Whitley et al., 1995). One of the main reasons that

CHC appears to work so poorly is that the solu-

tions are sparse{which con
icts with several aspects

of CHC's basic search strategy.

The Messy Genetic Algorithm described above per-

forms much better than the random starts bit-climbing

algorithm. To be more precise, we have run many tri-

als of each algorithm in order to measure the prob-

ability Ps of �nding the known best match in a sin-

gle execution of either local search or the Messy Ge-

netic Algorithm. Based upon these estimates of Ps,

the number of trials ts required to �nd an optimal

match with con�dence Qs is determined:

ts = dlogPf Qfe Qf = 1�Qs Pf = 1�Ps (3)

For the Messy Genetic algorithm, the average ts over
the 48 problems is 2, the median is 1, the minimum is

1 and the maximum is 9. For local search, the average

ts is 111, the median is 42, the minimum is 5 and the

maximum is 998.

R
un

-t
im

e
(s

ec
on

ds
)

Problem Instances, Increasing LS Run-time Order

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

0 10 20 30 40 50

Local Search
Messy GA

Figure 3: Comparison of run-times plotted on a log

scale.

An estimate of the time required to solve each problem

with 95% con�dence is the average run-time per trial

times the number of trials ts. These run-times for a

Sparc 20 are shown in Figure 3. On average, the Messy

Genetic Algorithm is 5:9 times faster than local search.

The Messy Genetic Algorithm is doing better on the

harder problems. Divide the problems into the 24

solved quickly by local search and the 24 requiring the

most time. On the easier problems, the Messy Genetic

Algorithm runs on average 2:5 faster. In contrast, for

the harder 24 problems the Messy Genetic Algorithm

runs 9:4 times faster. Thus, for the most di�cult prob-

lems the Messy Genetic Algorithm reduces the time to

solution by an order of magnitude.

Figure 4 illustrates a matching problem involving data

from a real image. There are 4 model line segments

and 443 data line segments, generating 1; 772 possi-

ble pairs of segments. This problem is hard both be-

cause the search space is large, 21;772 matches, and

because the model interacts with other buildings and

road structures to produce false matches.

Local search �nds the optimal match 12 times in

10; 000 trials, yielding Ps = 0:0012 and ts = 2; 494.
To run 2; 494 trials takes roughly 18 hours. In con-

trast, the Messy Genetic Algorithm �nds the optimal

match in 10 out of 100 trials. The average time for

a trial of the Messy Genetic Algorithm to converge to

a solution is 38 seconds, and ts = 29. Hence, the

Messy Genetic Algorithm reliably solves this problem

in under 20 minutes.

We have also solved other large real world geometric

matching problems using line segments extracted from

photographs with up to 20,000 model line-data line

segment pairs.

(a) (b)

(c) (d)

Figure 4: Real data example. a) aerial photograph, b)

Burns line segments [Burns et al., 1986], c) building

model, d) best match.

3 Fast Messy Genetic Algorithms

For the geometric matching problem we used a cus-

tomized version of the Messy Genetic Algorithm; we

now look at a relatively generic version of the MGA

and apply it to a set of synthetic test problems. The

Fast Messy Genetic Algorithm (FMGA) was designed

to cope with the problem of the large population

size used by the Messy GA (Goldberg et al. 1993;

Kargupta 1995). During the initialization phase the

FMGA uses `Probabilistically Complete Initialization.'

The initial chromosome length is set to l0, k < l0 < l
(e.g. l0 is l � k). The number of strings of size l0

choosen from strings of size l is:

�
l
l0

�
:

The probability of randomly selecting a gene combi-

nation of size k in a string of length l0 with l genes is
given by Kargupta (1995):

�
l� k
l0 � k

�
=

�
l
l0

�
:

Inverting this suggest that in strings created at ran-

dom of size l0, one string on average will have the

desired gene combination of size k. To include all

alleles combinations Goldberg et al., (1993) used the

population-sizing equation developed for simple GA's

(Goldberg et al., 1992). The population sizing equa-

tion for FMGA's becomes:�
l
l0

�
=

�
l � k
l0 � k

�
2c(�)�2(m� 1)2k

where c(�) is the square of the ordinate of a normal

random deviate whose tail area is �. The parameter

�2 is the maximum signal-to-noise ratio and m is the

number of subfunctions to be solved (Kargupta 1995).

In order to evaluate the Fast Messy Genetic Algo-

rithm on existing test problems (and also, to make

our FMGA consistent with its original speci�cation)

we retained the practice that genes with allele value `0'

can be included in chromosomes. We developed code

for the Fast Messy Genetic Algorithm based on Deb

and Goldberg's (1991) Messy GA in C and Kargupta's

(1995) thesis. Since we are ultimately interested in

subset selection problems, our initial evaluation tem-

plate �lls all unspeci�ed genes with value `0'.

A process of building block �ltering takes place after

the probabilistically complete initialization. Building

block �ltering is an iterative process that selects, �l-

ters and shrinks chromosomes. Selection is performed

in order to increase the number of chromosomes with

good evaluations. Selection has to assure competi-

tion between chromosomes that share genes in com-

mon (Kargupta 1995). After selection, a random gene

deletion takes place designed to reduce chromosome

size to building block size k. This is followed by the

juxtapositional phase, which is basically the same used

in the Messy Genetic Algorithm.

After the juxtaposition phase begins, the best chromo-

some found so far is used as a template for evaluation,

thus supplying additional gene values which are not

speci�ed by the chromosome which is being evaluated.

The advantage of the FMGA is the relatively small

population size compared with Messy GA. Still, for

hard problems the size of the initial population is on

the order of thousands and it remains unchanged dur-

ing all phases of the FMGA (Kargupta 1995).

3.1 Block Insertion Fast Messy Genetic

Algorithm (BIF-MGA)

We developed a modi�cation on the �nal phase of the

Fast Messy Genetic Algorithm that introduces more

variability to individuals.

1. After the initial phase, the chromosome length is

k. The chromosome length is increased to approx-

imately l by using cut and splice multiple times

during the juxtapositional phase. Splice is done

with probability 1.0 and cut with probability 0.03

(Kargupta 1995).

2. After most chromosomes have grown to length l
or more, not all members in the population have

the same length. In order to regularize the length

of all individuals, a new length ln is �xed to be

0.75 l. For each individual with length li, if li >
ln, li is reduced to ln by randomly deleting genes.

Otherwise no gene deletion is performed.

3. A procedure called Block Insertion rede�nes the

chromosome by inserting new �xed-size messy

gene blocks. Each messy-gene block has the fol-

lowing characteristics:

(a) The block length is l=3.

(b) The gene numbering is continuous starting at

l=3 �Random(0; 2) with randomly-generated

allele values.

(c) Let lj be the individual length, if lj � l=3
then the block is inserted at the beginning

of the chromosome by changing the �rst l=3
messy genes and leaving lj�(l=3) messy genes

without change. If lj < l=3 then lj messy

genes taken from the block completely re-

places the chromosome.

4. Another juxapositional phase of cut and splice is

applied to again increased chromosome length to

greater than l.

These changes were made via empirical experimenta-

tion in an e�ort to reduce the population size required

by the FMGA. The population size of the BIF-MGA

was not larger than 100 for all of our experiments.

4 Test Results

We tested the BIF-MGA on several problems with dif-

ferent degrees of complexity. Results were compared

against both CHC and the standard FMGA.

4.1 Some Existing Test Problems

Experiments used the following test problems.

a) Trap Functions with lj bits which are replicated

n times as de�ned by Kargupta (1995). The basic trap

function is de�ned as follows :

f(x) =

�
lj if u = l
lj � 1� u otherwise

where u is the number of `1' bits. Experiments were

conducted using two versions of the problem; lj = 3,

Problem Algorithm Best Function
Opt Used Result Evaluations

Trap CHC 90 19442
90 3-bit 90 FMGA* 90 256500

BIF-MGA 90 95863

Trap CHC 87 1500000
100 5-bit 100 FMGA* 100 1005000

BIF-MGA 100 852000

Subset CHC 60 1301
120-60-1 60 FMGA 60 55252

BIF-MGA 60 22726

Subset CHC 60 566980
120-60-4 60 FMGA 56 735015

BIF-MGA 60 314952

Table 1: Tests results for di�erent problems using

CHC, FMGA and BIF-MGA. For FMGA* the re-

sults are taken from Kargupta (1995). CHC, FMGA

and BIF-MGA results are averages of ten independent

runs. Opt gives the optimal solution.

n = 30 and lj = 5, n = 20: Messy genetic algorithms

are particular well suited to this kind of decomposable

problems. Results are shown in table 1.

b) Subset selection problems de�ned by Radcli�e

and George (1993) and used by Crawford et al. (1997).

A subset of s elements has to be selected among t
elements. Within the subset there are g groups of k
elements. For our experiments k is the same in all g
groups. Experiments were conducted for non-epistatic

120-60-1 and epistatic 120-60-4 problems, where t =
120 and s = 60; k = 1 (or 4) indicates the degree

of epistasis. Radcli�e and George de�ned two other

more di�cult epistatic problem, but their algorithms

also failed to solve the 120-60-4 problem. Our results

are shown in table 1.

The performance of the BIF-MGA on the epistatic

version of the subset selection problem 120-60-4 was

better than CHC. The population size for the FMGA

for the 120-60-1 problem was 2500 and no mutation

was used. For the 120-60-4 problem the FMGA used

a population of 3500, again with no mutation.

In order to assure that the block insertition process is

not just a way of implementing high mutation rates,

we ran experiments using the FMGA while varying

gene and allele mutation probabilities from 0 to 1 by

0:1 increments for each parameter. In all cases, the

performance of BIF-MGA was better than FMGA.

4.2 The Sparse Subset Problem

We found the subset problems posed by Radcli�e et

al. (1993), including those studied by Crawford et

al. (1997), to be relatively easy to solve. A new syn-

80

100

120

140

160

180

200

220

240

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

O
bj

. F
un

c.
 v

al
ue

No. of evaluations

BIF-MGA

BIF-MGA

80

100

120

140

160

180

200

220

240

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

O
bj

. F
un

c.
 v

al
ue

No. of evaluations

CHC popsize 50 1500000 trials FMGA popsize 3000

CHC
FMGA

Figure 5: Results for the 120-bit Sparse Subset Problem. On the left are results for BIF-MGA, and on the right

are the results for CHC and the standard FMGA. The optimal solution is 240.

thethic test propblem, the sparse subset problem was

developed with the following characteristics. Two 60-

bit blocks are composed of ten 6-bit subblocks. Each

subblock of 6 bits uses the following evaluation func-

tion based on the number of 1 bits in the subblock.

Count of 1 bits Contribution to Fitness

six 20

�ve 15

four 12

three 9

two 6

one (except 000001) 3

000001 12

For each of the two blocks of 60 bits, if the num-

ber of ones exceeds 13 there will be a penalty of

�2 � ones(block) where ones(block) returns the num-

ber of ones in a block of 60 bits. Thus a maximum

value of 240 is achieved when every subblock of 6 bits

has the pattern 000001. Thus the solution is \sparse".

Results for this problem using 10 random runs of BIF-

MGA and for CHC and FMGA are shown in Figure 5.

Gene and allele mutation was set at 0.10 for FMGA;

we in fact tested many di�erent mutation levels, but

FMGA never was better than CHC. The BIF-MGA

solved the Sparse Subset Problem every time, while

the other algorithms never found an optimal solution.

4.3 Discussion of BIF-MGA

Clearly, the Block Insertion F-MGA (BIF-MGA) uses

some ad hoc mechanisms to improve the performance

of the FMGA. We initially conjectured that Block In-

sertion was just a form of mutation, but we failed to

replicate the performance of the BIF-MGA by using

mutation operators that randomly inserted new genes

and/or changed allele values. Also, the BIF-MGA was

not tuned for individual problems; rather it worked

well across all of the problems on which it was tested

without tuning. Note that Block Insertion is not used

until after the standard mechanism of the FMGA have

constructed strings that are largely of length l. It may

be that in these later stages of the Messy Genetic Al-

gorithm most of the work of putting together good

building blocks has been done and there is some ad-

vantage in now re-organizing chromosomes back into

some regular con�guration. Certainly, this is one side

e�ect of the BIF-MGA and it would seem to be the

only side e�ect of the BIF-MGA that could not be em-

ulated via some form of mutation. More work needs

to be done to understand the impact of block insertion

on the Fast Messy Genetic Algorithm during the later

stages of search.

5 Conclusions

Messy Genetic Algorithms are extremely well suited to

the problem of geometric matching in computer vision.

The customized MGA we used for this problem yields

dramatic improvements over algorithms that have rep-

resented the state of the art for this set of test problems

over the past 5 years. On the synthetic subset selec-

tion problems, the Block Insertion Fast Messy Genetic

Algorithm performs well compared to CHC.

More work clearly needs to be done. The MGA applied

to the geometric matching problems was customized to

exploit the fact that this was a subset feature matching

problem; it also exploited domain speci�c features of

the geometric matching problem. However, the BIF-

MGA was applied in a relatively generic form to the

synthetic test functions. One question is how the MGA

can be specialized for subset feature selection problems

and still be applicable to a broad range of problems

within this problem class.

6 Acknowledgements

C�esar Guerra-Salcedo is a visiting researcher at Col-

orado State University supported by CONACyT under

registro No. 68813 and by ITESM. This work was also

supported in part by NSF grant IRI-9503366.

References

[Bala et al., 1995] Bala, J., Jong, K. D., Huang, J.,

Vafaie, H., and Wechsler, H. (1995). Hybrid Learn-

ing Using Genetic Algorithms and Decision Trees

for Pattern Classi�cation. In 14th Int. Joint Conf.

on Arti�cial Intelligence (IJCAI).

[Beveridge, 1993] Beveridge, J. R. (1993). Local

Search Algorithms for Geometric Object Recogni-

tion: Optimal Correspondence and Pose. PhD the-

sis, University of Massachusetts at Amherst.

[Beveridge and Riseman, 1995] Beveridge, J. R. and

Riseman, E. M. (1995). Optimal Geometric Model

Matching Under Full 3D Perspective. Computer

Vision and Image Understanding, 61(3):351 { 364.

(short version in IEEE Second CAD-Based Vision

Workshop).

[Beveridge et al., 1995] Beveridge, J. R., Riseman,

E. M., and Graves, C. (1995). Demonstrating

polynomial run-time growth for local search match-

ing. In Proceedings: International Symposium on

Computer Vision, pages 533 { 538, Coral Gables,

Florida. IEEE PAMI TC, IEEE Computer Society

Press.

[Brill et al., 1992] Brill, F., Brown, D., and Martin,

W. (1992). Fast genetic selection of features for

neural network classi�ers. IEEE Trans. on Neural

Networks, 3(2):324{328.

[Burns et al., 1986] Burns, J. B., Hanson, A. R., and

Riseman, E. M. (1986). Extracting straight lines.

IEEE Trans. on Pattern Analysis and Machine In-

telligence, PAMI{8(4):425 { 456.

[Deb and Goldberg, 1993] Deb, K. and Goldberg, D.

(1993). Analyzing Deception in Trap Functions. In

Whitley, L. D., editor, FOGA - 2, pages 93{108.

Morgan Kaufmann.

[Deb and Goldberg, 1991] Deb, K. and Goldberg,

D. E. (1991). mga in c: A messy genetic algorithm

in c. Technical report, Department of General Engi-

neering University of Illinois at Urbana-Champaign.

[Eshelman, 1991] Eshelman, L. (1991). The CHC

Adaptive Search Algorithm. How to Have Safe

Search When Engaging in Nontraditional Genetic

Recombination. In Rawlins, G., editor, FOGA -1,

pages 265{283. Morgan Kaufmann.

[Goldberg et al., 1989] Goldberg, D., Korb, B., and

Deb, K. (1989). Messy Genetic Algorithms: Motiva-

tion, Analysis, and First Results. Complex Systems,

4:415{444.

[Goldberg et al., 1992] Goldberg, D. E., Deb, K., and

Clark, J. H. (1992). Genetic algorithms, noise, and

the sizing of populations. Complex Systems.

[Goldberg et al., 1993] Goldberg, D. E., Deb, K., Kar-

gupta, H., and Harik, G. (1993). Rapid, accurate

optimization of di�cult problems using fast messy

genetic algorithms. In Forrest, S., editor, Proc. of

the 5th Int'l. Conf. on GAs, pages 56{64. Morgan

Kau�man.

[Grimson, 1990] Grimson, W. E. L. (1990). Object

Recognition by Computer: The Role of Geometric

Constraints. MIT Press, Cambridge, MA.

[Kargupta, 1995] Kargupta, H. (1995). SEARCH,

Polynomial Complexity, And The Fast Messy Ge-

netic Algorithm. PhD thesis, Department of Com-

puter Science University of Illinois at Urbana Cham-

paign.

[Kelly D. Crawford and Schoenefeld, 1997]

Kelly D. Crawford, Cory J. Hoelting, R. L. W. and

Schoenefeld, D. A. (1997). A study of �xed-length

subset recombination. In Belew, R. and Vose, M.,

editors, FOGA - 4. Morgan Kaufmann.

[Radcli�e and George, 1993] Radcli�e, N. J. and

George, F. A. W. (1993). A study in set recombi-

nation. In Forrest, S., editor, Proc. of the 5th Int'l.

Conf. on GAs, pages 23{30. Morgan Kau�man.

[Whitley et al., 1995] Whitley, D., Beveridge, R.,

Graves, C., and Mathias, K. (1995). Test driv-

ing three 1995 genetic algorithms: New test func-

tions and geometric matching. Journal of Heuris-

tics, 1(1):77 { 104.

