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Abstract

This research used synthetic ethology to investigate the evolution of simulated
organisms that communicated information about their environment. Synthetic ethology
involves creating a complete environment and simulated organisms which evolve in that
environment. Since these simulated organisms exist as data structures in a computer
program, their evolution can be studied more closely than the evolution of organismsin the
natural world. The main goal of this study was to demonstrate the evolution of simulated
organisms that used signals consisting of two symbols to communicate.

After creating a new environment for the simulated organisms, several factors
affecting the evolution, such as population size and the learning rule used by each simorg,
were investigated. It was concluded that the simulated organisms did successfully evolve

the use of two symbol signals to denote situations within their environment.
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Chapter 1

| ntroduction

M otivation

The study of communication has taken many forms. Mathematical modeling,
laboratory studies, and ethological studies are but afew of the methods used. Ethology, the
observation of organisms and their behavior in their natural environments, produces the
most valid results. One disadvantage of ethological studies is the complexity of the
organisms that are being studied. Any animal that exhibits the use of communication will
possess a brain far too complex to understand through current neuroscience. Therefore our
experiments will use synthetic ethology, the study of simulated organisms, to by-pass this
problem.

The goal of synthetic ethology is to create the simplest organism and complete
environment that produces the desired behavior and then to study the organism. In these
experiments the environment and organisms will exist as data structures of a program. Itis
important to note that since the simorgs exist and evolve in this new environment, this
environment is their “natural environment.” A major point of ethology, both normal and
synthetic, isto study animals within their natural environment.

A large difference between normal ethology and synthetic ethology is the amount of

control the scientist has over the experiment. Synthetic ethology gives a scientist



unparalleled control of the experiment while also not interfering in the environment in
which the study is being done. The experiment can be stopped at any point and questions
about why organisms behaved in a certain manner can be answered. Initial populations can
be duplicated exactly and the results of changing the parameters of the experiment can be
monitored closely. By keeping the environment of the simulated organism as simple as

possible it is possible to examine what is essential to the process of communication.

Objective

The objective of this study was to create simple simulated organisms that
demonstrate the evolution of communication with signals consisting of two symbols.
Previously MacL ennan had developed simulated organisms (referred to as simorgs) that
used one symbol signals to communicate information about their environment to other
simulated organisms (1990, 1992). Hopefully more complicated simorgs can be created
that utilize more than one symbol in asignal. Eventually as the simorgs gain the ability to
use more symbols in a signal, language features such as grammar and sentence structure
may emerge. Once devel oped these simorgs can be studied to further our knowledge of the
process of communication. The simorgs that can use two symbol signals as opposed to

single symbol signals are the next step along that path.



Chapter 2

Literature Review

The study of communication and signaling has long been of interest to ethologists.
Volumes such as E. S. Morton and J. Page’'s (1992) Animal Talk and T. A. Seboek’s
(1968) Animal Communication have been devoted to the techniques and results of studying
communication. Many species of animals have developed signals to attract mates, warn of
danger, guide others to food, and maintain a territory. Even though the fact that animals
communicate in some fashion is not usually argued, the study of a particular animal or
species and explanations of their communication system is very difficult. Not only must the
costs and benefits of signal emitting and receiving be calculated, but the interaction with
illegitimate receivers and the use of deceptive signals must be understood to fully explain
any communication system (Alcock, 1993). The time scale involved in evolution leads to
yet more problems in studying communication. One method to reconstruct the evolution of
a behavior is to compare closely related living species that exhibit forms of the same
behavior. Thisis how Martin Lindauer (1961) reconstructed the evolutionary history of the
honeybee waggle dances. Even though this method provides strong circumstantial evidence
for its conclusions, there is no way to verify the results. Issues such as these illustrate the
complexity of explaining the behavior of existing animals.

Synthetic ethology is a relatively new field. In addition to MacLennan’s work
(1990, 1992) previous studies utilizing synthetic ethology include Gregory Werner and



Michael Dyer’'s work (1992). Werner and Dyer’'s experiments involved making
communication essential to reproduction in a population of artificial organisms by creating
an environment where females had to guide “blind” males through the use of signalsto the
female’ s location. Both of these previous experiments proved that it is possible to create
organisms that are able to evolve to the point of using symbols effectively to solve some
problem in their environment.

One main difference between this work and Werner and Dyer’'s work is the
complexity of the environment and simulated organisms. Werner and Dyer create aworld
where organisms are solving the problem of finding mates. Therefore the male organisms
must be able to move about in their environment and the females must be able to sense
males within a certain range of their location. While these compl exities make the organisms
seem more life-like, they add nothing to the problem at hand, studying communication. In
fact, Werner and Dyer point out that MacL ennan’swork “is simpler to analyze, and his use
of abstract environmental states may make it easier to evolve complex protocols such as
those requiring syntax” (1992, p. 683).

While synthetic ethology might be perceived as related to computer simulations,
there are several important differences. Simulations and modeling attempt to reproduce the
elements of a complex system that are perceived as affecting the behavior of that system.
Simulations are designed and programmed to produce a specific behavior. A synthetic
ethology study uses an entirely new environment and very simple organisms which are not
“programmed” to behave in a certain manner. The organisms are given the capability to
perform actions but the choice of how to behave is left up to their genes and evolution. In
Werner and Dyer’ s study, communication was the main goal of the experiment; however,
they pointed out “there should not be direct pressure on the animals to communicate”
(1992, p. 660). Synthetic ethology is based upon Valentino Braitenberg’'s (1984) synthetic
psychology. His “law of uphill analysis and downhill invention” (p. 20) means that
designing a new system that produces a certain behavior is easier than analyzing an existing
system that exhibits that same behavior. For example, the job of simulating all of the
factors of a frog population that affect the frogs' communication is very difficult if not

impossible. The job of creating a population of new organisms that communicate and then
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studying those new organisms is much easier, especially when the organisms exist as data
structures in a computer program.

Synthetic ethology is more closely related to the field of artificia life. It uses several
methods such as genetic programming and the creation of artificial environments that were
developed by scientistsinvestigating artificia life. Artificial life programstypically exhibit
complex behavior such as self reproduction and learning. The main difference between
artificial life and synthetic ethology is that artificial life researchers are interested in
identifying the processes that separate living beings from non-living beings while synthetic

ethol ogists focus on studying one particular behavior of abeing.



Chapter 3

M ethods

Communication

Since the main goal of this research is to develop simulated organisms that
demonstrate the evolution of communication, we must first define what is to be considered
communication. Deciding what actions can be called communication has been a
controversial topic. For the purposes of this experiment Burghardt’s (1970) definition of
communication shall be used:

Communication is the phenomenon of one organism producing asignal
that, when responded to by another organism, confers some advantage (or
the statistical probability of it) to the signaler or his group. (p. 16)

The physical act of communicating, the emission and reception of asignal, must take place
and the response should give some advantage to the organism that emitted the signal to
count the action as communication. In the new environment we are creating,
communication is demonstrated when two simorgs cooperate.

A cooperation is defined as when a simorg takes an action that matches the local
environment of the last simorg to emit a symbol. For example, if simorg A with local
environment 3 emits 1,4 and simorg B responds with the action 3, a successful cooperation
has taken place. After each cooperation the fitness level of the emitter aswell as the fitness

level of the responder isincremented. The likelihood of an organism reproducing is directly
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related to the number of successful cooperations the organism isinvolved in. Therefore a
cooperation event satisfies the definition of communication given above. A signal is emitted
and responded to, and that response confers an advantage, an increased chance at
reproduction, to the emitter.

Obviously, the most successful cooperators will use communication. If an
organism can communicate its local environment by using a unigque set of symbols that the
other organisms can interpret, it will be more likely that the responding organisms will take
the correct action. Since the genes of an organism govern the “language’ that the organism
initially uses, reproduction is a powerful tool that an organism uses to increase the number

of organisms using its own language.

Environment and Organisms

The system studied consists of agroup of simulated organisms arranged in acircle.
Each organism can sense three different types of information: (1)Every organism in the
circle can sense the two global symbols. (2)A simorg can sense its own internal state.
(3)Each simorg can also sense what isin itslocal environment. The global symbols can be
seen by all of the simorgs; however, the other two types of information are private to each
simorg. Please refer to Figure 1. Every simorg can sense the two global symbols but only

simorg B can see the local environment b and only simorg B knows its own internal state
which is 8. Hopefully the ssmorgs will evolve to the point of using symbols placed in the

global areato communicate. It is expected that the internal states will be used as memory so
a simorg can remember what information it has seen before. The symbols placed in local
environments are what the simorgs are to communicate to each other. None of these
behaviors are explicitly programmed into the simorgs; however, evolution is expected to
guide the ssimorgs into behaving this way.

Each simorg is given two turns to respond to the information the ssmorg can sense.
The simorgs have three options during each of the two turns: emitting a new symbol to be
placed in the global environment, taking an action denoted by an integer, or doing nothing.

In the first turn, the first global symbol isused in its decisions and if asymbol is emitted
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the symbol will replace the first global symbol. During the second turn, the second global
symbol is used to look up which option to take and the second global symbol will be
replaced if an emission occurs. After the simorg’ s two turns, control is passed to the next
simorg.

Each simorg is a finite state machine. The phenotype of the simulated organism
serves as a transition table for the organism. The phenotype has entries for every
combination of global symbols, local symbols, and internal states. When it is an
organism’s turn to respond, the organism is governed by the entries in its own table. For
exampleif Figure 2 isasimorg’'s phenotype and the simorg’ sinterna stateis 1, the global
symbol being used for thisturn is 2, and the ssmorg’s local environment containsa 1, then
the smorg will act with an action suitable for alocal environment represented by the integer
5. The phenotype of each smorg is originally a copy of the simorg’s genotype.

The genotype of a simorg is a table which has the same structure as the simorg’s
phenotype. The genotypes for the initial population are randomly assigned. For later
generations, anew simorg’ s genotype is a combination of its parents genotypes using two
point crossover. In atwo point crossover, two points within the parents genotypes are
randomly chosen. The genes for the new simorg between the two points are taken from one
parent and the remaining genes are taken from the other parent. Thisisillustrated in Figure
3.

If learning is allowed, only the phenotype will be changed as knowledge is
obtained. Therefore the simorg’ s offspring will not benefit from knowledge gained by the
parent since only the genotype is passed on to the child. However, only one pair of
simorgs is chosen to mate in each major cycle, so the child will be able to quickly learn
from the other simorgs.

The use of the words genotype and phenotype within this study correspond to their
definitions in biological terms. The genotype of an organism is the information inherited
from its parents and passed on to its offspring. The phenotype is the physical interpretation
of the genotype. If a person has the gene for black hair, their phenotype, in this case the
specific portion of their phenotype called hair, will reflect that by being a dark color. For

the ssimorgs the genotype is the information inherited from its parents. The phenotype is the
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table that guides their actions and emissions. Since the simulated organisms used in these
experiments are so simple it easy to blur the distinctions between the genotypes and

phenotypes.

Cycles
Each experiment consists of at least 60,000 “major cycles’. At the beginning of

each major cycle the fitness points for each simorg are zeroed. At the end of each major
cycle two simorgs are chosen to reproduce and one simorg is chosen to be replaced. The
simorgs that reproduce are chosen with a probability proportional to their fitness.
Therefore, it is possible for the worst simorg to be chosen to reproduce, but this is very
unlikely. It also means that the best simorg is not always chosen as one of the two to
reproduce. The simorg picked to die is chosen according to a monotonically decreasing
function of the simorgs' fitness. The population stays constant since one new simorg is
produced and takes the place of the simorg chosen to be replaced.

Each major cycle consists of five minor cycles. At the beginning of each minor
cycle thelocal environments are randomized. During each minor cycle there are ten delay
cycles. A delay cycle consists of every simorg being given a chance to respond. Each
simorg can emit anew global symbol, it can perform an action, or it can do nothing. If the
action performed matches the local environment of the last emitter, a cooperation is said to

have taken place.

M easur ements

Several different types of measurements are used to gauge the performance of a
population of simulated organisms. The average fitness of the population smoothed over
fifty major cycles is recorded. Since each point of fitness results from a successful
cooperation, the average fitness gives how many times the average organism cooperated
successfully in the last major cycle.

Most of the measurements deal with the denotation matrix of a population. The

denotation matrix is a table with entries for each local environment and combination of
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global symbols. Each cooperation increments the entry in the denotation matrix
corresponding to the local environment of the emitter and the global symbols the organism
used to denote that local environment. At the end of the evolution the denotation matrix can
be viewed as adictionary of what combination of symbols are used to represent which local
environment. The denotation matrices shown in this paper show only the cooperations
during the last fifty major cycles. This allows one to see the language used at the end of the
evolution without the clutter of earlier attempts to cooperate.

There are severa ways of measuring the organization of a denotation matrix. The

entropy of atwo dimensional discrete probability distribution py, is defined as:

H=-3pyrlgpya
YA

For all calculationsIg x = logz x . The upper limit of entropy, representing a totally
random use of symbols, can be found by substituting 1/G2L for py ), where G equals the

number of values one of the two global symbols can be assigned and L equals the number
of values alocal environment can be assigned. Unless otherwise noted, G=4and L =8

for all of the experiments presented in this thesis. Therefore by substituting 1/128 for py,

the upper limit isH = 7. For an ideal matrix, where eight combinations of two symbols
uniquely denote the eight possible local environments, the entropy equals 3. If the
denotation matrix has only one non-zero entry then the entropy equals 0. This condition is
referred to as the denotation matrix being over structured. See MacLennan (1990) for
further analysis of these measures.

Finally, two measurements are taken from each denotation matrix which indicate the
“richness’ of the language developed by the simorgs. Thefirst is how many different pairs
of symbols are the most used symbols in a column of a denotation matrix. This measure
was used because the entropy values only indicate how many pairs of symbols are used,
not which pairs were used. A perfect entropy value of 3 could only indicate that the
population used 1,1 to denote all eight of the situations. The second measure is, of the

different pairs mentioned above, how may are non-repeating pairs. For example 1,1 isa
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repeating pair but 1,4 is not a repeating pair. This measure was used because the use of
non-repeating pairs indicates the true use of two symbol signals to uniquely denote a

situation.

Research Areas

MacLennan’s initial studies (1990, 1992) resulted in denotation matrices such as
Figure 4. The denotation matrix shows that there were not many successful cooperations.
Also, the fact that successful uses of symbols are distributed in groups of four indicates
that the simorgs are using the second symbol and ignoring the first. My study was initiated
to see what changes had to be made to encourage the simorgs to evolve a more successful
language consisting of signals made up of two symbols.

The most important change made in this study was to the environment and the rules
being used to govern the action of ssmorgs. In the original work (MacLennan 1990, 1992),
there was only one global symbol, not two as used in this study. Therefore each simorg
was only given one chance to respond during its turn. Also, the simorgs did not have the
option of doing nothing. During each ssmorg’ s turn, the ssmorg had to either emit or act.

After making the discussed modifications to the environment and rules, several
more smaller changes were investigated. The first was varying the population size. A larger
population can be used to increase genetic diversity at the beginning of the evolution. The
mutation rate was low, there was only a1 in a 100 chance of a single gene being mutated in
a new simorg. While mutation will in theory explore the entire genetic space if given
infinite time, these experiments were planned to be completed in a shorter amount of time.
Therefore it was important to have a broad base of genes in the population at the beginning
of the program’s run.

Another parameter that was explored is the number of internal states. We expected
that evolution would guide the simorgs to use the internal states to remember the previously
seen symbol. Since there are four different values that a global symbol can take, one would
expect that four internal states would be adequate. Both smaller and larger values were used

to determine what number of internal states was optimal.
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Figure4 Denotation Matrix From MacLennan’s Original Research
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Another area to be examined was the use of different learning rules. The learning
rule used originally in MacLennan (1990, 1992) isa single case learning rule. If asimorg
performed a wrong action, the phenotype of the simorg was changed so that the simorg
would have produced the correct behavior under precisely the same circumstances. While
this learning rule was adequate for communication using of one symbol, it did not lead to
communication using two symbols. One possibility for the failure to learn more complex
behavior isthat the single case rule istoo volatile. The new learning rule used in this study
was a real-valued neuromorphic acceptor tree (referred to as a NAT) of depth 2 (Hand,
1994). A NAT isasimplified representation of aneural net. The version used in this study
was tested to verify its reliability and was found to learn linearly non-separable functions
very quickly.

In the original experiments the new simorg created after each mgjor cycle was
placed in the position occupied by the simorg that was chosen to die. This could lead to
instability if the new simorg was not placed in the spatially defined dialect group of its
parents, especially if the single case learning rule is used. Another change considered was
placing a new simorg next to one of its parents.

The final change studied was to create a competitive environment for the simorgs.
Preliminary investigations showed that the simorgs were not evolving “optimum”
languages which had a unique pair of symbols for each situation. A population of
“predators’ was added to push the ssmorgs to evolve further. If a predator could output the
same action as a successful simorg, neither the emitting simorg or the responding simorg
was given any fitness points. The predator’s fitness level was increased for every
cooperation that the predator “blocked.” The predator only had one internal state,
corresponding to no memory, while the simorgs still had four internal states. It was hoped

that this change would force the simorgs to use non-repeating symbols.
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Chapter 4

Results and Discussion

New Environment

A graph of average fitness during a typical evolution is shown in Figure 5. The
average fitness values begin around 30 and quickly rise to over 60. A graph of the entropy
of the denotation matrix during the evolution is shown in Figure 6. The entropy values are
initially closeto 7, the highest possible entropy, and fall off to around 5 before leveling off.
For both of these graphs the values are smoothed over fifty major cycles.

Figure 7 isatypical denotation matrix from the base version of the program used in
these experiments. Figure 8 show the results of comparing the two different environments
over ten different evolutions each. F isthe value obtained from the analysis of variance for
each of the performance measures. The value p isthe probability of alarger F by chance.
The values for F and p show that there are significant differences between the values for
the two different environments on two of the performance measures.

The new environment promotes a much higher average fitness and a larger use of
repeating pairs of symbols. The average simorg in the new environment learned to
cooperate much more successfully than the simorgs in MacLennan’s earlier work (1990,
1992) concerning two symbol signals. The use of more non-repeating pairs shows that the
simorgs are using two symbols to denote a situation. This finding is supported by the fact

that the values in the denotation matrices are not broken into groups of four. Thisindicates
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Symbols

1
1/1 10886
2/1 10
3/1 375
4/1 1035
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4/2 135
1/3 222
2/3 51
3/3 237
4/3 456
1/4 1723
2/4 17
3/4 293
414 3574
H= 5.18

2
8934
190
571
419
119
33
0
706
953
63
2164
203
608
371
189
508

Situatian

3 4

0 0
315 21
0 75

18 314

0 17
7458 735
0 624
2209 271
0 29
679 428
0 327
39 1239
177 191
1423 101
559 1643
410 782

Different Pairs= 4

450

926
1310
76

789
56
1083
632
3839
1381
679
354
1419

7

219
0

0

0
681
219
706
229
414
3850
1397
27
351
2021
1323

Non-Repeating Pairs=

Figure 7 Sample Denotation Matrix from Base Version Used in this Study

20

149
581

420

1317
155
53
794

OO(%OOO



Mean SD F p

Lowest H 0.01 0.91
Origind  4.94 0.40
Bae 4.97 0.65

Highest Fitness 113.78 0.00
Origina  23.20 3.43
Bae 63.50 11.44

Different Pairs 0.50 0.49
Origina  4.00 0.47
Bae 4.30 1.25

Non-Repeating

Pairs 10.37 0.00
Original  0.30 0.48
Base 1.40 0.97

Performance M easures

Figure 8 Comparisons of MacLennan’s Original Environment and the Environment of
the Base Version Used in this Study
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that the new simorgs are not ignoring the first symbol.
The values recorded for lowest H and the use of different pairs are not significantly

different. Neither versions' matrices reached the entropy level of a perfect matrix.

Population Size

To compare different population sizes, each size population (50, 100, 200, 400,
and 800) was used for ten program runs. The number of internal states was set to four. The
results are summarized in Figure 9. The values for F and p show that there are significant
differences between the values for different population sizes on each of the performance
measures. Further analysis using comparisons for each pair of populations using a
Student’ st are discussed below. Figure 10 points out which pairs are significantly different
to a 0.05 confidence level.

For lowest H, the population size 800 is significantly different from all of the other
population sizes. The values obtained from the population sizes 50, 100, 200, and 400 are
not significantly different from each other. Thisis attributed to the fact that 60,000 major
cyclesis enough time for most of the simorg populations of less than 800 to stabilize and
settle into a set language. The populations of 800 were still not settled into afixed language
before the program ended.

The means recorded for highest fitness during a run increases with population size
except for the values reported for the population size 800. Again thisis attributed to the fact
that the populations of 800 did not have long enough to settle on alanguage. In fact, there
isanegative correlation between entropy values and fitness values. Thisis shown in Figure
11. This correlation was expected since a lower entropy indicates that the simorgs were
successful in settling on what symbols represent which situations and this leads to more
successful communications which lead to a higher average fitness.

For both the number of different pairs of symbols used and the number of non-
repeating pairs, the population size 100 outperformed the other populations sizes. Both of

the symbol usage performance measures for the population size 100 are significantly
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Lowest H

50

100

200

400

800

Highest Fitness
50

100

200

400

800

Different Pairs
50

100

200

400

800
Non-Repeating
Pairs

50

100

200

400

800

Performance Measures

Mean

4.66
4.97
4.65
4.65
6.18

58.58
63.50
71.29
77.98
54.04

3.40
4.30
3.70
2.70
2.60

0.80
1.40
1.00
0.50
0.00

SD

0.70
0.65
0.88
0.91
0.30

10.55
11.44
10.38
8.66
6.12

143
1.25
1.16
0.67
1.07

0.79
0.97
0.67
0.53
0.00

F
8.38

10.04

3.83

6.10

Figure9 Comparisons of Different Population Sizes
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Lowest Entropy
50 100 200 400 800

50 * No No No Yes
100 No * No No Yes
200 No No * No Yes
400 No No No * Yes
800 Yes Yes Yes Yes *

Highest Fitness
50 100 200 400 800

50 * No Yes Yes No
100 No * No Yes Yes
200 Yes No * No Yes
400 Yes Yes No * Yes
800 No Yes Yes Yes *

Different Pairs
50 100 200 400 800

50 * No No Yes No
100 No * No No Yes
200 No No * No Yes
400 Yes No No * No
800 No Yes Yes No *

Non-Repeating Pairs
50 100 200 400 800

50 * No No No Yes
100 No * No Yes Yes
200 No No * No Yes
400 No Yes No * No
800 Yes Yes Yes No *

Figure 10 Pair-wise Comparison of Different Population Sizes Using Student’st
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100
90
80
[%)]
(%]
2
= 707
LL
J4
£ 607
=
T
50
40
30 | | R | B I
2.5 3.0 3.54.0 45 5.0 556.06.5 7.0
Lowest H
— Linear Fit
[Summary of Fit]
RSquare 0.533678
RSquare Adj 0.523963
Root Mean Square Error 8.747296
Mean of Response 65.0776
\Observations (or Sum Wagts) 50)

Figure 11 Correlation between Lowest Entropy and Highest Fitness
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different than the values recorded for population sizes 400 and 800. The larger population
Sizes do not show the diversity of signals that was previously assumed would result from
having more genetic diversity in the starting population size. This was believed to result
from the placement of new simorgs. If all of the ssmorgs use the same pair of symbols for
every situation, it is easier for a new simorg to respond to the pair of signals no matter
where the new simorg is placed.

Since the smaller population sizes performed better than larger population sizes, the

size 100 was chosen to use in the rest of the experiments.

Internal States

The results of ten runs of the program for each of the values 2, 3, 4, 5, and 6 for
the number of internal states were recorded. Figure 12 gives the results from varying the
number of internal states. There is significant differences in all of the performance
measures except for non-repeating pairs. Figure 13 shows which pairs of number of states
are significantly different from each other to a 0.05 confidence level for each of the
performance measures.

Once again there is a negative correlation between H and fitness as expected. The
results from the runs with 2 and 3 internal states are significantly different from the larger
numbers of internal states for both lowest H and highest fitness. These results are offset by
the poor performance that the 2 and 3 internal state populations recorded for the number of
different pairs used. This is a prime example of a small H being misleading. The
populations with 2 and 3 internal states are on average using 3 different pairs of symbolsto
denote all 8 situations. The populations with 4 internal states are using 4 different pairs on
average.

Up to this point the experiments have been run as if the population size and the
number of internal states are independent variables. Thisisamost certainly not the case. To
investigate this further, some evolutions with a population size of 400 with 2 internal states
and a population size of 50 with 6 internal states were run. Neither of these combinations
performed any better that a population size of 100 with 4 internal states. Therefore, the rest
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M ean SD F p

Lowest H 1552  0.00
2 310 0.88
3 383 0.61
4 497 0.65
5 479 0.80
6 525 0.61
$ Highest Fitness 50.97  0.00
; 2 10842 1160
@ 3 8334 1010
= 4 6350 11.44
@ 5 56.66  13.59
S 6 4559 7.5
& Different Pairs 2.58 0.049
S 2 320 063
E'? 3 320 0.79
4 430 1.25
5 3.60 0.97
6 3.30 0.82
Non-Repeating
Pairs 1.02 0.41
2 110 0.99
3 070 0.82
4 140 0.97
5 0.90 0.74
6 0.80 0.79

Figure 12 Comparisons of Different Numbers of Internal States
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Lowest Entropy

2 3 4 5 6
2 * Yes Yes Yes Yes
3 Yes * Yes Yes Yes
4 Yes Yes * No No
5 Yes Yes No * No
6 Yes Yes No No *

Highest Fitness

2 3 4 5 6
2 * Yes Yes Yes Yes
3 Yes * Yes Yes Yes
4 Yes Yes * No Yes
5 Yes Yes No * Yes
6 Yes Yes Yes Yes *

Different Pairs

2 3 4 5 6
2 * No Yes No No
3 No * Yes No No
4 Yes Yes * No Yes
5 No No No * No
6 No No Yes No *

Non-Repeating Pairs

2 3 4 5 6
2 * No No No No
3 No * No No No
4 No No * No No
5 No No No * No
6 No No No No *

Figure 13 Pair-wise Comparisons of Different Numbers of Internal States using
Student’st
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of the experiments will use 100 as the population size and 4 as the number of internal
states.

Different Learning Rule

Figure 14 shows the results of using the single case learning rule as opposed to
using a neuromorphic acceptor tree. As the figure shows the NAT version did not differ
significantly on the any of the measures except highest fitness. The difference between
highest fitness values was large enough to say that the fitness levels achieved by the base
version are significantly higher than the results recorded by the NAT version. It is
interesting that the NAT version can perform as well on the other measures while not

performing as well on the number of cooperations.

New Simorg Placement

The next change investigated was changing the placement of the new simorg after
each mgjor cycle. In the base version a new simorg is placed in the location of the ssmorg
that was chosen to be replaced. In this new version the new simorg is placed next to one of
its parents. Ten runs of the program for each version were run with the same seeds being
used on each version. Figure 15 shows the results of a paired t test between each of the
performance measures. A paired t test was used for these tests since the initial populations
of each the runs were exactly the same. On the first 3 performance measures the new
placement version did better than the base version. But on the number of non-repeating
pairs used, the new version did worse than the base version. However, none of these
differences were large enough to say that the results were significantly different to a 0.05

level of confidence.

Competitive Environment

The final change performed was to create a competitive environment for the
simorgs. Figure 16 compares the results for the base program and the competitive

environment version. The base version performed better on all of the performance

29



M ean SD
Lowest H
Bae 4.97 0.65
New 4.28 0.91
Highest Fitness
Bae 63.50 11.44
New 47.73 15.01
Different Pairs
Bae 4.30 1.25
New 3.90 0.99
Non-Repeating
Pairs
Bae 1.40 0.97
New 1.40 1.26

Performance M easures

F
3.78

6.99

0.63

0.00

Figure 14 Comparisons of Different Learning Rules
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M ean SD t ratio p
Lowest H 1.60 0.14
Base 4.97 0.65
New 4.59 0.55
Highest Fitness -0.93 0.38
Bae 63.50 11.44
New 68.46 10.51
Different Pairs 2.08 0.07
Base 4.30 1.25
New  3.40 0.97
Non-Repeating
Pairs 1.08 0.31
Bae 1.40 0.97
New 1.00 1.15

Performance M easures

Figure 15 Comparisons of Different Placement of New Simorgs
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M ean SD F p
Lowest H 0.04 0.85
Base 4.97 0.65
Competitive  5.01 0.34
Highest Fitness 11.95 0.00
Bae 63.50 11.44
Competitive  47.96 8.42
Different Pairs 3.09 0.10
Base 4.30 1.25
Competitive  3.50 0.70
Non-Repeating
Pairs 5.36 0.03
Bae 1.40 0.97
Competitive  0.40 0.97

Performance M easures

Figure 16 Comparisons of Base Environment and Competitive Environment
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measures. This was disappointing since the presence of “predators’ was hoped to push the
simorgs to evolve further. In fact it was hard to create an environment were the predators
did not dominate the evolution. Ininitial trials the predators were given the ability to learn
and the simorgs did not evolve to use symbols effectively. Too strong of a predator did not

give the simorgs a chance to evolve and too weak of a predator did not push the simorgs

enough.
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Chapter 5

Conclusion

The new environment enabled the simorgs to use two symbol signals more
effectively than the experiments reported by MacL ennan (1990,1992). However, any
further changes, such as new learning rules and different placement of new simorgs, did

not show significant improvement over the base version used in this study.

M easurement Limitations

| believe that the limit has been reached on what can be learned by examining
denotation matrices for the entire population. Tools which investigate the reactions of each
simorg to sets of symbols might lead to discoveries about dialect groups within the
population as a whole and about what effect symbol order has on an individual simorg’'s
reactions.

Further Study

One obvious area for future study is increasing the number of symbols used in a
signal to 3. The present system of using a finite state machine as a simorg may have
reached its limit for producing complex behavior. Changing the basic mechanism of a
simorg to a rule-based system, neural net, or NAT might encourage the development of

more complex behavior.



Other new work might involve changing the topology of the simorg environment.
This change could alow the environment to represent more biologically correct versions of
mating and signal propagation. As more complex behavior is expected of the simorgs, the

more complex their environment and the ssimorgs themselves will have to be.
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Appendix A

Reproducing Single Symbol

Communication

Since this study was based on MacLennan’s earlier work, the first step taken wasto
reproduce MacL ennan’ s results concerning one symbol signal evolution. The new version
of the program was written based on descriptions of the algorithms from previously
published articles. The results produced were similar to the results of MacLennan’s
program when communication was enabled. Denotation matrices produced by
MacLennan’s program, such as Figure A-1, when communication was suppressed were
substantially different from the denotation matrices produced by the new program, a sample
of which is shown in Figure A-2. After examining MacL ennan’s program a mistake was
found. When communication was suppressed, the global symbol was randomized between
the times when the symbol was used to decide what action to take and the time when the
denotation matrix was incremented due to a successful cooperation. Therefore, the symbol
used to make the decision about what action to take was not the symbol recorded in the
denotation matrix after a successful action.

Since the randomly distributed values in the denotation matrix seemed to coincide
with the communication suppressed case, the question of where the order in the denotation
matrices produced by the corrected program came from was raised. Genetic drift was
assumed to cause the order appearing in the denotation matrices. Genetic drift can occur

when the distribution of actions and emissionsin new ssmorgs genotypes do not match the
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Situations

Symbols 0 1 2 3 4 5 6 7

180 201 27 712 149 296 254 292
202 191 21 707 140 268 240 338
196 199 24 699 145 284 235 290
168 154 20 713 135 312 214 314
200 182 15 643 149 310 226 284
206 183 28 684 142 283 243 280
204 191 21 676 145 290 221 310
198 186 19 689 128 276 236 297

~N~No ook~ WwNBEFE O

H= 5.66

Figure A-1 Communication Suppressed Denotation Matrix From MacL ennan’s Work

Situations

Symbols 1 2 3 4 5 6 7 8
1 94 130 133 34 166 0 150 682
2 16 105 279 228 261 307 0 118
3 0 199 229 12 0 0 161 274
4 95 19 93 283 669 89 0 201
5 1 97 212 200 112 0 0 0
6 28 135 84 8 600 215 0 351
7 0 0 0 118 59 70 0 690
8 0 33 41 0 371 0 0 0

H= 4.95

Figure A-2 Communication Suppressed Denotation Matrix From New Program

40



distribution of actions and emissions in the simorgs being replaced. Obviously, this can
occur when using two-point crossover with the two points being picked randomly.

To test the hypothesis that the order came from the genetic drift, the following
experiment was performed. At the beginning of each evolution how many times each action
appeared in the genotypes of the simorg population was recorded. At the end of the
evolution the same data was recorded again. The values recorded are shown in Figure A-3.
By examining the values at the beginning of the evolution it is obvious that the distribution
is random. The values recorded at the end of the evolution are not evenly distributed. To
test that this drift corresponds to the order of the denotation matrix shown in Figure A-2,
the correlation between the distribution of situations in the final denotation matrix to the
distribution of actionsin the genotypes of the simorgs in the population was calculated. The
results areillustrated in Figure A-4. The strong correlation should not be a surprise since a
successful cooperation was defined as when a action is taken that matches the local
environment (referred to as the situation) of the last emitter. Thisindicates that genetic drift

isthe reason for the order in the denotation matrices when communication is suppressed.

Total in Genotype
Before After

1 398 228
2 400 377
3 402 390
Actions 4 395 337
5 371 610
6 406 327
7 395 141
8 412 691

Mean=  397.38 387.62
SD=  12.09 182.89

Figure A-3 Comparison of Distribution of Actionsin the Genotypes of the Population
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2500
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51500
©
2
=
10007
500
0 | | | | T
100 200 300 400 500 600 700
Actions
— Linear Fit
(Summary of Fit)
RSquare 0.939821
RSquare Adj 0.929791
Root Mean Square Error 212.4597
Mean of Response 1056.5
Observations (or Sum Wgts) 8

Figure A-4 Correlation Between Situations in Successful Cooperations and Actionsin
the Genotypes of the Population
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Appendix B

Listing of Program

On the following pages is a listing of the base version of the program used in these

experiments.
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O 0000

Synthetic Ethology Code
This version uses two symbols in the Global Environment.
$lds

NUMERIC PARAMETERS CONTROLLING THE SIMULATION
integer Size, Lenv, Genv, IntStates

parameter (Size=100, Lenv=8, Genv=4, IntStates=4)

integer MgjorCycle, MinorCycle, Delay

parameter (MinorCycle=5, Delay=10)

real Rate

parameter (Rate=0.01)

integer Seed

integer WindowSize, Step

parameter (WindowSize=50, Step=25)

LOGICAL PARAMETERS CONTROLLING THE SIMULATION
logical EnableLearning, SuppressComm

VARIABLES USED IN THE SIMULATION

integer Simorg (1:Size)

integer Geno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
integer Pheno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
integer Fitness (1:Size)

integer LocEnv (1:Size)

integer GlobalEnv (1:2)

integer NextGE (1:2)

logical Emission

integer Symbol

integer LastEmitter, Goal, Which

integer NextState, ActOrEmit, Code

integer Mother, Father, Deceased, BestFit, StartingPoint
real TotalFitness

real AverFitness (1:WindowSize)

real AverBestFit (1:WindowSize)

integer AverageCount

integer Denotation (1:Genv, 1:Genv, 1:Lenv)

integer Loopl, Loop2, Loop3, Loop4, i

character yn

FUNCTIONS CALLED
integer nrand, FindParent, FindDead, Increment
real Average

INPUT THE VARIABLES

print*,' Enter the number of Mjor Cycles:'
read *, MgjorCycle

print*, ' Enter the random seed:'

read *, Seed

print *,' Suppress Comuni cation? (y/n)’



read *, yn
if (yn.EQ.'y').OR. (yn.EQ.' Y'))then
SuppressComm = .TRUE.

else
SuppressComm = .FALSE.
endif
print*, ' Permt Learning? (y/n)’
read *, yn

if (yn.EQ. 'y').OR. (yn.EQ. ' Y'))then
EnableLearning = .TRUE.

else
Enablelearning = .FALSE.

endif

OPEN OUTPUT FILES

call OpenFiles(Seed,Enablel earning,SuppressComm)
SEED THE RANDOM NUMBER GENERATOR
call InitRand (Seed)

RANDOMIZE THE INITIAL GENOTYPES AND PHENOTYPES
call InitGenes (Size, IntStates, Genv, Lenv, Geno, Pheno)
RANDOMIZE THE INITIAL INTERNAL STATES
call RandStates (Size, Simorg, IntStates)
INITIALIZE LAST EMITTER AND GOAL
LastEmitter =0

Goa =0

Emission = .FALSE.

RANDOMIZE THE GLOBAL ENVIRONMENT
symbol = nrand(1,Genv)

Globa Env(1) = symbol

NextGE(1) = symbol

symbol = nrand(1,Genv)

Globa Env(2) = symbol

NextGE(2) = symbol

INITIALIZE THE DENOTATION MATRIX

call InitDeno(Genv,L env,Denotation)

AverageCount=0
do Loopl=1,MajorCycle
INITIALIZE FITNESS COUNTERS
doi=1,Size
Fitness(i) =0
enddo

do Loop2=1,MinorCycle

RANDOMIZE THE LOCAL ENVIRONMENTS
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call RandEnv(Size, LocEnv, Lenv)

do Loop3=1,Delay
do Which=1,Size
do Loop4=1,2
NextState=Pheno(Which,Simorg(Which),
Global Env(L oop4),LocEnv(Which),1)
ActOrEmit=Pheno(Which,Simorg(Which),
Global Env(L oop4),LocEnv(Which),2)
Code=Pheno(Which,Simorg(Which),Global Env(L oop4),
LocEnv(Which),3)

if (ActOrEmit .EQ. 1) then
if (Code .EQ. Goal) then
Fitness(LastEmitter) = Fitness(LastEmitter) + 1
Fitness(Which) = Fitness(Which) + 1
Denotation(Globa Env(1),Globa Env(2),Code)=
Denotation(Globa Env(1),Global Env(2),Code) + 1
else
if (EnableLearning) then
call Learn(Size, Lenv, Genv, IntStates, Simorg,
GlobalEnv, LocEnv, Which, Pheno,
Goal, Loop4)
endif
endif
endif
if (ActOrEmit .EQ. 2) then
Emission = .TRUE.
Code = mod(Code,Genv)
if (Code .EQ. 0) then
Code = Genv
endif
NextGE(Loop4) = Code
endif
if (SuppressComm) then
symbol = nrand(1,Genv)
Globa Env(1) = symbol
NextGE(1) = symbol
symbol = nrand(1,Genv)
Globa Env(2) = symbol
NextGE(2) = symbol
endif
Simorg(Which) = NextState
enddo
if (Emission) then
GlobalEnv(1) = NextGE(1)
GlobalEnv(2) = NextGE(2)
LastEmitter = Which
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Goal = LocEnv(Which)
Emission = .FALSE.
endif
enddo
enddo
enddo

Goa =0

call FindBest(Size, Fitness, TotalFitness, BestFit)

StartingPoint = nrand(1,Size)

Father = FindParent (Size, Fitness, TotalFitness,
StartingPoint)

Mother = FindParent (Size, Fitness, Total Fitness, Father)

Deceased = FindDead (Size, Fitness, TotalFitness, BestFit,

Mother)

AverageCount = Increment(AverageCount,WindowSize)
AverFitness(AverageCount) = Total Fitness/ real (Size)
AverBestFit(AverageCount) = Fitness(BestFit)

if (Loopl .EQ. MajorCycle) then
call WriteFinal Deno(Genv,Lenv,Denotation)
endif

if ((Loopl .GE. WindowSize) .AND. (mod(Loopl,Step) .EQ. 0)) then
write (20,*) Loopl, Average(WindowSize AverFitness)
write (21,*) Loopl, Average(WindowSize AverBestFit)
call WriteEntropy(Genv,Lenv,Denotation,Loopl)
call InitDeno(Genv,Lenv,Denotation)
endif

call Crossover (Size, Lenv, Genv, IntStates, Geno, Mother,
Father, Deceased)

call Mutation (Size, Lenv, Genv, IntStates, Geno, Deceased,
Rate)

call CopyOver (Size, Lenv, Genv, IntStates, Geno,
Pheno, Deceased)

enddo

Close the files used for saving data
close(20)

close(21)

close(22)

close(25)

close(26)

stop

end
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subr outine OpenFiles(Seed,Enabl el earning, SuppressComm)
integer Seed
logical Enablel earning, SuppressComm

LOCAL VARIABLES
character*15 FileName

CALCULATE THE FILE NAMES
call convert(Seed, FileName)

if (EnableLearning) then
FileName='.L."' // FileName
else
FileName="' . NL. ' // FileName
endif

if (SuppressComm) then
FileName="' . NC // FileName
else
FileName='. C // FileName
endif

OPEN THE FILES USED FOR SAVING DATA
open (unit=20, file=" Fi t Aver' //[FileName)

write (20,10) Seed, Enablelearning , SuppressComm
open (unit=21, file=" Best Aver ' //FileName)

write (21,10) Seed, Enablelearning , SuppressComm
open (unit=22, file=" DenoMat ri x' //FileName)

write (22,10) Seed, Enablelearning , SuppressComm
open (unit=25, file=" v' //FileName)

write (25,10) Seed, Enablelearning , SuppressComm
open (unit=26, file=" H //FileName)

write (26,10) Seed, Enablelearning , SuppressComm

format (1, # Seed= ',110, Enabl eLearni ng= " L,
Suppr essCom¥' L)

return
end

subroutine InitRand (Seed)
integer Seed

LOCAL VARIABLES

integer i
real Ignore
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FUNCTIONS CALLED
real rand

doi=1,Seed
Ignore = rand(0)

enddo

return

end

subroutine InitGenes (Size, IntStates, Genv, Lenv, Geno, Pheno)
integer Size, IntStates, Genv, Lenv

integer Geno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

integer Pheno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

LOCAL VARIABLES
integer I, J, K, L
integer NextState, ActOrEmit, Code

FUNCTIONS CALLED
integer nrand

do 1=1,Size
do J=1,IntStates
do K=1,Genv
doL=1,Lenv
NextState = nrand(1,IntStates)
ActOrEmit = nrand(1,3)
Code = nrand(1,Lenv)
Geno(l,JK,L,1) = NextState
Geno(l,JK,L,2) = ActOrEmit
Geno(l,JK,L,3) = Code
Pheno(l,J,K,L,1) = NextState
Pheno(l,J,K,L,2) = ActOrEmit
Pheno(1,J,K,L,3) = Code
enddo
enddo
enddo
enddo
return
end

subroutine InitDeno (Genv,Lenv,Matrix)
integer Genv, Lenv
integer Matrix(1:Genv,1:Genv,1:Lenv)

LOCAL VARIABLES
integer i,j,k
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doi=1,Genv
do j=1,Genv
dok=1,Lenv
Matrix(i,j,k)=0
enddo
enddo
enddo
return
end

subroutine RandEnv (Size, LocEnv, Lenv)
integer Size, LocEnv(1:Size), Lenv

LOCAL VARIABLES
integer i

FUNCTIONS CALLED
integer nrand

doi=1,Size
LocEnv(i) = nrand(1,Lenv)
enddo
return
end

subroutine RandStates (Size, Simorg, IntStates)
integer Size, Simorg(1:Size), IntStates

LOCAL VARIABLES
integer i

FUNCTIONS CALLED
integer nrand

doi=1,Size
Simorg(i) = nrand(1,IntStates)
enddo
return
end

subroutine Learn (Size, Lenv, Genv, IntStates, Simorg, GlobalEnv,
LocEnv, Which, Pheno, Goal, Loop4)

integer Size, Lenv, Genv, IntStates, Which, Goal, Loop4

integer Simorg(1:Size), GlobalEnv(1:2), LocEnv(1:Size)

integer Pheno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

IF THERE HAS BEEN AN EMISSION APPLY THE LEARNING RULE
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if (Goal .NE. 0) then
Pheno(Which, Simorg(Which), Global Env(Loop4),
LocEnv(Which), 3) = Goal
endif

return
end

subroutine FindBest(Size, Fitness, TotalFitness, BestFit)
integer Size, BestFit, Fitness(1:Size)
real TotalFitness

LOCAL VARIABLES
integer i

Total Fitness = Fitness(1)
BestFit=1

doi=2,Size
TotalFitness = Total Fitness + Fitness(i)
if ( Fitness(i) .GT. Fitness(BestFit) ) then
BestFit =i
endif
enddo
return
end

10

integer function FindParent(Size, Fitness, Total Fitness, Count)
integer Size, Fitness(1:Size)

real TotalFitness

integer Count

LOCAL VARIABLES
integer Number
real Prob, SumProb

FUNCTIONS CALLED
integer Increment
real rand

SumProb = 0.0
Number = Count
Number = Increment(Number, Size)
if (TotalFitness .EQ. 0.0) then
Prob = 1.0/ real(Size)
else
Prob = real (Fitness(Number)) / Total Fitness
endif
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if (rand(0) .GE. (Prob / (1.0 - SumPraob))) then
Number = Increment(Number,Size)
SumProb = SumProb + Prob
goto 10

endif

FindParent = Number

return

end

10

integer function FindDead (Size, Fitness, TotalFitness,

BestFit, Count)
integer Size, Fitness(1:Size)
real TotalFitness
integer BestFit, Count

LOCAL VARIABLES
integer PBF, Number
real Prob, SumProb

FUNCTIONS CALLED
integer Increment
real rand

SumProb = 0.0
Number = Count
Number = Increment(Number, Size)
PBF = Size * Fitness(BestFit)
if ( TotalFitness .EQ. PBF ) then
Prob = 1.0/ real(Size)
else
Prob = real( Fitness(BestFit) - Fitness(Number) ) /
real( PBF - TotalFitness)
endif
if (rand(0) .GE. (Prob/ (1.0 - SumProb)) ) then
Number = Increment(Number,Size)
SumProb = SumProb + Prob
goto 10
endif
FindDead = Number
return
end

integer function Increment(Count, UpperLimit)
integer Count, UpperLimit

LOCAL VARIABLES
integer Number
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Number = Count + 1
if (Number .GT. UpperLimit) then

Number =1
endif
Increment = Number
return
end

subroutine Crossover(Size, Lenv, Genv, IntStates, Geno, Mother,
Father, Deceased)

integer Size, Lenv, Genv, IntStates, Mother, Father, Deceased

integer Geno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

LOCAL VARIABLES
integer I, J, K
integer A, B, Temp, HowMany, Where

FUNCTIONS CALLED
integer nrand

HowMany = IntStates * Genv * Lenv

A = nrand(1,HowMany)
B = nrand(1,HowMany)

if (A .GT. B) then
Temp=B
B=A
A =Temp
endif

Where=0
do I1=1,IntStates
do J=1,Genv
doK=1,Lenv
Where=Where + 1
if (Where .LT. A) then
Geno(Deceased,,J K, 1) = Geno(Father,l,J,K,1)
Geno(Deceased,,JK,2) = Geno(Father,l,J,K,2)
Geno(Deceased,|,J K,3) = Geno(Father,l,J,K,3)
else
if (Where .LT. B) then
Geno(Deceased,|,J,K,1) = Geno(Mother,l,J,K,1)
Geno(Deceased,|,J K,2) = Geno(Mother,1,J,K,2)
Geno(Deceased,|,JK,3) = Geno(Mother,1,J,K,3)
else
Geno(Deceased,|,J K,1) = Geno(Father,l,J,K,1)
Geno(Deceased,|,J K,2) = Geno(Father,l,JK,2)
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Geno(Deceased,|,J K,3) = Geno(Father,l,J,K,3)

endif
endif
enddo
enddo
enddo
return
end

subroutine Mutation(Size, Lenv, Genv, IntStates, Geno,
Deceased, Rate)

integer Size, Lenv, Genv, IntStates, Deceased

integer Geno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

real Rate

LOCAL VARIABLES
integer A, B, C, NextState, ActOrEmit, Code

FUNCTIONS CALLED
real rand
integer nrand

if (rand(0) .LT. Rate) then
A = nrand(1,IntStates)
B = nrand(1,Genv)
C =nrand(1,Lenv)
NextState = nrand(1,IntStates)
ActOrEmit = nrand(1,3)
Code = nrand(1,Lenv)

Geno(Deceased,A,B,C,1) = NextState
Geno(Deceased,A,B,C,2) = ActOrEmit
Geno(Deceased,A,B,C,3) = Code

endif

return

end

subroutine CopyOver (Size, Lenv, Genv, IntStates, Geno,
Pheno, Deceased)

integer Size, Lenv, Genv, IntStates, Deceased

integer Geno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

integer Pheno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

LOCAL VARIABLES
integer I, J, K

do I1=1,IntStates
do J=1,Genv



doK=1,Lenv
Pheno(Deceased,|,J,K,1) = Geno(Deceased,|,J K, 1)
Pheno(Deceased,|,J,K ,2) = Geno(Deceased,|,J,K,2)
Pheno(Deceased,|,J,K ,3) = Geno(Deceased,|,J K,3)
enddo
enddo
enddo
return
end

real function Average(HowMany,Numbers)
integer HowMany
real Numbers(1:HowMany)

LOCAL VARIABLES
integer i
real Sum

Sum = 0.0
do i=1,HowMany

Sum = Sum + Numbers(i)
enddo

Average = Sum / real(HowMany)
return
end

subr outine WriteEntropy(Genv,Lenv,Matrix,Cycle)
integer Genv, Lenv, Cycle
integer Matrix(1:Genv,1:Genv,1:Lenv)

LOCAL VARIABLES
integer i,j,k,Sum
real DSum, Mean, sigma, V, H, sm, n, C, Log2

Log2 = Logl10(2.0)

CALCULATE STATISTICS
Sum =0
do i=1,Genv
do j=1,Genv
do k=1,Lenv
Sum = Sum + Matrix(i,j,k)
enddo
enddo
enddo
Mean = float(Sum) / float(Genv * Genv * Lenv)
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DSum = 0.0
do i=1,Genv
do j=1,Genv
do k=1,Lenv
DSum = DSum + (Matrix(i,j,k)-Mean)** 2
enddo
enddo
enddo
sigma = sgrt(Dsum / float(Genv * Genv * Lenv))
if (Mean .EQ. 0.0) then
V =-999999
else
V =sigma/ Mean
endif

sm=0.0
C=00
do i=1,Genv
do j=1,Genv
do k=1,Lenv
n = Matrix(i,j,k)
C=C+n
if (n.NE. 0) then
sm=sm+ (n* (LoglO(n) / Log2))
endif
enddo
enddo
enddo
H = (Logl10(float(C)) / Log2) - sm/C

WRITE RESULTS TO THE FILES
write(25,*) CycleV

write(26,*) CycleH

return

end

subr outine WriteFinal Deno(Genv,Lenv,Matrix)
integer Genv, Lenv
integer Matrix(1:Genv,11:Genv,1:Lenv)

LOCAL VARIABLES

integer i,j,k,Sum

real DSum, Mean, sigma, V, H, Hmax, sm, n, C, eta, Log2
character* 15 HowMany

Log2 = Log10(2.0)

CALCULATE STATISTICS
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Sum =0
do i=1,Genv
do j=1,Genv
do k=1,Lenv
Sum = Sum + Matrix(i,j,k)
enddo
enddo
enddo
Mean = float(Sum) / float(Genv * Genv * Lenv)

DSum = 0.0
do i=1,Genv
do j=1,Genv
do k=1,Lenv
DSum = DSum + (Matrix(i,j,k)-Mean)** 2
enddo
enddo
enddo
sigma = sgrt(Dsum / float(Genv * Genv * Lenv))
if (Mean .EQ. 0.0) then
V =-999999
else
V =sigma/ Mean
endif

sm=0.0
C=00
do i=1,Genv
do j=1,Genv
do k=1,Lenv
n = Matrix(i,j,k)
C=C+n
if (n.NE. 0) then
sm=sm+ (n* (Logl0(n) / Log2))
endif
enddo
enddo
enddo
H = (Logl10(float(C)) / Log2) - sm/C
Hmax = 2* (Log10(float(Genv))/Log2) + (Logl0(float(L env))/Log2)
eta=H/ (LoglO(float(Lenv))/Log2) - 1.0

WRITE THE DENOTATION MATRIX TO A FILE
call convert(Lenv,HowMany)
write(22,*)
write(22,'('//HowMany//'(i8))"),(k,k=1,Lenv)
do i=1,Genv

do j=1,Genv
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write (22,%),i,j," '

write (22, (" //HowMany//" (i 8))"),(matrix(i,j,k),k=1,Lenv)

enddo
enddo

write(22,*)

write(22,10) ' v,V
write(22,10) ' H ,H
write(22,10) ' Hmax' , Hmax
write(22,10) ' et a' ,eta

format (1X,A,' ="' ,F)
return
end

integer function nrand(i, j)
integer i, j

FUNCTIONS CALLED
real rand

RETURNS A NUMBER BETWEEN i AND j, INCLUSIVE

nrand =i + int(real(j+1-i)*rand(0))
if (nrand .EQ. (j+1)) then

nrand =
endif

return
end

10

subroutine convert(in,letters)
integer in
character*15 letters

LOCAL VARIABLES
integer number, digit

number=in

letters="

digit=mod(number,10)

number=number/10

|etters=char(48+digit)//l etters

if (number .NE. 0) then
goto 10

endif

return

end
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