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Abstract

This research used synthetic ethology to investigate the evolution of simulated

organisms that communicated information about their environment. Synthetic ethology

involves creating a complete environment and simulated organisms which evolve in that

environment. Since these simulated organisms exist as data structures in a computer

program, their evolution can be studied more closely than the evolution of organisms in the

natural world. The main goal of this study was to demonstrate the evolution of simulated

organisms that used signals consisting of two symbols to communicate.

After creating a new environment for the simulated organisms, several factors

affecting the evolution, such as population size and the learning rule used by each simorg,

were investigated. It was concluded that the simulated organisms did successfully evolve

the use of two symbol signals to denote situations within their environment.
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Chapter 1

Introduction

Motivation

The study of communication has taken many forms. Mathematical modeling,

laboratory studies, and ethological studies are but a few of the methods used. Ethology, the

observation of organisms and their behavior in their natural environments, produces the

most valid results. One disadvantage of ethological studies is the complexity of the

organisms that are being studied. Any animal that exhibits the use of communication will

possess a brain far too complex to understand through current neuroscience. Therefore our

experiments will use synthetic ethology, the study of simulated organisms, to by-pass this

problem.

The goal of synthetic ethology is to create the simplest organism and complete

environment that produces the desired behavior and then to study the organism. In these

experiments the environment and organisms will exist as data structures of a program. It is

important to note that since the simorgs exist and evolve in this new environment, this

environment is their “natural environment.” A major point of ethology, both normal and

synthetic, is to study animals within their natural environment.

A large difference between normal ethology and synthetic ethology is the amount of

control the scientist has over the experiment. Synthetic ethology gives a scientist
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unparalleled control of the experiment while also not interfering in the environment in

which the study is being done. The experiment can be stopped at any point and questions

about why organisms behaved in a certain manner can be answered. Initial populations can

be duplicated exactly and the results of changing the parameters of the experiment can be

monitored closely. By keeping the environment of the simulated organism as simple as

possible it is possible to examine what is essential to the process of communication.

Objective

The objective of this study was to create simple simulated organisms that

demonstrate the evolution of communication with signals consisting of two symbols.

Previously MacLennan had developed simulated organisms (referred to as simorgs) that

used one symbol signals to communicate information about their environment to other

simulated organisms (1990, 1992). Hopefully more complicated simorgs can be created

that utilize more than one symbol in a signal. Eventually as the simorgs gain the ability to

use more symbols in a signal, language features such as grammar and sentence structure

may emerge. Once developed these simorgs can be studied to further our knowledge of the

process of communication. The simorgs that can use two symbol signals as opposed to

single symbol signals are the next step along that path.
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Chapter 2

Literature Review

The study of communication and signaling has long been of interest to ethologists.

Volumes such as E. S. Morton and J. Page’s (1992) Animal Talk  and T. A. Seboek’s

(1968) Animal Communication have been devoted to the techniques and results of studying

communication. Many species of animals have developed signals to attract mates, warn of

danger, guide others to food, and maintain a territory. Even though the fact that animals

communicate in some fashion is not usually argued, the study of a particular animal or

species and explanations of their communication system is very difficult. Not only must the

costs and benefits of signal emitting and receiving be calculated, but the interaction with

illegitimate receivers and the use of deceptive signals must be understood to fully explain

any communication system (Alcock, 1993). The time scale involved in evolution leads to

yet more problems in studying communication. One method to reconstruct the evolution of

a behavior is to compare closely related living species that exhibit forms of the same

behavior. This is how Martin Lindauer (1961) reconstructed the evolutionary history of the

honeybee waggle dances. Even though this method provides strong circumstantial evidence

for its conclusions, there is no way to verify the results. Issues such as these illustrate the

complexity of explaining the behavior of existing animals.

Synthetic ethology is a relatively new field. In addition to MacLennan’s work

(1990, 1992) previous studies utilizing synthetic ethology include Gregory Werner and
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Michael Dyer’s work (1992). Werner and Dyer’s experiments involved making

communication essential to reproduction in a population of artificial organisms by creating

an environment where females had to guide “blind” males through the use of signals to the

female’s location. Both of these previous experiments proved that it is possible to create

organisms that are able to evolve to the point of using symbols effectively to solve some

problem in their environment.

One main difference between this work and Werner and Dyer’s work is the

complexity of the environment and simulated organisms. Werner and Dyer create a world

where organisms are solving the problem of finding mates. Therefore the male organisms

must be able to move about in their environment and the females must be able to sense

males within a certain range of their location. While these complexities make the organisms

seem more life-like, they add nothing to the problem at hand, studying communication. In

fact, Werner and Dyer point out that MacLennan’s work “is simpler to analyze, and his use

of abstract environmental states may make it easier to evolve complex protocols such as

those requiring syntax” (1992, p. 683).

While synthetic ethology might be perceived as related to computer simulations,

there are several important differences. Simulations and modeling attempt to reproduce the

elements of a complex system that are perceived as affecting the behavior of that system.

Simulations are designed and programmed to produce a specific behavior. A synthetic

ethology study uses an entirely new environment and very simple organisms which are not

“programmed” to behave in a certain manner. The organisms are given the capability to

perform actions but the choice of how to behave is left up to their genes and evolution. In

Werner and Dyer’s study, communication was the main goal of the experiment; however,

they pointed out “there should not be direct pressure on the animals to communicate”

(1992, p. 660). Synthetic ethology is based upon Valentino Braitenberg’s (1984) synthetic

psychology. His “law of uphill analysis and downhill invention” (p. 20) means that

designing a new system that produces a certain behavior is easier than analyzing an existing

system that exhibits that same behavior. For example, the job of simulating all of the

factors of a frog population that affect the frogs’ communication is very difficult if not

impossible. The job of creating a population of new organisms that communicate and then
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studying those new organisms is much easier, especially when the organisms exist as data

structures in a computer program.

Synthetic ethology is more closely related to the field of artificial life. It uses several

methods such as genetic programming and the creation of artificial environments that were

developed by scientists investigating artificial life. Artificial life programs typically exhibit

complex behavior such as self reproduction and learning. The main difference between

artificial life and synthetic ethology is that artificial life researchers are interested in

identifying the processes that separate living beings from non-living beings while synthetic

ethologists focus on studying one particular behavior of a being.
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Chapter 3

Methods

Communication

Since the main goal of this research is to develop simulated organisms that

demonstrate the evolution of communication, we must first define what is to be considered

communication. Deciding what actions can be called communication has been a

controversial topic. For the purposes of this experiment Burghardt’s (1970) definition of

communication shall be used:

Communication is the phenomenon of one organism producing a signal 
that, when responded to by another organism, confers some advantage (or 
the statistical probability of it) to the signaler or his group. (p. 16)

The physical act of communicating, the emission and reception of a signal, must take place

and the response should give some advantage to the organism that emitted the signal to

count the action as communication. In the new environment we are creating,

communication is demonstrated when two simorgs cooperate.

A cooperation is defined as when a simorg takes an action that matches the local

environment of the last simorg to emit a symbol. For example, if simorg A with local

environment 3 emits 1,4 and simorg B responds with the action 3, a successful cooperation

has taken place. After each cooperation the fitness level of the emitter as well as the fitness

level of the responder is incremented. The likelihood of an organism reproducing is directly
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related to the number of successful cooperations the organism is involved in. Therefore a

cooperation event satisfies the definition of communication given above. A signal is emitted

and responded to, and that response confers an advantage, an increased chance at

reproduction, to the emitter.

Obviously, the most successful cooperators will use communication. If an

organism can communicate its local environment by using a unique set of symbols that the

other organisms can interpret, it will be more likely that the responding organisms will take

the correct action. Since the genes of an organism govern the “language” that the organism

initially uses, reproduction is a powerful tool that an organism uses to increase the number

of organisms using its own language.

Environment and Organisms

The system studied consists of a group of simulated organisms arranged in a circle.

Each organism can sense three different types of information: (1)Every organism in the

circle can sense the two global symbols. (2)A simorg can sense its own internal state.

(3)Each simorg can also sense what is in its local environment. The global symbols can be

seen by all of the simorgs; however, the other two types of information are private to each

simorg. Please refer to Figure 1. Every simorg can sense the two global symbols but only

simorg B can see the local environment b and only simorg B knows its own internal state

which is β. Hopefully the simorgs will evolve to the point of using symbols placed in the

global area to communicate. It is expected that the internal states will be used as memory so

a simorg can remember what information it has seen before. The symbols placed in local

environments are what the simorgs are to communicate to each other. None of these

behaviors are explicitly programmed into the simorgs; however, evolution is expected to

guide the simorgs into behaving this way.

Each simorg is given two turns to respond to the information the simorg can sense.

The simorgs have three options during each of the two turns: emitting a new symbol to be

placed in the global environment, taking an action denoted by an integer, or doing nothing.

In the first turn, the first global symbol is used in its decisions and if a symbol is emitted
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Figure 1  Environment of the Simulated Organisms
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 the symbol will replace the first global symbol. During the second turn, the second global

symbol is used to look up which option to take and the second global symbol will be

replaced if an emission occurs. After the  simorg’s two turns, control is passed to the next

simorg.

Each simorg is a finite state machine. The phenotype of the simulated organism

serves as a transition table for the organism. The phenotype has entries for every

combination of global symbols, local symbols, and internal states. When it is an

organism’s turn to respond, the organism is governed by the entries in its own table. For

example if Figure 2 is a simorg’s phenotype and the simorg’s internal state is 1, the global

symbol being used for this turn is 2, and the simorg’s local environment contains a 1, then

the simorg will act with an action suitable for a local environment represented by the integer

5. The phenotype of each simorg is originally a copy of the simorg’s genotype.

The genotype of a simorg is a table which has the same structure as the simorg’s

phenotype. The genotypes for the initial population are randomly assigned. For later

generations, a new simorg’s genotype is a combination of its parents’ genotypes using two

point crossover. In a two point crossover, two points within the parents’ genotypes are

randomly chosen. The genes for the new simorg between the two points are taken from one

parent and the remaining genes are taken from the other parent. This is illustrated in Figure

3.

If learning is allowed, only the phenotype will be changed as knowledge is

obtained. Therefore the simorg’s offspring will not benefit from knowledge gained by the

parent since only the genotype is passed on to the child. However, only one pair of

simorgs is chosen to mate in each major cycle, so the child will be able to quickly learn

from the other simorgs.

The use of the words genotype and phenotype within this study correspond to their

definitions in biological terms. The genotype of an organism is the information inherited

from its parents and passed on to its offspring. The phenotype is the physical interpretation

of the genotype. If a person has the gene for black hair, their phenotype, in this case the

specific portion of their phenotype called hair, will reflect that by being a dark color. For

the simorgs the genotype is the information inherited from its parents. The phenotype is the
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Internal State Global Symbol Local Environment Act or Emit Code
1 1 1 Nothing 3

1 1 2 Act 1

1 1 3 Emit 6

1 2 1 Act 5

3 1 1 Emit 2

3 1 2 Nothing 8

3 1 3 Act 3

3 2 1 Emit 5

3 2 2 Nothing 4

3 2 3 Act 4

Figure 2  Sample Partial Phenotype of a Simorg
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Figure 3  Illustration of Two Point Crossover
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table that guides their actions and emissions. Since the simulated organisms used in these

experiments are so simple it easy to blur the distinctions between the genotypes and

phenotypes.

Cycles

Each experiment consists of at least 60,000 “major cycles”. At the beginning of

each major cycle the fitness points for each simorg are zeroed. At the end of each major

cycle two simorgs are chosen to reproduce and one simorg is chosen to be replaced. The

simorgs that reproduce are chosen with a probability proportional to their fitness.

Therefore, it is possible for the worst simorg to be chosen to reproduce, but this is very

unlikely. It also means that the best simorg is not always chosen as one of the two to

reproduce. The simorg picked to die is chosen according to a monotonically decreasing

function of the simorgs’ fitness. The population stays constant since one new simorg is

produced and takes the place of the simorg chosen to be replaced.

Each major cycle consists of five minor cycles. At the beginning of each minor

cycle the local environments are randomized. During each minor cycle there are ten delay

cycles. A delay cycle consists of every simorg being given a chance to respond. Each

simorg can emit a new global symbol, it can perform an action, or it can do nothing. If the

action performed matches the local environment of the last emitter, a cooperation is said to

have taken place.

Measurements

Several different types of measurements are used to gauge the performance of a

population of simulated organisms. The average fitness of the population smoothed over

fifty major cycles is recorded. Since each point of fitness results from a successful

cooperation, the average fitness gives how many times the average organism cooperated

successfully in the last major cycle.

Most of the measurements deal with the denotation matrix of a population. The

denotation matrix is a table with entries for each local environment and combination of
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global symbols. Each cooperation increments the entry in the denotation matrix

corresponding to the local environment of the emitter and the global symbols the organism

used to denote that local environment. At the end of the evolution the denotation matrix can

be viewed as a dictionary of what combination of symbols are used to represent which local

environment. The denotation matrices shown in this paper show only the cooperations

during the last fifty major cycles. This allows one to see the language used at the end of the

evolution without the clutter of earlier attempts to cooperate.

There are several ways of measuring the organization of a denotation matrix. The

entropy of a two dimensional discrete probability distribution pγ,λ is defined as:

  
H = -      p γ,λ lg p γ,λ

γ,λ
Σ

For all calculations lg x   = log2 x . The upper limit of entropy, representing a totally

random use of symbols, can be found by substituting 1/G2L for pγ,λ where G equals the

number of values one of the two global symbols can be assigned and L equals the number

of values a local environment can be assigned. Unless otherwise noted, G = 4 and L = 8

for all of the experiments presented in this thesis. Therefore by substituting 1/128 for pγ,λ

the upper limit is H = 7. For an ideal matrix, where eight combinations of two symbols

uniquely denote the eight possible local environments, the entropy equals 3. If the

denotation matrix has only one non-zero entry then the entropy equals 0. This condition is

referred to as the denotation matrix being over structured. See MacLennan (1990) for

further analysis of these measures.

Finally, two measurements are taken from each denotation matrix which indicate the

“richness” of the language developed by the simorgs. The first is how many different pairs

of symbols are the most used symbols in a column of a denotation matrix. This measure

was used because the entropy values only indicate how many pairs of symbols are used,

not which pairs were used. A perfect entropy value of 3 could only indicate that the

population used 1,1 to denote all eight of the situations. The second measure is, of the

different pairs mentioned above, how may are non-repeating pairs. For example 1,1 is a
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repeating pair but 1,4 is not a repeating pair. This measure was used because the use of

non-repeating pairs indicates the true use of two symbol signals to uniquely denote a

situation.

Research Areas

MacLennan’s initial studies (1990, 1992) resulted in denotation matrices such as

Figure 4. The denotation matrix shows that there were not many successful cooperations.

Also, the fact that successful uses of symbols are distributed in groups of four indicates

that the simorgs are using the second symbol and ignoring the first. My study was initiated

to see what changes had to be made to encourage the simorgs to evolve a more successful

language consisting of signals made up of two symbols.

The most important change made in this study was to the environment and the rules

being used to govern the action of simorgs. In the original work (MacLennan 1990, 1992),

there was only one global symbol, not two as used in this study. Therefore each simorg

was only given one chance to respond during its turn. Also, the simorgs did not have the

option of doing nothing. During each simorg’s turn, the simorg had to either emit or act.

After making the discussed modifications to the environment and rules, several

more smaller changes were investigated. The first was varying the population size. A larger

population can be used to increase genetic diversity at the beginning of the evolution. The

mutation rate was low, there was only a 1 in a 100 chance of a single gene being mutated in

a new simorg. While mutation will in theory explore the entire genetic space if given

infinite time, these experiments were planned to be completed in a shorter amount of time.

Therefore it was important to have a broad base of genes in the population at the beginning

of the program’s run.

Another parameter that was explored is the number of internal states. We expected

that evolution would guide the simorgs to use the internal states to remember the previously

seen symbol. Since there are four different values that a global symbol can take, one would

expect that four internal states would be adequate. Both smaller and larger values were used

to determine what number of internal states was optimal.
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Symbols Situation
0 1 2 3 4 5 6 7

0 / 0 746 5 2 6 0 2 8 7 1 1282 0 0 923 1 5 4 4
1 / 0 299 359 669 507 0 0 248 424

2 / 0 45 916 117 652 0 0 256 36

3 / 0 37 140 252 658 0 0 244 447

0 / 1 435 94 138 204 237 0 49 431

1 / 1 1 8 5 5 39 85 1394 3 7 9 5 0 122 541

2 / 1 279 102 6 46 190 0 34 77

3 / 1 227 14 34 25 164 0 52 631

0 / 2 37 577 0 644 0 426 144 0

1 / 2 56 307 0 22 0 454 20 0

2 / 2 100 1252 0 323 0 9 2 2 0 20 0

3 / 2 9 28 0 202 0 1180 42 0

0 / 3 12 0 99 586 0 5 494 603

1 / 3 27 0 14 192 0 5 135 594

2 / 3 0 0 5 216 0 126 120 57

3 / 3 0 0 341 1 4 8 1 0 130 1 6 7 9 684

H = 5.1 Different Pairs= 4 Non-Repeating Pairs= 0

Figure 4  Denotation Matrix From MacLennan’s Original Research
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Another area to be examined was the use of different learning rules. The learning

rule used originally in MacLennan (1990, 1992) is a single case learning rule. If a simorg

performed a wrong action, the phenotype of the simorg was changed so that the simorg

would have produced the correct behavior under precisely the same circumstances. While

this learning rule was adequate for communication using of one symbol, it did not lead to

communication using two symbols. One possibility for the failure to learn more complex

behavior is that the single case rule is too volatile. The new learning rule used in this study

was a real-valued neuromorphic acceptor tree (referred to as a NAT) of depth 2 (Hand,

1994). A NAT is a simplified representation of a neural net. The version used in this study

was tested to verify its reliability and was found to learn linearly non-separable functions

very quickly.

In the original experiments the new simorg created after each major cycle was

placed in the position occupied by the simorg that was chosen to die. This could lead to

instability if the new simorg was not placed in the spatially defined dialect group of its

parents, especially if the single case learning rule is used. Another change considered was

placing a new simorg next to one of its parents.

The final change studied was to create a competitive environment for the simorgs.

Preliminary investigations showed that the simorgs were not evolving “optimum”

languages which had a unique pair of symbols for each situation. A population of

“predators” was added to push the simorgs to evolve further. If a predator could output the

same action as a successful simorg, neither the emitting simorg or the responding simorg

was given any fitness points. The predator’s fitness level was increased for every

cooperation that the predator “blocked.” The predator only had one internal state,

corresponding to no memory, while the simorgs still had four internal states. It was hoped

that this change would force the simorgs to use non-repeating symbols.
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Chapter 4

Results and Discussion

New Environment

A graph of average fitness during a typical evolution is shown in Figure 5. The

average fitness values begin around 30 and quickly rise to over 60. A graph of the entropy

of the denotation matrix during the evolution is shown in Figure 6. The entropy values are

initially close to 7, the highest possible entropy, and fall off to around 5 before leveling off.

For both of these graphs the values are smoothed over fifty major cycles.

Figure 7 is a typical denotation matrix from the base version of the program used in

these experiments. Figure 8 show the results of comparing the two different environments

over ten different evolutions each. F is the value obtained from the analysis of variance for

each of the performance measures. The value p is the probability of a larger F by chance.

The values for F and p show that there are significant differences between the values for

the two different environments on two of the performance measures.

The new environment promotes a much higher average fitness and a larger use of

repeating pairs of symbols. The average simorg in the new environment learned to

cooperate much more successfully than the simorgs in MacLennan’s earlier work (1990,

1992) concerning two symbol signals. The use of more non-repeating pairs shows that the

simorgs are using two symbols to denote a situation. This finding is supported by the fact

that the values in the denotation matrices are not broken into groups of four. This indicates
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Figure 5  Average Fitness Smoothed Over 50 Major Cycles
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Figure 6  Entropy Smoothed Over 50 Major Cycles
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Symbols Situation
1 2 3 4 5 6 7 8

1 / 1 1 0 8 8 6 8 9 3 4 0 0 450 18148 0 149

2 / 1 10 190 315 21 0 5 219 581

3 / 1 375 571 0 75 926 1730 0 0

4 / 1 1035 419 18 314 1310 525 0 0

1 / 2 0 119 0 17 76 0 0 420

2 / 2 0 33 7 4 5 8 735 54 0 681 443

3 / 2 81 0 0 624 789 0 219 1 3 1 7
4 / 2 135 706 2209 271 56 0 706 155

1 / 3 222 953 0 29 1083 2513 229 53

2 / 3 51 63 679 428 632 0 414 794

3 / 3 237 2164 0 327 3 8 3 9 1425 3 8 5 0 0

4 / 3 456 203 39 1239 1381 297 1397 0

1 / 4 1723 608 177 191 679 523 27 0

2 / 4 17 371 1423 101 354 11 351 343

3 / 4 293 189 559 1 6 4 3 1419 328 2021 0

4 / 4 3574 508 410 782 3 809 1323 0

H = 5.18 Different Pairs= 4 Non-Repeating Pairs= 1

 

Figure 7  Sample Denotation Matrix from Base Version Used in this Study
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Mean S D F p
Lowest H 0.01 0.91

Original 4.94 0.40

Base 4.97 0.65

Highest Fitness 113.78 0.00

Original 23.20 3.43

Base 63.50 11.44

Different Pairs 0.50 0.49

Original 4.00 0.47

Base 4.30 1.25

Non-Repeating
Pairs 10.37 0.00

Original 0.30 0.48

Base 1.40 0.97

P
er

fo
rm

an
ce

 M
ea

su
re

s

Figure 8  Comparisons of MacLennan’s Original Environment and the Environment of

the Base Version Used in this Study
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that the new simorgs are not ignoring the first symbol.

The values recorded for lowest H and the use of different pairs are not significantly

different. Neither versions’ matrices reached the entropy level of a perfect matrix.

Population Size

To compare different population sizes, each size population (50, 100, 200, 400,

and 800) was used for ten program runs. The number of internal states was set to four. The

results are summarized in Figure 9. The values for F and p show that there are significant

differences between the values for different population sizes on each of the performance

measures. Further analysis using comparisons for each pair of populations using a

Student’s t are discussed below. Figure 10 points out which pairs are significantly different

to a 0.05 confidence level.

For lowest H, the population size 800 is significantly different from all of the other

population sizes. The values obtained from the population sizes 50, 100, 200, and 400 are

not significantly different from each other. This is attributed to the fact that 60,000 major

cycles is enough time for most of the simorg populations of less than 800 to stabilize and

settle into a set language. The populations of 800 were still not settled into a fixed language

before the program ended.

The means recorded for highest fitness during a run increases with population size

except for the values reported for the population size 800. Again this is attributed to the fact

that the populations of 800 did not have long enough to settle on a language. In fact, there

is a negative correlation between entropy values and fitness values. This is shown in Figure

11. This correlation was expected since a lower entropy indicates that the simorgs were

successful in settling on what symbols represent which situations and this leads to more

successful communications which lead to a higher average fitness.

For both the number of different pairs of symbols used and the number of non-

repeating pairs, the population size 100 outperformed the other populations sizes. Both of

the symbol usage performance measures for the population size 100 are significantly
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Mean S D F p
Lowest H 8.38 0.00

50 4.66 0.70

100 4.97 0.65

200 4.65 0.88

400 4.65 0.91

800 6.18 0.30

Highest Fitness 10.04 0.00

50 58.58 10.55

100 63.50 11.44

200 71.29 10.38

400 77.98 8.66

800 54.04 6.12

Different Pairs 3.83 0.01

50 3.40 1.43

100 4.30 1.25

200 3.70 1.16

400 2.70 0.67

800 2.60 1.07

Non-Repeating
Pairs 6.10 0.00

50 0.80 0.79

100 1.40 0.97

200 1.00 0.67

400 0.50 0.53

800 0.00 0.00

P
er

fo
rm

an
ce

 M
ea

su
re

s

Figure 9  Comparisons of Different Population Sizes
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Lowest Entropy
5 0 1 0 0 2 0 0 4 0 0 8 0 0

5 0 * No No No Yes

1 0 0 No * No No Yes

2 0 0 No No * No Yes

4 0 0 No No No * Yes

8 0 0 Yes Yes Yes Yes *

Highest Fitness
5 0 1 0 0 2 0 0 4 0 0 8 0 0

5 0 * No Yes Yes No

1 0 0 No * No Yes Yes

2 0 0 Yes No * No Yes

4 0 0 Yes Yes No * Yes

8 0 0 No Yes Yes Yes *

Different Pairs
5 0 1 0 0 2 0 0 4 0 0 8 0 0

5 0 * No No Yes No

1 0 0 No * No No Yes

2 0 0 No No * No Yes

4 0 0 Yes No No * No

8 0 0 No Yes Yes No *

Non-Repeating Pairs
5 0 1 0 0 2 0 0 4 0 0 8 0 0

5 0 * No No No Yes

1 0 0 No * No Yes Yes

2 0 0 No No * No Yes

4 0 0 No Yes No * No

8 0 0 Yes Yes Yes No *

Figure 10  Pair-wise Comparison of Different Population Sizes Using Student’s t
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RSquare
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      50

Figure 11  Correlation between Lowest Entropy and Highest Fitness
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different than the values recorded for population sizes 400 and 800. The larger population

sizes do not show the diversity of signals that was previously assumed would result from

having more genetic diversity in the starting population size. This was believed to result

from the placement of new simorgs. If all of the simorgs use the same pair of symbols for

every situation, it is easier for a new simorg to respond to the pair of signals no matter

where the new simorg is placed.

Since the smaller population sizes performed better than larger population sizes, the

size 100 was chosen to use in the rest of the experiments.

Internal States

The results of ten runs of the program for each of the values 2, 3, 4, 5, and 6 for

the number of internal states were recorded. Figure 12 gives the results from varying the

number of internal states. There is significant differences in all of the performance

measures except for non-repeating pairs. Figure 13 shows which pairs of number of states

are significantly different from each other to a 0.05 confidence level for each of the

performance measures.

Once again there is a negative correlation between H and fitness as expected. The

results from the runs with 2 and 3 internal states are significantly different from the larger

numbers of internal states for both lowest H and highest fitness. These results are offset by

the poor performance that the 2 and 3 internal state populations recorded for the number of

different pairs used. This is a prime example of a small H being misleading. The

populations with 2 and 3 internal states are on average using 3 different pairs of symbols to

denote all 8 situations. The populations with 4 internal states are using 4 different pairs on

average.

Up to this point the experiments have been run as if the population size and the

number of internal states are independent variables. This is almost certainly not the case. To

investigate this further, some evolutions with a population size of 400 with 2 internal states

and a population size of 50 with 6 internal states were run. Neither of these combinations

performed any better that a population size of 100 with 4 internal states. Therefore, the rest
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Mean S D F p
Lowest H 15.52 0.00

2 3.10 0.88

3 3.83 0.61

4 4.97 0.65

5 4.79 0.80

6 5.25 0.61

Highest Fitness 50.97 0.00

2 108.42 11.60

3 83.34 10.10

4 63.50 11.44

5 56.66 13.59

6 45.59 7.15

Different Pairs 2.58 0.049

2 3.20 0.63

3 3.20 0.79

4 4.30 1.25

5 3.60 0.97

6 3.30 0.82

Non-Repeating
Pairs 1.02 0.41

2 1.10 0.99

3 0.70 0.82

4 1.40 0.97

5 0.90 0.74

6 0.80 0.79
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Figure 12  Comparisons of Different Numbers of Internal States

27



Lowest Entropy
2 3 4 5 6

2 * Yes Yes Yes Yes

3 Yes * Yes Yes Yes

4 Yes Yes * No No

5 Yes Yes No * No

6 Yes Yes No No *

Highest Fitness
2 3 4 5 6

2 * Yes Yes Yes Yes

3 Yes * Yes Yes Yes

4 Yes Yes * No Yes

5 Yes Yes No * Yes

6 Yes Yes Yes Yes *

Different Pairs
2 3 4 5 6

2 * No Yes No No

3 No * Yes No No

4 Yes Yes * No Yes

5 No No No * No

6 No No Yes No *

Non-Repeating Pairs
2 3 4 5 6

2 * No No No No

3 No * No No No

4 No No * No No

5 No No No * No

6 No No No No *

Figure 13  Pair-wise Comparisons of Different Numbers of Internal States using 

Student’s t
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of the experiments will use 100 as the population size and 4 as the number of internal

states.

Different Learning Rule

Figure 14 shows the results of using the single case learning rule as opposed to

using a neuromorphic acceptor tree. As the figure shows the NAT version did not differ

significantly on the any of the measures except highest fitness. The difference between

highest fitness values was large enough to say that the fitness levels achieved by the base

version are significantly higher than the results recorded by the NAT version. It is

interesting that the NAT version can perform as well on the other measures while not

performing as well on the number of cooperations.

New Simorg Placement

The next change investigated was changing the placement of the new simorg after

each major cycle. In the base version a new simorg is placed in the location of the simorg

that was chosen to be replaced. In this new version the new simorg is placed next to one of

its parents. Ten runs of the program for each version were run with the same seeds being

used on each version. Figure 15 shows the results of a paired t test between each of the

performance measures. A paired t test was used for these tests since the initial populations

of each the runs were exactly the same. On the first 3 performance measures the new

placement version did better than the base version. But on the number of non-repeating

pairs used, the new version did worse than the base version. However, none of these

differences were large enough to say that the results were significantly different to a 0.05

level of confidence.

Competitive Environment

The final change performed was to create a competitive environment for the

simorgs. Figure 16 compares the results for the base program and the competitive

environment version. The base version performed better on all of the performance
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Mean S D F p
Lowest H 3.78 0.07

Base 4.97 0.65

New 4.28 0.91

Highest Fitness 6.99 0.02

Base 63.50 11.44

New 47.73 15.01

Different Pairs 0.63 0.44

Base 4.30 1.25

New 3.90 0.99

Non-Repeating
Pairs 0.00 1.00

Base 1.40 0.97

New 1.40 1.26
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Figure 14  Comparisons of Different Learning Rules
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Mean S D t ratio p
Lowest H 1.60 0.14

Base 4.97 0.65

New 4.59 0.55

Highest Fitness -0.93 0.38

Base 63.50 11.44

New 68.46 10.51

Different Pairs 2.08 0.07

Base 4.30 1.25

New 3.40 0.97

Non-Repeating
Pairs 1.08 0.31

Base 1.40 0.97

New 1.00 1.15
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rm
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s

Figure 15  Comparisons of Different Placement of New Simorgs
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Mean S D F p
Lowest H 0.04 0.85

Base 4.97 0.65

Competitive 5.01 0.34

Highest Fitness 11.95 0.00

Base 63.50 11.44

Competitive 47.96 8.42

Different Pairs 3.09 0.10

Base 4.30 1.25

Competitive 3.50 0.70

Non-Repeating
Pairs 5.36 0.03

Base 1.40 0.97

Competitive 0.40 0.97
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Figure 16  Comparisons of Base Environment and Competitive Environment
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measures. This was disappointing since the presence of “predators” was hoped to push the

simorgs to evolve further. In fact it was hard to create an environment were the predators

did not dominate the evolution. In initial trials the predators were given the ability to learn

and the simorgs did not evolve to use symbols effectively. Too strong of a predator did not

give the simorgs a chance to evolve and too weak of a predator did not push the simorgs

enough.
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Chapter 5

Conclusion

The new environment enabled the simorgs to use two symbol signals more

effectively than the experiments reported by MacLennan (1990,1992). However, any

further changes, such as new learning rules and different placement of new simorgs, did

not show significant improvement over the base version used in this study.

Measurement Limitations

I believe that the limit has been reached on what can be learned by examining

denotation matrices for the entire population. Tools which investigate the reactions of each

simorg to sets of symbols might lead to discoveries about dialect groups within the

population as a whole and about what effect symbol order has on an individual simorg’s

reactions.

Further Study

One obvious area for future study is increasing the number of symbols used in a

signal to 3. The present system of using a finite state machine as a simorg may have

reached its limit for producing complex behavior. Changing the basic mechanism of a

simorg to a rule-based system, neural net, or NAT might encourage the development of

more complex behavior.
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Other new work might involve changing the topology of the simorg environment.

This change could allow the environment to represent more biologically correct versions of

mating and signal propagation. As more complex behavior is expected of the simorgs, the

more complex their environment and the simorgs themselves will have to be.
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Appendix A

Reproducing Single Symbol 

Communication

Since this study was based on MacLennan’s earlier work, the first step taken was to

reproduce MacLennan’s results concerning one symbol signal evolution. The new version

of the program was written based on descriptions of the algorithms from previously

published articles. The results produced were similar to the results of MacLennan’s

program when communication was enabled. Denotation matrices produced by

MacLennan’s program, such as Figure A-1, when communication was suppressed were

substantially different from the denotation matrices produced by the new program, a sample

of which is shown in Figure A-2. After examining MacLennan’s program a mistake was

found. When communication was suppressed, the global symbol was randomized between

the times when the symbol was used to decide what action to take and the time when the

denotation matrix was incremented due to a successful cooperation. Therefore, the symbol

used to make the decision about what action to take was not the symbol recorded in the

denotation matrix after a successful action.

Since the randomly distributed values in the denotation matrix seemed to coincide

with the communication suppressed case, the question of where the order in the denotation

matrices produced by the corrected program came from was raised. Genetic drift was

assumed to cause the order appearing in the denotation matrices. Genetic drift can occur

when the distribution of actions and emissions in new simorgs’ genotypes do not match the
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Situations
Symbols 0 1 2 3 4 5 6 7

0 180 201 27 712 149 296 254 292

1 202 191 21 707 140 268 240 338

2 196 199 24 699 145 284 235 290

3 168 154 20 713 135 312 214 314

4 200 182 15 643 149 310 226 284

5 206 183 28 684 142 283 243 280

6 204 191 21 676 145 290 221 310

7 198 186 19 689 128 276 236 297

H = 5.66

Figure A-1  Communication Suppressed Denotation Matrix From MacLennan’s Work

Situations
Symbols 1 2 3 4 5 6 7 8

1 94 130 133 34 166 0 150 682

2 16 105 279 228 261 307 0 118

3 0 199 229 12 0 0 161 274

4 95 19 93 283 669 89 0 201

5 1 97 212 200 112 0 0 0

6 28 135 84 8 600 215 0 351

7 0 0 0 118 59 70 0 690

8 0 33 41 0 371 0 0 0

H = 4.95

Figure A-2  Communication Suppressed Denotation Matrix From New Program
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distribution of actions and emissions in the simorgs being replaced. Obviously, this can

occur when using two-point crossover with the two points being picked randomly.

To test the hypothesis that the order came from the genetic drift, the following

experiment was performed. At the beginning of each evolution how many times each action

appeared in the genotypes of the simorg population was recorded. At the end of the

evolution the same data was recorded again. The values recorded are shown in Figure A-3.

By examining the values at the beginning of the evolution it is obvious that the distribution

is random. The values recorded at the end of the evolution are not evenly distributed. To

test that this drift corresponds to the order of the denotation matrix shown in Figure A-2,

the correlation between the distribution of situations in the final denotation matrix to the

distribution of actions in the genotypes of the simorgs in the population was calculated. The

results are illustrated in Figure A-4. The strong correlation should not be a surprise since a

successful cooperation was defined as when a action is taken that matches the local

environment (referred to as the situation) of the last emitter. This indicates that genetic drift

is the reason for the order in the denotation matrices when communication is suppressed.

Total in Genotype
Before After

1 398 228

2 400 377

3 402 390

Actions 4 395 337

5 371 610

6 406 327

7 395 141

8 412 691

Mean= 397.38 387.62

S D = 12.09 182.89

Figure A-3  Comparison of Distribution of Actions in the Genotypes of the Population
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Appendix B

Listing of Program

On the following pages is a listing of the base version of the program used in these

experiments.
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c      Synthetic Ethology Code
c      This version uses two symbols in the Global Environment.
c      $Id$
c
c      NUMERIC PARAMETERS CONTROLLING THE SIMULATION
       integer Size, Lenv, Genv, IntStates
       parameter (Size=100, Lenv=8, Genv=4, IntStates=4)
       integer MajorCycle, MinorCycle, Delay
       parameter (MinorCycle=5, Delay=10)
       real Rate
       parameter (Rate=0.01)
       integer Seed
       integer WindowSize, Step
       parameter (WindowSize=50, Step=25)

c      LOGICAL PARAMETERS CONTROLLING THE SIMULATION
       logical EnableLearning, SuppressComm 

c      VARIABLES USED IN THE SIMULATION
       integer Simorg (1:Size)
       integer Geno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
       integer Pheno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
       integer Fitness (1:Size)
       integer LocEnv (1:Size)
       integer GlobalEnv (1:2)
       integer NextGE (1:2)
       logical Emission
       integer Symbol
       integer LastEmitter, Goal, Which
       integer NextState, ActOrEmit, Code
       integer Mother, Father, Deceased, BestFit, StartingPoint
       real TotalFitness
       real AverFitness (1:WindowSize)
       real AverBestFit (1:WindowSize)
       integer AverageCount
       integer Denotation (1:Genv, 1:Genv, 1:Lenv)
       integer Loop1, Loop2, Loop3, Loop4, i
       character yn

c      FUNCTIONS CALLED
       integer nrand, FindParent, FindDead, Increment
       real Average
c---------------------------------------------------------------------------
c      INPUT THE VARIABLES
       print *, 'Enter the number of Major Cycles:'
       read *, MajorCycle
       print *, 'Enter the random seed:'
       read *, Seed
       print *, 'Suppress Communication? (y/n)'
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       read *, yn
       if ((yn .EQ. 'y') .OR. (yn .EQ. 'Y')) then
         SuppressComm = .TRUE.
       e l se
         SuppressComm = .FALSE.
       endif
       print *, 'Permit Learning? (y/n)'
       read *, yn
       if ((yn .EQ. 'y') .OR. (yn .EQ. 'Y')) then
         EnableLearning = .TRUE.
       e l se
         EnableLearning = .FALSE.
       endif

c      OPEN OUTPUT FILES
       call OpenFiles(Seed,EnableLearning,SuppressComm)
c      SEED THE RANDOM NUMBER GENERATOR 
       call InitRand (Seed)
c      RANDOMIZE THE INITIAL GENOTYPES AND PHENOTYPES
       call InitGenes (Size, IntStates, Genv, Lenv, Geno, Pheno)
c      RANDOMIZE THE INITIAL INTERNAL STATES 
       call RandStates (Size, Simorg, IntStates)
c      INITIALIZE LAST EMITTER AND GOAL
       LastEmitter = 0
       Goal = 0
       Emission = .FALSE.
c      RANDOMIZE THE GLOBAL ENVIRONMENT
       symbol = nrand(1,Genv)
       GlobalEnv(1) = symbol
       NextGE(1) = symbol
       symbol = nrand(1,Genv)
       GlobalEnv(2) = symbol
       NextGE(2) = symbol
c      INITIALIZE THE DENOTATION MATRIX
       call InitDeno(Genv,Lenv,Denotation)

       AverageCount=0

       do Loop1=1,MajorCycle

c        INITIALIZE FITNESS COUNTERS
         do i=1,Size
           Fitness(i) = 0
         enddo

         do Loop2=1,MinorCycle

c          RANDOMIZE THE LOCAL ENVIRONMENTS
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           call RandEnv(Size, LocEnv, Lenv)
         
           do Loop3=1,Delay
        do Which=1,Size
    do Loop4=1,2
     NextState=Pheno(Which,Simorg(Which),
     &                  GlobalEnv(Loop4),LocEnv(Which),1)
   ActOrEmit=Pheno(Which,Simorg(Which),
     &      GlobalEnv(Loop4),LocEnv(Which),2)
    Code=Pheno(Which,Simorg(Which),GlobalEnv(Loop4),
     & LocEnv(Which),3)

   if (ActOrEmit .EQ. 1) then
   if (Code .EQ. Goal) then

Fitness(LastEmitter) = Fitness(LastEmitter) + 1
Fitness(Which) = Fitness(Which) + 1
Denotation(GlobalEnv(1),GlobalEnv(2),Code)=

     & Denotation(GlobalEnv(1),GlobalEnv(2),Code) + 1
e l se

if (EnableLearning) then
call Learn(Size, Lenv, Genv, IntStates, Simorg, 

     & GlobalEnv, LocEnv, Which, Pheno, 
     & Goal, Loop4)
 endif
 endif

endif
if (ActOrEmit .EQ. 2) then

Emission = .TRUE.
Code = mod(Code,Genv)
if (Code .EQ. 0) then

Code = Genv
endif

 NextGE(Loop4) = Code
endif
if (SuppressComm) then

symbol = nrand(1,Genv)
GlobalEnv(1) = symbol
NextGE(1) = symbol
symbol = nrand(1,Genv)
GlobalEnv(2) = symbol
NextGE(2) = symbol

endif
Simorg(Which) = NextState

enddo
if (Emission) then

GlobalEnv(1) = NextGE(1)
GlobalEnv(2) = NextGE(2)
LastEmitter = Which
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Goal = LocEnv(Which)
Emission = .FALSE.

endif
enddo

enddo
enddo

Goal = 0
call FindBest(Size, Fitness, TotalFitness, BestFit)
StartingPoint = nrand(1,Size)
Father = FindParent (Size, Fitness, TotalFitness, 

     & StartingPoint)
Mother = FindParent (Size, Fitness, TotalFitness, Father)
Deceased = FindDead (Size, Fitness, TotalFitness, BestFit, 

     & Mother)

AverageCount = Increment(AverageCount,WindowSize)
AverFitness(AverageCount) = TotalFitness / real(Size)
AverBestFit(AverageCount) = Fitness(BestFit)

if (Loop1 .EQ. MajorCycle) then
call WriteFinalDeno(Genv,Lenv,Denotation)

endif

if ((Loop1 .GE. WindowSize) .AND. (mod(Loop1,Step) .EQ. 0)) then
write (20,*) Loop1, Average(WindowSize,AverFitness)
write (21,*) Loop1, Average(WindowSize,AverBestFit)
call WriteEntropy(Genv,Lenv,Denotation,Loop1)
call InitDeno(Genv,Lenv,Denotation)

endif

call Crossover (Size, Lenv, Genv, IntStates, Geno, Mother,
     & Father, Deceased)

call Mutation (Size, Lenv, Genv, IntStates, Geno, Deceased, 
     & Rate)

call CopyOver (Size, Lenv, Genv, IntStates, Geno, 
     & Pheno, Deceased)

enddo
       
c      Close the files used for saving data
       close(20)
       close(21)
       close(22)
       close(25)
       close(26)
       stop
       end
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c---------------------------------------------------------------------------
       subroutine OpenFiles(Seed,EnableLearning,SuppressComm)
       integer Seed
       logical EnableLearning, SuppressComm 

c      LOCAL VARIABLES
       character*15 FileName
       
c      CALCULATE THE FILE NAMES 
       call convert(Seed, FileName)

       if (EnableLearning) then
  FileName= '.L.' // FileName
   e l se
  FileName= '.NL.'// FileName 

endif

  if (SuppressComm) then
   FileName= '.NC' // FileName
  e l se
  FileName= '.C' // FileName
  endif

c   OPEN THE FILES USED FOR SAVING DATA
  open (unit=20, file='FitAver'//FileName)
  write (20,10) Seed, EnableLearning , SuppressComm 
       open (unit=21, file='BestAver'//FileName)
       write (21,10) Seed, EnableLearning , SuppressComm 
       open (unit=22, file='DenoMatrix'//FileName)
       write (22,10) Seed, EnableLearning , SuppressComm 
       open (unit=25, file='V'//FileName)
       write (25,10) Seed, EnableLearning , SuppressComm 
       open (unit=26, file='H'//FileName)
       write (26,10) Seed, EnableLearning , SuppressComm 

10     format (1x,'# Seed= ',I10,'  EnableLearning= ',L,
     &  '  SuppressComm=',L)

       return
       end
c---------------------------------------------------------------------------
       subroutine InitRand (Seed)
       integer Seed
      
c      LOCAL VARIABLES
       integer i
       real Ignore
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c      FUNCTIONS CALLED
       real rand

       do i=1,Seed
  Ignore = rand(0)
       enddo
       return
       end
c---------------------------------------------------------------------------
       subroutine InitGenes (Size, IntStates, Genv, Lenv, Geno, Pheno)
       integer Size, IntStates, Genv, Lenv 
       integer Geno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
       integer Pheno (1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

c      LOCAL VARIABLES
       integer I, J, K, L
       integer NextState, ActOrEmit, Code

c      FUNCTIONS CALLED
       integer nrand

       do I=1,Size
     do J=1,IntStates
     do K=1,Genv
  do L=1,Lenv
  NextState = nrand(1,IntStates)
  ActOrEmit = nrand(1,3)
   Code = nrand(1,Lenv)
   Geno(I,J,K,L,1) = NextState
    Geno(I,J,K,L,2) = ActOrEmit
  Geno(I,J,K,L,3) = Code
    Pheno(I,J,K,L,1) = NextState
  Pheno(I,J,K,L,2) = ActOrEmit
    Pheno(I,J,K,L,3) = Code
 enddo
 enddo
 enddo
 enddo
       return
       end
c---------------------------------------------------------------------------
       subroutine InitDeno (Genv,Lenv,Matrix)
       integer Genv, Lenv
       integer Matrix(1:Genv,1:Genv,1:Lenv)

c      LOCAL VARIABLES
       integer i,j,k
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       do i=1,Genv
do j=1,Genv

do k=1,Lenv
 Matrix(i,j,k)=0
 enddo

enddo
 enddo
  return 
 end
c---------------------------------------------------------------------------
 subroutine RandEnv (Size, LocEnv, Lenv)
       integer Size, LocEnv(1:Size), Lenv

c      LOCAL VARIABLES
       integer i

c      FUNCTIONS CALLED
       integer nrand

       do i=1,Size
    LocEnv(i) = nrand(1,Lenv)
       enddo
       return
       end
c---------------------------------------------------------------------------
       subroutine RandStates (Size, Simorg, IntStates)
       integer Size, Simorg(1:Size), IntStates

c      LOCAL VARIABLES
       integer i

c      FUNCTIONS CALLED
       integer nrand

       do i=1,Size
    Simorg(i) = nrand(1,IntStates)
       enddo
       return
       end
c----------------------------------------------------------------------------
       subroutine Learn (Size, Lenv, Genv, IntStates, Simorg, GlobalEnv, 
     &  LocEnv, Which, Pheno, Goal, Loop4)
      integer Size, Lenv, Genv, IntStates, Which, Goal, Loop4 
       integer Simorg(1:Size), GlobalEnv(1:2), LocEnv(1:Size)
       integer Pheno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

c      IF THERE HAS BEEN AN EMISSION APPLY THE LEARNING RULE
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      if (Goal .NE. 0) then
 Pheno(Which, Simorg(Which), GlobalEnv(Loop4), 
     & LocEnv(Which), 3) = Goal
   endif

       return
       end
c---------------------------------------------------------------------------
       subroutine FindBest(Size, Fitness, TotalFitness, BestFit)
       integer Size, BestFit, Fitness(1:Size)
       real TotalFitness

c      LOCAL VARIABLES
       integer i

       TotalFitness = Fitness(1)
       BestFit = 1

       do i=2,Size
      TotalFitness = TotalFitness + Fitness(i)
     if ( Fitness(i) .GT. Fitness(BestFit) ) then
      BestFit = i
   endif
    enddo
   return
       end
c---------------------------------------------------------------------------
       integer function FindParent(Size, Fitness, TotalFitness, Count)
       integer Size, Fitness(1:Size)
       real TotalFitness
       integer Count
      
c      LOCAL VARIABLES
       integer Number
       real Prob, SumProb 

c      FUNCTIONS CALLED
       integer Increment
       real rand

       SumProb = 0.0
       Number = Count
       Number = Increment(Number, Size)
10     if (TotalFitness .EQ. 0.0) then
         Prob = 1.0 / real(Size)
       e l se
     Prob = real(Fitness(Number)) / TotalFitness
       endif
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       if (rand(0) .GE. (Prob / (1.0 - SumProb))) then
      Number = Increment(Number,Size)
   SumProb = SumProb + Prob
   goto 10
   endif
 FindParent = Number 
  return
   end
c---------------------------------------------------------------------------
       integer function FindDead (Size, Fitness, TotalFitness, 
     &  BestFit, Count)
       integer Size, Fitness(1:Size)
       real TotalFitness
       integer BestFit, Count
      
c      LOCAL VARIABLES
       integer PBF, Number
       real Prob, SumProb 

c      FUNCTIONS CALLED
       integer Increment
       real rand

       SumProb = 0.0
       Number = Count
       Number = Increment(Number, Size)
       PBF = Size * Fitness(BestFit)
10     if ( TotalFitness .EQ. PBF ) then
       Prob = 1.0 / real(Size)
     e l se
    Prob = real( Fitness(BestFit) - Fitness(Number) ) / 
     & real( PBF - TotalFitness )
     endif
       if ( rand(0) .GE. (Prob / (1.0 - SumProb)) ) then
      Number = Increment(Number,Size)
     SumProb = SumProb + Prob
       goto 10
     endif
    FindDead = Number 
       return
       end
c---------------------------------------------------------------------------
       integer function Increment(Count, UpperLimit)
       integer Count, UpperLimit

c      LOCAL VARIABLES
       integer Number
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       Number = Count + 1
       if (Number .GT. UpperLimit) then
 Number = 1
       endif
       Increment = Number
       return
       end
c---------------------------------------------------------------------------
       subroutine Crossover(Size, Lenv, Genv, IntStates, Geno, Mother,
     & Father, Deceased)
       integer Size, Lenv, Genv, IntStates, Mother, Father, Deceased
       integer Geno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

c      LOCAL VARIABLES
       integer I, J, K
       integer A, B, Temp, HowMany, Where

c      FUNCTIONS CALLED
       integer nrand

       HowMany = IntStates * Genv * Lenv

       A = nrand(1,HowMany)
       B = nrand(1,HowMany)

       if (A .GT. B) then
     Temp = B
    B = A
     A = Temp 
     endif

       Where = 0
       do I=1,IntStates
     do J=1,Genv
  do K=1,Lenv
      Where = Where + 1
   if (Where .LT. A) then
   Geno(Deceased,I,J,K,1) = Geno(Father,I,J,K,1)
   Geno(Deceased,I,J,K,2) = Geno(Father,I,J,K,2)
     Geno(Deceased,I,J,K,3) = Geno(Father,I,J,K,3)
       e l se
   if (Where .LT. B) then
   Geno(Deceased,I,J,K,1) = Geno(Mother,I,J,K,1)
   Geno(Deceased,I,J,K,2) = Geno(Mother,I,J,K,2)
    Geno(Deceased,I,J,K,3) = Geno(Mother,I,J,K,3)
    e l se
   Geno(Deceased,I,J,K,1) = Geno(Father,I,J,K,1)
   Geno(Deceased,I,J,K,2) = Geno(Father,I,J,K,2)
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   Geno(Deceased,I,J,K,3) = Geno(Father,I,J,K,3)
  endif
   endif
  enddo
   enddo
  enddo
       return 
       end
c---------------------------------------------------------------------------
       subroutine Mutation(Size, Lenv, Genv, IntStates, Geno, 
     &  Deceased, Rate)
       integer Size, Lenv, Genv, IntStates, Deceased
       integer Geno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
       real Rate

c      LOCAL VARIABLES
       integer A, B, C, NextState, ActOrEmit, Code

c      FUNCTIONS CALLED
       real rand
       integer nrand

       if (rand(0) .LT. Rate) then
      A = nrand(1,IntStates)
    B = nrand(1,Genv)
    C = nrand(1,Lenv)
  NextState = nrand(1,IntStates)
     ActOrEmit = nrand(1,3)
     Code = nrand(1,Lenv)

    Geno(Deceased,A,B,C,1) = NextState
     Geno(Deceased,A,B,C,2) = ActOrEmit
  Geno(Deceased,A,B,C,3) = Code
       endif
       return
       end
c---------------------------------------------------------------------------
       subroutine CopyOver (Size, Lenv, Genv, IntStates, Geno, 
     &   Pheno, Deceased)
       integer Size, Lenv, Genv, IntStates, Deceased
       integer Geno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)
       integer Pheno(1:Size, 1:IntStates, 1:Genv, 1:Lenv, 1:3)

c      LOCAL VARIABLES
       integer I, J, K

       do I=1,IntStates
      do J=1,Genv
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      do K=1,Lenv
      Pheno(Deceased,I,J,K,1) = Geno(Deceased,I,J,K,1)
    Pheno(Deceased,I,J,K,2) = Geno(Deceased,I,J,K,2)
  Pheno(Deceased,I,J,K,3) = Geno(Deceased,I,J,K,3)
  enddo
  enddo
   enddo
       return
       end
c---------------------------------------------------------------------------
       real function Average(HowMany,Numbers)
       integer HowMany
       real Numbers(1:HowMany)
       
c      LOCAL VARIABLES
       integer i
       real Sum

       Sum = 0.0
       do i=1,HowMany
       Sum = Sum + Numbers(i)
       enddo

       Average = Sum / real(HowMany)
       return
       end
c---------------------------------------------------------------------------
       subroutine WriteEntropy(Genv,Lenv,Matrix,Cycle)
       integer Genv, Lenv, Cycle
       integer Matrix(1:Genv,1:Genv,1:Lenv)

c      LOCAL VARIABLES
       integer i,j,k,Sum
       real DSum, Mean, sigma, V, H, sm, n, C, Log2 

       Log2 = Log10(2.0)

c      CALCULATE STATISTICS
       Sum = 0
       do i=1,Genv
      do j=1,Genv
   do k=1,Lenv
    Sum = Sum + Matrix(i,j,k)
     enddo
   enddo
  enddo
       Mean = float(Sum) / float(Genv * Genv * Lenv)
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       DSum = 0.0
       do i=1,Genv
    do j=1,Genv
 do k=1,Lenv
     DSum = DSum + (Matrix(i,j,k)-Mean)**2
  enddo
  enddo
  enddo
  sigma = sqrt(Dsum / float(Genv * Genv * Lenv))
       if (Mean .EQ. 0.0) then
    V = -999999
     e l se
    V = sigma / Mean
       endif

       sm = 0.0
       C = 0.0
       do i=1,Genv
      do j=1,Genv
      do k=1,Lenv
     n = Matrix(i,j,k)
     C = C + n
     if (n .NE. 0) then
     sm = sm + (n * (Log10(n) / Log2))
    endif
   enddo
    enddo
       enddo
       H = (Log10(float(C)) / Log2) - sm/C

c      WRITE RESULTS TO THE FILES
       write(25,*) Cycle,V
       write(26,*) Cycle,H
       return
       end
c---------------------------------------------------------------------------
       subroutine WriteFinalDeno(Genv,Lenv,Matrix)
       integer Genv, Lenv
       integer Matrix(1:Genv,11:Genv,1:Lenv)

c      LOCAL VARIABLES
       integer i,j,k,Sum
       real DSum, Mean, sigma, V, H, Hmax, sm, n, C, eta, Log2
       character*15 HowMany

       Log2 = Log10(2.0)

c      CALCULATE STATISTICS

56



       Sum = 0
       do i=1,Genv
       do j=1,Genv
       do k=1,Lenv
        Sum = Sum + Matrix(i,j,k)
         enddo
      enddo
       enddo
       Mean = float(Sum) / float(Genv * Genv * Lenv)

       DSum = 0.0
       do i=1,Genv
       do j=1,Genv
       do k=1,Lenv
          DSum = DSum + (Matrix(i,j,k)-Mean)**2
        enddo
      enddo
    enddo
       sigma = sqrt(Dsum / float(Genv * Genv * Lenv))
       if (Mean .EQ. 0.0) then
       V = -999999
       e l se
       V = sigma / Mean
       endif

       sm = 0.0
       C = 0.0
       do i=1,Genv
       do j=1,Genv
       do k=1,Lenv
          n = Matrix(i,j,k)
          C = C + n
        if (n .NE. 0) then
     sm = sm + (n * (Log10(n) / Log2))
        endif
       enddo
     enddo
       enddo
       H = (Log10(float(C)) / Log2) - sm/C
       Hmax = 2*(Log10(float(Genv))/Log2) + (Log10(float(Lenv))/Log2)
       eta = H / (Log10(float(Lenv))/Log2) - 1.0

c      WRITE THE DENOTATION MATRIX TO A FILE
       call convert(Lenv,HowMany)
       write(22,*)
c      write(22,'('//HowMany//'(i8))'),(k,k=1,Lenv)
       do i=1,Genv
      do j=1,Genv
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c    write (22,*),i,j,' :'
      write (22,'('//HowMany//'(i8))'),(matrix(i,j,k),k=1,Lenv)
    enddo
   enddo

       write(22,*)
       write(22,10) 'V',V
       write(22,10) 'H',H
       write(22,10) 'Hmax', Hmax
       write(22,10) 'eta',eta

10     format (1X, A, ' = ',F)
       return
       end
c---------------------------------------------------------------------------
       integer function nrand(i, j)
       integer i, j

c      FUNCTIONS CALLED
       real rand

c      RETURNS A NUMBER BETWEEN i AND j, INCLUSIVE
       nrand = i + int(real(j+1-i)*rand(0))
       if (nrand .EQ. (j+1)) then
     nrand = j
       endif
 
       return
       end
c---------------------------------------------------------------------------
       subroutine convert(in,letters)
       integer in
       character*15 letters

c      LOCAL VARIABLES
       integer number, digit

       number=in
       letters=''
10     digit=mod(number,10)
       number=number/10
       letters=char(48+digit)//letters
       if (number .NE. 0) then
  goto 10
       endif
       return
       end
c-----------------------------------------------------------------------
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