An Incremental Learning Algorithm for
Deterministic Finite Automata using
Evolutionary Algorithms

Jonatan Gomez

Universidad Nacional de Colombia,

1 Introduction

This work proposes an approach for learning Deterministic Finite Automata
(DFA) that combines Incremental Learning and Evolutionary Algorithms. First,
the training sequences are sorted according to its length from shortest to longest.
Then, the training sequences are divided in a suitable number of groups (M)
of the same size. Second, the Hybrid Adaptive Evolutionary Algorithm (HAEA)
proposed by Gomez [2] is used to evolve a DFA population that is able to classify
correctly (with 80% precision) the first group (the shortest sequences). Third,
the population is evolved again with HAEA but searching for DFA that are able
to classify correctly the first and second groups. This process is repeated until
each automaton in the population tries to classify correctly (80% precision) all
the training samples. Finally, another HAEA is used to refine the automata in
the population (100% precision).

Algorithm 1 Incremental DFA Learning algorithm using HAEA

DFA_LEARNING(Training_set x)

1. POP_SIZE = 20 // population size

2. MAX_GEN = 500 // mazimum number of generations

3. M = 40 // number of groups

5. SORT(x) // sorting the data set according to sequence length
6. P = INiTPOPULATION(POP _SIZE)
7
8
9

. for i=1 to M do // incremental learning
P = Evowve_HAEA(P, MAX_GEN, z, i, M, 0.8)
. P = Evove_ HAEA(P, MAX_GEN, z, i, M, 1.0) // refinement

2 Encoding

A deterministic and finite automaton of n states is encoded using a sequence
of 32 x 2 x n bits as shown in figure 1. Here, < s1,x,s2 > represents the edge
starting at state s1, ending at state s with transition symbol z.

Fig. 1. Encoding of an automaton of n states.

State 0 State 1 State n — 1

< 0,0, 0,0 >|< 0,1, 20,1 >|< 1,0,21,0 >|< 1,1,z1,1 >|...|[<n—1,0,Zn-1,0 >|< n—11xn-11>

As shown, only the topology of the automaton is encoded. It is possible to
determine the label of each state as proposed by Lucas and Raymond [4]. More-
over, only the ending state of an edge is stored. We use the java representation
of an integer with this purpose.The initial population is randomly generated
with variable length varying between 10 and 50 states. Since the ending state
encoded can be any integer value, possibly higher than the number of states in
the automaton, the absolute value and modulus functions are used to restrict
their values to the appropriated values. It is only done in the DFA decoding
process, see equation 1.

xij = |z ;| modn (1)

3 Hybrid Adaptive Evolutionary Algorithm

Algorithm 2 presents the proposed Hybrid Adaptive Evolutionary Algorithm
(HaEa). This algorithm is a mixture of ideas borrowed from Evolutionary
Strategies (ES), decentralized control adaptation, and central control adapta-
tion.

3.1 Selection Mechanism

In HAEA, each individual is “independently” evolved from the other individuals
of the population, as in evolutionary strategies [1]. In each generation, every indi-
vidual selects only one operator from the set of possible operators (line 8). Such
operator is selected according to the operator rates encoded into the individual.
When a non-unary operator is applied, additional parents (the individual being
evolved is considered a parent) are chosen according to any selection strategy,
see line 9. As can be noticed, HAEA does not generate a parent population from
which the next generation is totally produced. Among the offspring produced
by the genetic operator, only one individual is chosen as child (line 11), and
will take the place of its parent in the next population (line 17). In order to be
able to preserve good individuals through evolution, HAEA compares the parent
individual against the offspring generated by the operator. The BEST selection
mechanism will determine the individual (parent or offspring) that has the high-
est fitness (line 11). Therefore, an individual is preserved through evolution if
it is better than all the possible individuals generated by applying the genetic
operator.

Algorithm 2 Hybrid Adaptive Evolutionary Algorithm (HAEA)
HAEA(A, terminationCondition)

1. t0=0

2. Py = initPopulation(A) ,

3. while(terminationCondition(¢, P;) is false) do
4. P ={}

5. for each ind € P; do

6. rates = extract_rates(ind)

7. 0 =random(0,1) // learning rate

8. oper = OP_SELECT(operators, rates)

9. parents = PARENTSELECTION(FP, ind)

10. offspring = apply(oper, parents)

11. child = BEesT(offspring, ind)

12. if (fitness(child) > fitness(ind)) then

13. rates[oper] = (1.0 + §)*rates[oper] //reward
14. else

15. rates[oper] = (1.0 - d)*rates[oper] //punish
16. normalize_rates(rates)

17. set_rates(child, rates)

18. Pt+1 = Pt+1U {Chlld}

19. t=t+1

3.2 Encoding of Genetic Operator Rates

The genetic operator rates are encoded into the individual in the same way
as decentralized control adaptation techniques, see figure 2. These probabilities
are initialized (into the initPopulation method) with values following a uniform
distribution U0, 1]. A roullete selection scheme is used to select the operator to
be applied (line 8). To do this, the operator rates arenormalized in such a way
that their summation is equal to one (line 16).

SOLUTION|OPER,|...[OPER.,
100101011.01] 0.3 [..] 0.1

Fig. 2. Encoding of the operator probabilities in the chromosome

3.3 Adapting the Probabilities

The performance of the child is compared against its parent performance in or-
der to determine the productivity of the operator (lines 12-15). The operator
is rewarded if the child is better than the parent and punished if it is worst.
The magnitude of reward/punishment is defined by a learning rate that is ran-
domly generated (line 7). Finally, operator rates are recomputed, normalized,

and assigned to the individual that will be copied to the next population (lines
16-17). The learning rate is generated in a random fashion instead of setting it
to a specific value for two main reasons. First, there is not a clear indication
of the correct value that should be given for the learning rate; it can depend
on the problem being solved. Second, several experiments encoding the learning
rate into the chromosome [3] show that the behavior of the learning rate can be
simulated with a random variable with uniform distribution.

3.4 Properties

Contrary to other adaptation techniques, HAEA does not try to determine and
maintain an optimal rate for each genetic operator. Instead, HAEA tries to de-
termine the appropiate operator rate at each instance in time according to the
concrete conditions of the individuals. If the optimal solution is reached by an
individual in some generation, then the rates of the individual will converge to
the same value in subsequent generations. This is true because no genetic op-
erator is able to improve the optimal solution, therefore any operator will be
punished when applied and the other operators will be rewarded.

HAEA uses the same amount of extra information as a decentralized adap-
tive control; HAEA requires a matrix of n x M doubles, where n is the number
of different genetic operators and M is the population size. Thus, the space
complexity of HAEA is linear with respect to the number of operators (the pop-
ulation size is considered a constant). Also, the time expended in calculating and
normalizing the operator rates is linear with respect to the number of operators
n* M (lines 8 and 12-16). HAEA does not require special operators or additional
parameter settings. Well known genetic operators can be used without any mod-
ification. Different schemes can be used in encoding the solution: binary, real,
trees, programs, etc. The average fitness of the population grows monotonically
iteration by iteration. One individual is always replaced by an individual with
equal or higher fitness.

4 Genetic Operators

Three well known genetic operators were used for evolving the DFA: single point
mutation, single point crossover, and a simple transposition.

— In the single bit mutation, one bit of the solution part is randomly selected
(with uniform distribution) and flipped, see figure 3. Notice that this genetic
operator always modifies the genome by changing only one single bit.

— In the simple transposition operator, two points in the solution part are
randomly selected and the genes between such points are transposed [5], see
figure 4.

SOLUTION |OPER,|...OPER, SOLUTION|OPER1 ...|OPER,
100 1 1100101 0.3 |...| 0.1 100 0 1100101| 0.3 |...| 01

(a) Parent (b) Offspring

Fig. 3. Single bit mutation

SOLUTION [OPER;|...|OPER, SOLUTION [OPER;|...|OPER,
100 11100 101 0.3 |...| 0.1 100 00111 101} 0.3 |...| 0.1

(a) Parent (b) Offspring

Fig. 4. Simple transposition operator

— In single point crossover, a cutting point in the solution part is randomly
selected. Parents are divided in two parts (left and right) using such cutting
point. The left part of one parent is combined with the right part of the
other, see figure 5.

SOLUTION (OPER;|...OPER, SOLUTION |OPER1 ...OPER,
100 * 11100101} 0.3 |... 01 100 * 00011000| 03 |...| 01

SOLUTION [OPER,|...OPER, SOLUTION |OPER1 ...|OPER,
111 * 00011000, 0.2 |...| 0.4 111 * 11100101| 02 |...| 04

(a) Parents (b) Offspring

Fig. 5. Single bit crossover

5 Additional Considerations
In order to aliviate the take over effect on small populations and maintain di-
versity, we replace the full population (exception done with the best individual)

with a new one randomly generated when there population is totally take over
by the best individual, see Algorithm 3.

6 Running the Program

The command for executing the associated program is:

Algorithm 3 Maintaining Diversity on HaEA for DFA Learning

Evowve_HAEA(P, MAX_GEN, z, i, M, 1.0) // refinement

1. k=1

2. while(k< MAX_GEN and fitness_best(P) < 0.8) do

3. P=HAEA(P, x,i, M)

4. if(fitness_best(P) = fitness_worst(P)) then

5. b = best(P)

6. P = INITPOPULATION(POP_SIZE-1)

7. P=P+b

8. return P
java -classpath “gecco04.jar” gecco04.DFATest train.txt test.txt out.txt [time]
where,
train.txt is the training set,
test.txt is the testing set,
out.txt is the output file, and
time is an optional parameter for ending the algorithm (by default is 10

minutes).

References

1. T. Back. FEwolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, 1996.

2. J. Gomez. Self adaptation of operator rates in evolutionary algorithms. In Pro-
ceedings of the Genetic and Fvolutionary Computation Conference (GECCO 2004),
June 2004.

3. J. Gomez and D. Dasgupta. Using competitive operators and a local selection
scheme in genetic search. In Late-breaking papers GECCO 2002, 2002.

4. S. M. Lucas and T. J. Reynolds. Learning dfa: Evolution versus evidence driven
state merging. In Proceedings of the Congress on Evolutionary Computation (2003),
2003.

5. A. Simoes and E. Costa. Transposition: a biologically inspired mechanism to use

with genetic algorithms. In Fourth International Conference on Neural Networks
and Genetic Algorithms, pages 612-619, 1999.

