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Adaptation in Evolutionary Computation:

A Survey
Robert Hinterding, Zbigniew Michalewicz, and Agoston E. Eiben

Abstract|Adaptation of parameters and operators is one

of the most important and promising areas of research in

evolutionary computation; it tunes the algorithm to the

problemwhile solving the problem. In this paper we develop

a classi�cation of adaptation on the basis of the mechanisms

used, and the level at which adaptation operates within the

evolutionary algorithm. The classi�cation covers all forms

of adaptation in evolutionary computation and suggests fur-

ther research.

I. Introduction

As evolutionary algorithms (EAs) implement the idea of
evolution, and as evolution itself must have evolved to reach
its current state of sophistication, it is natural to expect

adaptation to be used not only for �nding solutions to a
problem, but also for tuning the algorithm to the particular
problem.
In EAs, we not only need to choose the algorithm, repre-

sentation, and operators for the problem, but we also need
to choose parameter values and operator probabilities for
the evolutionary algorithm so that it will �nd the solution
and, what is also important, �nd it e�ciently. This process
of �nding appropriate parameter values and operator prob-
abilities is a time-consuming task and considerable e�ort
has gone into automating this process.
Researchers have used various ways of �nding good val-

ues for the strategy parameters as these can a�ect the per-
formance of the algorithm in a signi�cant way. Many re-
searchers experimented with various problems from a par-
ticular domain, tuning the strategy parameters on the basis
of such experimentation (tuning \by hand"). Later, they
reported their results of applying a particular EA to a par-
ticular problem, stating:

For these experiments, we have used the following
parameters: population size = 80, probability of
crossover = 0:7, etc.

without much justi�cation of the choice made.
Note that (a run of) an EA is an intrinsically dynamic,

adaptive process. The use of rigid, i.e. constant, parame-
ters is thus in contrast to the general evolutionary spirit.
Besides, there are also technical drawbacks to the tradi-
tional approach:

� the users' mistakes in setting the parameters can be

sources of errors and/or sub-optimal performance;
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� parameter tuning costs a lot of time;
� the optimal parameter value may vary during the evo-
lution.

Therefore it is a natural idea to try to modify the values
of strategy parameters 1 during the run of the algorithm. It
is possible to do this by using some (possibly heuristic) rule,
by taking feedback from the current state of the search, or
by employing some self-adaptive mechanism. Note that
these changes may a�ect a single component of a chro-
mosome, the whole chromosome (individual), or even the
whole population. Clearly, by changing these values while
the algorithm is searching for the solution of the problem,
further e�ciencies can be gained.
Self-adaptation, based on the evolution of evolution, was

developed in Evolution Strategies to adapt mutation pa-
rameters to suit the problem during the run. The method
was very successful in improving e�ciency of the algorithm
for some problems. This technique has been extended to
other areas of evolutionary computation, but �xed repre-
sentations, operators, and control parameters are still the
norm.
Other research areas based on the inclusion of adapting

mechanisms are the following.
� Representation of individuals (as proposed by Shae-
fer [32]; the Dynamic Parameter Encoding technique,
Schraudolph & Belew [29] and messy genetic algo-
rithms, Goldberg et al.[16] also fall into this category).

� Operators. It is clear that di�erent operators play dif-
ferent roles at di�erent stages of the evolutionary pro-
cess. The operators should adapt (e.g., adaptive cross-
over, Scha�er & Morishima [27], Spears [34]). This is
true especially for time-varying �tness landscapes.

� Control parameters. There have been various experi-
ments aimed at adaptive probabilities of operators [7],
[22], [35], [36]. However, much more remains to be
done.

In this paper we develop a comprehensive classi�cation
of adaptation and give examples of their use. The classi�-
cation is based on the mechanism of adaptation and level
(in the EA) it occurs. Such a classi�cation can be useful to
the evolutionary computation community, since many re-
searchers use the terms \adaptation" or \self-adaptation"
in an arbitrary way; in a few instances some authors (in-
cluding ourselves!) used the term \self-adaptation" where
there was a simple (deterministic and heuristic) rule for
changing some parameter of the process.
The paper is organised as follows: the next section we

develop classi�cation of adaptation in Evolutionary Algo-

1By strategy parameters, we mean the parameters of the EA, not
those of the problem
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Type Static Dynamic
Level Deterministic Adaptive Self-adaptive

Environment S E-D E-A E-SA
Population S P-D P-A P-SA
Individual S I-D I-A I-SA
Component S C-D C-A C-SA

TABLE I

Classification of adaptation in EAs

rithms (EAs). Section III looks at types of adaptation,
whereas Section IV | at the levels of adaptation. Section
V discusses the combination of types and levels of adapta-
tion and Section VI presents the discussion and conclusion.

II. Classification of Adaptation

The action of determining the variables and parameters
of an EA to suit the problem has been termed adapting

the algorithm to the problem, and in EAs this can be done
while the algorithm is searching for a problem solution.
We give classi�cations of adaptation in Table I; this clas-

si�cation is based on the mechanism of adaptation (adap-
tation type) and on which level inside the EA adaptation
occurs (adaptation level). These classi�cations are orthog-
onal and encompass all forms of adaptation within EAs.
Angeline's classi�cation [1] is from a di�erent perspective
and forms a subset of our classi�cations.
The Type of adaptation consists of two main categories:

static (no change) and dynamic, with the latter divided fur-
ther into deterministic (D), adaptive (A), and self-adaptive
(SA) mechanisms. In the following section we discuss these
types of adaptation.
The Level of adaptation consists of four categories: en-

vironment (E), population (P), individual (I), and com-
ponent (C). These categories indicate the scope of the
changed parameter; we discuss these types of adaptation
in Section IV.
Whether examples are discussed in Section III or in Sec-

tion IV is completely arbitrary. An example of adaptive
individual level adaptation (I-A) could have been discussed
in Section III as an example of adaptive dynamic adapta-
tion or in Section IV as an example of individual level of
adaptation.

III. Types of Adaptation

The classi�cation of the type of adaptation is made on the
basis of the mechanism of adaptation used in the process;
in particular, attention is paid to the issue of whether or
not a feedback from the EA is used.

A. Static

Static adaptation is where the strategy parameters have
a constant value throughout the run of the EA. Conse-
quently, an external agent or mechanism (e.g., a person or
a program) is needed to tune the desired strategy param-
eters and choose the most appropriate values. Typically

this happens by running numerous tests and trying to �nd
a link between parameter values and EA performance. This
method is commonly used for most of the strategy param-
eters.
De Jong [9] put considerable e�ort into �nding param-

eter values which were good for a number of numeric test
problems using a traditional GA. He determined experi-
mentally recommended values for the probability of using
single-point crossover and bit mutation. Grefenstette [17]
used a GA as a meta-algorithm to optimise some of the
parameter values.

B. Dynamic

Dynamic adaptation happens if there is some mechanism
which modi�es a strategy parameter without external con-
trol. The class of EAs that use dynamic adaptation can be
sub-divided further into three classes where the mechanism

of adaptation is the criterion.

B.1 Deterministic

Deterministic dynamic adaptation takes place if the
value of a strategy parameter is altered by some deter-
ministic rule; this rule modi�es the strategy parameter de-
terministically without using any feedback from the EA.
Usually, a time-varying schedule is used, i.e. the rule will
be used when a set number of generations have elapsed
since the last time the rule was activated.
This method of adaptation can be used to alter the prob-

ability of mutation so that the probability of mutation
changes with the number of generations. For example:

pm = 0:5� 0:3 �
g

G
;

where g is the generation number from 1 : : :G. Here the
mutation probabilitymut% will decrease from 0:5 to 0:2 as
the number of generations increases to G. Early examples
of this approach are the varying mutation rates as used by
Fogarty [13], or Hesser & M�anner [18] in GAs. This method
of adaptation was used also in de�ning a mutation operator
for 
oating-point representations [24]: non-uniform muta-
tion. For a parent ~x, if the element xk is selected for this
mutation, the result is ~x0 = (x1; : : : ; x

0

k
; : : : ; xn), where

x0

k
=

8>><
>>:

xk +4(t; right(k)� xk)
if a random binary digit is 0

xk �4(t; xk � left(k))
if a random binary digit is 1.
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The function4(t; y) returns a value in the range [0; y] such
that the probability of 4(t; y) being close to 0 increases as
t increases (t is the generation number). This property
causes this operator to search the space uniformly initially
(when t is small), and very locally at later stages.
Deterministic dynamic adaptation was also used for

changing the objective function of the problem. For con-
strained problems it can be applied by increasing the penal-
ties for violated constraints with evolution time [21], [25].
Joines & Houck used the following formula:

F (~x) = f(~x) + (C � t)�
P

m

j=1
f�
j
(~x),

whereas Michalewicz & Attia experimented with
F (~x; � ) = f(~x) + 1

2�

P
m

j=1
f2
j
(~x).

In both cases, functions fj measure the violation of the
j-th constraint. Eiben & Ruttkay [10] described an im-
plementation of an evolutionary algorithm for constraint
satisfaction problems, where the penalty coe�cients of vi-
olated constraints were increased after each run and used
in a following run on the same problem.

B.2 Adaptive

Adaptive dynamic adaptation takes place if there is some
form of feedback from the EA that is used to determine the
direction and/or magnitude of the change to the strategy
parameter. The assignment of the value of the strategy
parameter may involve credit assignment, and the action
of the EA may determine whether or not the new value
persists or propagates throughout the population.
Early examples of this type of adaptation include

Rechenberg's `1=5 success rule' in Evolution Strategies,
which was used to vary the step size of mutation [26]. This
rule states that the ratio of successful mutations to all mu-
tations should be 1=5, hence if the ratio is greater than 1=5
then increase the step size, and if the ratio is less than 1=5
then decrease the step size. An example for GAs is Davis's
`adaptive operator �tness': where feedback on the success
of a larger number of reproduction operators is utilised to
adjust their probability of being used [8]. Julstrom's adap-
tive mechanism regulates the ratio between crossovers and
mutations based on their performance [22]. An extensive
study of this kind of \learning-rule" mechanisms was done
by Tuson & Ross [36].
Adaption was also used to change the objective function

by increasing or decreasing penalty coe�cients for violated
constraints. For example, Bean & Hadj-Alouane [4] de-
signed a penalty function where its one component takes a
feedback from the search process. Each individual is eval-
uated by the formula:

F (~x) = f(~x) + �(t)
P

m

j=1
f2
j
(~x),

where �(t) is updated every generation t in the following
way:

�(t + 1) =

8>>>>>>>><
>>>>>>>>:

(1=�1) � �(t);

if~b(i) 2 F for all
t� k + 1 � i � t

�2 � �(t);

if~b(i) 2 S � F for all
t� k + 1 � i � t

�(t); otherwise;

where ~b(i) denotes the best individual, in terms of function
eval, in generation i, �1; �2 > 1 and �1 6= �2 (to avoid
cycling). In other words, the method (1) decreases the
penalty component �(t + 1) for the generation t + 1, if all
best individuals in the last k generations were feasible, and
(2) increases penalties, if all best individuals in the last
k generations were infeasible. If the best individuals in
the last k generations contains both feasible and infeasible
solutions, then �(t+ 1) is not changed.

Recent work of Eiben & van der Hauw on solving (dis-
crete) constraint satisfaction problems is also based on an
adaptive penalty technique that periodically increases the
penalty of those constraints that are violated. This mecha-
nism highly improvedGA performance on 3-SAT problems,
[12], and on graph 3-colouring problems [11].

Other examples include adaptation of probabilities of
eight operators for adaptive planner/navigator [38], where
the feedback from the evolutionary process includes,
through the operator performance index, e�ectiveness of
operators in improving the �tness of a path, their opera-
tion time, and their side e�ect to future generations.

B.3 Self-adaptive

The idea of the evolution of evolution can be used to
implement the self-adaptation of parameters. Here the
parameters to be adapted are encoded onto the chromo-
some(s) of the individual and undergo mutation and re-
combination. These encoded parameters do not a�ect the
�tness of individuals directly, but \better" values will lead
to \better" individuals and these individuals will be more
likely to survive and produce o�spring and hence propagate
these \better" parameter values.

Schwefel [30], [31] developed this method to self-adapt
the mutation step size and the mutation rotation angles
in Evolution Strategies. Theoretical analysis of �-control
(and the 1/5-Rule) done by Beyer can be found in [5]. Self-
adaptation was extended to EP by Fogel et al. [14] and to
GAs by B�ack [3], Hinterding [19] and Smith & Fogarty [33].

The parameters to self-adapt can be parameter values
that control the operation of the EA, values that control
the operation of reproduction or other operators, or prob-
abilities of using alternative processes, and as these are nu-
meric quantities this type of self-adaptation has been used
mainly for the optimisation of numeric functions. This has
been the case when single chromosome representations are
used (which is the overwhelming case), as otherwise nu-
merical and non-numerical representations would need to
be combined on the same chromosome. Examples of self-
adaptation for non-numerical problems are Fogel et al. [15]
where they self-adapted the relative probabilities of �ve
mutation operators for the components of a �nite state ma-
chine. The other example is Hinterding [?], where a multi-
chromosome GA is used to implement the self-adaptation
in the Cutting Stock Problem with contiguity. Here self-
adaptation is used to adapt the probability of using one of
the two available mutation operators, and the strength of
the group mutation operator.
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IV. Levels of Adaption

We can also de�ne at what level within the EA and the
solution representation adaptation takes place. We de�ne
four levels: environment, population, individual, and com-
ponent. These levels of adaptation can be used with each of
the types of adaptation, and a mixture of levels and types
of adaptation can be used within an EA.

A. Environment Level Adaption

Environment level adaptation is where the response of
the environment to the individual is changed. This cov-
ers cases such as when the penalties in the �tness function
change, where weights within the �tness function change
and the �tness of an individual changes in response to nich-
ing considerations (some of these were discussed in the pre-
vious section, in the context of types of adaptation).

Darwen & Yao [6], explore both deterministic environ-
mental adaptation and adaptive environmental adaptation
in their paper comparing �tness sharing methods.

B. Population Level Adaption

In EAs some (or all in simple EAs) of the parameters are
global, modifying these parameters when they apply to all
members of the population is population level adaptation.

Dynamic adaptation of these parameters is in most cases
deterministic or adaptive. No cases of population level self-
adaptation have been seen yet. The example of determin-
istic modi�cation of the mutation rate given above is de-
terministic population level adaptation, and Rechenberg's
`1=5 success rule' is an example of adaptive population level
adaptation.

Population level adaptation also covers cases where a
number of populations are used in a parallel EA or oth-
erwise, Lis [23] uses feedback from a number of parallel
populations to dynamically adapt the mutation rate. The
feedback from populations with di�erent mutation prob-
abilities was used to adjust the mutation probabilities of

all the populations up or down. Schlierkamp-Voosen &
M�uhlenbein [28] use competition between sup-populations

to determine which populations will lose or gain individ-
uals. Hinterding et al.[20] use feedback from three sub-
populations with di�erent population sizes to adaptively
change some or all of the sub-population sizes.

C. Individual Level Adaption

Individual level adaptation adjusts strategy parameters
held within individuals and whose value a�ects only that
individual. Examples are: the adaptation of the mutation
step size in ESs, EP, and GAs; the adaptation of crossover
points in GAs [27] and [37].

Arabas et al.[2] describe a method for adapting popu-
lation size by de�ning age of individuals; the size of the
population after single iteration is

PopSize(t + 1) = PopSize(t) +N (t) �D(t),

where D(t) is the number of chromosomes which die o�
during generation t and N (t) is the number of o�spring

produced during the generation t (for details, see Michale-
wicz [24]). The number of produced o�spring N (t) is pro-
portional to the size of the population at given genera-
tion t, whereas the number of individuals \to die" D(t) de-
pends on age of individual chromosomes. There are several
heuristics one can use for the age allocation for individuals
[2]; all of them require a feedback from the current state of
the search.

D. Component Level Adaption

Component-level adaptation adjusts strategy parameters
local to some component or gene of an individual in the
population. The best known example of component level
adaptation is the self-adaptation of component level muta-
tion step sizes and rotation angles in ESs.

Additionally, in Fogel et al.[15] the mechanism of adapt-
ing probabilities of mutation for each component of a �nite
states machine is discussed.

V. Combining forms of adaptation

The classic example of combining forms of adaptation
is in ESs, where the algorithm can be con�gured for in-
dividual level adaptation (one mutation step size per in-
dividual), component level adaptation (one mutation step
size per component) or with two types of component level
adaptation where both the mutation step size and rotation
angle is self-adapted for individual components [30].

Hinterding et al.[20] combine global-level adaptation of
the population size with individual level self-adaptation of
the mutation step size for optimising numeric functions.

Combining forms of adaptation has not been used much
as the interactions are complex, hence deterministic or
adaptive rules will be di�cult to work out. But self-
adaptation where we use evolution to determine the bene�-
cial interactions (as in �nding solutions to problems) would
seem to be the best approach.

VI. Discussion

The e�ectiveness of evolutionary computation depends
on the interaction of representation used for the problem
solutions, the reproduction operators used, and the con�g-
uration of the evolutionary algorithm used.

Adaption provides the opportunity to customise the evo-
lutionary algorithm to the problem and to modify the con-
�guration and the strategy parameters used while the prob-
lem solution is sought. This enables us to not only incorpo-
rate domain information and multiple reproduction opera-
tors into the EA more easily, but can allow the algorithm
itself to select those values and operators which give better
results. Also these values can be modi�ed during the run
of the EA to suit the situation during that part of the run.

Information about which of the operators available are
most suitable to a particular problem is not easily deter-
mined, adaptation can be used here to provide feedback or
to determine when they should be used.

More research on the combination of the types and levels
of adaptation needs to be done as this could lead to signi�-
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cant improvements to �nding good solutions and the speed
of �nding them.
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