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Abstract

Holland’s Schema Theorem is widely taken to be the foundation for explanations
of the power of genetic algorithms (GAs). Yet some dissent has been expressed as
to its implications. Here, dissenting arguments are reviewed and elaborated upon,
explaining why the Schema Theorem has no implications for how well a GA is
performing. Interpretations of the Schema Theorem have implicitly assumed that
a correlation exists between parent and offspring fitnesses, and this assumption
is made explicit in results based on Price’s Covariance and Selection Theorem.
Schemata do not play a part in the performance theorems derived for representa-
tions and operators in general. However, schemata re-emerge when recombination
operators are used. Using Geiringer’s recombination distribution representation
of recombination operators, a “missing” schema theorem is derived which makes
explicit the intuition for when a GA should perform well. Finally, the method
of “adaptive landscape” analysis is examined and counterexamples offered to the
commonly used correlation statistic. Instead, an alternative statistic — the trans-
mission function in the fitness domain — is proposed as the optimal statistic for
estimating GA performance from limited samples.

1 INTRODUCTION

Although it is generally stated that the Schema Theorem (Holland, 1975) explains the power
of genetic algorithms (GAs), dissent to this view has been expressed a number of times
(Grefenstette and Baker 1989, Miihlenbein 1991, Radcliffe 1992). Miihlenbein points out
that “the Schema Theorem is almost a tautology, only describing proportional selection,”
and that “the question of why the genetic algorithm builds better and better substrings by
crossing-over is ignored.” Radcliffe points out that
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1. The Schema Theorem holds even with random representations, which cannot be ex-
pected to perform better than random search, whereas it has been used to claim that
GAs perform better than random search;

2. The Schema Theorem holds even when the schemata defined by a representation may
not capture the properties that determine fitness; and

3. The Schema Theorem extends to arbitrary subsets of the search space regardless of
the kind of genetic operators, not merely the subsets defined by Holland schemata
(Grefenstette 1989, Radcliffe 1991, Vose 1991).

The Schema Theorem, in short, does not address the search component of genetic algorithms
on which performance depends, and cannot distinguish genetic algorithms that are perform-
ing well from those that are not. How, then, has the Schema Theorem been interpreted as
providing a foundation for understanding GA performance?

What the Schema Theorem says is that schemata with above-average fitness (especially
short, low order schemata), increase their frequency in the population each generation at
an exponential rate when rare. The mistake is to conclude that this growth of schemata
has any implications for the quality of the search carried out by the GA. The Schema
Theorem’s implication, as many have put it, is that the genetic algorithm is focusing its
search on promising regions of the search space, and thus increasing the likelihood that new
samples of the search space will have higher fitness. But the phrase “promising regions of
the search space” is a construct through which hidden assumptions are introduced which are
not implied by the Schema Theorem. What is a “region”, and what makes it “promising”?

The regions are schemata, and “promising regions” are schemata with above-average fitness.
Offspring produced by recombination will tend to be drawn from the same “regions” as their
parents, depending on the disruption rate from recombination. The common interpretation
of the Schema Theorem implicitly assumes that any member of an above-average schema is
likely to produce offspring of above-average fitness, i.e. that there is a correlation between
membership in an above-average schema and production of fitter offspring. But the existence
of such correlations is logically independent of the validity of the Schema Theorem.

For example, consider a population with a needle-in-a-haystack fitness function, where ex-
actly one genotype (the “needle”) has a high fitness, and all the other genotypes in the
search space (the “hay”) have the same low fitness. Consider a population in which the
“needle” has already been found. The needle will tend to increase in frequency by selection,
while recombination will most likely generate more “hay”. The Schema Theorem will still
be seen to operate, in that short schemata with above-average fitness (those schemata con-
taining the needle) will increase in frequency, even though the fitness of new instances of
the schemata (more hay) will not be any more likely to have the high fitness of the needle.

It is the quality of the search that must be used to characterize the performance of a genetic
algorithm. One basis for evaluation is to compare the ability of a GA to generate new,
highly fit individuals with the rate at which they are generated by random search. A direct
approach to measuring GA performance is to analyze the change in the fitness distribution
as the population evolves. For a GA to perform better than random search, the upper
tail of the fitness distribution has to grow in time to be larger than the tail produced by
random search. Some initial efforts at characterizing the growth of the upper tail of the
fitness distribution were provided in Altenberg (1994), where a notion of “evolvability” —
the ability to produce individuals fitter than any existing — was introduced as a measure



The Schema Theorem and Price’s Theorem

of GA performance. A basic result is that for a GA to perform better than random search,
there has to be a correlation between the fitness of parents and the upper tail of the fitness
distribution of their offspring. This was obtained by using Price’s Covariance and Selection
Theorem (Price 1970, 1972) with a particular measurement function that extracts the fitness
distribution from the population.

In this paper, I first review the application of Price’s Theorem to GA performance analysis.
Then I show how Price’s Theorem can be used to obtain the Schema Theorem by employing
a measurement function that extracts the frequency of a schema from the population. The
difference between the theorem that measures GA performance, and the Schema Theorem,
which does not, is shown to be simply a choice of measurement functions.

In the process of deriving results that relate the parent-offspring correlations to the perfor-
mance of the GA under a generalized transmission function, schemata disappear as pertinent
entities. Therefore, “schema processing” is not a requirement for performance in evolution-
ary algorithms in general. However, under recombination operators, schemata reappear in
the formula for the change in the fitness distribution. This “missing” schema theorem shows
explicitly that there must be correlations between schema fitnesses and offspring fitness dis-
tributions for good GA performance. It gives a quantitative expression to the Building
Blocks Hypothesis (Goldberg 1989) and suggests ways to modify recombination operators
to improve genetic algorithm performance.

2 GENETIC ALGORITHM ANALYSIS USING PRICE’S
THEOREM

The strategy I take here (see Altenberg (1994) for details) is to start with a general formula-
tion of the “canonical” genetic algorithm dynamics, for arbitrary representations, operators,
and fitness functions. Measurement functions are then introduced to extract macroscopic
features of the population. The evolution of these features can be shown, using Price’s
Covariance and Selection Theorem, to depend on the covariance between the measurement
function and fitness. The choice of one measurement function gives us the Schema Theo-
rem, while the choice of another measurement function gives us the evolution of the fitness
distribution in the population, which I refer to as the Local Performance Theorem. Thus,
the inability of the Schema Theorem to distinguish GA performance can be seen simply as
the consequence of the measurement function that was chosen.

2.1 A GENERAL MODEL OF THE CANONICAL GENETIC
ALGORITHM

A “canonical” model of genetic algorithms has been generally used since its formulation by
Holland (1975), which incorporates assumptions common to many evolutionary models in
population genetics: discrete, non-overlapping generations, frequency-independent selection,
and infinite population size. The algorithm iterates three steps: selection, random mating,
and production of offspring to constitute the population in the next generation.
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Definition: Canonical Genetic Algorithm
The dynamical system representing the “canonical” genetic algorithm is:

p(a) = ) T(z—y,z2) ﬁ(%?(i) p(y)p(2), (1)
Y.Z€S8

where

p(x) is the frequency of chromosome x in the population, and p(x)' is the frequency in the
next generation;

S is the search space of n chromosomal types;

T(x <« y,z), the transmission function, is the probability that offspring genotype = 1is
produced by parental genotypes y and z as a result of the action of genetic operators
on the representation, with T(x —y,z) =T(x —2z,y), and Y}, T(x—y,z) =1 for all
Y,z €S;

w(x) is the fitness of chromosome x; and
W =Y pw(z)p(x) is the mean fitness of the population;

This general form of the transmission-selection recursion was used by Slatkin (1970), and
has been used subsequently for a variety of quantitative genetic and complex transmission
systems (Cavalli-Sforza and Feldman 1976, Karlin 1979, Altenberg and Feldman 1987), and
has been derived independently in genetic algorithm analysis (Vose 1990, Vose and Liepins
1991).

No assumptions are made about the structure of the chromosomes — e.g. the number of
loci, the number of alleles at each locus, or even the linearity of the chromosome. The
specific structure of the transmission function T'(x + 1y, z) will carry the information about
the chromosomal structure and genetic operators that is relevant to the dynamics of the
GA.

As a cross-reference, the “mixing matrix” defined by Vose (1990) is the n by n matrix

"T(O =Y zj)

n

ij=1"
where 0 is the chromosome with all 0 alleles in the case of binary chromosomes, and chro-
mosomes y and z are indexed from 1 to n. This is sufficient to characterize the transmission

function in the case where mutation and recombination are symmetric with respect to either
allele at each locus, by using n permutations of the arguments.

2.1.1 A Note on Fitness

The term “fitness” has undergone a semantic shift in its migration from population biology
to evolutionary computation. In population biology, fitness generally refers to the actual
rate that an individual type ends up being sampled in contributing to the next generation.
So the fitness coefficient w(x) lumps together all the disparate influences from different
traits, intraspecific competition, and environmental interaction that produce it. In the
evolutionary computation literature, fitness has come to be used synonymously with one
or more objective functions (e.g. Koza (1992)). Under this usage is there is no longer a
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word that refers specifically to the reproductive contribution of a genotype. Here I will
keep the distinction between objective function and fitness, and use “fitness” in its sense in
population biology.

The term “fitness proportionate selection” refers to fitnesses that are independent of chro-
mosome frequencies. Many selection schemes, such as tournament and rank-based selection,
truncation selection, fitness sharing, and other population-based rescaling, are examples of
frequency-dependent selection (Altenberg (1991) contains further references). In frequency-
dependent selection, the fitness w(zx) is a function not only of = but of the composition of
the population as well. All the theorems and corollaries in this paper apply to frequency-
dependent selection. This is because they are all local, i.e. they apply to changes over a
single generation based on the current composition of the population, so that any frequency-
dependence in the fitness function w(x) does not enter into the result.

The results on GA performance in this paper are defined directly in terms of the fitness
distribution of the population. However, fitness functions are often defined in terms of an
underlying objective function for the elements in the search space. This is the case with tour-
nament selection, in which an individual’s fitness equals the rank of their objective function
in the population (w = 1/N for the worst and w = 1 for the best individual in a population
of size N). In these cases, GA performance ultimately is concerned with the distributions
of objective function values in the population. The map from objective function to fitness
would add an additional layer to the analysis of GA performance, and is not investigated
here. However, numerous empirical studies have been undertaken to ascertain the effects of
different selection schemes, with GA performance defined on underlying objective functions.
So in the future such an analysis would be worthwhile.

2.1.2 Toward a Macroscopic Analysis

In the evolution of a population, individual chromosomes come and go, and their frequencies
follow complex trajectories. These microscopic details are not the usual subject of interest
when considering the performance of the GA (the one exception being the frequency of
the fittest member of the search space). Rather, it is macroscopic properties, such as
the population’s mean fitness or fitness distribution, whose evolutionary trajectory is of
interest. This is similar to the case of statistical mechanics, where one is interested not in
the trajectories of individual molecules, but in the distribution of energies in the material.

It would be very useful if the evolutionary dynamics of the population could be defined solely
at the macroscopic level — i.e. if the macroscopic description were dynamically sufficient.
In GAs this will generally not be the case. However, let us consider one special condition
when it is possible to describe the evolution of the fitness distribution solely in terms of the
fitness distribution: when the fitness function w(zx) is invertible, i.e. no two genotypes have
the same fitness. Then (1) can be transformed into a recursion in fitness domain:

sy = [ e 055w o) dude, e

where f(w) is the probability density of fitness w in the population (integration may be
over discrete measure), and T'(w « u,v) = T(z « y,z) when w = w(z), u = w(y), and
v = w(z).

For the purposes of statistical estimation of the performance of a GA, which will be an
imprecise task to begin with, it may be sufficient to proceed as though the GA dynamics
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Table 1: Measurement functions, F(z) (some taking arguments), and the population prop-
erties measured by their mean in the population, F.

Population Property Measured by F: Measurement Function:

. . . 1 wz)>w
(1) Fitness distribution upper tail: F(z,w) = { 0 wiz)<w

_ |1 zeH

(2) Frequency of schema H: F(:z:,?-t) = { ) o ¢ H
(3) Mean fitness: F(x) = w(x)
(4) Fitness distribution’s n-th non-central moment: F(x) = w(x)"
(5) Mean phenotype (vector valued): F(z) e R™
(6) Mean objective function: F(x)e R

could be represented as in (2). That will be the strategy I suggest for statistically predicting
the performance of a GA based on a limited sample from a GA run: an empirically derived
estimate of T'(w < u,v) may be used in (2) to approximate the dynamics of (1), in order
to make predictions about GA performance. This is taken up in Section 4 on “adaptive
landscape” analysis.

2.2 MEASUREMENT FUNCTIONS

A means of extracting macroscopic dynamics of a population from its microscopic dynamics
(1) is the use of the appropriate measurement functions.

The fitness w(ix) is an example of a measurement function. Measurement functions need not
be restricted to fitnesses, nor even scalar values. In general, let the measurement function
F(zx) represent some property of genotype x, with F' : S — V, where V is a vector space
over the real numbers (e.g. IR* or [0,1]* for some positive integer k). The change in
the population average of a measurement function is a measure of how the population is
evolving:

F=) F(x)px), F'=) F(z)p) (3)

A measurement function can be defined to indicate when a genotype instantiates a particular
schema H, by adding H as a parameter: F(z,H) =1 if z € H and 0 otherwise. In general
we can let F : § x P — V be a parameterized family of measurement functions, for some
parameter space P.

Examples of different measurement functions and the population properties measured by F
are shown in Table 1. Measurement functions (1) and (2) are the focus her: (1) extracts

the fitness distribution of the population, and (2) extracts the frequency of a schema in the
population.

2.3 PRICE’S THEOREM

Price (1970) introduced a theorem that partitions the effect of selection on a population in
terms of covariances between fitness and the property of interest (allele frequencies were the
property considered by Price) and effects due to transmission. Price’s theorem has been
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applied in a number of different contexts in evolutionary genetics, including kin selection
(Grafen 1985, Taylor 1988), group selection (Wade 1985), the evolution of mating systems
(Uyenoyama 1988), and quantitative genetics (Frank and Slatkin 1990). Price’s theorem
gives the one-generation change in the population mean value of F:

Theorem 1 (Covariance and Selection, Price, 1970)

For any parental pair {y,z}, let ¢(y,z) represent the ezpected value of F among their
offspring. Thus:

$(y,2) =) F(z) T(z—y,z2). | (4)
x
Then the population average of the measurement function in the next generation is
F' = ¢+ Covlp(y, z), w(y)w(z)/w"] (5)
=Y 6(v,2)p(y)p(2)
Y,z

is the average offspring value in a population reproducing without selection, and

Covlé(y, 2), wiwyw(=)/] = 3 b, 2) LUE (g p(z) -3 ©
Y.z

is the population covariance (i.e. the covariance over the distribution of genotypes in the
population) between the parental fitness values and the measured values of their offspring.

Proof. One must assume that for each y and z, the expectation ¢(y, z) exists (for mea-
surement functions (1) and (2), the expectation always exists). Substitution of (1), (4), and
(6) into (3) directly produces (5). ®

Price’s theorem shows that the covariance between parental fitness and offspring traits is
the means by which selection directs the evolution of the population. Several corollaries
follow:

Corollary 1 Let C(y, z) = ¢(y, z) — [F(y) + F(2)]/2 represent the difference between the
mean of F' among parents y and z, and the mean of F in their offspring. Then

F-F= Cov[F(z), w(x)/w] + C + Cov[C(z,y), w(z) w(y) /@Y,
where C = T, , C(y,2) p(y) p(2). |

Proof.

g|

Corollary 2 (Fisher’s Fundamental Theorem, 1930)
Consider a population evolving in the absence of a genetic operator, so

T(x—y,z)=[b6(x,y) + 6(x, 2)]/2,
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where

_J1 d=z=y
‘5(‘””’)"{0‘ if ¢#y.

Then C(y, z) =0. For F(x) = w(x), Corollary 1 gives:
w — W = w Var[w(zx)/®).

2.4 A LOCAL PERFORMANCE MEASURE FOR GENETIC
ALGORITHMS

Price’s theorem can be used to extract the change in the distribution of fitness values in the
population by using the measurement function (1) from Table 1. Then

Flw)=) Flxw)px)= Y p)
T T: w(T)>w
is the proportion of the population that has fitness greater than w. Price’s Theorem gives:

Corollary 3 (Evolution of the fitness distribution)
The fitness distribution in the next generation is:

F(w)' =¢(w) + Covld(y, z, ), w(y)w(z)/w?, (7)
where ¢(y, z, w) is the proportion of offspring from parents y and z that with fitness greater
than w.

Note that ¢(y, z, w) always exists, even when the distribution of fitnesses among the off-
spring of ¥ and z has no expectation, i.e. when ), w(z) T(x —y, z) is infinite.

The expression (7) can be made more informative by rewriting ¢(y, z, w) as the sum of a
random search term plus a search bias term that gives how parents y and z compare with
random search in their offspring fitnesses. Let R(w) be the probability that random search
produces an individual fitter than than w, and let the search bias, 8(y, z,w), be:

By, z,w) = ¢(y, z,w) — R(w) = Y _ F(z,w) T(z —y,z) - R(w).

The average search bias
for a population before selection is S(w) = 3.y » B(y, z,w) p(y)p(z). The coefficient of
regression of B(y, z,w) on w(y)w(z)/w? is

Reg[B(y, 2, w) - w(y) w(z) /W] = Cov[B(y, z, w), w(y)w(z)/w?] / Varlw(y) w(z)/@?].
It measures the magnitude of how B(y, z,w) varies with w(y)w(z)/®? in the population.

Theorem 2 (Local Performance Measure)
The probability distribution of fitnesses in the next generation s

F(w)' = R(w) + B(w) + Reg[B(y, 2, w) = w(y) w(z)/w?] Var[w(y) w(z)/w?].
Theorem 2 shows that in order for the GA to perform better than random search in pro-

ducing individuals fitter than than w, the average search bias, plus the parent-offspring
regression scaled by the fitness variance,

B(w) + ReglB(y, z,w) - w(y) w(z)/@*] Varlw(y) w(z)/w"), (9)
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must be positive. As in the Schema Theorem, this is a local result because the terms in
(8) other than R(w) depend on the composition of the population and thus change as it
evolves.

Both the regression and the search bias terms require the transmission function to have
“knowledge” about the fitness function. Under random search, the expected value of both
these terms would be zero. Some knowledge of the fitness function must be incorporated
in the transmission function for the expected value of these terms to be positive. It is this
knowledge — whether incorporated explicitly or implicitly — that is the source of power in
genetic algorithms.

2.5 THE SCHEMA THEOREM
Holland’s Schema Theorem (Holland 1975) is classically given as follows. Let

H represent a particular schema as defined by Holland (1975),

L be the length of the chromosome, and L(H) < L—1 be the defining length of the schema;
P(H) = Y g3 P(x) be the frequency of schema H in the population, and

W(H) = Y gy w(x)p(x)/p(H) be the marginal fitness of schema H.

Theorem 3 (The Schema Theorem, Holland 1975)
In a genetic algorithm using a proportional selection algorithm and single point crossover
occurring with probability r, the following holds for each schema H:

w(H)

o) 2 p) T (1-r 21 (10)

Now, Price’s Theorem can be used to obtain the Schema Theorem by using:

|1 fxeH
F(“”H)‘{ 0 fig¢H

and ¢(y,z,H) = >3 4 F(z,H)T(x — y, z), which represents the fraction of offspring of
parents y and z that are in schema H. Then p(H) = F(H), and

Corollary 4 (Schema Frequency Change)
p(H)' = 6(H) + Covld(y, 2, H), w(y)w(z)/w"],
Two sources can be seen to contribute to a change in schema, frequency:

1. linkage disequilibrium, i.e. the schema frequency minus the product of the frequencies
of the alleles comprising the schema. Negative linkage disequilibrium would produce
#(H) > p(H); and

2. covariance between parental fitnesses and the proportion of their offspring in the
schema.

Equation (11) can be made more informative by rewriting ¢(y, z, H) in terms of a “dis-
ruption” coefficient. A value oy € [0,1] can be defined that places a lower bound on the
faithfulness of transmission of any schema H:

By, 2,H) 2 31 = ar)[F(w, M) + F(z, H)] (12)
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and

apy=1-—

2
yen'or zen [¢(y’ ’H’F(y, )+F(Z,H)]

Actually, aj can be defined for any subset of the search space (“predicate” in Vose (1991)
or “forma” in Radcliffe (1991)). For Holland schemata under single-point crossover, ay =
r L(H)/(L — 1) (the rate that crossover disrupts schema H). Using (12) we obtain:

Theorem 4 (Schema, Covariance Form)

The change in the frequency of any subset H of the search space (i.e. a schema) over one
generation is bounded below by:

p(H)' > {p(H) + Cov[F (y, H), w(z)/®@]|} (1 — an). (13)
Therefore, if

Cov [F(y, H), “’(_“’)] > _‘f’;ﬂ

then schema H will increase in frequency.

Proof.
Pl = 3 FenTeen gt hane)
3 ol 7)) wyly (Z’p(y)p(z)
> 2(1-ax) SR )+ s, X))
(1—an) %y F(y, Hyw(y)p(y)/@ = (1 — ax) [F(H) + Cov[F(y, H), w(z)/]]
]

Thus, if there is a great enough covariance between fitness and being a member of a schema,
the schema will increase in frequency.

Although both applications of Price’s Theorem — to schema frequency change and change
in the fitness distribution — involve covariances with parental fitness values, the crucial
point is that the covariance term (from (13)), Cov[F(y,H), w(x)/w)], and the covariance
term (from (7)), Cov[é(y, z,w), w(y)w(z)/w 2] are independently defined. So conditions
that produce growth in the frequencies of different schemata are independent of conditions
that produce growth in the upper tails of the fitness distribution.

For example, consider a fitness function with a random distribution being the one-sided
stable distribution of index 1/2 (Feller, 1971): R(w) = 2N(a/\/w) — 1, where A (y) is the
Normal distribution and a is a scale parameter. This distribution is a way of generating
“needles in the haystack” on all length scales. A GA with this fitness function will generically
have schemata that obey (10), even though it is still random search.
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3 RECOMBINATION AND THE RE-EMERGENCE OF
SCHEMATA

In the local performance measure for the genetic algorithm, schemata disappear as relevant
entities. No summations over hyperplanes or other subsets of the search space appear in
Theorem 2. Schemata are therefore not informative structures for operators and represen-
tations in general. However, it is the recombination operator for which schemata have been
hypothesized to play a special role. What I show in this section is that when one examines
(7) using recombination operators specifically, schemata re-emerge in the local performance
theorem, and they appear in a way that offers possible new insight into how schemata enter
into GA performance. This “missing” schema theorem makes explicit the intuition, missing
from the Schema Theorem, about what makes a good building block.

Recombination operators in a multiple-locus genetic algorithm can be generally charac-
terized using the recombination distribution analysis introduced by Geiringer (1944), and
developed independently by Syswerda (1989) (see also Karlin and Liberman 1978, Booker
1993, and Vose and Wright 1994). Consider a system of L loci. Any particular recombina-
tion event can be described by indicating which parent the allele for each locus came from.
This can be done with a mask, a vector = € {0,1}%, of binary variables r; € {0,1}, which
indicate the loci that are transmitted together from either parent. So all loci with 7; = 0 are
transmitted from one parent, while the remainder of the loci, with r; = 1, are transmitted
from the other parent. The vectors » =0 = (0...0) and r =1 = (1...1) correspond to
an absence of recombination in transmission. With r representing the recombination event
that occurred in transmission, the offspring = of parental chromosomes y and z can be
expressed as:
z=roy+(l—r)oz,

where o is the Schur product: v ov = (u3v;...urv.) (allele multiplication and addition is
just for the convenience of notation; it is defined only with 0 as the other operand).

The action of any particular recombination operator can be represented as a probability
distribution, R(r), over the set r € {0,1}*. Thus Y ;i3 R(r) = 1. Using R(r) the
transmission probabilities can be written:
T(x—y,z)= Z R(r) é(x, roy+(1-7)o0 2).
re{0,1}L
Because the order of the parents is taken to be irrelevant, » and 1 — r represent the same
recombination event, hence R(r) = R(1 — r), which gives T(x vy, z) = T(z—z,y).

Often with genetic algorithms, the genetic operator is applied to only a proportion, a, of
the population. In this case one would have:

T(x—y,z)=(1-a)b(z,y) + =z, 2)}/2+a Z R(r)é(x, roy+(1-7)o 2).
re{o,1}

Examples. Uniform crossover (Ackley 1987, Syswerda 1989), i.e. free recombination
(Charlesworth et al. 1992, Goodnight 1988), is described by R(r) = 2~L. Single-point
crossover is described (Karlin and Liberman 1978) by:

Y(L-1) if TG e -l =1,
R(r) =
0 otherwise.
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Single-point shuffle crossover (Eshelman et al. 1989) is described by:

1/(L - 1)(n(L,.)) ifa(r)=1,...,L -1,
R(r) =

0 ifn(r)=0o0r L,
where n(r) = Ei":l 7; is the number of 1s in r.

Note that each r partitions the loci into two sets. Let us collect from @ the loci with r; =0
to make a vector xo(r), and similarly collect the loci with r; = 1 to make a vector x;(r).
Let H(r) denote the set of schemata with defining positions {i : r; = 1}. Thus the vectors
zo(r) € H(1 — r) and x,(r) € H(r) represent Holland schemata. For notational brevity I
henceforth write simply ¢ and x;, with the dependence on 7 being understood.

The marginal fitnesses of the schemata are:

Wo(zo) = Y, w(wo,®1) p(To, 1)/po(o),
T1eH(T)

Ti(e) = Y w(zo, 1) p(@o, 1)/pr(x1),

ToeH(1-1)
where
po(@o) = Y, p(@e,x1) and py(x1)= Y p(xo,T1).
wren(r) ToEH(L-T)

At this point we can express (7) in Corollary 3 using the marginal fitnesses of schemata
defined by each »r.

Theorem 5 (Evolution of the fitness distribution under recombination)
The change in the fitness distribution over one generation under the action of selection and
recombination is:

_— N— AY

Fw)= Y R(r)Cov[F(z,w), -2 (14)

T€{0,1}F
N ZR(T) Z [p(x) — po(x0) p1(x1)] [F(z, w) — F(w)] w_o(f’o)L(“h)
Te{0,1}t 4. en(l-7)

T1€H(T)

where the partition of x into vectors xo and x; is understood to be determined by each
transmission vector r in the sum.

The proof is given in the Appendix.

Theorem 5 is what I have referred to as the “missing” schema theorem. Equation (14) shows
a number of features:

The covariance term. The change in the fitness distribution F(w) depends on the covari-
ance between the schema fitnesses Wo(xo) Wi (1) and F(x,w). Thus a positive covariance
between the fittest schemata and the fittest offspring will contribute toward an increase in
the upper tail of the fitness distribution.
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Not all schemata are “processed”. Not all possible Holland schemata appear in (5),
but only the ones for which the recombination event r occurs with some probability (i.e.
R(r) > 0). In the case of classical single-point crossover, only L — 1 recombination events
may occur out of the 2/=1 — 1 possible recombination events (subtracting transmission of
intact chromosomes and symmetry in the parents). Thus, the schemata from only L — 1
different configurations of defining positions contribute to(14). So, with two alleles at each
locus, only 2(2'+22+.. .+25~1) = 2L41_4 schemata are involved in (14) under single-point
crossover. This is compared to a possible 3% — 2L schemata (subtracting the highest order
schemata, i.e. chromosomes) that could result from a recombination event in the case of
uniform crossover.

Schemata enter as complementary pairs. Schema fitnesses always occur in comple-
mentary pairs whose defining positions encompass all the loci.

Disruption is quantified by the linkage disequilibrium. The linkage disequilib-
rium between schemata xy and @; is the term p(x) — po(xo)p1(x1). It is a measure of
the co-occurrence of schemata xo and x; in the population. If p(z) > po(xo) p1(x1),
then recombination event r disrupts more instances of genotype & than it creates. If
in addition, F(x,w) > F(w), then this term contributes negatively toward the change
in F(w). Conversely, if a combination of schemata has a deficit in the population (ie.
p(x) < po(xo) p1(x1)), and the measurement function for this combination is greater than
the population average (i.e. F(x,w)—F(w)), then the recombination event + will contribute
toward in increase in F(w).

If all loci were in linkage equilibrium, exhibiting Robbins proportions p(x) = [I,_,  pi(z:)
(Robbins 1918, Christiansen 1987, Booker 1993), then (14) reduces to:
F(w) - F(w) = Z R(r) Cov[F(z, w), M‘-LL-EI'{—MII] (15)

w
re{0,1}~

Robbins proportions are assumed in much of quantitative genetic analysis, both classically
(Cockerham 1954), and more recently (Biirger 1993), because linkage disequilibrium presents
analytical difficulties. Asoh and Muhlenbein (1994) and Miihlenbein and Schlierkamp-Vosen
(1993) assume Robbins proportions in their quantitative-genetic approach to GA analysis.
Using F(x) = w(x) as the measurement function, they show that under free recombination,
a term similar to (15) evaluates to a sum of variances of epistatic fitness components derived
from a linear regression.

Except under special assumptions, however, selection will generate linkage disequilibrium
that produces departures from the results that assume Robbins proportions (Turelli and
Barton 1990). The only recombination operator that will enforce Robbins proportions
in the face of selection is Syswerda’s “simulated crossover” (Syswerda 1993). Simulated
crossover produces offspring by independently drawing the allele for each locus from the
entire population after selection. One may even speculate that the performance advantage
seen in simulated crossover in some way relates to it producing a population that exhibits
“balanced design” from the point of view of analysis of variance, allowing estimation of the
epistasis components (Reeves and Wright, this volume).

The epistasis variance components from Asoh and Muhlenbein (1994) figure into the parent-
offspring covariance in fitness. In their covariance sum, higher order schemata appear with
exponentially decreasing weights. Thus, the lowest order components are most important in
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determining the parent-offspring correlation. These epistasis variance components, it should
be noted, appear implicitly in the paper by Radcliffe and Surry (this volume). They consti-
tute the increments between successive forma variances shown in their Figure 2. Radcliffe
and Surry find that the rate of decline in the forma variances as forma order increases is
a good predictor of the GA performance of different representations. This is equivalent to
there being large epistasis components for low order schemata, which produces the highest
parent-offspring correlation in fitness in the result of Asoh and Muhlenbein (1994).

Guidance for improving the genetic operator. The terms

Cov[F(,w), ?"(‘”"%@] (16)

- > Ip(®) — po(@o)p1 (21)] [F(zx, w) — F(w)] W,

for each recombination event, r, provide a rationale for modifying the recombination distri-
bution to increase the performance of the GA. Probabilities R(r) for which terms (16) are
negative should be set to zero, and the distribution R(r) allocated among the most positive
terms (16). The best strategy of modifying R(r) presents an interesting problem: I pro-
pose that a good strategy would be to start with uniform recombination and progressively
concentrate it on the highest terms in (16).

4 ADAPTIVE LANDSCAPE ANALYSIS

The “adaptive landscape” concept was introduced by Wright (1932) to help describe evolu-
tion when the actions of selection, recombination, mutation, and drift produce are multiple
attractors in the space of genotypes or genotype frequencies. Under the rubric of “land-
scape” analysis, a number of studies have employed covariance statistics as predictors of
the performance of evolutionary algorithms (Weinberger 1990, Manderick et al. 1991, Wein-
berger 1991a,b, Mathias and Whitley 1992, Stadler and Schnabl 1992, Stadler and Happel
1992, Stadler 1992, Menczer and Parisi 1992, Fontana et al. 1993, Weinberger and Stadler
1993, Kinnear 1994, Stadler 1994, Grefenstette, this volume). I consider first some general
aspects of the landscape concept, and then examine the use of covariance statistics to predict
the performance of the GA.

4.1 THE LANDSCAPE CONCEPT

The “adaptive landscape” is a visually intuitive way of describing how evolution moves
through the search space. A search space is made into a landscape by defining closeness
relations between its points, so that for each point in the search space, neighborhoods of
“nearby” points are defined. The purpose of doing this is to represent the attractors of
the evolutionary process as “fitness peaks”, with the premise that selection concentrates a
population within a domain of attraction around the fittest genotype in the domain. The
concepts of local search, multimodal fitness functions, and hill climbing are all landscape
concepts.

Definitions of closeness relations are often derived from metrics that are seemingly natural for
the search space, for example, Hamming distances for binary chromosomes, and Euclidean
distance in the case of search spaces in IR™. However, in order for closeness relations to be
relevant to the evolutionary dynamics, they must be based on the transmission function,
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since it is the transmission function that connects one point in the search space to another
by defining the transition probabilities between parents and offspring. In the adaptive
landscape literature, this distinction between extrinsically defined landscapes and landscapes
defined by the transmission function is frequently omitted. )

Application of the landscape metaphor is difficult, if not infeasible, for sexual transmission
functions. For this reason, some authors have implicitly used mutation to define their
adaptive landscape even when recombination is the genetic operator acting. The definition
of closeness becomes problematic because the distribution of offspring of a given parent
depends on the frequency of other parents in the population. For example, consider a mating
between two complementary binary chromosomes when uniform recombination is used. The
neighborhood of the chromosomes will be the entire search space, because recombinant
offspring include every possible chromosome. Since the neighborhood of a chromosome
depends on chromosomes that it is mated with, the adaptive landscape depends on the
composition of the population, and could thus be'described as frequency-dependent. The
sexual adaptive landscape will change as the population evolves on it.

The concept of multimodality illustrates the problem of using metrics extrinsic to the trans-
mission function to define the adaptive landscape. Consider a search space in IR™ with a
multimodal fitness function. The function is multimodal in terms of the Euclidean metric on
IR™. But the Euclidean neighborhoods may be obliterated when the real-valued phenotype
is encoded into a binary chromosome and neighborhoods are defined by the action of mu-
tation or recombination. For example, let a,b € IR™ be encoded into binary chromosomes
z,y € {0,1}F. The Hamming neighborhoods H(z,y) < k may have no correspondence
to Euclidean neighborhoods |a — b] < ¢. Thus multimodality under the Euclidean metric
is irrelevant to the GA unless the transmission function preserves the Euclidean metric.
Multimodality should not be considered a property of the fitness function alone, but only
of the relationship between the fitness function and the transmission function.

4.1.1 An Illustration of Multimodality’s Relation to Transmission
Consider the fitness function from p. 34 in Michalewicz (1994):
w(z1,z2) = 21.5 + z sin(4wz1) + 2 sin(207z7),

defined on the variables z;,z,. In terms of the normal Euclidean neighborhoods about
(z1,%2), w(z1,z2) is highly multimodal, as can be seen in Figure 1. There are over 500
modes on the area defined by the constraints

—-3<7z1<121and 4.1 <z <5.8.

A transmission function that could be said to produce the Euclidean neighborhoods is a
Gaussian mutation operator that perturbs (z1,72) to (z1 + €1, T2 + €2) with probability
density ‘

' Cexp[—(ef + €3)/207], (17)

with o small and C the normalizing constant. The adaptive landscape could be said to be
multimodal with respect to this genetic operator.

Suppose we change the representation into four new variables, integers n;,n, and fractions
é1,¢2 € [0,1):

ny Int(2z;), and ¢, = 227 n4,

37



38 Altenberg

Figure 1: The fitness function w(z;,z2) = 21.5 + 7 sin(4nz1) + 2 sin(2072z,) is highly

multimodal in terms of the Euclidean neighborhoods on (z;, 2).

(n1+¢1)/2, and z2 = (na + ¢2)/10.

Over the same region as in Figure 1, w has few modes, as seen in this slice through the 4

where z;

)‘)

produced from mutation operators acting on the

na, ¢2

Figure 2: The “adaptive landscape”

transformed representation (n,, ¢y,

50, ¢2 = 0.

dimensional space, setting no
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n2 = Int(10z2), and @y = 102y — no,

where Int(v) is the largest integer not greater than v. Thus z; = (n1 + ¢1)/2, and z, =

(n2 + ¢2)/10.

This transformation of variables uses our a priori knowledge about the fitness function
to produce a smoother adaptive landscape. Neighborhoods for the new representation are
produced by using a mutation operator that increases or decreases n; or ny by 1, or perturbs

¢1 or ¢2 in a Gaussian manner. In this new topography, the fitness function has very few
modes, as shown in Figure 2.

Instead of changing the representation to produce a smooth landscape, one can keep the
native variables r; and z2, but change the mutation operator. The new mutation operator
perturbs (z1,z2) to (1 + €1 + v1, Z2 + €2 + 1») with probability densities f(n) =1/2 for
v1 =1/20r -1/2, and f(v) =1/2 for v, = 1/10 or —1/10, and

f(€1a€2) = Cexp[—(ef + 63)/202]7

with o small and C the normalizing constant. This change in the genetic operator produces
evolutionary dynamics identical to that produced by the change in the representation. This
exemplifies the duality between representations and operators (Altenberg 1994).

Rather than trying to push the landscape metaphor further, it may be more fruitful to return
to the roots of the concept, which is the existence of multiple attractors in evolutionary
dynamics (or metastable states, in the case of stochastic evolutionary systems). The task of
producing a smooth adaptive landscape is, in effect, to design operators and representations
that yield a single domain of attraction, where all populations converge to the fittest member
of the search space. In order to evaluate an adaptive landscape that contains multiple
attractors, one needs a way of characterizing the attractors. This is the goal of adaptive
landscapes statistics that have been developed.

4.2 LANDSCAPE STATISTICS

It would be useful to be able to predict the performance of a GA, or of particular representa-
tions or operators used by a GA, based on a limited number of sample points. I will review
previous work toward this goal, pose some counterexamples to the statistics that have been
developed, and offer a new statistic that solves some of the difficulties.

A number of studies have employed the statistical technique introduced by Weinberger
(1990) toward predicting the performance of a GA. They rely on the autocorrelation statistic:

Cov{w(x, ), w(xe)]
(Var[w(zx, )] Var[w(a:o)])l/ 2’

where x is derived from x4 by 7 iterations of the genetic operator, Cov and Var are taken
over some measure, m(x,,xy), on the search space S:

Pop(T) = (18)

Cov{w(z,), w(zo)] =/Sw(a:1)w(mg)dm(:cf,:co)—/sw(a:,)dm(a:,,:z:o)/s'w(a:o)dm(:z:,,mo).

The measure m(zx,,xo) derives from the way samples of the search space are taken. Wein-
berger uses random walks over the search space generated by iteration of asexual genetic
operators. Manderick et al. (1991) point out that only asexual genetic operators allow one
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to generate the random walks that produce the sequence x,, precluding this technique from
sexual genetic operators.

In order to use pop(7) as a predictor of evolution on the landscape, Weinberger notes that one
must assume that the landscape is statistically isotropic, and that the fitness distribution
of the sequence of points in the search space is stationary. He points out, however, that
stationarity is violated in the presence of selection, and that landscapes will depart to varying
degrees from isotropy.

Others have avoided this problem by using a single-generation correlation statistic, where
7 = 1. One can then incorporate sexual genetic operators by defining a function g(u,v) that
combines the fitnesses (u,v) of the two parents. Typically, g(u,v) = (v + v)/2, giving:
pon = Cov{w, (u + v)/2]
' (Var[w] Var[u]/2)'/?
where w is the fitness of offspring from parents with fitness v and v, and Cov and Var are
with respect to some measure over the search space.

No one has claimed that the autocorrelation statistic would be an exact estimator of the
performance of complex GAs, which is why empirical studies of its applicability have been
undertaken. However, as shown in Theorem 2, the properly defined covariance statistics
are exact estimators of evolutionary change in the population. The autocorrelation function
uses the fitness, w(x), as a measurement function. When w(x) is used as the measurement
function in Price’s Theorem, one obtains the change in the population mean fitness (see
Table 1). However, what is more important to the performance of the GA is the change in
the upper tail of the fitness distribution, which is obtained by using F(x, w) as in Theorem
2. This suggests circumstances in which p,, may be fooled.

4.2.1 Counterexamples for p,,

I give two constructed examples of landscapes in which p,, fails to predict GA performance.
In them I will define the transmission functions T'(w «+ u, v) directly in the fitness domain,
as in (2). Thus T'(w «u,v) contains all the information about the fitness landscape.

It should be noted that the value of p,, is derived not from the total transmission function
T(w « u,v), but from just the portion of T(w «— u,v) that results from application of the
genetic operator. In typical GAs, the genetic operator acts with probability a < 1. The
canonical recursion in the fitness domain (2) is then written:

pwf = (- a)pw)u/mta [ Pwoun Gowsdid,  (9)

where the transmission function P(w < u,v) represents the action of the genetic operator
and is referred to as the search kernel (Altenberg 1994). Therefore, the values of a and
P(w «u,v) contain all the information about the landscape that affects performance. The
statistic p,, is always taken with respect to the search kernel P(w —u,v).

The following are two cases in which p,, errs in describing the evolutionary performance of
the GA:

1. One case with a maximal parent-offspring correlation, but which gives poor GA per-
formance, because parents never produce offspring fitter than what already exists, and
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2. A second case with no correlation between the fitnesses of parents and their offspring,
but which nevertheless gives excellent GA performance, because the proportion of off-
spring that are fitter than their parents is a constant, even as the parental fitnesses
increase.

High parent-offspring correlation but no evelvability. Suppose the fitness of an
offspring produced by the genetic operator is always the average of the parental fitnesses.
If one uses g{u,v) = (u +v)/2, so that p,, is the correlation between mean parental fitness
and offspring fitness, then po, = 1.

However, this is classical blending inheritance, in which the fitness variance of the population
rapidly decays. Furthermore, the fittest member of the population will never be greater than
the fittest in the first generation. Thus, although the mean fitness of the population will
increase initially, it has no evolvability.

Zero parent-offspring correlation but high evolvability. In this example there is no
correlation between parent and offspring fitness, yet there is high evolvability because each
pair of parents has the same chance of producing still fitter offspring, no matter how fit the
parents are within a certain limit. This is achieved with a lognormal distribution:

1 [In[w] — p(u,v))
w o (u, v)V21 exp { T 20(u,v)? }

where p(u,v) and o(u,v) are scalar functions of u and v, derived as follows.

Pweu,v) =

To obtain the desired value po, = 0, the mean offspring fitness ¢(u,v) is set to a constant
for all parents:

o(u,v) = / w P(w —u,v)dw = exp [u(u,v) + o(u, v)’] W@ for all u,v.
0

This requires:
p(u,v) = In[d] — a(u,v)?/2.

The desired high evolvability is obtained by ensuring that a constant proportion of offspring
are fitter than some function g(u,v) of the parents’ fitnesses. This requires:

N [ln[g(u, v)] — u(u,v)] —c (22)

o(u,v)

where N[ ] is the normal distribution. The choice of g(u,v) is arbitrary, but reasonable
examples for defining evolvability would include g(u,v) = (u + v)/2, or g(u,v) = \/uw, or
9(u,v) = max[u,v]. Equation (22) gives the condition:

w(u,v) = In[g(u,v)] — so(u,v) (23)
where s is the value giving A/[s] = C. Together conditions (21) and (23) are solved by:
o(u,v) = s — /s — 21In[g(u, v) /)] (24)

This requires g(u,v) be constrained to g(u,v) < we* /2.

Let pop be computed as Cov[w, ¢(u, v)]/(Var[w] Var[g(u, v)])!/? for some arbitrary function
q(u,v) of the parents’ fitnesses u, v, where w is the offspring fitness. Condition (20) gives
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Pop = 0, since
Cov{w, g(u,v)] = /°° w q(u, v) P(w —u,v) p(u) p(v) du dv dw
0
- /-ow p(u) p(v) du dv
/Ooo q(u, v) p(u) p(v) [[ooo w P(w+u,v) dw] du dv
- [rp | i [ alu,0)p(w) (o) duds
0 ' 0

[o o)

u‘)/oo q(u,v) p(u) p(v)dudv — 1 % w * / q(u, v) p(u) p(v) du dv
. 0 0

Yet with a reasonably small value of a in (19), the fitness distribution will keep increasing in
the upper tail, up to fitnesses of at least we? /2, because of the constant rate of producing
offspring fitter than g(u,v) even as u,v grow. Even though p,, = 0, this landscape could be
described as very smooth, because below the limit g(u,v) < wes! 2, the neighborhood of
any genotype (i.e. its offspring) includes a portion that are fitter than it. Therefore, none
of the lower fitnesses can be “local” optima, and the population evolves toward the global
limit. So p,p in this example is not providing an estimate of landscape smoothness either.

4.2.2 A New Statistic

In order to predict the performance of a GA based solely on sampled fitness values, one must
assume that the fitnesses are dynamically sufficient, as described in Section 2.1.2. However,
in general this assumption will be rendered only an approximation by the occurrence of
noninvertibility in the fitness function. In many actual cases, though, it may be a good
enough approximation to yield good predictions.

The most complete description of the transmission function in the fitness domain — one
which loses no information (assuming the invertibility of w(x)) — is simply T'(w « u,v).
Other statistics such as p,, involve averages that already lose information. Therefore I
propose the following:

Conjecture: When attempting to predict the performance of a genetic algorithm using the
fitnesses of a limited sample of points, the best statistic to use should be an estimate of the
search kernel

Pwe—u,v) = P(w—u,v),

produced using the values of w(y), w(z) of parents and w(x) of offspring sampled during
the GA.

A simple way to proceed in predicting the future course of a GA is to take the estimate
of the search kernel P(w — u,v) and insert it in recursion (19) to simulate the progress of
the GA, and predict the evolution of the fitness distribution (an approach also taken by
Grefenstette, this volume). It may be possible to analyze the search kernel more directly to
predict the performance of the GA. I would propose in addition:
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Conjecture: The critical determinant of GA performance is how rapidly the evolvability

— t.e., the likelihood of parents being able to produce oﬁspnng fitter than themselves —
decays with increasing parental fitness.

One could classify different representations and operators by the decay rates of the search
kernels they produce (e.g. exponential, hyperbolic, etc.). Search kernels with the least decay
ought to exhibit the best GA performance.

If there are multiple domains of attraction in the dynamics of the GA, different initial popu-
lations may yield divergent estimates of P(w «u,v), even when P(w<—u,v) is dynamically
sufficient. A general caveat, therefore, is that the feasibility of predicting the performance
of the GA depends on some level of regularity in the adaptive landscape.

The estimation of P(w +u,v) based on the fitnesses of a limited sample of points in a run
of a genetic algorithm is a problem of generalization. Inference must be made on the sample
search kernel. A Bayesian approach toward producing the search kernel estimator would
be to begin with a prior distribution over a family of functions P(w « u,v), and use the
sampled data to form a posterior distribution. The function with the maximum posterior
likelihood could be taken as the best estimator of P(w «u,v). The ability to generalize from
the sampled data depends on ones prior distribution (Solla 1990). Generalization requires
some knowledge that allows one to narrow the prior distribution to a smaller universe of
distribution functions P(w « u,v), within which one believes the actual function P(w
u, w) is likely to be found.

5 CONCLUSIONS

This paper begins with a critique of the Schema Theorem describing why it does not come
to bear on the performance of genetic algorithms. The Schema Theorem does not capture
the intuitive idea about what makes a GA work — that offspring with above-average fitness
can be produced by recombining schemata with above-average fitness. There is a “missing”
theorem needed to capture this intuition, and this is Price’s Covariance and Selection The-
orem. Price’s theorem is used to show how changes in different macroscopic properties of
populations in a genetic algorithm can be derived by using the microscopic dynamics of the
GA combined with the appropriate measurement function. When the measurement function
is a fitness indicator function, one obtains the evolution of the fitness distribution over one
generation. When the measurement function is a schema indicator function, one obtains
the evolution of the schema, frequency. Thus, the Schema Theorem can be expressed using
Price’s theorem. However, the fact that schemata with above-average fitness increase in
frequency says nothing about the performance of the GA. The ability for a GA to increase
the upper tail of the fitness distribution is necessary for good performance.

This is expressed in a local performance theorem for genetic algorithms. Schemata do not
appear in this performance theorem for general representations and operators. When one
examines recombination operators specifically, however, schemata reappear in the perfor-
mance theorem in a way that shows some qualitatively novel aspects of schema processing.

This “missing” schema theorem is obtained by using the recombination distribution repre-
sentation of transmission introduced by Geiringer (1944). It makes explicit the intuition
about how schema processing can provide a GA with good performance, namely: (1) that
the recombination operator determines which schemata are being recombined; and (2) that
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there needs to be a correlation between complementary schemata of high fitness and the
fitness distributions of their recombinant offspring in order for the GA to increase the chance
of sampling fitter individuals. It also shows the influence of linkage disequilibrium on the
performance of the GA.

Finally, the “adaptive landscape” approach to understanding GA performance is discussed.
I examine some of the problems that ensue when one defines the landscape using metrics
extrinsic to the transmission function. While the properly defined covariance statistics
give quantitative estimates for the change in the fitness distribution, as shown in the local
performance theorem, the autocorrelation statistics commonly used in landscape analysis
do not, and this is illustrated with two examples of landscapes that give GA performance
exactly contrary to that predicted by these statistics. I propose that the best estimator for
predicting the behavior of a GA is simply the approximation of the transmission function
in the fitness domain, and that it is the rate of decay of evolvability as parents increase in
fitness that is the critical feature of the transmission function for GA performance. With
these statistics calculated for the transmission functions produced by different operators and
representations, one may be able to better design genetic algorithms.

APPENDIX

PROOF OF THEOREM 5

The general recursion (1) with the recombination operator becomes:

py = Y, R(r)q(zlr), (25)
re{0,1}L
where
o) = 3 oo roy+(1-r)o2) U ) p(z). (26)

The representation of the recursion for the general multi-locus, selection-recombination sys-
tem was first obtained by Karlin and Liberman (1979) in a form similar to (25). Vose
(1990) and Vose and Liepins (1991) independently developed a different representation for
(25) assuming two alleles at each locus, which has been called the “exact schema theorem”
(Juliany and Vose 1994).

The term ¢(x|r) evaluates to:

zZ
dalr) Y b, roy+a-r)o B ) p0z)
y,Z
w(xzg, ¥y ) wlyg, o1)
> i u‘izi ©22 p(o, y1) P(yo, @1)
YoeH(1-7)
Y, eH(T)
w(xo, w(yg, &
) —(-‘%—y‘—)p(wo,yl) > 2021 0, 20)
w
Y, EH(T) YoeH(1-7)

Wo (o) Po (o) W1 (x1) pr (1) /W
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Equation (26) gives:
F(w)' ZF(m w)px) = Y R(r)ZF(m w) g(z|r). (27)
re{o,1}&

The sum on the right evaluates to:

Y F@waelr = Y A T ) )
T

xToeH(l-T)
TreH(T)

= F(w) + Cov[F(z,w), M]

"JF-.
Z [F(a: W= fl EHI]][!' J"] == 1”“{ Iy I—* {Tr]lw
i
xoeH(1-7)
Z1eH(T)

Substitution into (27) gives the result.
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