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Abstract 

 
The immune system is a remarkable and complex 
natural system, which has been shown to be of interest 
to computer scientists and engineers alike. This paper 
reports an on-going investigation into the usefulness of 
the negative selection metaphor for immune inspired 
fault tolerance. Various procedures to generate 
detectors for the negative selection algorithm are 
reviewed and compared in terms of time and space 
complexity for the production of competent detectors. 
A new algorithm has been identified and implemented. 
Experimentation was undertaken, and an analysis is 
presented on the effectiveness of the various 
algorithms. The outcome of this empirical analysis 
reveals that trade-offs have to be made in the choice of 
algorithm based on the time and space complexities, as 
well as the detection rate.   
 
1. INTRODUCTION 
As engineering and computing problems grow ever 
more complex, alternative sources of inspiration for 
solutions to these problems are being sought by 
computer scientists and engineers. Biology has been 
seen as a fruitful resource of inspiration with the 
creation of various biologically inspired techniques 
such as genetic algorithms, neural networks, and swarm 
systems (Bentley 2001). The immune system is now 
receiving more attention and is slowly being realized as 
a new biologically inspired computational intelligence 
approach (de Castro and Timmis 2002). An intuitive 
application of the immune system, and one that many 
researchers have followed, is to create artificial systems 
that have the ability to differentiate between self and 
non-self states: where self could be defined as many 
things, such as, normal behavior, normal network traffic 
between computers, and so on. 
The next section explores one way in which the 
immune system allows for self non-self discrimination 
(negative selection), and reviews some approaches in 
artificial immune systems literature that have attempted 
to model this process. The main problems with these 

approaches are highlighted and a new algorithm has 
been implemented in an attempt to overcome some of 
these problems. The results presented in this paper 
demonstrate that the proposed algorithm is equivalent 
to the exhaustive algorithm for certain classes of 
problems, and even outperforms it in some cases for 
example clustered data. The fact still remains that none 
of the algorithms is able to resolve all the inherent 
problems associated with detector generation, thus 
some tradeoffs have to be considered when choosing an 
algorithm for generating detectors. The final section 
presents some conclusions and directions for future 
research. 
 
2. USEFUL IMMUNOLOGY 
The immune system is a remarkable and complex 
natural defense mechanism. The immune system 
responds to foreign invaders called pathogens. The first 
line of defense is known as innate immunity: this is the 
immune mechanism our bodies are born with (Janeway 
1993). If the innate immune system cannot remove the 
pathogen, then the adaptive (or acquired) immune 
system takes over.  
The adaptive immune system is made up of B and T-
cells, which are capable of responding to certain 
antigenic patterns presented on the surface of 
pathogens. Receptors on B and T-cells match antigenic 
material and depending on the closeness of that match, 
T-cells stimulate B-cells into rapid proliferation and 
undergo affinity maturation.  
Affinity maturation is a process by which stimulated B-
cells are driven to become better tuned to the antigen 
responsible for initiating the immune response. This 
enhances the quality of the response (Staines, Brostoff 
et al. 1994). During affinity maturation, stimulated 
antibodies undergo a somatic mutation with high rates, 
termed hypermutation. The amount of mutation that a 
B-cell will undergo is inversely proportional to how 
well it matches the antigenic pattern: the higher the 
affinity (match) the lower the mutation, and vice versa. 
Production of antibodies from these B-cells then 
ensues, which ultimately remove the antigenic material. 



Viewed from a computational perspective, this is an 
attractive learning mechanism and is one reason why 
the immune system has attracted such interest. 
Pertinent to this work is the maturation of T-cells: what 
mechanisms are present to prevent the T-cells reacting 
against the own cells of the body? If this breakdown 
happens, it is known as an autoimmune disease. This is 
in part prevented via a process known as negative 
selection, that allows only the survival of those T-cells 
that do not recognize self cells. T-cells are produced in 
the bone marrow, but undergo a maturation process in 
the thymus gland, after which they are allowed to take 
part in an immune response. The maturation of the T-
cells is conceptually very simple. T-cells are exposed to 
self-proteins. If this binding activates the T-cell, then 
the T-cell is killed, otherwise it is allowed into the 
repertoire. Cells that take part in an immune response 
are known as immunocompetent cells.  

 
3. ARTIFICIAL IMMUNE SYSTEMS  
Artificial immune systems (AIS) are adaptive systems 
inspired by theoretical immunology and observed 
immune functions, principles and models, which are 
applied to problem solving (de Castro and Timmis 
2002). The important points of this definition are 
inspiration and rationale. In this case, the main idea is 
to develop problem solving tools that are inspired by 
the immune system. Through the use of the negative 
selection process described above, there have been a 
number of works attempting at building artificial 
immune systems for virus detection (Forrest, Perelson 
et al. 1994), computer security (Forrest, Hofmeyr et al. 
1996), (Hofmeyr and Forrest 2000) and hardware fault 
tolerant systems (Bradley and Tyrell 2002). The 
original work by (Forrest, Perelson et al. 1994), in 
which the negative selection algorithm was proposed, 
has been inspirational to almost all the research in the 
AIS related to the computer security. More recently, 
that work has also provided the basis for building fault 
tolerant systems (Tyrell 1999). The basic idea of the 
algorithm is to produce a set of change-detectors, 
which can detect changes in what is considered normal 
behavior of a system. 
 
4. NEGATIVE SELECTION: 

PRINCIPLES AND ISSUES 
The negative selection algorithm is inspired by the 
maturation of T-cells in the thymus gland (Forrest, 
Perelson et al. 1994). The algorithm consists of two 
stages: censoring and monitoring. The censoring phase 
caters for the generation of change-detectors. 
Subsequently, the system being protected is monitored 
for changes using the detectors generated in the 
censoring stage. However, this algorithm is reported to 
be very time consuming (D'haeseleer, Forrest et al. 
1996), (Wierzchoń 2000). The time taken to generate 
the detectors is measured by the number of candidate 

detectors that have to be examined before producing the 
required number of competent detectors. It was 
observed that the number of candidate detectors 
increases exponentially with the size of the self-set, at a 
fixed probability of not detecting non-self (Forrest, 
Perelson et al. 1994). This implies that the time to 
complete the process increases with the size of the self-
set. Furthermore, this process does not check for 
redundant detectors. For minimizing these limitations, 
some variations of detector generating algorithm were 
developed: linear (D'haeseleer, Forrest et al. 1996), 
greedy (D'haeseleer, Forrest et al. 1996), and binary 
template (Wierzchoń 2000). Both the linear and greedy 
algorithms run in linear time respective to the size of 
the self and detector sets (D'haeseleer, Forrest et al. 
1996). While the focus of the binary template is to 
generate efficient non-redundant detectors rather than 
minimizing the time to generate them. Work in 
(D'haeseleer, Forrest et al. 1996) claimed that the 
greedy algorithm manages to resolve this problem by 
generating a complete repertoire of detectors. 
 This paper includes the examination of time and space 
complexities of these algorithms, which were 
normalized for comparison. In order to cater for worst 
case situations, all the earlier assumptions included in 
the derivation of the original time and space 
complexities were discarded. For a more detailed 
comparison of several negative selection algorithms, 
please refer to (Ayara, Timmis et al. 2002). 
 
4.1 EXHAUSTIVE DETECTOR GENERATING 

ALGORITHM 
The exhaustive detector generating algorithm is the 
original method proposed by (Forrest, Perelson et al. 
1994). The algorithm attempts to construct a set of 
competent detectors in the following way: (1) define the 
self data; (2) generate a random candidate detector; and 
(3) match each candidate detector generated with self 
data. If it matches with any self data, it is discarded, 
otherwise it is added to the collection of competent 
detectors.  A flow diagram of the algorithm is presented 
in Figure 1 .  
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Figure 1: Exhaustive detector generating algorithm. 



 
The time complexity of the algorithm was derived 
based on two factors: the time to generate a number of 
candidate detectors (NRo) and the time to compare each 
one of them with the population of self-data (Ns). The 
space complexity depends on the self-population, 
whose individual members are of length l. In 
(D'haeseleer, Forrest et al. 1996), the authors  derived 
mathematical formulae to determine the computational 
complexities of the original algorithm. These were 
reviewed based on the following considerations: (1) 
generalising alphabet size m from binary {0,1}, where 
m = 2; and (2) the total number of candidate detectors 
(NRo) that can then be generated is ml, where l is the 
length of each individual detector string. 
Time and space complexities for this algorithm are 
presented in Section 7, while the empirical experiments 
carried out with the algorithm using 8-bits binary data,  
are presented in Section 6. The experiments confirm the 
limitation observed by (Forrest, Perelson et al. 1994) 
and (Kim and Bentley 2001), which is a costly 
computation of generating detectors. 
The results motivated the examination and proposal of 
other algorithms to generate the set of candidate 
detectors. They are the linear, greedy and binary 
template algorithms. For the linear and binary template 
algorithms, please refer to (D'haeseleer, Forrest et al. 
1996) and (Wierzchon 2000), respectively. The greedy 
algorithm will be analyzed in the following section due 
to its advantages of being linear in relation to the self-
set as well as presenting a good coverage of non-self. 
 
4.2 GREEDY DETECTOR GENERATING 

ALGORITHM 
The greedy algorithm improves upon the linear 
algorithm through the elimination of redundant 
detectors. Furthermore, it ensures that generated 
detectors achieve as much coverage of non-self space as 
possible (D'haeseleer, Forrest et al. 1996). The 
algorithm is in two phases. The first is the processing 
phase taken from the linear algorithm, with the second 
phase being the actual process of generating detectors. 
This algorithm is based on the use of schemata 
proposed by (Helman and Forrest 1994) for the r-
contiguous bits matching rule. The r-contiguous bits 
matching rule is a model of the affinity measure in the 
immune system. Assuming a binary representation of 
the self and detector strings, the r-contiguous bits 
matching rule compares a sequence of bits (of length r) 
in one string with a sequence of bits of the same length 
in the second string to see if they match. This approach, 
as shown in Figure 3, has been stated to closely capture 
the interaction between elements in the immune system 
(Percus, Percus et al. 1993).  This is subject to a pre-
defined matching threshold r that is the minimal length 
of contiguous bits strings common to the two strings for 
a match to occur. Given this matching rule, the 

schematic approach is to check for these common sub-
strings, as depicted Figure 2, rather than the whole 
string.  
 r = 4 
 
 

         R:  0 1 0 1 1 0 1 0 
         S:  0 0 0 1 1 0 0 1 

 

Figure 2:  r-contiguous bits matching rule. The strings R 
and S of length l = 8, present r = 4 consecutive bits in 

common. 

 
Assuming a matching threshold r, an alphabet size m 
(usually binary) and a length l, which is the length of 
each string, the first phase involves the generation of 
valid detector templates from a total number of mr 

possible combinations. Templates are strings with r-
contiguous significant bits that start from a specified bit 
position; and l - r insignificant bits replaced with don’t 
cares. Each template is constructed from a sequence of 
r bits that can be extended to fully specified detector 
strings. The set of valid templates are based on the self-
data, such that only templates with no match in self are 
generated. These templates make up the first template 
array TS where the nonzero entries constitute the valid 
templates.  
During the second phase, detectors are generated 
through the extension of the templates to fully specified 
detector strings. After the generation of each detector 
string, all the templates that match the detector are 
removed from the set of valid templates for generating 
detectors. This prevents the generation of redundant and 
inefficient detectors at each step.  
The time complexity of this algorithm depends on three 
factors: (1) the time to generate each valid detector 
templates in mr; (2) the time to extend each valid 
template to  a fully specified string; and (3) the time to 
update the templates TR when creating each detector. 
The original time and space complexities were derived 
given these considerations (D'haeseleer, Forrest et al. 
1996), but their corresponding mathematical formulae 
were derived based on the assumptions that each 
element of the template array can be evaluated in 
constant time. Also, the analysis ignored the earlier 
processing phases, before the valid number of detector 
templates are derived. Additionally, emphasis on binary 
alphabets can be extended to an alphabet size of m. 
These were incorporated into the reviewed formulae in 
Table 5.  
 
5.  NEGATIVE SELECTION WITH 

MUTATION  
Work in (de Castro and Timmis 2002) proposed a slight 
modification of the exhaustive stage of the negative 



selection, by introducing somatic hypermutation. 
Briefly, the procedure proposed the following: (1) 
define self data;  (2) generate a candidate detector 
randomly; and (3) match each candidate detector with 
self data, if it matches, perform guided mutation on 
detector away from self. The guided mutation is 
performed on the candidate detector, which matches the 
self data. Mutation is then performed on the parts of the 
candidate detector that match with the self element. The 
mutation is adaptive, based on the affinity of the closely 
matching self element to a candidate detector. This 
means that the probability of mutation is directly 
proportional to affinity. Thus, the greater the affinity, 
the higher is the mutation probability. This idea was 
taken from the affinity maturation process of B-cells to 
antigenic patterns in the immune system. In this 
algorithm, however, the reference is the self-set, instead 
of non-self set. Hence, the mutation is performed 
proportionally to affinity to self-set, such that the 
candidate detector is changed so as not to match self-
set. Also, this mutation approach was further 
augmented by the introduction of a life time indicator 
for a candidate detector. This in effect restricted the 
number of times mutation is performed on a candidate 
detector before a non-improved mutant is discarded.  It 
was thought to have the desired effect of reducing the 
search space and hence, the number of candidate 
detectors generated.  
The time complexity of NSMutation depends on the 
following factors: (1) the time to generate a random 
detector (each of length l) and compare with the 
population of self data to determine if they match; (2) 
assuming the use of r-contiguous bits matching, time to 
mutate matching region of length r in random detector 
away from self; and (3) a check for redundant detectors. 
In the worst case, possible detectors can be 
generated when an alphabet size m is assumed. Hence 

 candidate detectors are equivalent to . Also, 
mutation is limited to a region of length r in the 
candidate detector, which gives the upper bound of 
mutating the candidate detector as . Subject to these 
factors, the time and space complexities are given in 
Table 5. 

lm

RoN lm

rm

6. EXPERIMENTS 
In order to verify the claims made in (Forrest, Perelson 
et al. 1994) and (Kim and Bentley 2001) with regards to 
the exhaustive algorithm, and additionally to test the 
efficacy of the proposed algorithms, experiments were 
undertaken using an 8-bit binary data test set. The 
exhaustive algorithm was used as the empirical 
standard for the experiments.  

6.1 EXPERIMENTAL SETUP 
The experiments were performed with randomly 
generated 8-bits data, with the inclusion of relevant 

parameters. The following subsections describe the 
procedures carried out for experimental set up. 

6.1.1 Generating  self data 
As earlier stated, the 8-bit data used were randomly 
generated. The pseudorandom number generator of the 
Java 2 Platform (Standard Edition version 1.3) API was 
used to generate integer numbers between 0 and 255, 
which were then converted to 8-bit binary strings. 
During the experiments, there was a need to generate 
different sizes of self set. This was carried out by 
creating separate files for different population sizes of 
self sets.  

6.1.2 Setting the matching threshold  
The affinity between these binary strings (for the self-
set, detector set and test data) was determined using the 
r-contiguous bits matching rule. The optimal value for 
matching threshold ( r ) had to be obtained by changing 
values of r from 1 to l. This process was done in order 
to obtain the combined values of correct and incorrect 
classification by detectors generated using a specific 
threshold. Correct classification value is derived from 
the sum of true positive (rate at which non-self is 
correctly detected) and true negative (rate at which self 
is correctly not detected). While incorrect classification 
is the sum of false positive (rate at which self is 
incorrectly detected) and false negative (rate at which 
non-self is not detected). Both the correct and incorrect 
classification values are used to determine the 
appropriate values of r. This is different from the 
approach used by (Kim and Bentley 2001) as well as 
the suggested method in (D'haeseleer, Forrest et al. 
1996). In (Kim and Bentley 2001), the value of r was 
determined from the equations in (Forrest, Perelson et 
al. 1994), which yielded poor values of matching 
threshold for the corresponding data. While 
(D'haeseleer, Forrest et al. 1996) proposed an approach 
based on the greedy algorithm. Both approaches reveal 
that there is no hard-and-fast rule for setting this 
parameter, rather various values can be tested in order 
to select the optimal one. The following procedure was 
carried out to determine this parameter: 
 

1. Generate self and test sets from the data sets 
being experimented upon;   

2. Generate required detectors NR (using 
equation: ( )

m

f
R P

P
N

ln−
= ) for different values of r 

which are varied from 1 to l; 
3. Test the detectors generated on the test file to 

obtain their correct and incorrect classification 
rates; 

4. Use the value of r for which there is minimal 
incorrect classification and maximum correct 
classification rates in subsequent experiments. 



 
An outcome of the procedure is illustrated in Table 1 
based on the mean values of correct and incorrect 
classification rates obtained over 10 trials using the 
following parameters: self set NS = 8, test set NT = 256, 
available  (NR), and potential (NRo) repertoires. Given 
this table, a matching threshold value of  8 will be 
preferable to the other values since it yields maximum 
correct and minimum classification rates. When the 
matching threshold was set to values below 3, no 
detectors could be generated. This indicates that at such 
threshold values, all the detectors match the strings in 
the self-set. The value of r thus determines the proper 
partitioning of the data space into self and non-self 
segments. This makes the choice of an optimal value 
for r crucial to the effectiveness of the change-detection 
function.  
 
Table 1: Test for obtaining optimal value of matching 

threshold ( r )  

r 
 

NRo 
 

NR 
 

Correct 
classification 

rates 

Incorrect 
classification 

rates 
3 209.2 5 41.80% 58.20% 
4 37.30 12 56.02% 43.98% 
5 46.50 29 70.98% 29.02% 
6 87.90 74 85.12% 14.88% 
7 210.90 196 89.10% 10.90% 
8 604.80 589 91.72% 8.28% 

 

6.1.3 Mutation probability  
The mutation probability (mutProb) is a threshold that 
determines whether a bit position in a binary string will 
be mutated or not. This value was initially implemented 
using an adaptive mechanism which is calculated as the 
length of the matching bits in two binary strings divided 
by the length l of the binary string. The value generated 
is a real number between 0.0 and 1.0. This threshold 
value is then used to determine whether a bit position is 
subjected to mutation. For each bit position to be 
mutated, if a randomly generated number between 0.0 
and 1.0 is less than the mutation probability, the bit is 
mutated. The converse is the case when the random 
number is greater than the mutation probability. In 
(Ayara, Timmis et al. 2002), the adaptive mutation 
probability was discovered to degrade the time 
complexity of the algorithm if the probability is greater 
than a specific value. This is because the probability 
indicates that a sizeable fraction of the total number of 
bits in a random binary string matches self. Hence the 
process of mutating a random detector is restricted to 
limited options. This can be explained by a matching 
threshold r = 8. In this case, the mutation probability is 
1 and the process of mutation just flips a random 
detector to its image. In a situation that the image also 
matches self, mutation flips back to the original 
detector which also matches self. If this is the case for a 

significant number of random detectors generated, the 
time complexity is increased considerably. However 
there is a threshold value below which this will not 
occur. For example, the results of experiments in 
(Ayara, Timmis et al. 2002) show that using 8-bits 
binary data generated randomly the maximum mutation 
probability that will not make the algorithm worse off 
than the original exhaustive, for threshold values of 7 
and 8, was confirmed to be 0.8. This directed the choice 
of mutation probability for subsequent experiments, 
which was set to 0.5. 

6.1.4 Detector life-time indicator 
The detector life-time indicator (mutLim) determines 
the number of attempts that mutation can be performed 
on a random detector. When values of this parameter 
are greater than 1, it was found to increase the time 
complexity of NSMutation when used with adaptive 
mutation probability. This phenomenon can be linked to 
the explanation given in section 6.1.3, which accounts 
for the poor behaviour of the algorithm using adaptive 
mutation probability. In a situation when the mutation 
probability is above a specific value, and the limited 
detector options that mutation can generate also match 
with self, an increase in life-time indicator only extends 
the time for the flipping the detector back and forth 
between the image and the original detector.  
 
Some definitions of terms used in the experiments are 
listed in Table 2. 

 
Table 2: Definitions of terms used in experiments 

Terms Definitions 

l Length of string 

r Matching threshold 

m Alphabet size 

NS Population of self data 

NRo Population of candidate detectors 

NR Population of competent detectors 

Pm Probability of detecting a non-self 

Pf Probability of failing to detect   non-self 

NT Population of test data 

mutProb Mutation probability 

mutLim Mutation limit (Detector life-time 
indicator) 

 
 



6.2 THE BOTTLENECK FOR NEGATIVE 
SELECTION 

Given the earlier discussion regarding the constraint of 
the exhaustive algorithm, i.e., the size of the set of 
candidate detectors increases exponentially with the 
size of the self-set, initial tests were performed to check 
if this claim holds true for the proposed algorithm. This 
process involved determining the number of candidate 
detectors required to produce a specified number of 
competent detectors when the population size of self is 
increased progressively. The test was carried out with 
both the NSMutation and exhaustive algorithm for 
comparison.   

Using the definitions provided in Table 2, the 
mathematical equations for estimating Pm, NR, and NRo 
(Forrest, Perelson et al. 1994), were employed for 
implementing the algorithm. 

The following procedures were carried out for 
NSMutation algorithm: 

1. For a particular data set, derive r   (section 6.1.2) 
for all runs of the experiment; 

2. Calculate  and select a desired value for ; mP fP

3. Determine the value of NR according to the 
following equation: ( )

m

f
R P

P
N

ln−
= ; 

4. Set the values of mutProb and mutLim using the 
guidelines in sections 6.1.3 and 6.1.4 respectively;  

5. Execute steps a-c a number of times while 
incrementing the size of NS, 8 ≤ NS ≤ 160. (The 
selected value was 100 for trial runs): 

a. Determine NRo  experimentally by generating 
random strings until  valid detectors are 
determined;  

RN

b. Once a match occurs between a self string and 
a candidate detector, or there is a duplicate of 
the detector in the detector set, perform 
uniform mutation in a guided manner until the 
candidate detector becomes a competent 
detector. The detector is then added to the set 
of useful detectors; 

c. The number of mutation attempts is limited by 
a detector life time indicator (mutLim), which 
is set to a fixed value.  

This life-time indicator constrains the time expended to 
change a detector that closely resembles self. In a 
situation where a mutated detector is not improved by 
the time the life-time has expired, it is discarded and  
replaced by another random detector. The same process 
was undertaken for the exhaustive algorithm, excluding 
the mutation operator and the check for redundant 
detector in the detector set. The potential repertoire size 

( RoN  - collection of candidate detectors before negative 
selection) for both algorithms was recorded for 
comparison. While the population of detectors 
generated after negative selection, known as the 
available repertoire size ( ), was set as a parameter 
for the simulation. The results obtained from the 
experiments are presented in  Table 3 and Figure 3. 
These results are obtained from 100 trials for each size 
of the self-set, 8 ≤ N

RN

S ≤ 160, with the following 
parameters NR = 589, r = 8, Pf = 0.1, mutLim = 4, 
mutProb = 0.5. Each column of Table 3 holds values 
calculated as a mean of the number of trials, while the 
standard deviations are enclosed in brackets for each 
mean value. Column (a) indicates the size of self set, 
(b) holds the theoretical estimates of potential repertoire 
(NRo), (c) the experimental NRo values for the exhaustive 
algorithm, (d) experimental NRo values for NSMutation, 
and (e) the mean mutation occurrence over 100 trials. 
The results in Table 3 are selected from the outcome of 
the experiments shown in Figure 3. From Table 3, it can 
be clearly seen that the potential repertoire generated 
for both algorithms are similar, for example when the 
population size of self set is 152, the exhaustive and 
NSMutation algorithms generate potential repertoire of 
1128.16 and 1127.62 respectively. This explains the 
overlap in the graphs of both algorithms. Also, column 
(e) in Table 3 show that mutation occurs 1.807 ≈ 2 
times out of 100 trials.  
In order to determine the effectiveness of the 
NSMutation in comparison to the exhaustive algorithm, 
their detection rates were tested empirically using a 
single population size of self NS = 8. Other parameter 
values include NR = 589,  r = 8, Pf = 0.1, mutLim = 4, 
mutProb = 0.5, NT  = 256. The outcomes of these tests 
are presented in Table 4. 
As shown in Table 4, the theoretical estimation of 
potential repertoire size is calculated as 608.21, while 
the mean potential repertoire sizes for exhaustive and 
NSMutation respectively are 608.10 and 608.40.  Their 
corresponding detection rates are 90.36% for 
exhaustive and 89.84% for NSMutation. Testing the 
statistical difference between their detection rates using 
the Z-test, gave a value of +0.085, which shows that 
their detection rates are not statistically different. 
 

 

 

 

 

 

 

 

 



  

Table 3: Experimental results generated from 8-bits data based on 100 trials for self set NS = 152, 160.  

NS 

 
NRo  

(Theoretical) 
NRo  

(Exhaustive  
algorithm) 

NRo  
(NSMutation 

algorithm) 

Mutation 
Occurrence 

(a) (b) (c) (d) (e) 

152 1068.62 1128.16 
(33.130) 

1127.62 (31.739) 1.807 (1.020) 

160 1102.61 1084.26 
(32.344) 

1091.14 (31.190) 1.768(0.992) 

 

 

Chart showing the potential repertoire generated theoretically, 
from exhaustive and NSMutation algorithms with 8-bit binary data
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Figure 3: Chart for 8-bits data that illustrates the theoretical estimates and mean population of potential repertoire 

based on 100 trial runs for both algorithms given each size of self-set. 

 
 

Table 4:  Test results of detection performance of the 
NSMutation and exhaustive algorithms over 10 trials. 

 
 Exhaustive NSMutation 

Theoretical NRo 608.21 
Experimental NRo 608.10 608.40 
Detection rates 90.36% 89.84% 
Z-test value                    +0.085 

 

7. ANALYSIS AND DISCUSSION 
In this section, the output of the experiments performed 
in section 6.2 are analyzed with the aim of discussing 
the features peculiar to NSMutation and comparing 
with the exhaustive algorithm in terms of tests 
conducted. This comparison is then extended to the 
other algorithms for an overview of all the detector 
generating algorithms.  



From the diagram of  Figure 3, it can be observed that 
the number of candidate detectors examined for the 
exhaustive algorithm increases exponentially with the 
size of the self-set. This confirms the limitation 
expressed by (Kim and Bentley 2001). This behavior is 
also exhibited by NSMutation, whose pattern of 
increase in potential repertoire closely resembles that of 
the exhaustive algorithm. This can be explained to be a 
result of the random nature of the self set, which is 
normally distributed. During the process of mutating a 
candidate detector for the NSMutation algorithm, the 
aim is to guide the candidate detector away from self 
set. But since the self set is randomly distributed around 
the search space, there is an equal probability of 
mutating the random detector away from or towards 
self set. Hence the impact of guided mutation cannot be 
guaranteed for random data, and the outcome is more or 
less a random generation of detectors. However, this is 
not the usual case for a clustered self set with well-
defined boundaries. Preliminary experiments performed 
in (Ayara, Timmis et al. 2002) to test this showed that 
the potential repertoire is almost linear with increase in 
the self set. Also refer to (Ayara, Timmis et al. 2002) 
for the pseudocodes of all the algorithms. 

The comparison of their detection rates in Table 4 
further confirms the similarities. The difference in their 
performance at detecting non-self was evaluated using 
the Z-statistic at a significance level of 0.05%, and the 
outcome showed that their detection rate performances 
were not statistically different.  

Although from Figure 3 it can be asserted that the 
NSMutation algorithm behaves similarly to the 
exhaustive, some extensive studies of the NSMutation 
algorithm (Ayara, Timmis et al. 2002), provide more 
information about some parameters of the algorithm 
that control its performance. They include the matching 
threshold (r), detector life-time rate (mutLim) and 
mutation probability (mutProb). These parameters can  
deteriorate its performance than its predecessor or 
speculatively better, if a good combination of 
parameters for the data set can be obtained. For 
example, when r = l (length of each string), the effect of 
the mutProb on the time complexity is more profound, 
even though there is a higher chance of generating good 
detectors due to the exact matching. The effect of 
mutProb is aggravated by a high value of mutLim. For 
example when l = 8, r = 8, mutLim = 4, and mutProb = 
1.0, mutation of a non-competent detector produces its 
image and if the mutant also matches self, further 
mutation just flips the image back to the original 
detector, thereby causing an alternation between the 
image and the original detector. The mutLim parameter 
thus causes this process to be carried out for a specific 
number of trials. However, as r << l, the effect of 
mutProb and mutLim pale into insignificance, since the 
value of r already triggers high time complexity. This 
parameterization factor for good performance of 

learning algorithms has been observed by (Bentley, 
Gordon T. et al. 2001). So the next question to be 
answered is “what parameter values for the NSMutation 
algorithm can make it outperform the exhaustive?” 
Altogether, the reviewed and normalized time and 
space complexities of all the algorithms, as shown in 
Table 5, reveal the characteristics in terms of 
computational complexity. While the time complexities 
of the exhaustive algorithm and NSMutation are 
exponential with respect to the size of self, the others 
have time complexities that are linear functions of the 
self. The linear algorithm, however, has the 
disadvantage of generating redundant detectors, as is 
the case with the exhaustive; this in turn limits its 
performance. However, the greedy algorithm achieves 
the best coverage for detection, due to the fact that it 
generates complete repertoires of detectors as claimed 
by (D'haeseleer, Forrest et al. 1996). The binary 
template, which derives its inspiration from the greedy 
also achieves similar coverage. Both greedy and binary 
template algorithms have higher computational 
complexity when compared to the linear algorithm. The 
greedy algorithm includes the process of checking that 
each detector generated represents a cluster of non-self 
to prevent redundancy and also ensure that efficient 
detectors are produced. Also the binary template 
algorithm includes similar processes of removing 
redundant detectors and ensuring that inefficient 
detectors are eliminated. Hence, these additional 
processes of guaranteeing non-self coverage and non-
redundancy incur extra time to complete the algorithms. 
It must be noted  that when the matching threshold r 
approaches length l  of each string in the search space, 
the linear time complexities of the linear, greedy and 
binary template with respect to the size of the self-set, 
may exhibit similar behavior as that of the exhaustive 
and NSMutation, due to the exponential value mr in 
their time complexity equation. 
In terms of space complexity, NSMutation has a higher 
space complexity that the exhaustive. The reason for 
this is that the NSMutation stores the detectors as they 
are generated for comparison with subsequent detectors 
in order to prevent redundancy. On the other hand, the 
linear, greedy and binary template incur more space 
complexity due to the storage of mr binary template 
strings that are stored and updated. However the binary 
template algorithm has a lower space complexity when 
compared with the linear and greedy algorithms. 
Another criterion for comparing the algorithms is the 
coverage of detectors. This factor measures the extent 
to which the detectors generated from the negative 
selection algorithm are fully representative of the non-
self set. Thus it thereby provides a means of 
determining the efficiency of the algorithm. If complete 
coverage is to be achieved, it implies that all non-self 
detectors must be generated. However, there is a need 
to maintain a balance between the time taken to 
generate detectors and getting a good coverage. This 
balance seems to be best achieved by the greedy 



algorithm. The algorithm is able to generate non-
redundant detectors that have high detection coverage, 
at minimal time complexity. 
In summary, it can be argued that the NSMutation is 
more or else the exhaustive algorithm since they expend 
similar time complexity and achieve as much coverage 
of non-self. However, NSMutation differs from the 
exhaustive algorithm because it includes checks for 
redundancy and tunable parameters that can induce 
different performance. When compared with the linear, 
greedy and binary templates, the simplicity of 
NSMutation makes it quite attractive as against the 
others that entail cumbersome procedures. Furthermore, 
only the exhaustive and NSMutation can be used with 
other matching rules. The linear, greedy and binary 
template algorithms are restrictive. They are limited to 
the r-contiguous bits matching rule, which renders them 
inextensible and inappropriate for other matching rules. 
The benefits of NSMutation thus include simplicity, 
high detection rate performance and extensibility. 

Table 5: Reviewed time and space complexities of all 
detector generating algorithms (refer to original 
equations in (D'haeseleer, Forrest et al. 1996)). 

Algorithm Time Space 

Exhaustive  O( ml.NS) O(l.NS) 
Linear  O((l-r+1).Ns.mr)+ 

O((l-r+1).mr)+ 
O(l. NR) 

O((l-r+1)2.mr) 

Greedy  O((l-r+1).Ns.mr)+ 
O((l-r+1).mr.NR) 

O((l-r+1)2.mr) 

Binary 
Template  

O(mr.NS)+ 
O((l-r+1).mr.NR) 

O((l-r+1).mr)+ 
O(NR) 

NSMutation O(ml.NS)+O(NR.mr)
+O(NR) 

O(l.(NS + NR)) 

  

8. CONCLUSIONS 
This paper has made a comparison between the 
different negative selection algorithms for generating 
detectors, and implemented a variation of the initial 
exhaustive algorithm. The results were presented using 
the time taken to generate detectors, as well as the 
detection rate coverage of the final detectors generated. 
It has been demonstrated that there are trade-offs to be 
made in deciding on the best algorithm for producing 
the detectors. The exhaustive algorithm takes 
considerable time (exponential in size of self data) and 
produces redundant detectors; the linear algorithm has a 
linear time complexity but also produces redundant 
detectors; the greedy algorithm produces a complete 
repertoire using up as much space as the linear 

algorithm, but has a higher computational complexity; 
the binary template produces a minimal set of efficient 
detectors at the expense of more time complexity; and 
finally NSMutation is similar to the exhaustive 
algorithm with the difference of eliminating redundancy 
and possessing parameters that can be optimized for 
better performance. However for structured data sets, 
the NSMutation has shown better performance in terms 
of time complexity, but there is still need for further 
verification. Thus, in a case where choice has to be 
made between both exhaustive and NSMutation, the 
latter has the advantages of possessing tunable 
parameters, eliminating redundant detectors, and being 
suitable for any matching rule. But, the decision lies 
with the constraints being met while implementing the 
algorithm in its target domain. Different domains place 
emphasis on different constraints that must be satisfied. 
These might include factors such as time to generate 
detectors; space storage used by the detectors; matching 
function; as well as the performance of detectors 
generated. Since no algorithm has managed to minimize 
all these constraints, trade-offs have to be made in 
choosing an algorithm for generating negative selection 
detectors. But it must be said that more analysis of the 
NSMutation algorithm will need to be carried out in 
order to determine the best combination of parameters 
that can improve it significantly. 
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