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1 EINFUHRUNG

Computernetzwerke werden immer umfangreicher, firmeninterne Netzwerke und
das Internet sind nicht mehr weg zu denken. Aber es geschehen auch immer
mehr Angriffe auf diese Netze. Daraus entsteht der Wunsch Computernetze
abzusichern. So genannte Intrusion Detection Systeme haben zum Ziel Angriffe
zu erkennen und abzuwehren. Allerdings ist ein nicht zu vernachlassigender
Administrationsaufwand mit ihrem Betrieb verbunden. Die Natur hat in Millionen
von Jahren ein System zum Schutz des Korpers entwickelt, das Immunsystem
[11]. Ein solches System ware ideal fur Computernetzwerke. So kam die Idee auf,
das menschliche Immunsystem zum Vorbild zu nehmen, und so kinstliche
Immunsysteme flr Computernetzwerke zu entwickeln.

Im Folgenden wird vor dem Hintergrund des menschlichen Immunsystems und
derzeitiger Intrusion Detetction Systeme ein Algorithmus zur klonalen Selektion
unter Verwendung eines negative selection operators nach Kim und Bentely [11]
dargestellt. Daruber hinaus wird ein kurzer Ausblick auf dynamische klonale
Selektion sowie auf Ideen der Danger Theory gewahrt. Die Danger Theory konnte
die Entwicklung kunstlicher Immunsysteme malfigeblich vorantreiben.

2 DAs MENSCHLICHE IMMUNSYSTEM

Das menschliche Immunsystem schiitzt den Korper vor Angriffen von aul3en. Es
verteidigt ihn gegen kérperfremde Substanzen und Krankheitserreger. Dazu ist es
notwendig, dass das Immunsystem zwischen kérpereigenen (self) und
korperfremden (non-self) Elementen unterscheiden kann. Seiner Aufgabe gerecht
wird das leistungsstarke, effektive Immunsystem durch einen komplexen Aufbau.
Die Grundlagen der Funktionsweise des menschlichen Immunsystems umfassend
zu erlautern ist nicht Aufgabe dieser Ausarbeitung. Allerdings sollen im Folgenden
einzelne Aspekte angesprochen werden, die fur die Umsetzung in ein Intrusion
Detetction System von Interesse sind.

2.1 Welche Eigenschaften hat das menschliche
Immunsystem?

Das Immunsystem besteht aus drei wesentlichen Phasen: der Entwicklung der
genetischen Bibliothek, der negativen Selektion und er der klonalen Selektion.

Unser korpereigenes Immunsystem erflllt drei wesentliche Kriterien: es ist verteilt,
organisiert sich selbst und ist vollstandig.

Die Verteiltheit zeigt sich darin, dass das Immunsystem aus unterschiedlichen im
Korper verteilten Organen besteht (z.B. dem Knochenmark und dem Thymus) und
aus Zellen, die durch die Blutbahnen zirkulieren. Es gibt kein zentrales
Steuerungsorgan, dass das Immunsystem von einem einzigen Punkt aus
koordiniert. So kdnnen Immunantworten auf erkannte Gefahren schnell und
(bedingt) lokal geschehen.

Das Immunsystem organisiert sich selbst. Hier spielt wiederum die Abwesenheit
eines zentralen Steuerungsorgans eine Rolle. Antikérper werden scheinbar
zufallig aus der genetischen Bibliothek gebildet. Es gibt zuerst keine
Beschrankung in irgendeiner Weise. Antikérper entstehen als zufallige
Kombinationen der Gensegmente der genetischen Bibliothek. Anschliel3end



durchlaufen die neu gebildeten Antikorper die Stufe der negativen Selektion.
Hierbei werden ihnen kérpereigene Zellen vorgeflihrt, auf die sie nicht reagieren
durfen. Falls ein Antikdrper dennoch eine kdrpereigene Zelle als gefahrlich
erkennt und sich daran bindet, stirbt dieser Antikorper ab.

In der letzten Stufe, der klonalen Selektion, vermehren sich Antikorper, die sich
als besonders gut heraus gestellt haben. Antikorper, die zwar funktionsfahig aber
nicht effektiv sind, sterben nach einer bestimmten Lebensdauer ab. Es gibt also in
der Entwicklung der Antikorper kein zentrales Organ, dass vorgibt, welche
Antikorper gebildet werden sollen, sondern nur eine Vorgehensweise, mit der der
Korper effektive Antikorper bildet.

Das letzte wichtige Kriterium, das das koérpereigene Immunsystem erflillt, ist die
Vollstandigkeit. Der Korper ist in der Lage, mit einer relativ geringen Anzahl an
Antikorpern eine grof3e Anzahl an Pathogenen zu erkennen. Dartber hinaus wird
gesammeltes Wissen Uber effektive Beseitigung von Pathogenen wirksam wieder
verwendet. Die effektiven Antikdrper bleiben, wie oben beschrieben, lange am
Leben. Der Korper lernt effektiv. Nicht zuletzt hat der Korper die Moglichkeit, Gber
die genetische Bibliothek schnell eine grolRe Anzahl von unterschiedlichen
Antikdrpern zu erzeugen [6].

Das menschliche Immunsystem ist zusammenfassend ein System, dass ohne
auldere Steuerung effektiv den Korper vor Gefahren schitzt. Dazu verfugt es uber
Madglichkeiten sich an veranderte Bedingungen anzupassen.

2.2 Wichtige Begriffe

Im Folgenden werden stichwortartig einige der im Weiteren mehrfach
auftauchenden Begriffe kurz erlautert.

Antigen

Als Antigen bezeichnet mal alle kérperfremden Stoffe. Sie werden im Allgemeinen
vom Immunsystem erkannt und I6sen eine Immunreaktion aus. So ist der Korper
in der Lage sich vor Gefahren von aulden zu schutzen.

Antikorper

Antikérper werden vom Koérper als Antwort auf ein erkanntes Antigen gebildet. Sie
binden das Antigen und machen es damit unschadlich.

Genotyp

Der Genotyp eines Organismus ist sein vollstandiges Erbgut. Das Erbgut stammt
anteilig von beiden Elternteilen.

Phanotyp

Der Phanotyp ist das Erscheinungsbild eines Organismus. Er hangt malfdgeblich
vom Genotyp dieses Lebewesens ab, wird aber auch stark durch die Umwelt des
Organismus gepragt. Der Phanotyp eines Organismus verandert sich im Laufe
seines Lebens.

Negative Selektion

Antikérper durchlaufen in ihrer Entwicklung die Phase der negativen Selektion.
Hier werden den Antikorpern korpereigene Zellen vorgefuhrt. Werden diese self
Zellen von den Antikdrpern gebunden, sind diese Antikorper offensichtlich defekt.
Sie sterben ab.

3



Klonale Selektion oder klonale Expansion

Die klonale Selektion ist die Vermehrung und Differenzierung' reifer Antikorper.
Die Differenzierung erfolgt mittels Mutation und Crossover.

3 INTRUSION DETECTION SYSTEME

Intrusion Detection Systeme (IDS) sind automatisierte Systeme zur Erkennung
von Eindringlingen in Computer Systemen. Sie sind sozusagen die Alarmanlage
eines Netzwerks. Die Hauptaufgaben von IDS liegen in der Auffindung von
unautorisiertem Gebrauch, von falscher Verwendung sowie von Missbrauch des
Systems.

Man unterscheidet host level IDS und network based IDS. Host level IDS werden
heute nur noch selten verwendet. Sie Uberwachen den Traffic eines einzelnen
Hosts. Network based IDS sind dagegen heute weit verbreitet. Sie sind in der
Lage mehrere Hosts und den Traffic eines gesamten Netzwerks zu kontrollieren.

Im Wesentlichen werden zwei Methoden angewendet: Missbrauch Erkennung
(misuse detection) und Anomalie Erkennung (anomaly detection). Bei der
Missbrauch Erkennung wird nach bekannten Angriffsmustern im Traffic gesucht.
Zur Anomalie Erkennung werden Profile von regularem Gebrauch des Systems
erstellt. Sie umfassen zum Beispiel die GroRe des normalen Netzwerk Traffics
oder Informationen Uber normales Verhalten von Nutzern des Systems. Grobe
Abweichungen von diesen Profilen werden erkannt und als Gefahr identifiziert. Die
Starke der Anomalie Erkennung ist, dass vorher unbekannte Gefahrdungen
erkannt werden konnen. Es ist kein Wissen Uber die Art des Angriffs notwendig,
da nicht nach bekannten Angriffsmustern gesucht wird. [11].

Kim und Bentley [6] identifizieren drei Design Ziele fiir network based IDS. Da
network based IDS verteilte Komponenten Uuberwachen, ist es nur konsequent, sie
ebenfalls verteilt zu erstellen. Des Weiteren ist es winschenswert, dass ein
network based IDS in der Lage ist sich selbst zu organisieren. Es soll ohne
zentrales Steuerungsorgan funktionieren und selbst lernen. Damit einfallt die
manuelle Steuerung von auf3en. Schlief3lich soll jedes IDS effizient arbeiten und
das Uberwachte Netzwerk nicht unnétig belasten.

4 KUNSTLICHE IMMUNSYSTEME

Klnstliche Immunsysteme (Artificial Inmune Systems — AlS) haben zum Ziel, die
Fahigkeiten des menschlichen Immunsystems in die Welt der IDS zu Ubertragen.
Viele Fahigkeiten des Immunsystems sind wunschenswerte Eigenschaften fur
IDS. So drangt sich der Gedanke auf, IDS mittels Erkenntnissen Uber die
Funktionsweise des Immunsystems zu erstellen.

Kim und Bentley stellen die Architektur eines AlS vor [8]. Das AlS besteht aus
einem primaren und mehreren sekundaren IDS. Das primare IDS Ubernimmt
Aufgaben analog zur Erstellung der genetischen Bibliothek und der negativen
Selektion im Korper. Die genetische Bibliothek enthalt genetische Segmente
effektiver Anomalie Detektoren. Sie entwickelt sich standig. In der Phase der
negativen Selektion werden die aus der genetischen Bibliothek zufallig gebildeten
Detektoren getestet und ggf. aussortiert.

' Unter der Differenzierung von Antikérpern versteht man die gemaR einem Muster erfolgte
Umwandlung.



Die sekundaren IDS (ibernehmen die eigentliche Uberwachung des Systems. Hier
wird der Netzwerk Verkehr mit Hilfe der generierten Detektoren Uberwacht. Falls
eine Anomalie erkannt wird, wird der entsprechende Detektor geklont (klonale
Expansion) und an andere sekundare IDS weitergereicht. Des Weiteren werden
die Gene dieses Detektors in die genetische Bibliothek des primaren IDS
aufgenommen, falls sie dort noch nicht vorhanden sein sollten.

Diese Architektur eines AIS erfullt die Design Eigenschaften, die an ein IDS
gestellt werden.

5 ALGORITHMUS ZUR NEGATIVEN SELEKTION

Ein grundlegender Algorithmus zur negativen Selektion wurde von Forrest et al
1994 vorgestellt [5]. Forrest et al haben den Algorithmus zuerst zur
Virenerkennung eingesetzt, stellen aber selbst fest, dass die
Anwendungsbereiche weitreichender sind.

Der Algorithmus soll Veranderungen erkennen. Dazu generiert er Detektoren, die
Veranderungen aufspuren. Die Generierung und Arbeitsweise der Detektoren
orientiert sich stark an Erkenntnissen Uber die Arbeitsweise des menschlichen
Immunsystems. Dabei werden die Detektoren als Analogon zu Antikdrpern
gesehen. Als self, und damit in Analogie zu den kdrpereigenen Zellen, werden alle
unkritischen Elemente des zu betrachtenden Umfeldes eingestuft, so zum Beispiel
regulare Nutzer, fehlerfreie Dateien und ahnliches. Als non-self, also als
Pathogene, werden alle schadlichen Elemente betrachtet, beispielsweise Angriffe,
Viren oder nicht autorisierte Benutzer.

Der Algorithmus basiert auf der Annahme, dass zur Zeit der Erstellung der
Detektoren das zu betrachtende Umfeld storungsfrei ist. Es wird also davon
ausgegangen, dass das uberwachte System in seiner Erscheinung vollstandig als
self eingestuft werden kann. Um das System handhabbar zu machen, wird es
haufig auf binarem Niveau betrachtet. Jedes einzelne Element von self wird als
binarer String identifiziert?. Soweit
notwendig, werden diese Strings
zerteilt, so dass Teilstrings
identischer Lange vorliegen.

Self Strings (S)

Der Algorithmus besteht aus zwei
Phasen, der Phase der y
Generierung von Detektoren und . , Uberein- | J2 _
anschlieRend, der Phase der Zufallige Strings > . ool 7| @bweisen
Uberwachung des Systems.

nein

A

5.1 Generierung von
Detektoren Detektoren (R)

Angenommen self (S sei die
Menge der Strings in self), habe
drei Elemente: 0011 1001 und
1101. Sollten spater wahrend der
Uberwachung des Systems andere Elemente auftauchen, so soll der Algorithmus
dies erkennen.

Abbildung 1 (Generierung von Detektoren)

2 Es ist durchaus moglich, die Stings Uber einem anderen Alphabet als {0,1}* zu definieren.
Allerdings verringert die bindre Darstellung den Rechenaufwand.



Zuerst werden nun wahllos binare Strings erzeugt, mit dem Ziel einige von ihnen
als Detektoren nutzen zu kdnnen. Diese Menge der Detektoren sei R.
Beispielsweise seien die zufallig generierten Strings die Elemente 1010 1001
0000 1100 und 1101.

In einem zweiten Schritt werden die potentiellen Detektoren nun an den
Elementen aus S getestet. Dieser Teilschritt entspricht der negativen Selektion
wie sie das menschliche Immunsystem vornimmt um schlechte Antikorper
auszusortieren. Alle potentiellen Detektoren, die einem Element aus S
entsprechen, werden geloscht. Sie kommen als Detektoren nicht in Frage. So
werden nach Durchfihrung des Tests nur die Elemente 1010, 0000 und 1100 in R
enthalten sein. 1001 und 1101 sind identisch zu Elementen in S und somit als
Detektoren nicht geeignet.

In realitatsnahen Umgebungen werden S und R Strings hoherer Lange enthalten.
Eine vollstandige Ubereinstimmung wie oben beschrieben ist sehr rar. Daher
relaxiert man die vollstandige Ubereinstimmungsfunktion haufig zu einer r-
contiguous Ubereinstimmungsfunktion. Dabei stimmen zwei Strings tiberein, wenn
sie an wenigstens r benachbarten Stellen Ubereinstimmen. So stimmen 1100110
und 0100011 beispielsweise an 3 Stellen Uberein. Wird aber eine 4-contiguous
Funktion angewendet, so stimmen die beiden Strings nicht Uberein.

5.2 Wie muss die Menge der Detektoren dimensioniert
werden?

Percus et al [15] leiten eine Formel fur die Wahrscheinlichkeit her, dass ein
Detektor ein bestimmtes Antigen erkennt. Diese Wahrscheinlichkeit P hangt ab
von m, der Anzahl der Buchstaben im Alphabet, sowie von r, der Anzahl der
benachbarten Stellen des Strings, die Ubereinstimmen mussen. Daruber hinaus
verandert sich P abhangig von /, der Lange jedes Strings.

Die Wahrscheinlichkeit P setzt sich aus mehreren Komponenten zusammen.
Beginnt man an der linken Seite des Strings, so ist die Wahrscheinlichkeit, dass
das Wort an r Stellen mit dem Detektor Ubereinstimmt gleich m™. Der
ubereinstimmende Abschnitt kann aber nicht nur ganz links im String liegen,
sondern an genau /-r unterschiedlichen Stellen des Strings starten. Allerdings darf
der Ubereinstimmende Abschnitt an keiner anderen Stelle des Strings beginnen;
das geschieht mit einer Wahrscheinlichkeit von m"(m-1)/m. So setzt sich die
gesamte Formel als P =m™ [ (I-r) (m-1) / m +1 ] zusammen.

Aus dieser Formel kann nun sehr einfach r errechnet werden. m und / sind
bekannte GroRen und P wird auf genau den gewlnschten Wert gesetzt.

Forrest et al geben dartber hinaus Formeln an, die die Anzahl der notwendigen
Detektoren berechnen [5].



5.3 Uberwachung des
Systems

Die Uberwachung des Systems ist denkbar

einfach. Die Elemente aus S kdnnen sich 3 l nein
uber die Zeit hinweg andern. Kontinuierlich |, iiberwachendes

werden sie mit Elementen aus R Uberpruft. System (S)
Sollte eine Ubereinstimmung vorliegen, }
wird diese erkannt. Offensichtlich ist eine I
Veranderung in S aufgetreten, die nicht der .
als self bekannten Form entspricht. Anomalie

Detektoren (R)

> Ubereinstimmung?

Abbildung 2 (Uberwachung des Systems)
5.4 Was kann der

Algorithmus leisten?

Der Algorithmus zur negativen Selektion erkennt, falls sich ein Element der zu
uberwachenden self Menge soweit verandert, als das er nicht mehr dem
ursprunglichen Muster entspricht. Der Algorithmus kann aber das Entfernen
einzelner Strings aus S nicht erkennen, er Uberprift nur alle vorhandenen
Elemente auf Veranderung.

6 NecaTIVE SELEKTION IN EINEM IDS

Wie bereits beschrieben (siehe 4) bestehen auffallige Ahnlichkeiten zwischen den
Fahigkeiten des menschlichen Immunsystems und den Anforderungen an ein
IDS.

Aus diesem Blickwinkel betrachtet, stellt sich die Frage, ob der von Forrest et al
vorgestellte Algorithmus [5], der sich an der negativen Selektion bei der Bildung
von Antikorpern im menschlichen Immunsystem orientiert, Verwendung in
Intrusion Detection Systemen finden kann. Kim und Bentley [9] haben hierzu
Versuche durchgefuhrt. Der Algorithmus zur negativen Selektion wurde
verwendet, um Netzwerk Traffic zu beobachten und Veranderungen festzustellen.

6.1 Aufbau des Experiments Externe Verbindungen

Es wurden TCP Header Pakete *\ (*

festgehalten, die zwischen dem internen Eg %’E*’ gg;i 8%82
LAN und externen Servern ausgetauscht {(2’ *)’(*’ 113)) 255
wurden, sowie von Pakete, die im Intra-LAN {(2’ *)’(*’ 25)) 192
versendet wurden. Vier Gruppen von {(2’ *)’(*’ trusted)) 187
Feldern wurden aus den Verbindungen {(2’ *)’(*’ not trusted)} 756
extrahiert: Verbindungs-ldentifikatoren, auf {(2’ 5é) i* )} 940
bekannte Verwundbarkeiten hinweisende {(2’ 25)’(*’ )} 352
Informationen, 3-way handshake und Traffic {(2’ 113’) (’* )} 145
Intensitat. Die Verbindungs-Identifikatoren {(2’ trust(,ad,) *, N 114
wurden protokolliert um einzelne {(2’ not trus’Eec’i) (*.*% 6050
Verbindungen zu identifizieren. Bestimmte ’ internes LAN
Felder in TCP header weisen darauf hin, ob {2, *),(2, trusted)) 190
Sender- oder Empfanger-Port durch {(2’ *)’(2’ not trusted)} 189
bekannte Angriffe verwundbar sind. Angriffe C

verletzen haufig die Auflagen des 3-way Tabelle 1 (Ubersicht der

handshake, deshalb ist es sinnvoll zu Verbindungen)



uberprufen ob sie eingehalten wurden. Eine auffallig hohe Intensitat des Netzwerk
Traffics kann auf Angriffe hinweisen.

Diese Informationen wurden kumuliert und daraus 13 unterschiedliche Klassen
erstellt, die self widerspiegeln (siehe Tabelle 1). Ein Tupel {(a, b), (c, d)} bedeutet
dabei, eine Verbindung von Host a, Port b nach Host c, Port d.? Alle internen
Hosts werden durch die Zahl 2 symbolisiert. Externe Hosts wurden nicht
identifiziert.

Fir die Tests wurde nur die Klasse der Verbindungen {(2,*),(*,25)} mit 192
Verbindungen betrachtet. Es handelt sich hierbei um Verbindungen von einem
internen Host zum smtp Port eines externen Hosts. Dabei wurden mit Hilfe von
154 Verbindungen Detektoren generiert, die verbleibenden 38 Verbindungen
wurden zum Testen der Detektoren verwendet.

6.2 Erkenntnisse

Mit Hilfe der Formel von Forrest et al [6] (siehe 5.2) konnten Abschatzungen Uber
die GroRenordnung der Anzahl der bendtigten Detektoren getroffen werden. Soll
eine 4-contiguous Ubereinstimmungsfunktion angewendet werden, so bendtigt
das System rechnerisch 955 Detektoren maximal 20% falschliche
Fehlermeldungen zu erzeugen. Pro generierten Detektor braucht das System 535
Versuche. Diese Zahlen sind offensichtlich hoch. Noch hinzuzufligen ist, dass mit
dieser Konstellation innerhalb eines Tages kein einziger Detektor generiert
werden konnte.

Fir weitere Tests wurde daher eine 9-contiguous Funktion verwendet. So war es
madglich, in akzeptabeler Zeit Detektoren zu generieren. Es wurden mit Riucksicht
auf die Durchfuhrbarkeit des Tests in 5 Durchlaufen jeweils 1000 Detektoren
generiert. Die erzeugten Detektoren wurden anschlielRend genutzt, um vier
Angriffe* sowie das zufallige erzeugen von Strings und reguldren Netzwerk Traffic
zu beobachten. Der Anteil der erkannten Angriffe wurde festgehalten. Allerdings
konnten nur sehr geringe Anteile der Angriffe erkannt werden, die hochste Rate
liegt bei 15,9%.

Dieser geringe Erfolg war absehbar, da nur 1000 Detektoren generiert wurden.
Fir eine 80%ig Erkennung missten 643 * 10° Detektoren erzeugt werden. Der
hierzu notwendige Rechenaufwand ist allerdings zu hoch.

6.3 Skalierung

Damit steht der praktischen Anwendung des Algorithmus zur negativen Selektion
ein grolRes Skalierungsproblem entgegen. Die Anwendung des Algorithmus stof3t
bereits bei kleinen Testfallen an nicht Uberwindbare Grenzen der Rechenleistung.
Damit ist der Algorithmus in der vorliegenden Form als IDS nicht einsetzbar.

Der Ansatz, negative Selektion zu verwenden, scheint aber durchaus anwendbar
zu sein. Kim und Bentley [9] schlagen vor, die negative Selektion einzusetzen, um
schlechte Detektoren zu erkennen und nicht um fahige zu erzeugen, wie es der
Algorithmus zur negativen Selektion vornimmt.

% port Zuweisungen: port 25: smtp, port 53: DNS, port 80: http, port 113: authentication service
* IP spoofing, rlogin oder ftp Passworte erraten, scanning attack und network hopping attack



7 NicHING

Forrest et al haben untersucht [4], welche Art von Detektoren sich durch
genetische Algorithmen entwickeln.

7.1 Welche Detektoren entwickeln sich?

Bei Detektoren kann man, analog zu den Antikérpern im menschlichen
Immunsystem, von Generalisten und Spezialisten sprechen. Generalistische
Detektoren erkennen eine breite Masse von Anomalien, allerdings konnen sie
dadurch nicht speziell auf einzelne Angriffe reagieren. Dies ist die Aufgabe der
Spezialisten. Die Untersuchung zeigt, dass genetische Algorithmen dazu neigen
Spezialisten auszubilden, wenn die Anzahl der Detektoren steigt.

7.2 Modifizierter Algorithmus zur negativen Selektion

Aufgrund dieser Uberlegungen schlagen Kim und Bentley [7] eine modifizierte
Form des Algorithmus von Forrest et al [4] (siehe 5) vor.

Zuerst muss, genau wie im urspringlichen Algorithmus, ein self Profil erstellt
werden. Aus diesem Profil sollen mit Hilfe des modifizierten Algorithmus effektive
Detektoren generiert werden. Dazu hat jeder potentielle Detektor (ein so genannte
pre-Detektor) einen Fitness Wert. Der eigentliche Algorithmus besteht aus 10
Schritten:

1. D Detektoren werden zufallig erzeugt und der Fitness Wert jedes Detektors
wird mit null initialisiert.

2. Aus den generierten Detektoren werden N Detektoren zufallig ausgewahlt.
3. Ein Element des self Profils wird zufallig ausgewahlt.

4. Jeder der N Detektoren wird mit dem ausgewahiten self Profil verglichen
und der Wert der Ahnlichkeit festgehalten.

5. Der Fitness Wert des Detektors mit der geringsten Ahnlichkeit wird erhéht.
Die Fitness Werte der Ubrigen Detektoren werden nicht verandert.

6. Schritte 2-5 werden wiederholt. Forrest et al [4] schlagen als Anzahl der
Wiederholungen etwa drei mal die Anzahl der zu bildenden Detektoren vor.

7. Die p% der Detektoren mit den hochsten Fithess Werten werden als Eltern
fur neue Detektoren vorgesehen. Mit ihrer Hilfe werden neue Detektoren
gebildet. Hierbei kommen aus der Genetik bekannt Mechanismen (z.B.
Crossover und Mutation) zum Einsatz.

8. Die g% der Detektoren mit den niedrigsten Fithess Werten werden
geldscht, somit entsteht Platz fur neue Detektoren.

9. Es werden neue Detektoren generiert. In der Menge der neuen Detektoren
sind unter anderem die neu generierten Detektoren aus Schritt 7 enthalten.

10.Die Schritte 2-8 werden so lange wiederholt, b_i_s die Fitness Werte der
verbleibenden Detektoren keine signifikanten Anderungen mehr vorweisen.



3 ALGORITHMUS ZUR KLONALEN SELEKTION UNTER

VERWENDUNG EINES NEGATIVE SELECTION OPERATORS

Der oben beschriebene Algorithmus (siehe 7.2) ist zuerst sehr theoretisch. Kim
und Bentley haben weitergehende Uberlegungen zu seiner Umsetzbarkeit
angestellt [10].

Besonders hervorzuheben sind die Unterscheidung zwischen Genotyp und
Phanotyp der Detektoren und die hieraus resultierende Matching Funktion.

8.1 Genotyp und Phanotyp

Alle Detektoren bestehen aus unterschiedlichen Genen. Jedes dieser Gene kann
n Werte annehmen. So kann das Gen 1 in Abbildung 3 (Genotyp und Phanotyp
nach Kim und Bentley [10]) zum Beispiel die Werte "TCP", "UDP" und "TMCP"
annehmen. Ein Detektor ist binar dargestellt. Ein einzelnes Gen ist immer n+1
Stellen lang.

Die Darstellung eines Gens ist relativ einfach. Die erste Stelle des Gens ist
meistens auf 0 gesetzt, dies bedeutet, dass die Auspragung dieses Gens zu
betrachten sind. Sollte die erste Stelle eine 1 beinhalten, werden die folgenden
Stellen nicht mehr betrachtet. Die 1 symbolisiert, dass fur den Phanotyp dieses
Detektors dieses spezielle Gen alle Werte annehmen darf.

Die folgenden Stellen beziehen sich auf die einzelnen Werte des Gens. An der
n+1-ten Stelle des Gens ist die Information Gber den n-ten Wert des Gens zu
finden. Eine 1 bedeutet, dass dieser Wert angenommen wird, das Gegenteil wird

Detector Genotype von der 0
symbolisiert.
Gene 1 Gene 2 Gene 3 Genen
o[1]1][o]Jol1]0]olol1]o]1] 9% [o]o]0]0] Die Informationen
Uber die einzelnen
el Werte in einem Gen
Gene 1 clustertable Gene 2 clustertable Gene 3 clustertable  Gene nclustertable  Werden als OR
ID |Gene value ID Genevalue ID |Gene value ID [Gene value interpretiert. Im
2 Uop Ty S]]  [Z[FALSE Beispiel bedeutet
3 [ TMCP (3 [[17.20) 3 [unknown|  dies, dass das Gen 1
| 4 [ [20.max] "TCP" oder "UDP"
e? annehmen kann. Die
Verbindung der
Detector Phenotype Gene untereinander
IF ( Attributet = TCP OR UDP ) AND wird Gber AND
gﬁ:;:gﬂzzg =[min10)) I'E'\')“[;ND THEN Defector detects NON-SELF  realisiert. Damit
( Attribute n = NULL ) ergibt sich, wie in
Abbildung 3

(Genotyp und
Abbildung 3 (Genotyp und Phanotyp nach Kim und Bentley [10]) Phanotyp nach Kim

und Bentley [10])

anschaulich
dargestellt aus jedem Detektor Genotyp ein zugehdériger Phanotyp.

Des Weiteren kann man in Abbildung 3 (Genotyp und Phanotyp nach Kim und
Bentley [10]) sehen, dass Gene nicht nur diskrete Werte annehmen kénnen. Um
dennoch mit diesen Auspragungen arbeiten zu kdnnen, wird eine
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Klasseneinteilung vorgenommen. Hierzu beste Eltern ™ _
bedienen sich Kim und Bentley eines Detektoren
Algorithmus zur Diskretisierung.

Eltern D‘etektor 1 Eltern Detektor 2
. . *
8.2 Matching Funktion [genetische Operatorenl~——
Forrest et al schlagen als Matching Funktion i
eine r-contiguous Funktion vor [5], die auf der Kinder

Ebene des Genotyps des Detektors pruft.
Dagegen benutzen Kim und Bentley eine
Matching Funktion, die auf dem Phanotyp . ‘ .
Level des Detektors operiert. Diese Matching okay? 2 7y viele Fehler?| o»
Funktion wird verwendet, um zu prifen, ob ja

ein Antigen von einem Detektor als Pathogen Kinder zu den
erkannt wird. Hierzu werden zuerst die Detektoren hinzufiigen
Auspragungen der Gene des Antigens mit i

denen des Phanotyps des Detektors
verglichen. Stimmen Antigen und Detektor in geniigend Detektoren? }—

self——— negative Selektion .
nein

allen Genen Uberein, wird das Antigen als i

non-self identifiziert. fertig

Diese Bedingung kann wiederum dadurch Abbildung 4 (Reproduktion und
gelockert werden, dass keine vollstandige negative Selektion)

Ubereinstimmung gefordert wird, sondern

eine r-contiguous Funktion, die in diesem Fall auf der Ebene des Phanotyps
angewendet wird. Damit wird ein Antigen als Pathogen erkannt, wenn es mit dem
Detektor an r aufeinander folgenden Stellen Ubereinstimmt [11].

8.3 Reproduktion und negative Selektion

Die Phase der Reproduktion 1auft im Algorithmus von Kim und Bentley in
mehreren Schritten ab. Der Algorithmus ist in Abbildung 4 (Reproduktion und
negative Selektion) dargestellt.

Aus zwei Elternteilen werden mittels genetischer Operationen (Crossover und
Mutation) Kinder gebildet. Diese Kinder unterziehen sich anschlieRend der
negativen Selektion, bei der sie an self Elementen getestet werden. Haben die
Kinder die negative Selektion zufrieden stellend durchlaufen, werden sie als
Detektoren beibehalten.

Wenn die Kinder allerdings in der negativen Selektion aussortiert werden, greift
ein weiterer Mechanismus. Sollten aus zwei bestimmten Eltern mehr als M mal
fehlerhafte Kinder erzeugt worden sein, scheinen diese Elternteile fehlerhafte
Informationen zu enthalten. Daher wahlt der Algorithmus zwei neue Elternteile
aus. Diese neuen Elternteile werden dann zur weiteren Generierung von Kindern
genutzt.

8.4 Volistandiger Algorithmus

Kim und Bentley [10] testen den vollstandigen Algorithmus. Der Algorithmus setzt
sich aus den oben beschriebenen Phasen zusammen, er ist in Abbildung 5
(vollstandiger Algorithmus) dargestellt.
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Wie man leicht sieht, wurde an der Struktur Detektoren initialisieren

des Algorithmus nicht viel verandert. Dagegen ]
gibt es Veranderungen im Detail wie oben Detektoren
beschrieben. Dank dieser Veranderungen non-self '
konnten Kim und Bentley den Algorithmus im [ | Fitness Werte
Einsatz als IDS testen. Daten —» diskretisieren ‘
Auswahl
8.5 Tests V

Kim und Bentley haben in ihren Tests [10] sehr Eltern Detektoren

positive Ergebnisse erzielt. Die Testfalle

A

Reproduktion

entsprechen den Fallen, mit deren Hilfe der self ]
ursprungliche Algorithmus von Forrest et al nein

getestet wurde [9]. Der modifizierte
Algorithmus zeigte sich als performant. So ist
die Erkennung von 95% der Anomalien in den

ja

verbleibende Detektoren

Testdaten keine Seltenheit. Die Rate der als rete Daten Uberwachung
Anomalie erkannten self Antigene liegt des Systems
teilweise weit unter 10%. v
Unterschiedliche Parameter Konfigurationen
wurden verglichen, so dass daraus eine Abbildung 5 (vollstindiger

Empfehlung entwickelt wurde. Offensichtlich Algorithmus)

fuhren Tests mit einer hohen Anzahl zufallig

generierter Detektoren (D) zu guten Ergebnissen. Daher sollte D stets so groR
gewahlt werden, wie das vorhandene System es zuldsst. Ein groldes D erhoéht den
Rechenaufwand. Dagegen ist die im Anzahl der non-self Elemente (vergleiche
Abbildung 5 (vollstandiger Algorithmus)), die verwendet werden, um die Fitness
Werte zu ermitteln, offenbar unerheblich, falls D richtig gewahlt wurde. So sollte
die Anzahl der non-self Elemente auf 1 gesetzt werden, in diesem Fall ist der
Rechenaufwand minimal.

Auffallig ist ebenfalls, dass die negative Selektion, die im modifizierten
Algorithmus als Operator angewendet wird, einen grofden positiven Einfluss hat.

9 DynamiscHe KLONALE SELEKTION

Die Umgebung jedes Netzwerks und das Verhalten in jedem realen Netzwerk
verandern sich taglich. Damit steht ein IDS vor dem Problem, laufend neue
Schemen analysieren zu mussen. Es ist gut mdglich, dass zum Beispiel ein fur
heutige Verhaltnisse auffallig hoher Traffic in einem halben Jahr vollig normal ist.
Somit muss sich jedes IDS der Herausforderung stellen, dynamisch auf diese
Veranderungen zu reagieren. Das menschliche Immunsystem ist dazu in der
Lage.

Kim und Bentley stellen einen Algorithmus vor, DynamiCS, der einem AIS erlaubt
sich dynamisch an sich verandernde Umgebungen anzupassen [12]. Im Laufe der
Zeit werden jugendliche Detektoren immer wieder gegen self und non-self
getestet und beweisen so ihre Fahigkeit als effektiver Detektor dem AIS zur
Verfugung zu stehen. Nach einer festgelegten Zeit werden sie zu erwachsenen
Detektoren und Uberwachen das System. Zeigen sie hierbei besonders grolie
Erfolge, kdnnen sie sogar zu memory Detektoren werden. Nach einer festgelegten
Lebensdauer sterben erwachsene Detektoren ab. Wichtig bei diesem Algorithmus
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ist die Einbindung des Faktors Zeit. Nicht nur spielen unterschiedliche Zeitfenster
eine Rolle in der Entwicklung der Detektoren. Dartber hinaus werden die
Detektoren immer wieder mit self und non-self Profilen des Systems zu
unterschiedlichen Zeitpunkten konfrontiert.

Erste Tests zur Anwendbarkeit von DynamiCS lassen auf Erfolge hoffen. Die
Ansatze werden daher weiter verfolgt.

10 DANGER THEORY

Die so genannte Danger Theory ist eine neue Theorie in der Immunologie. Diese
Theorie ist noch sehr umstritten. Dennoch hofft man, dass die daraus gewonnen
Erkenntnisse im Bereich der AlS Einsatz finden werden. Bereits jetzt ist absehbar,
dass diese neue Theorie wichtige Ansatze fur AIS liefern wird, unabhangig davon,
ob die Danger Theory wirklich das Verhalten des menschlichen Immunsystems
weiter erklaren wird [2].

10.1 Ideen der Danger Theory

Die Danger Theory basiert auf der Uberlegung, dass eine einfache self non-self
Unterscheidung Zellen im Korper zu grob ist. So gibt es zum Beispiel keine
Immunreaktion auf Essen, dass sehr wohl Fremdkdrper im menschlichen Korper
darstellt. Des Weiteren verandert sich das self non-self Profil jedes Systems mit
seiner Lebensdauer.

Aickelin und Cayzer [1] streichen das zentrale Element der Danger Theory
heraus: das menschliche Immunsystem reagiert nicht auf non-self Elemente,
sondern auf Gefahr (danger).

Die Danger Theory geht davon aus, dass eine Zelle, die sich in Gefahr befindet,
ein so genanntes danger signal aussendet. Um welche Art von Signal es sich
dabei handelt ist noch nicht genau bekannt. Auf dieses danger signal reagieren
dann alle Antikorper, die sich in der danger zone um die entsprechende Zelle
herum befinden. Sie durchlaufen den Prozess der klonalen Selektion und
beheben den Schaden an der betroffenen Zelle. Antikdrper, die zu weit von der
betroffenen Zelle entfernt sind, also auRerhalb der danger zone, werden nicht
aktiviert.

Eine Einfuhrung in die Danger Theory von Polly Matzinger findet sich in [13].

10.2 Umsetzung in AIS

Far die Umsetzung der Erkenntnisse der Danger Theory in die Entwicklung von
AIS sind derzeit drei Punkte von besonderem Interesse: key types von Angriffen
zu erkennen, den Grad der Starke des Angriffs zu regeln sowie die Umsetzung

der Danger Zones.

Es besteht die Hoffnung, uber die Erkennung von key types von Angriffen die
Erfolgsrate von AIS zu erhdhen. Aikelin und Cayzer [2] nennen als Beispiel einen
Distributed Denial of Service (DDoS) Angriff, bei dem nicht wie "klassischerweise"
ein ping ausgefuhrt wird, sondern ein traceroute Befehl. Ist das AIS in der Lage,
nach dem key type dieses Angriffs zu suchen, also das stupide wiederholte
Ausfuhren eines Befehls von extern, so kann er erkannt werden. Sucht das AIS
nur nach ping Befehlen, wird dieser abgewandelte DDoS nicht erkannt.
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Das menschliche Immunsystem kann daruber hinaus Immunantworten
unterschiedlicher Starke erzeugen. Auch in einem AIS ist dies wiinschenswert.
Angriffe werden mittels bekannter Angriffssignaturen und einem Anomalie
threshold erkannt. Dabei fuhrt eine zu strenge Limitierung zu vielen false postive
alerts, durch eine zu offene Beschrankung werden wirkliche Angriffe eventuell
nicht identifiziert. Ein gutes Mittelmal} ist wichtig um eine optimale
Angriffsidentifizierung zu gewahrleisten. Allerdings wechselt dieses Mittelmal}
abhangig vom Zustand des zu Uberwachenden Systems. Daher ist es ein Ziel, ein
AIS so zu gestalten, dass es sich dynamisch an den Zustand des Systems
anpasst. Hier liegt ein direktes Analogon zum menschlichen Immunsystem vor,
dass in der Lage ist, die Starke der Immunantwort auf ein Pathogen in
unterschiedlicher Starke hervorzurufen.

Die Danger Theory geht dartber hinaus davon aus, dass Signale zu nahe
liegenden Sensoren ubermittelt werden, um die Immunantwort auf ein Pathogen
auszulésen. Dabei ist die Definition des Begriffs "nahe liegend" noch zu klaren. Im
Zusammenhang mit AIS kdnnte das bedeuten, dass, falls zum Beispiel ein Angriff
auf einem Web Server des Netzes vermutet wird, gezielt alle anderen Web Server
darauf Uberpruft werden. So sollte es moglich sein, eine schnelle und gezielte
Erkennung des Angriffs sicher zu stellen.

11 ZUSAMMENFASSUNG

Das menschliche Immunsystem ist das Vorbild beim Design von kunstlichen
Immunsystemen. Ein erster Algorithmus zur negativen Selektion hat bei naherer
Betrachtung groRe Skalierungsprobleme. Eine mégliche Lésung dieser Probleme
liegt in dem von Kim und Bentley vorgeschlagenen erweiterten Algorithmus [11].
Dieser Algorithmus nutzt die klonale Selektion und verwendet dabei einen
negative selection operator. Dieser Ansatz zeigt in Tests gute Resultate. Neue,
viel versprechende ldeen zur Konstruktion von kinstlichen Immunsystemen
kommen aus der Danger Theory. Vielleicht wird die Forschung in Zukunft in diese
Richtung tendieren.
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