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Abstract 
 
We propose a new linear representation scheme for 

evolving fuzzy rules using the concept of complete binary tree 
structures . We also use special genetic operators such as gene 
addition, gene deletion, and variable length crossover. Results 
show that using these special operators along with the 
common mutation operator produce useful and minimal 
structure modifications to the fuzzy expression tree 
represented by the chromosome. The proposed method 
(representation and operators) is tested with a number of 
benchmark data sets including the KDDCup’99 Network 
Intrusion Detection data. 

 
1. Introduction 

 
The task of generating classifiers based on rules (fuzzy and 

classical) with genetic algorithms and other evolutionary 
techniques has been studied for years [1], [2], [3]. One of the 
main problems in the evolution of rules is the way that a rule is 
codified in a chromosome. This problem arises from the fact 
that the condition part of the rule can be an arbitrary logical 
expression. In general, the condition part of a rule has a tree 
structure and there is no natural way to represent it with a 
linear structure. There are basically three approaches to deal 
with the problem of representing a rule’s condition part as a 
linear string: 

 
1. Conjunctions of simple terms: In this approach the condition 
part is restricted to be a conjunction of one or more simple logic 
terms [1], [3], [4], [5], [6], and [7]. The problem with this 
codification is that a single rule is not enough to characterize a 
single class.  
2. Fixed condition structure: In this approach a condition 
structure is predefined as a template and only the simple logic 
terms and the operators are varied [8]. The problem with this 
approach is the template has to be developed according to the 
problem to solve. 

3. Linear-Tree with precedence representation: In this approach 
a precedence value for the logic operators in the condition is 
codified together with the operator [9]. In this way any logic 
expression can be codified, because the precedence value 
defines the order of the operators evaluation. The problem with 
this approach is that the genetic operators can significantly 
disrupt the tree structure of the condition, for example, if a 
precedence value is modified. 

The purpose of the work presented in this paper is to 
explore a linear representation scheme for fuzzy rules based on 
the concept of complete binary trees. For this representation, 
we use some special genetic operators such as gene addition, 
gene deletion, and variable length crossover, along with the 
common mutation operator. It is shown that the genetic 
operators make minimal tree structure modifications, i.e., they 
cause little disruption over the fuzzy expression tree structure 
space. Besides, the evaluation of the represented fuzzy rule 
conditions can be performed in an efficient way, O(n). 

The subsequent sections are organized as follows. Section 
2 presents the concept of complete binary trees. Section 3 
describes the classification process using fuzzy classifiers. 
Section 4 presents the proposed method to evolve complete 
fuzzy rules. Section 5 shows some experimental results and the 
analysis performed. Section 6 draws some conclusions. 

 
2. Complete binary trees 

 
A binary tree is called h-completely full if it has height h 

and 2 h+1–1 nodes (NITS). 
A binary tree is called h-complete if one of the following 

conditions is satisfied: 
1. If the left tree is (h-1)-completely full and the right tree is (h-
1)-complete 
2. If the left tree is (h-1)-complete and the right tree is (h-2) 
completely full 
3. If h=0 and the tree is empty 

Intuitively, a h-complete tree is a binary tree that is filled 
completely on all the levels 0, 1, …, h , except possibly the level 



h that is filled from left to right. This structure is usually called 
heap [10]. Figure 1.a shows a complete binary tree sample. 
Nodes in a complete binary tree can be enumerated in a simple 
way, starting from the node at the root of the tree and 
traversing the tree level by level from left to right, as is shown 
in figure 1.b. This enumeration is called level enumeration. It 
can be proved that each expression tree can be represented 
with a complete expression tree1. 
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Figure 1: (a) Complete binary tree. (b) Binary tree level 
enumeration (similar to breadth first search). 

 
2. Fuzzy Classifiers  

 
An atomic fuzzy expression is an expression:   attribute is 

[not] fuzzyset, where, attribute is a characteristic attribute, and 
fuzzyset is the fuzzy set [11] name that has been defined by a 
fuzzy membership function. The truth-value is the degree of 
membership of the attribute to the fuzzy set. Fuzzy rules have 
the form:   IF fuzzy expression THEN consequence, where fuzzy 
expression is a logic expression, which uses fuzzy logic 
operators and atomic fuzzy expressions, and consequence is an 
atomic expression. A fuzzy classifier can be represented by a 
set of m rules, where m is the number of different classes (a rule 
per class): 

R1: IF condition1 THEN data is class1 
.... 
Rm: IF conditionm THEN data is classm. 

There are several defuzzification techniques to determine the 
class label. One of these techniques is the maximum 
defuzzification technique, which classifies an input data into 
the conclusion class of the rule with maximum fuzzy value in its 
condition part, i.e.:  
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4. Proposed Approach  
 
We evolve a rule for a specific class with one run of the 

genetic algorithm. In this way, if m is the number of different 
classes, we run the GA m times. Only the condition part has to 
be codified as a linear chromosome, with variable length. This 
can be represented using a binary tree (expression tree), where 
the leaf nodes are atomic expressions, and the intermediate 
nodes the logic operators (and, or).  

4.1. Linear tree representation of complete-tree 
fuzzy rules 

In our approach, we only evolved comp lete-tree fuzzy rules 
(CTree), i.e., fuzzy rules with condition expressions that have 
an h-complete binary expression tree, for some natural number 
h. To establish the process of linear representation of h-

                                                                 
1 The proof uses recursive duplication of trees that do not have 

brothers, and the commutative property of logic operators.  

complete fuzzy rules, we used the following grammar (in Backus 
Normal Form) for a free parenthesis logical expression:  

<EXP> à <EXP><OPER><ATOMIC> | <ATOMIC> 
<ATOMIC> à variable is [not] set 
<OPER> à or | and  
 
Applying repeatedly the previous definition, the following 

logical expression can be obtained: 
A or B and C and D or E 

where A, B, C, D, and E are atomic expressions. There are 
several processes to assign a meaning to a free parenthesis 
logical expression, i.e., to build an expression tree for the 
expression. We defined a process to build an h-complete tree 
from a given free parenthesis logical expression that exploits 
the advantages of the expression trees: leaf nodes are atomic 
expressions, intermediate nodes are logical operators, and if 
there are n operators then there are n+1 atomic expressions. 
The proposed expression tree building process is defined 
recursively as: 
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where replace( t, o , a ), replaces the first leaf node in the 
tree t (first_leaf(t)), according to the level enumeration process, 
by the node (first_leaf(t), o, a). An+1, is the last atomic 
expression in the argument expression Exp, and, On, is the last 
operator in the argument expression Exp. Figure 2, shows the 
execution of the proposed process for the sample free 
parenthesis logic expression A or B and C and D or E.  
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Figure 2: Execution of the proposed tree building process 

 
Therefore, the free parenthesis logical expression: 

A or B and C and D or E 
 
Represents the logical expression: 

(((A or E) and C) or (B and D)) 
The time that is expended in the evaluation of a codified 

condition is linear O(n), because this process can be performed 
using a circular queue. We codified a logic expression without 
parenthesis of n logic operators in a chromosome of n+1 
genes, where the i-th gene is composed by the atomic 
expression Ai and the logic operator Oi. In this way the last 
gene has an unused logic operator. Figure 3 shows the 
chromosome for an expression tree of n logic operators. 

 
Gen1 ... Genn Genn+1 

ac1 op1 ... acn opn acn+1 * 
var1 ro1 set1  ... varn ron setn  varn+1 ron+1 setn+1 * 
Figure 3: Chromosome for a complete rule condition 

 



The number of bits used to codify the variable and set part of 
each atomic expression depends on the number of attributes 
and the number of defined fuzzy sets. In our approach, the 
number of bits is approximated by log2(n) for the variable part 
(n is the number of attributes), and by log2(m)  for the fuzzy set 
part (m is the number of defined fuzzy sets). The relation 
operator part is codifed with only one bit as the logic operator 
is either and or or. 

 

4.2. Genetic operators  
One of the main problems with the linear representation of 

fuzzy rules is that the genetic operators produce global 
structure modifications over the expression tree codified. A 
genetic operator has the local structure modification property if 
the child expression tree has “similar” structure to the parent 
expression tree, i.e., the genetic operator preserves the tree 
structure. With the proposed linear representation, the genetic 
operators shown here have the local modification property. 

 
4.2.1. Variable length crossover. When the crossover operator 
is applied, a crossover point is chosen between 1 and the 
minimum of the lengths of the two parent chromosomes. The 
code is exchanged as usual and the child with the highest 
fitness is chosen to replace the chromosome p. Figure 4, shows 
the effect of the crossover operation. Only one node (atomic or 
operator) is modified, other nodes are exchanged or kept. 
Because the crossover point was selected inside nodes C and 
Y, then these nodes interchange their code in the normal way 
(as in binary strings) and create the new fuzzy expressions H 
and M, the other nodes do not change. Also, the children 
preserve the tree structure of the parents. 
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Figure 4: Effect of the crossover operator. (a) Parent 

genotypes, (b) Phenotypes code interchange, (c) Children 
genotypes. 

 
4.2.2. Gene addition and deletion. The gene addition operator 
adds a random gene to the chromosome end. The gene 
deletion operator eliminates the last gene in the chromosome. 
Figure 5 shows the effect of the gene addition and deletion 
operators. It is clear that these operators preserve the tree 
structure. 
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Figure 5: Effect of the addition and deletion operators. (a) 
Genotype modification, (b) Phenotype modification 

 
In these operators, only one node is modified and the 

children preserve the tree structure of the parents. 
 

4.2.3. Mutation. A randomly chosen bit is changed as used in 
simple GAs. Figure 6 shows the local modification effect of the 
mutation operator. This operator only modifies one node. 
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Figure 6: Effect of the mutation operator. (a) Genotype 

modification. (b) Phenotype modification. 
 

4.3. Fitness evaluation 
We opt to seek the best classification rule for each class 

separately because this leads to a much faster and simpler 
search, has the potential to yield simpler rules, and also 
because this yields an approach that can be easily parallelized 
on several independent processors, especially in the presence 
of many classes. Because we run the genetic algorithm once for 
each class and we want compressible rules, the optimization 
problem is a three-goal objective function: maximize the 
sensitivity, maximize the specificity, and minimize the rule 
length. In this paper we used the fuzzy confusion matrix to 
calculate the fitness of a chromosome (rule) instead of the 
confidence threshold with classical confusion matrix. In the 
fuzzy confusion matrix, the condition fuzzy truth degree and the 
fuzzy negation operator are used directly.  Although there are 
different ways to deal with multi-objective optimization 
problems (Fonseca, 97), we chose the weighted sum technique. 
The fitness of a chromosome is evaluated according to the 
following equations: 
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•TP, TN, FP, and FN are the true positive, true negative, 
false positive, and false negative values for the codified rule 
respectively 
•real is a function that returns 1.0 when the data sample 
belongs to the training class and 0.0 in other case,  
•predicted is a function that returns the confidence value of 
the condition part of the codified rule 
•p is the number of samples in the training data set, and, 
•w1, w2, and w3 are the assigned weight for each rule 
characteristic respectively. 

 
5. Experimentation 

In order to evaluate the performance of the proposed 
approach, tests were conducted using the IRIS, WINE, and 
VOTE data sets [12], and 10% of the KDDCup’99 network 
intrusion data [13]. The data sets are described in Table 1 

. 
Table 1 Testing data sets  

Data Set Size Classes Attributes 
IRIS 150 3 4 

WINE 178 3 13 
VOTE 435 2 16 

KDDCup’99 492021 23 41 

 
In order to perform a complete comparison between 

different codification schemes in other approaches and the 
proposed approach, we defined a set of codifications schemes 
that cover many representations proposed in the literature: 

• Conjunctive Normal Form:  Order 1 (CNF-1), Order 2 (CNF-
2), and Order 3 (CNF-3) 

• Disjunctive Normal Form:  Order 1 (DNF-1), Order 2 (DNF-
2), and Order 3 (DNF-3) 

• Operator Precedence (OpPr) 
CNF-1 is the codification scheme proposed in [1], [3], [4], 

[5], [6], and [7], DNF-1 is the dual version of the CNF-1. CNF-2, 
CNF-3, DFN-2, and DNF-3 are a representative set of 
codification schemes proposed in [8]. The last strategy was 
proposed in [9]. The first six codification schemes were 
extended in order to be able to apply the addition and deletion 
operators. The extension is straightforward: Suppose we are 
codifying in a chromosome a CNF-k  fuzzy rule, and the 
chromosome has m atomic expressions: A0, A1, ..,Am-1. Then 
the codified rules in CNF-k  is: 
(A0∨A2∨ ..∨Ak-1) ∧   (Ak∨Ak+1∨ ..∨A2k-1) ∧…∧  (Ap∨  Ap+1∨ .. Am-

1) 
Where p = k *  m/k  , (. indicates the integer part). We 

only included in the fuzzy classifier the best rule evolved for a 
given class to have a common point of comparison. 

 

5.1. Data preprocessing 
For each data set, ten fold experiments were employed [14]. 

The accuracy of the trained classifier was calculated as the 
average of these ten tests. This process was repeated five 
times for each data set and the average score was computed. 

 

5.2. Experimental settings 
A genetic algorithm with competitive genetic operators was 

employed to evolve the fuzzy classifier [15]. The algorithm uses 

a hybrid co-evolutionary learning rule strategy that updates the 
operator probabilities in a competitive way according to the 
applied operator and its effect over the chromosome fitness. 
The selection process uses the neighborhood concept to 
choose the parents. We used this type of genetic algorithm in 
order to eliminate the dependency of the results on the choice 
of the operator probabilities. The following parameters were 
used: Population size: 200, Maximum number of iterations: 200, 
Selection strategy: Tournament size 4, Initial chromosome 
length: Between 1 and 6 (randomly). We used five linguistic 
values for each (normalized) attribute (Low, ML, Med, MH, 
High), for the IRIS, WINE, and KDDCup’99 data sets. In the 
case of the VOTE data set, we used three crisp sets: YES, NO, 
and MARK, and for the KDDCup’99 categorical values we 
used the categorical values a crisp sets as explained in [16]. We 
tested three strategies to define the value of the fitness 
weights. The first strategy uses the constant values w1=0.45, 
w2=0.45, and w3=0.1 , as reported in [9]. The second strategy 
assigns proportional random values to the weight in order to 
give more importance to the specificity and sensitivity terms, 
i.e., the weight w1, w2, and w3 are assigned random values such 
that w1, w2 ≥ 4*w3. The third strategy assigns random values to 
each weight. In strategies 2 and 3, the weights are scaled such 
that the weights sum to one. 

 

5.3 Results and Analysis 
Table 3 shows the properties of  tested codification schemes.  
Table 3 Induced properties of the fuzzy rules linear codification 

CODIFICATIO
N 

REPRESENTABILITY DISRUPTION 

CNF-k, DNF-k Low Low 
MOpPr High High 
CTree Medium Low 

It is clear that with the MOpPr scheme, it is possible to 
represent a big number of different fuzzy rule trees (the 
limitation depends on the maximum priority that can be 
assigned to the operators). The CNF-k  and DNF-k  schemes are 
very restricted and these cannot represent all the expression 
trees. The proposed approach CTree is more restricted than 
the MOpPr scheme, but is less restrictive than the CNF-k  and 
DNF-k  schemes. Besides, the disruption induced by the 
genetic operators over the tree structure is higher in the MOpPr 
scheme than in the others. For example, the mutation genetic 
operator can modify the priority of one operator and then 
change the tree structure of the fuzzy rule codified 
significantly. For the CNF-k, DNF-k, and CTree, the disruption 
induced by the genetic operators is small.  

 
5.3.1. IRIS, WINE, and VOTE data sets. The average accuracy 
% reached for the genetic algorithm using the tested 
codification schemes for the IRIS, WINE, and VOTE data sets 
are shown in tables 4, 5, and 6 respectively2 (next page). We 
                                                                 

2 The ESIA row in table 4 shows the reported performance of the 
strategy proposed in [3]. Because the average length in that paper is not 
shown, we estimate it as the number of fuzzy rules generated (6.4) over 
the number of classes (3) (in this way we supposed that each rule has a 
length of one, which is maximally optimistic). The OpPr  row shows the 
results obtained in the paper [9], i.e., using a priority operator strategy, a 
genetic algorithm with fixed genetic operator probabilities, and a deletion 
operator that can delete any gene, not only the last. MOpPr uses the 



ranked the codification schemes according to average 
performance over three tests. Our results fared well with the 
ones reported in the literature.   
 

In the case of the WINE data set, the best result was 
obtained using constant fitness weight and predefined pattern 
DNF-3, i.e., when the chromosome codifies fuzzy rules of the 
form: ( A ∧  B ∧  C) ∨  ( D ∧  E ∧  F ). Although the best 
performance was reached for DNF-3 this scheme was ranked 5th, 
because its performance depends on the fitness weight 
assignment strategy: when these were proportionate randomly 
assigned or totally random assigned, the performance 
decreased rapidly. The codification scheme CNF-1 was ranked 
1st, because its average performance was better. According to 
these results, the WINE data set can be well modeled by a 
conjunction of atomic terms, while the worst codification 
schemes were the other predefined codification schemes. 
Therefore, the performance of using predefined patterns 
depends strongly on the high level knowledge used to 
generate them. The proposed approach was ranked in second 
place, indicating that it performs well without high level 
knowledge, and better than most of the tested codification 
schemes. 
 
Table 4: Performance of the proposed approach for the IRIS 

data set 
  TEST RULE 

COD RANK 1 2 3 LENGTH 
CTree 4 

(94.84) 
93.73 95.3

3 
95.46 1.78 

MOpPr 6 
(94.39) 

92.53 95.0
6 

95.60 1.78 

CNF-1 5 
(94.52) 

92.26 95.4
6 

95.86 1.74 

CNF-2 2 
(95.24) 

93.86 95.8
6 

96.00 1.82 

CNF-3 1 
(95.46) 

94.93 96.0
0 

95.46 1.77 

DNF-1 3 
(95.19) 

95.20 94.6
6 

95.73 1.76 

DNF-2 8 
(93.95) 

92.80 93.4
6 

95.60 1.72 

DNF-3 7 
(93.99) 

91.86 94.2
6 

95.86 1.77 

OpPr 94.5 - - - 2.10 
ESIA 95.33 - - - 2.13 

 
Table 5: Performance of the proposed approach for the WINE 

data set 
  TEST RULE 

COD RANK 1 2 3 LENGTH 
CTree 2 

(92.22) 
94.11 93.33 89.22 2.43 

MOpPr 3 
(91.81) 

94.11 92.88 88.44 2.39 

CNF-1 1 
(92.59) 

94.44 93.11 90.22 2.19 

                                                                                                                  
same codification of OpPr but relies on the proposed genetic operators 
instead. The HGBML row shows the performance of the proposed 
approach in [7]. The results for this approach were taken from the table 
2, when the number of generated rules was 3 and the reached 
performance with three rules was bigger. 

CNF-2 6 
(89.70) 

91.44 90.22 87.44 2.51 

CNF-3 7 
(87.92) 

88.55 88.22 87.00 1.92 

DNF-1 8 
(87.14) 

87.11 87.00 87.33 1.46 

DNF-2 4 
(90.69) 

91.88 90.22 90.00 1.76 

DNF-3 5 
(90.55) 

94.55 88.22 88.88 2.01 

OpPr 93.9 - - - 7.63 
HGBML 92.7 - - - 1.70 

 
Table 6: Performance of the proposed approach for the VOTE 

data set 
  TEST RULE 

COD RANK 1 2 3 LENGTH 
CTree 5 

(95.42) 
95.59 95.09 95.59 1.00 

OP 7 
(95.40) 

95.59 95.04 95.59 1.02 

CNF-1 1 
(95.48) 

95.59 95.27 95.59 1.02 

CNF-2 1 
(95.48) 

95.59 95.40 95.45 1.02 

CNF-3 6 
(95.41) 

95.59 95.13 95.54 1.02 

DNF-1 3 
(95.46) 

95.59 95.22 95.59 1.02 

DNF-2 8 
(95.37) 

95.59 94.95 95.59 1.02 

DNF-3 4 
(95.43) 

95.59 95.13 95.59 1.02 

OpPr 94.7 - - - 1.1 

 
In general, the performance of the genetic algorithm is best 

when the fitness weights are assigned as in [9], and worst 
when these are assigned randomly. In this case the 
performance of the evolved fuzzy classifier is greatly affected 
by the fitness weight assignment strategy. The performed test 
showed that the genetic algorithm is able to evolve simple 
fuzzy rules for these data sets. The evolution of the average 
fuzzy rule length for the WINE data set is shown in figure 8.  

 
Figure 8. Evolution of the rule length for the WINE data set 
 
5.3.2. KDDCup’99 data set. In this large data set (492021 

samples), 42 attributes characterize network traffic behavior 
[13], and 22 different types of attacks than can be classified in 
four main intrusion classes, are shown in table 7. The 
classification accuracy of the fuzzy classifier evolved using 
CTree is shown in table 8 as well as those of the winner group 
in the KDDCup’99 contest [17]. The results are not directly 
comparable because they are obtained from different data sets, 
and are shown for reference. Table 9 shows that our CTree 



approach fares well with other intrusion detection methods. A 
complete description of the performance of CTree on this task 
can be found in [16]. 

Table 7: Classes in the 10 % of the KDDCup 99 data set 
CLASS SUB-CLASSES  SAMPLES  

NORMAL  95278 (19.3%) 
U2R buffer_overflow, loadmodule, 

multihop, perl, rootkit  
59 (0.01%) 

R2L ftp_write, guess_passwd, imap, 
phf, spy, warezclient, 
warezmaster 

1119 (0.23%) 

DOS back, land, Neptune, pod, 
smurf, teardrop 

391458(79.5%
) 

PRB Ipsweep, nmap, portsweep, 
satan 

4107 (0.83%) 

 
Table 8:  Accuracy of CTree and winner in the KDDCup’ 99 
contest 

CLASS CTree WINNER ENTRY 
Normal 92.78% 94.50% 

U2R 88.13% 13.2% 
R2L 7.41% 8.4% 
DOS 98.91% 97.10% 
PRB 50.35% 83.30% 

 
Table 9:  Comparison between the proposed approach and 
others 

Algorithm FA % DR % Complexity 
EFRID 7.0 98.15 O(n) 
RIPPER-Artificial 
Anomalies [19] 

2.02 94.26 O(n*log2n) 

SMARTSIFTER [20] - 82.0 O(n2) 

 
6. Conclusions 

Our experiments showed that the proposed representation 
approach was able to evolve fuzzy classifiers with accuracy 
comparable to the ones reported in the literature, and that the 
fitness weight assignment strategy affects fuzzy classifier 
evolution. Moreover, the proposed approach was able to 
evolve simpler variable-length fuzzy rules. Simpler fuzzy rules 
have a clear advantage in real applications. First they yield 
rules that are easier to interpret, hence scoring high on 
interpretability. Second they yield a classifier that is faster in 
deployment. This is especially crucial for data involving a 
large number of attributes. Our approach is practical 
regardless of the type of feature used, i.e. numerical or 
categorical, and even attributes resulting from vague human 
linguistic expressions, by virtue of fuzzy sets. It is therefore 
promising for a variety of data mining applications, particularly 
in Web [18,19] and Text mining. For such applications, the 
number of features can rise to explosive proportions resulting 
in rule lengths that can explode exponentially, and thus make 
not only the training and search process tedious, but also the 
actual real-time classification extremely slow. In online 
settings such as on the World Wide Web, both efficiency and 
time complexity are crucial. We plan to investigate the viability 
of the proposed techniques in implementing fast online 
Recommendation engines [18,19], and possibly search engines. 
The importance of fast response is even more crucial in 
network security applications: In automatic Intrusion Detection 

systems, a fast classifier can mean all the difference between 
being able to detect and stop the intruder’s behavior in time , as 
compared to detecting the user’s behavior, but responding too 
late because of a slow detection process. We emphasize that 
training is the most time consuming part of our system. 
Classification, on the other hand, is extremely fast (not only 
because of the structure and linear codification of the 
expression tree, but also because of the simpler rules 
generated!) , and is a viable method to other techniques used in 
machine learning, such as decision trees. One might wonder 
whether fast classification is more important than accurate 
classification. In our work, we do not claim this to be true. In 
fact, our use of different weights to weigh different criteria in 
accordance to their importance depending on the particular 
application and problem, is  the best answer. For example, 
sensitivity is much more crucial than specificity in Intrusion 
Detection Systems. Thus we may prefer to choose the weights 
accordingly, hence resulting in simpler (fast to evaluate) rules 
with high sensitivity for example. In the case of providing 
online Web recommendations, simplicity is almost as important 
as accuracy because accurate recommendations are useless if 
they require a long time to generate, since the user will most 
likely have navigated to a different Web site, by the time 
recommendations are ready. 
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