
Complete Expression Trees for Evolving Fuzzy Classifier Systems with Genetic
Algorithms and Application to Network Intrusion Detection

Jonatan Gómez

Division of Computer Sciences
Mathematical Sciences Department

The University of Memphis and
Universidad Nacional de Colombia

jgomez@memphis.edu

Olfa Nasraoui
Dept. of Electrical & Computer Engineering

The University of Memphis
onasraou@memphis.edu

Dipankar Dasgupta
Division of Computer Sciences

Mathematical Sciences Department
The University of Memphis

Memphis, TN 38152.
ddasgupt@memphis.edu

Fabio Gonzalez

Division of Computer Sciences
Mathematical Sciences Department

The University of Memphis and
Universidad Nacional de Colombia

fgonzalz@memphis.edu

Abstract

We propose a new linear representation scheme for

evolving fuzzy rules using the concept of complete binary tree
structures . We also use special genetic operators such as gene
addition, gene deletion, and variable length crossover. Results
show that using these special operators along with the
common mutation operator produce useful and minimal
structure modifications to the fuzzy expression tree
represented by the chromosome. The proposed method
(representation and operators) is tested with a number of
benchmark data sets including the KDDCup’99 Network
Intrusion Detection data.

1. Introduction

The task of generating classifiers based on rules (fuzzy and

classical) with genetic algorithms and other evolutionary
techniques has been studied for years [1], [2], [3]. One of the
main problems in the evolution of rules is the way that a rule is
codified in a chromosome. This problem arises from the fact
that the condition part of the rule can be an arbitrary logical
expression. In general, the condition part of a rule has a tree
structure and there is no natural way to represent it with a
linear structure. There are basically three approaches to deal
with the problem of representing a rule’s condition part as a
linear string:

1. Conjunctions of simple terms: In this approach the condition
part is restricted to be a conjunction of one or more simple logic
terms [1], [3], [4], [5], [6], and [7]. The problem with this
codification is that a single rule is not enough to characterize a
single class.
2. Fixed condition structure: In this approach a condition
structure is predefined as a template and only the simple logic
terms and the operators are varied [8]. The problem with this
approach is the template has to be developed according to the
problem to solve.

3. Linear-Tree with precedence representation: In this approach
a precedence value for the logic operators in the condition is
codified together with the operator [9]. In this way any logic
expression can be codified, because the precedence value
defines the order of the operators evaluation. The problem with
this approach is that the genetic operators can significantly
disrupt the tree structure of the condition, for example, if a
precedence value is modified.

The purpose of the work presented in this paper is to
explore a linear representation scheme for fuzzy rules based on
the concept of complete binary trees. For this representation,
we use some special genetic operators such as gene addition,
gene deletion, and variable length crossover, along with the
common mutation operator. It is shown that the genetic
operators make minimal tree structure modifications, i.e., they
cause little disruption over the fuzzy expression tree structure
space. Besides, the evaluation of the represented fuzzy rule
conditions can be performed in an efficient way, O(n).

The subsequent sections are organized as follows. Section
2 presents the concept of complete binary trees. Section 3
describes the classification process using fuzzy classifiers.
Section 4 presents the proposed method to evolve complete
fuzzy rules. Section 5 shows some experimental results and the
analysis performed. Section 6 draws some conclusions.

2. Complete binary trees

A binary tree is called h-completely full if it has height h

and 2 h+1–1 nodes (NITS).
A binary tree is called h-complete if one of the following

conditions is satisfied:
1. If the left tree is (h-1)-completely full and the right tree is (h-
1)-complete
2. If the left tree is (h-1)-complete and the right tree is (h-2)
completely full
3. If h=0 and the tree is empty

Intuitively, a h-complete tree is a binary tree that is filled
completely on all the levels 0, 1, …, h , except possibly the level

h that is filled from left to right. This structure is usually called
heap [10]. Figure 1.a shows a complete binary tree sample.
Nodes in a complete binary tree can be enumerated in a simple
way, starting from the node at the root of the tree and
traversing the tree level by level from left to right, as is shown
in figure 1.b. This enumeration is called level enumeration. It
can be proved that each expression tree can be represented
with a complete expression tree1.

1

2 3

4 5 6 7

8 9 1

(a) (b)

Figure 1: (a) Complete binary tree. (b) Binary tree level
enumeration (similar to breadth first search).

2. Fuzzy Classifiers

An atomic fuzzy expression is an expression: attribute is

[not] fuzzyset, where, attribute is a characteristic attribute, and
fuzzyset is the fuzzy set [11] name that has been defined by a
fuzzy membership function. The truth-value is the degree of
membership of the attribute to the fuzzy set. Fuzzy rules have
the form: IF fuzzy expression THEN consequence, where fuzzy
expression is a logic expression, which uses fuzzy logic
operators and atomic fuzzy expressions, and consequence is an
atomic expression. A fuzzy classifier can be represented by a
set of m rules, where m is the number of different classes (a rule
per class):

R1: IF condition1 THEN data is class1
....
Rm: IF conditionm THEN data is classm.

There are several defuzzification techniques to determine the
class label. One of these techniques is the maximum
defuzzification technique, which classifies an input data into
the conclusion class of the rule with maximum fuzzy value in its
condition part, i.e.:

{ })(maxarg
1

i
mi

k conditionevalkclass
≤≤

=⇔

4. Proposed Approach

We evolve a rule for a specific class with one run of the

genetic algorithm. In this way, if m is the number of different
classes, we run the GA m times. Only the condition part has to
be codified as a linear chromosome, with variable length. This
can be represented using a binary tree (expression tree), where
the leaf nodes are atomic expressions, and the intermediate
nodes the logic operators (and, or).

4.1. Linear tree representation of complete-tree
fuzzy rules

In our approach, we only evolved comp lete-tree fuzzy rules
(CTree), i.e., fuzzy rules with condition expressions that have
an h-complete binary expression tree, for some natural number
h. To establish the process of linear representation of h-

1 The proof uses recursive duplication of trees that do not have

brothers, and the commutative property of logic operators.

complete fuzzy rules, we used the following grammar (in Backus
Normal Form) for a free parenthesis logical expression:

<EXP> à <EXP><OPER><ATOMIC> | <ATOMIC>
<ATOMIC> à variable is [not] set
<OPER> à or | and

Applying repeatedly the previous definition, the following

logical expression can be obtained:
A or B and C and D or E

where A, B, C, D, and E are atomic expressions. There are
several processes to assign a meaning to a free parenthesis
logical expression, i.e., to build an expression tree for the
expression. We defined a process to build an h-complete tree
from a given free parenthesis logical expression that exploits
the advantages of the expression trees: leaf nodes are atomic
expressions, intermediate nodes are logical operators, and if
there are n operators then there are n+1 atomic expressions.
The proposed expression tree building process is defined
recursively as:





−
=><

=
++ wiseotherAOOAExpTreereplace

AExpifNILANIL
ExpTree

nnnn),}),,{((
,,

)(
11

11

where replace(t, o , a), replaces the first leaf node in the
tree t (first_leaf(t)), according to the level enumeration process,
by the node (first_leaf(t), o, a). An+1, is the last atomic
expression in the argument expression Exp, and, On, is the last
operator in the argument expression Exp. Figure 2, shows the
execution of the proposed process for the sample free
parenthesis logic expression A or B and C and D or E.

or

and

B D

and

C or

A E

or

and

B D

and

C A

or

B and

C A

or

B
A

A

Figure 2: Execution of the proposed tree building process

Therefore, the free parenthesis logical expression:

A or B and C and D or E

Represents the logical expression:

(((A or E) and C) or (B and D))
The time that is expended in the evaluation of a codified

condition is linear O(n), because this process can be performed
using a circular queue. We codified a logic expression without
parenthesis of n logic operators in a chromosome of n+1
genes, where the i-th gene is composed by the atomic
expression Ai and the logic operator Oi. In this way the last
gene has an unused logic operator. Figure 3 shows the
chromosome for an expression tree of n logic operators.

Gen1 ... Genn Genn+1

ac1 op1 ... acn opn acn+1 *
var1 ro1 set1 ... varn ron setn varn+1 ron+1 setn+1 *
Figure 3: Chromosome for a complete rule condition

The number of bits used to codify the variable and set part of
each atomic expression depends on the number of attributes
and the number of defined fuzzy sets. In our approach, the
number of bits is approximated by log2(n) for the variable part
(n is the number of attributes), and by log2(m) for the fuzzy set
part (m is the number of defined fuzzy sets). The relation
operator part is codifed with only one bit as the logic operator
is either and or or.

4.2. Genetic operators
One of the main problems with the linear representation of

fuzzy rules is that the genetic operators produce global
structure modifications over the expression tree codified. A
genetic operator has the local structure modification property if
the child expression tree has “similar” structure to the parent
expression tree, i.e., the genetic operator preserves the tree
structure. With the proposed linear representation, the genetic
operators shown here have the local modification property.

4.2.1. Variable length crossover. When the crossover operator
is applied, a crossover point is chosen between 1 and the
minimum of the lengths of the two parent chromosomes. The
code is exchanged as usual and the child with the highest
fitness is chosen to replace the chromosome p. Figure 4, shows
the effect of the crossover operation. Only one node (atomic or
operator) is modified, other nodes are exchanged or kept.
Because the crossover point was selected inside nodes C and
Y, then these nodes interchange their code in the normal way
(as in binary strings) and create the new fuzzy expressions H
and M, the other nodes do not change. Also, the children
preserve the tree structure of the parents.

(b)

C h i l d 1 = W a n d X o r H a n d D o r E
C h i l d

2
 = A o r B a n d M a n d Z

(c)

C r o s s p o i n t

P a r e n t 1 = A o r B a n d C a n d D o r E
P a r e n t 2 = W a n d X o r Y a n d Z

(a)

o r

a n d

B D

a n d

C o r

A E

a n d 1

a n d

X Z

o r

Y W

a n d

a n d

X D

o r

H o r

W E

o r

a n d

B Z

a n d

M A

Figure 4: Effect of the crossover operator. (a) Parent

genotypes, (b) Phenotypes code interchange, (c) Children
genotypes.

4.2.2. Gene addition and deletion. The gene addition operator
adds a random gene to the chromosome end. The gene
deletion operator eliminates the last gene in the chromosome.
Figure 5 shows the effect of the gene addition and deletion
operators. It is clear that these operators preserve the tree
structure.

 A d d i t i o n

D e l e t i o n

o r

and

B D

a n d

C o r

A E

or

a n d

B D

a n d

o r or

A E C X

A o r B a n d C a n d D o r E

A d d i t i o n D e l e t i o n

A o r B a n d C a n d D o r E o r X

(a)

(b)

Figure 5: Effect of the addition and deletion operators. (a)
Genotype modification, (b) Phenotype modification

In these operators, only one node is modified and the

children preserve the tree structure of the parents.

4.2.3. Mutation. A randomly chosen bit is changed as used in
simple GAs. Figure 6 shows the local modification effect of the
mutation operator. This operator only modifies one node.

 Muta t ion poin t

P a r e n t : W a n d X or Y a n d Z

C h i l d : W a n d X a n d Y a n d Z

(a)

and

a n d

X Z

a n d

Y W

and

a n d

X Z

o r

Y W

(b)

Figure 6: Effect of the mutation operator. (a) Genotype

modification. (b) Phenotype modification.

4.3. Fitness evaluation
We opt to seek the best classification rule for each class

separately because this leads to a much faster and simpler
search, has the potential to yield simpler rules, and also
because this yields an approach that can be easily parallelized
on several independent processors, especially in the presence
of many classes. Because we run the genetic algorithm once for
each class and we want compressible rules, the optimization
problem is a three-goal objective function: maximize the
sensitivity, maximize the specificity, and minimize the rule
length. In this paper we used the fuzzy confusion matrix to
calculate the fitness of a chromosome (rule) instead of the
confidence threshold with classical confusion matrix. In the
fuzzy confusion matrix, the condition fuzzy truth degree and the
fuzzy negation operator are used directly. Although there are
different ways to deal with multi-objective optimization
problems (Fonseca, 97), we chose the weighted sum technique.
The fitness of a chromosome is evaluated according to the
following equations:

∑
=

=
p

i
ii datapredicteddatarealTP

1

)}(),(min{

∑
=

−−=
p

i
ii datapredicteddatarealTN

1

)}(1),(1min{

∑
=

−=
p

i
ii datapredicteddatarealFP

1

)}(),(1min{

∑
=

−=
p

i
ii datapredicteddatarealFN

1

)}(1),(min{

FNTP
TP

ysensitivit
+

= ,
FPTN

TN
yspecificit

+
=

10
_

1
lengthchrom

length −=

lengthwyspecificitwysensitivitwfitness *** 321 ++=

Here,

•TP, TN, FP, and FN are the true positive, true negative,
false positive, and false negative values for the codified rule
respectively
•real is a function that returns 1.0 when the data sample
belongs to the training class and 0.0 in other case,
•predicted is a function that returns the confidence value of
the condition part of the codified rule
•p is the number of samples in the training data set, and,
•w1, w2, and w3 are the assigned weight for each rule
characteristic respectively.

5. Experimentation

In order to evaluate the performance of the proposed
approach, tests were conducted using the IRIS, WINE, and
VOTE data sets [12], and 10% of the KDDCup’99 network
intrusion data [13]. The data sets are described in Table 1

.
Table 1 Testing data sets

Data Set Size Classes Attributes
IRIS 150 3 4

WINE 178 3 13
VOTE 435 2 16

KDDCup’99 492021 23 41

In order to perform a complete comparison between

different codification schemes in other approaches and the
proposed approach, we defined a set of codifications schemes
that cover many representations proposed in the literature:

• Conjunctive Normal Form: Order 1 (CNF-1), Order 2 (CNF-
2), and Order 3 (CNF-3)

• Disjunctive Normal Form: Order 1 (DNF-1), Order 2 (DNF-
2), and Order 3 (DNF-3)

• Operator Precedence (OpPr)
CNF-1 is the codification scheme proposed in [1], [3], [4],

[5], [6], and [7], DNF-1 is the dual version of the CNF-1. CNF-2,
CNF-3, DFN-2, and DNF-3 are a representative set of
codification schemes proposed in [8]. The last strategy was
proposed in [9]. The first six codification schemes were
extended in order to be able to apply the addition and deletion
operators. The extension is straightforward: Suppose we are
codifying in a chromosome a CNF-k fuzzy rule, and the
chromosome has m atomic expressions: A0, A1, ..,Am-1. Then
the codified rules in CNF-k is:
(A0∨A2∨ ..∨Ak-1) ∧ (Ak∨Ak+1∨ ..∨A2k-1) ∧…∧ (Ap∨ Ap+1∨ .. Am-

1)
Where p = k *  m/k , (. indicates the integer part). We

only included in the fuzzy classifier the best rule evolved for a
given class to have a common point of comparison.

5.1. Data preprocessing
For each data set, ten fold experiments were employed [14].

The accuracy of the trained classifier was calculated as the
average of these ten tests. This process was repeated five
times for each data set and the average score was computed.

5.2. Experimental settings
A genetic algorithm with competitive genetic operators was

employed to evolve the fuzzy classifier [15]. The algorithm uses

a hybrid co-evolutionary learning rule strategy that updates the
operator probabilities in a competitive way according to the
applied operator and its effect over the chromosome fitness.
The selection process uses the neighborhood concept to
choose the parents. We used this type of genetic algorithm in
order to eliminate the dependency of the results on the choice
of the operator probabilities. The following parameters were
used: Population size: 200, Maximum number of iterations: 200,
Selection strategy: Tournament size 4, Initial chromosome
length: Between 1 and 6 (randomly). We used five linguistic
values for each (normalized) attribute (Low, ML, Med, MH,
High), for the IRIS, WINE, and KDDCup’99 data sets. In the
case of the VOTE data set, we used three crisp sets: YES, NO,
and MARK, and for the KDDCup’99 categorical values we
used the categorical values a crisp sets as explained in [16]. We
tested three strategies to define the value of the fitness
weights. The first strategy uses the constant values w1=0.45,
w2=0.45, and w3=0.1 , as reported in [9]. The second strategy
assigns proportional random values to the weight in order to
give more importance to the specificity and sensitivity terms,
i.e., the weight w1, w2, and w3 are assigned random values such
that w1, w2 ≥ 4*w3. The third strategy assigns random values to
each weight. In strategies 2 and 3, the weights are scaled such
that the weights sum to one.

5.3 Results and Analysis
Table 3 shows the properties of tested codification schemes.
Table 3 Induced properties of the fuzzy rules linear codification

CODIFICATIO
N

REPRESENTABILITY DISRUPTION

CNF-k, DNF-k Low Low
MOpPr High High
CTree Medium Low

It is clear that with the MOpPr scheme, it is possible to
represent a big number of different fuzzy rule trees (the
limitation depends on the maximum priority that can be
assigned to the operators). The CNF-k and DNF-k schemes are
very restricted and these cannot represent all the expression
trees. The proposed approach CTree is more restricted than
the MOpPr scheme, but is less restrictive than the CNF-k and
DNF-k schemes. Besides, the disruption induced by the
genetic operators over the tree structure is higher in the MOpPr
scheme than in the others. For example, the mutation genetic
operator can modify the priority of one operator and then
change the tree structure of the fuzzy rule codified
significantly. For the CNF-k, DNF-k, and CTree, the disruption
induced by the genetic operators is small.

5.3.1. IRIS, WINE, and VOTE data sets. The average accuracy
% reached for the genetic algorithm using the tested
codification schemes for the IRIS, WINE, and VOTE data sets
are shown in tables 4, 5, and 6 respectively2 (next page). We

2 The ESIA row in table 4 shows the reported performance of the
strategy proposed in [3]. Because the average length in that paper is not
shown, we estimate it as the number of fuzzy rules generated (6.4) over
the number of classes (3) (in this way we supposed that each rule has a
length of one, which is maximally optimistic). The OpPr row shows the
results obtained in the paper [9], i.e., using a priority operator strategy, a
genetic algorithm with fixed genetic operator probabilities, and a deletion
operator that can delete any gene, not only the last. MOpPr uses the

ranked the codification schemes according to average
performance over three tests. Our results fared well with the
ones reported in the literature.

In the case of the WINE data set, the best result was
obtained using constant fitness weight and predefined pattern
DNF-3, i.e., when the chromosome codifies fuzzy rules of the
form: (A ∧ B ∧ C) ∨ (D ∧ E ∧ F). Although the best
performance was reached for DNF-3 this scheme was ranked 5th,
because its performance depends on the fitness weight
assignment strategy: when these were proportionate randomly
assigned or totally random assigned, the performance
decreased rapidly. The codification scheme CNF-1 was ranked
1st, because its average performance was better. According to
these results, the WINE data set can be well modeled by a
conjunction of atomic terms, while the worst codification
schemes were the other predefined codification schemes.
Therefore, the performance of using predefined patterns
depends strongly on the high level knowledge used to
generate them. The proposed approach was ranked in second
place, indicating that it performs well without high level
knowledge, and better than most of the tested codification
schemes.

Table 4: Performance of the proposed approach for the IRIS

data set
 TEST RULE

COD RANK 1 2 3 LENGTH
CTree 4

(94.84)
93.73 95.3

3
95.46 1.78

MOpPr 6
(94.39)

92.53 95.0
6

95.60 1.78

CNF-1 5
(94.52)

92.26 95.4
6

95.86 1.74

CNF-2 2
(95.24)

93.86 95.8
6

96.00 1.82

CNF-3 1
(95.46)

94.93 96.0
0

95.46 1.77

DNF-1 3
(95.19)

95.20 94.6
6

95.73 1.76

DNF-2 8
(93.95)

92.80 93.4
6

95.60 1.72

DNF-3 7
(93.99)

91.86 94.2
6

95.86 1.77

OpPr 94.5 - - - 2.10
ESIA 95.33 - - - 2.13

Table 5: Performance of the proposed approach for the WINE

data set
 TEST RULE

COD RANK 1 2 3 LENGTH
CTree 2

(92.22)
94.11 93.33 89.22 2.43

MOpPr 3
(91.81)

94.11 92.88 88.44 2.39

CNF-1 1
(92.59)

94.44 93.11 90.22 2.19

same codification of OpPr but relies on the proposed genetic operators
instead. The HGBML row shows the performance of the proposed
approach in [7]. The results for this approach were taken from the table
2, when the number of generated rules was 3 and the reached
performance with three rules was bigger.

CNF-2 6
(89.70)

91.44 90.22 87.44 2.51

CNF-3 7
(87.92)

88.55 88.22 87.00 1.92

DNF-1 8
(87.14)

87.11 87.00 87.33 1.46

DNF-2 4
(90.69)

91.88 90.22 90.00 1.76

DNF-3 5
(90.55)

94.55 88.22 88.88 2.01

OpPr 93.9 - - - 7.63
HGBML 92.7 - - - 1.70

Table 6: Performance of the proposed approach for the VOTE

data set
 TEST RULE

COD RANK 1 2 3 LENGTH
CTree 5

(95.42)
95.59 95.09 95.59 1.00

OP 7
(95.40)

95.59 95.04 95.59 1.02

CNF-1 1
(95.48)

95.59 95.27 95.59 1.02

CNF-2 1
(95.48)

95.59 95.40 95.45 1.02

CNF-3 6
(95.41)

95.59 95.13 95.54 1.02

DNF-1 3
(95.46)

95.59 95.22 95.59 1.02

DNF-2 8
(95.37)

95.59 94.95 95.59 1.02

DNF-3 4
(95.43)

95.59 95.13 95.59 1.02

OpPr 94.7 - - - 1.1

In general, the performance of the genetic algorithm is best

when the fitness weights are assigned as in [9], and worst
when these are assigned randomly. In this case the
performance of the evolved fuzzy classifier is greatly affected
by the fitness weight assignment strategy. The performed test
showed that the genetic algorithm is able to evolve simple
fuzzy rules for these data sets. The evolution of the average
fuzzy rule length for the WINE data set is shown in figure 8.

Figure 8. Evolution of the rule length for the WINE data set

5.3.2. KDDCup’99 data set. In this large data set (492021

samples), 42 attributes characterize network traffic behavior
[13], and 22 different types of attacks than can be classified in
four main intrusion classes, are shown in table 7. The
classification accuracy of the fuzzy classifier evolved using
CTree is shown in table 8 as well as those of the winner group
in the KDDCup’99 contest [17]. The results are not directly
comparable because they are obtained from different data sets,
and are shown for reference. Table 9 shows that our CTree

approach fares well with other intrusion detection methods. A
complete description of the performance of CTree on this task
can be found in [16].

Table 7: Classes in the 10 % of the KDDCup 99 data set
CLASS SUB-CLASSES SAMPLES

NORMAL 95278 (19.3%)
U2R buffer_overflow, loadmodule,

multihop, perl, rootkit
59 (0.01%)

R2L ftp_write, guess_passwd, imap,
phf, spy, warezclient,
warezmaster

1119 (0.23%)

DOS back, land, Neptune, pod,
smurf, teardrop

391458(79.5%
)

PRB Ipsweep, nmap, portsweep,
satan

4107 (0.83%)

Table 8: Accuracy of CTree and winner in the KDDCup’ 99
contest

CLASS CTree WINNER ENTRY
Normal 92.78% 94.50%

U2R 88.13% 13.2%
R2L 7.41% 8.4%
DOS 98.91% 97.10%
PRB 50.35% 83.30%

Table 9: Comparison between the proposed approach and
others

Algorithm FA % DR % Complexity
EFRID 7.0 98.15 O(n)
RIPPER-Artificial
Anomalies [19]

2.02 94.26 O(n*log2n)

SMARTSIFTER [20] - 82.0 O(n2)

6. Conclusions

Our experiments showed that the proposed representation
approach was able to evolve fuzzy classifiers with accuracy
comparable to the ones reported in the literature, and that the
fitness weight assignment strategy affects fuzzy classifier
evolution. Moreover, the proposed approach was able to
evolve simpler variable-length fuzzy rules. Simpler fuzzy rules
have a clear advantage in real applications. First they yield
rules that are easier to interpret, hence scoring high on
interpretability. Second they yield a classifier that is faster in
deployment. This is especially crucial for data involving a
large number of attributes. Our approach is practical
regardless of the type of feature used, i.e. numerical or
categorical, and even attributes resulting from vague human
linguistic expressions, by virtue of fuzzy sets. It is therefore
promising for a variety of data mining applications, particularly
in Web [18,19] and Text mining. For such applications, the
number of features can rise to explosive proportions resulting
in rule lengths that can explode exponentially, and thus make
not only the training and search process tedious, but also the
actual real-time classification extremely slow. In online
settings such as on the World Wide Web, both efficiency and
time complexity are crucial. We plan to investigate the viability
of the proposed techniques in implementing fast online
Recommendation engines [18,19], and possibly search engines.
The importance of fast response is even more crucial in
network security applications: In automatic Intrusion Detection

systems, a fast classifier can mean all the difference between
being able to detect and stop the intruder’s behavior in time , as
compared to detecting the user’s behavior, but responding too
late because of a slow detection process. We emphasize that
training is the most time consuming part of our system.
Classification, on the other hand, is extremely fast (not only
because of the structure and linear codification of the
expression tree, but also because of the simpler rules
generated!) , and is a viable method to other techniques used in
machine learning, such as decision trees. One might wonder
whether fast classification is more important than accurate
classification. In our work, we do not claim this to be true. In
fact, our use of different weights to weigh different criteria in
accordance to their importance depending on the particular
application and problem, is the best answer. For example,
sensitivity is much more crucial than specificity in Intrusion
Detection Systems. Thus we may prefer to choose the weights
accordingly, hence resulting in simpler (fast to evaluate) rules
with high sensitivity for example. In the case of providing
online Web recommendations, simplicity is almost as important
as accuracy because accurate recommendations are useless if
they require a long time to generate, since the user will most
likely have navigated to a different Web site, by the time
recommendations are ready.

Acknowledgments
This work was supported by the Defense Advanced

Research Projects Agency (F30602-00-2-0514) and National
Sciences Foundation (NSF-EIA-9818323). Nasraoui is
supported by an NSF CAREER Award. (NSF-IIS-0133948).

7. References
[1] K. De Jong and W. Spears (1991). Learning Concept
Classification Rules Using Genetic Algorithms. Proceedings of
the Twelfth International Joint Conference on Artificial
Intelligence, pp. 651-656.
[2] C.E. Bojarczuk, H.S. Lopes and A.A. Freitas (1999).
Discovering comprehensible classification rules using genetic
programming: a case study in a medical domain. Proc. Genetic
and Evolutionary Computation Conference GECCO99,
Morgan Kaufmann, 1999, pp. 953-958.
[3] J. Liu and J. Kwok (2000). An extended genetic rule
induction algorithm. Proceedings of the Congress on
Evolutionary Computation (CEC), pp.458-463.
[4] M.V. Fidelis, H.S. Lopes and A.A. Freitas (2000).
Discovering comprehensible classification rules with a genetic
algorithm. Proc. Congress on Evolutionary Computation
(CEC), pp. 805-810.
[5] A. Gonzalez and R. Prez (1998). Completeness and
consistency conditions for learning fuzzy rules. Fuzzy Sets and
Systems, 96: 37-51.
[6] H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka (1995).
Selecting fuzzy if-then rules for classification problems using
genetic algorithms. IEEE Transactions on Fuzzy Systems,
3(3):260-270.
[7] H. Ishibuchi and T. Nakashima (2000). Linguistic Rule
Extraction by Genetics-Based Machine Learning. Proceedings

of the Genetic and Evolutionary Computation Conference
GECCO’00, 195-202. Morgan Kaufmann.
[8] A. Giordana and L. Saitta (1993). Regal: an integrated system
for learning relations using genetic algorithms. Proceedings of
the Second International Workshop on Multistrategy
Learning. R.S. Michalski et G. Tecuci (eds), pp. 234-249.
[9] D. Dasgupta and F. Gonzalez (2001). Evolving Complex
Fuzzy Classifier Rules Using a Linear Tree Genetic Algorithm.
Proceedings of the Genetic and Evolutionary Computation
Conference, GECOO 2001, pp. 299-305.
[10] T. Cormen, C. Leiserson and R Rivest (1990). Introduction
to algorithms. Mac Graw Hill.
[11] Zadeh, L.A., "Fuzzy sets" in Information and Control, 8:
338-352, 1965
[12] C.L. Blake, and Merz, C.J. (1998). UCI Repository of
machine learning databases Irvine, CA: University of California,
Department of Information and Computer Science.
http://www.ics.uci.edu/~mlearn/
MLRepository.html
[13] KDD-cup data set. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html
[14] T. Lim and W. Loh (1997). A Comparison of Prediction,
Accuracy, Complexity, and Training Time of Thirty-Three Old
and New Classification Algorithms. Technical Report,
Department of Statistics, University of Wisconsin-Madison,
No. 979.
[15] J. Gomez, and D. Dasgupta, “Using Competitive Operators
and a Local Selection Scheme in Genetic Search”, Submitted as
Late-breaking paper to the Evolutionary Computation
Conference GECCO02, 2002
[16] J. Gomez, and D. Dasgupta, “Evolving Fuzzy Rules for
Intrusion”, To appear in the proceedings of the Third Annual
IEEE Information Assurance Workshop 2002 Conference. June
2002
[17] Results of the KDD' 99 Classifier learning contest,
http://www-cse.ucsd.edu/users/elkan/clresults.html.
[18] Nasraoui O., Krishnapuram R., Joshi A., and Kamdar T.
“Automatic Web User Profiling and Personalization using
Robust Fuzzy Relational Clustering,” in “E-Commerce and
Intelligent Methods” in the series “Studies in Fuzziness and
Soft Computing”, J. Kacprzyk, Ed, Springer-Verlag, 2002.
[19] Nasraoui O. and Krishnapuram R., “A New Evolutionary
Approach to Web Usage and Context Sensitive Associations
Mining,” International Journal on Computational Intelligence
and Applications - Special Issue on Internet Intelligent
Systems, in press (2002).

