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ABSTRACT

The immune system is highly distributed, highly adaptive, self-organising in nature, maintains a
memory of past encounters and has the ability to continually learn about new encounters. From a
computational point of view, the immune system has much to offer by way of inspiration to computer
scientists and engineers alike.  As computational problems become more complex, increasingly, people
are seeking out novel approaches to these problems, often turning to nature for inspiration. A great
deal of attention is now being paid to the vertebrae immune system as a potential source of inspiration,
where it is thought that different insights and alternative solutions can be gleaned, over and above
other biologically inspired methods.

Given this rise in attention to the immune system, it seems appropriate to explore this area in some
detail. This survey explores the salient features of the immune system that are inspiring computer
scientists and engineers to build Artificial Immune Systems (AIS). An extensive survey of applications is
presented, ranging from network security to optimisation and machine learning. However, this is not
complete, as no survey ever is, but it is hoped this will go some way to illustrate the potential of this
exciting and novel area of research.

1 Introduction
This contribution examines the growing field of Artificial Immune Systems (AIS).  Artificial
immune systems can be defined as computational systems inspired by theoretical
immunology and observed immune functions, principles and models, which are applied to
problem solving (de Castro & Timmis, 2002).  The field of AIS is relativity new and draws
upon work done by many theoretical immunologists (e.g., Jerne, 1974; Perelson, 1989; and
Bersini & Varela, 1990) to name a few.  What is of interest to researchers developing AIS is
not the modelling of the immune system, but extracting or gleaning of useful mechanisms that
can be used as metaphors or inspiration to help in the development of (computational) tools
for solving particular problems.  Within biologically inspired computing, it is quite common
to see gross simplifications of the biological systems, on which the artificial systems are
based: AIS is no exception. However, it should be remembered, that although a good
understanding of the biological system is essential in this domain, it is inspiration from nature
that is sought, rather than the creation of accurate models.

Through reading the literature, it can be observed that AIS have been applied to a wide range
of application domains. Some of the first work in applying immune system metaphors was
undertaken in the area of fault diagnosis (Ishida, 1990).  Later work applied immune system
metaphors to the field of computer security and virus detection (Forrest et al, 1994), which
seemed to act as a catalyst for further investigation of the immune system as a metaphor in
many areas. However, as yet, there seems to be no niche area for AIS. Some people have
commented that this may be a weakness, or a gap in the field (Bersini, 2002) and that there
needs to be a serious undertaking to find such a  niche area and this will in turn go to
strengthen the area. It has also be argued that AIS are incredibly flexible, as are many
biologically inspired techniques, suitable for a number of applications and can be thought of
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as a novel soft computing paradigm, suitable for integration with many more traditional
techniques (de Castro and Timmis, 2003).

The growing interest in AIS is reflected in the growing number of special sessions and invited
tracks at a number of well-established international conferences, such as the IEEE SMC and
GECCO conferences. The first international conference on artificial immune systems
(ICARIS) took place at the University of Kent at Canterbury (UKC) in September 20021. Its
great success in terms of organization and quality of papers presented motivated the second
ICARIS to be held in  Edinburgh in September 2003.

This chapter is organised in the following manner.  First, reasons for why the immune system
has generated such interest within the computing and engineering community. This is
followed by a simple review of relevant immunology that has served as a foundation for much
of the work reviewed in this contribution.  Immunology is a vast topic and no effort has been
made to cover the whole area, suitable citations are provided in the text to further direct the
reader. The area of AIS is then presented, in terms of a general framework proposed in (de
Castro and Timmis, 2002). A review of AIS applications is then presented, however,
providing a general overview of a number of different application areas. Finally, comments
on the perceived future of this emerging technology are then presented.

2 The Immune System: Metaphorically Speaking
When considered from a computational point of view, the immune system can be considered
to be a rich source of inspiration as it displays learning, adaptability, is self-organising, highly
distributed and displays a memory There are many reasons why the immune system is of
interest to computing (Dasgupta, 1998b; de Castro & Timmis, 2002); these can be
summarised as follows:

• Recognition: The immune system has the ability to recognise, identify and respond to a
vast number of different patterns.  Additionally, the immune system can differentiate
between malfunctioning self-cells and harmful nonself cells, therefore maintaining some
sense of self.

• Feature Extraction: Through the use of Antigen Presenting Cells (APC) the immune
system has the ability to extract features of the antigen by filtering molecular noise from
disease causing agents called an antigen, before being presented to other immune cells,
including the lymphocytes.

• Diversity: There are two major processes involved in the generation and maintenance of
diversity in the immune system. First, is the generation of receptor molecules through the
recombination of gene segments from gene libraries. By recombining genes from a finite
set, the immune system is capable of generating an almost infinite number of varying
types of receptors, thus endowing the immune system with a large coverage of the
universe of antigens. The second process, which assists with diversity in the immune
system, is known as somatic hypermutation. Immune cells reproduce themselves in
response to invading antigens. During reproduction, they are subjected to a somatic
mutation process with high rates that allow the creation of novel patterns of receptors
molecules, thus increasing the diversity of the immune receptors (Kepler & Perelson,
1993).

• Learning: The mechanism of somatic hypermutation followed by a strong selective
pressure also allows the immune system to fine-tune its response to an invading pathogen;
a process termed affinity maturation (Berek & Ziegner, 1993). Affinity maturation
guarantees that the immune system becomes increasingly better at the task of recognising
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patterns. The immune network theory is another powerful example of learning in the
immune system. It suggests that the immune system has a dynamic set of mutually
recognizing cells and molecules, and the presence of an invading antigen causes a
perturbation in this network. As a result, the dynamic immune network, which presents an
intrinsic steady state in the absence of antigens, has to self-organise its pattern of
behaviour again, so as to accommodate the disturbance (Bersini, 2002). Therefore,
invading antigens require the immune network to adapt itself to this new element.

• Memory: After an immune response to a given antigen, some sets of cells and molecules
are endowed with increased life spans in order to provide faster and more powerful
immune responses to future infections by the same or similar antigens. This process,
known as the maturation of the immune response, allows the maintenance of those cells
and molecules successful at recognizing antigens. This is the major principle behind
vaccination procedures in medicine and immunotherapy. A weakened or dead sample of
an antigen (e.g., a virus) is inoculated into an individual so as to promote an immune
response (with no disease symptoms) in order to generate memory cells and molecules to
that antigen.

• Distributed detection: There is inherent distribution within the immune system.  There is
no one point of overall control; each immune cell is specifically stimulated and responds
to new antigens that can invade the organism in any location.

• Self-regulation: Immune systems dynamics are such that the immune system population
is controlled by local interactions and not by a central point of control. After a disease has
been successfully combated by the immune system, it returns to its normal steady state,
until it is needed in response to another antigen. The immune network theory explicitly
accounts for this type of self-regulatory mechanism.

• Metadynamics: The immune system is constantly creating new cells and molecules, and
eliminating those that are too old or are not being of great use. Metadynamics is the name
given to this continuous production, recruitment and death of immune cells and molecules
(Varela et al, 1988).

• Immune Network: In 1974 N. Jerne proposed the immune network theory as an alternative
to explain how the immune system works. He suggested that the immune system is a
dynamic system whose cells and molecules are capable of recognizing each other, thus
forming an internal network of communication within the organism. This network
provides the basis for immunological memory to be achieved, via a self-supporting and
self-organising network.

The remainder of this chapter outlines some of the salient features of the immune system that
have been employed in the development of artificial immune systems.  Attention is then
drawn to significant applications of the immune system as a metaphor for computational
systems.

3 The Vertebrate Immune System
The vertebrate immune system is composed of diverse sets of cells and molecules that work
in collaboration with other bodily systems in order to maintain a steady state within the host.
A role of the immune system is to protect our bodies from infectious agents such as viruses,
bacteria, fungi and other parasites.  On the surface of these agents are antigens that allow the
identification of the invading agents (pathogens) by the immune cells and molecules, thus
provoking an immune response.  There are two basic types of immunity, innate and adaptive.
Innate immunity (Janeway, 1993) is not directed towards specific invaders into the body, but
against any pathogens that enter the body.  The innate immune system plays a vital role in the
initiation and regulation of immune responses, including adaptive immune responses.
Specialized cells of the innate immune system evolved so as to recognize and bind to
common molecular patterns found only in microorganisms, but the innate immune system is
by no means a complete solution to protecting the body.



Adaptive or acquired immunity (Roitt, 1997), however, allows the immune system to launch
an attack against any invader that the innate system cannot remove.  The adaptive system is
directed against specific invaders, and is modified by exposure to such invaders.  The
adaptive immune system mainly consists of lymphocytes, which are white blood cells, more
specifically B and T-cells. These cells aid in the process of recognizing and destroying
specific substances.  Any substance that is capable of generating such a response from the
lymphocytes is called an antigen or immunogen.  Antigens are not the invading
microorganisms themselves; they are substances such as toxins or enzymes in the
microorganisms that the immune system considers foreign.  Adaptive immune responses are
normally directed against the antigen that provoked them and are said to be antigen-specific.
The immune system generalizes by virtue of the presence of the same antigens in more than
one infectious agent. Many immunizations exploit this by presenting the immune system with
an innocuous organism, which carries antigens present in more dangerous organisms. Thus
the immune system learns to react to a particular pattern of antigen.

The immune system is said to be adaptive, in that when an adaptive immune response is
elicited B-cells undergo cloning in an attempt to produce sufficient antibodies to remove the
infectious agent (Burnet, 1959; Jerne, 1974).  When cloning, B-cells undergo a stochastic
process of somatic hypermutation (Kepler & Perelson, 1993) where an attempt is made by the
immune system to generate a wider antibody repertoire so as to be able to remove the
infectious agent from the body and prepare the body for infection from a similar but different
infection at some point in the future.

After the primary immune response, when the immune system first encounters a foreign
substance and the substance has been removed from the system, a certain quantity of B-cells
remain in the immune system and acts as an immunological memory (Smith et al, 1998;
Jerne, 1974).  This is to allow for the immune system to launch a faster and stronger attack
against the infecting agent, called the secondary immune response.

3.1 Primary and Secondary Immune Responses
A primary response (Tizard, 1988a) is provoked when the immune system encounters an
antigen for the first time.  A number of antibodies will be produced by the immune system in
response to the infection, which will help to eliminate the antigen from the body.  However,
after a period of days the levels of antibody begin to degrade, until the time when the antigen
is encountered again.  This secondary immune response is said to be specific to the antigen
that first initiated the immune response and causes a very rapid growth in the quantity of B-
cells and antibodies.  This second, faster response is attributed to memory cells remaining in
the immune system, so that when the antigen, or similar antigen, is encountered, a new
immunity does not need to be built up, it is already there.  This means that the body is ready
to combat any re-infection. Figure 1 illustrates this process.
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Figure 1 - Primary and Secondary Immune Response. Ag1 infects the system and a lag occurs
before a primary immune response is initiated. The host is then re-infected with Ag1 and a

different antigen Ag2. A fast secondary response is elicited against Ag1, whilst a primary response
is initiated against Ag2. At some point in the future, the host is then infected with Ag1', which is a

slight variation on Ag1. Due to the generalist capability of the immune system, a secondary
response is elicited against the antigen. © De Castro and Timmis, 2002

The amount of antibody is increased by the immune system generating a massive number of
B-cells through a process called clonal selection (Burnet, 1959), this is now discussed in
relation to the B-cell in the immune system.

3.2 B-cells and Antibodies
The B-cell is an integral part of the immune system. Through a process of recognition and
stimulation, B-cells will clone and mutate to produce a diverse set of antibodies in an attempt
to remove the infection from the body (Timmis, 2000). The antibodies are specific proteins
that recognize and bind to another protein. The production and binding of antibodies is
usually a way of signalling other cells to kill, ingest or remove the bound substance (de Castro
& Von Zuben, 1999). Each antibody has two paratopes and two epitopes that are the
specialised parts of the antibody that identify other molecules (Hunt & Cooke, 1996). Binding
between antigens and antibodies is governed by how well the paratopes on the antibody
matches the epitope of the antigen, the closer this match, the stronger the bind. Although it is
the antibodies  that surround the B-cell, which are responsible for recognising and attaching to
antigen invaders, it is the B-cell itself that has one of the most important roles in the immune
system.

This is not the full story, as B-cells are also affected by Helper T-cells during the immune
response (Tizard, 1988b).  T-cell paratopes are different from those on B-cells in that they
recognise fragments of antigens that have been combined with molecules found on the
surfaces of the other cells.  These molecules are called MHC molecules (Major
Histocompatibility Complex).  As T-cells circulate through the body they scan the surfaces of
body cells for the presence of foreign antigens that have been picked up by the MHC
molecules.  This function is sometimes called immune surveillance.  These helper T-cells
when bound to an antigen secrete interleukines that act on B-cells helping to stimulate them.

3.3 Immune Memory
It is possible to identify two main philosophical avenues that try to explain how immune
memory is acquired and maintained (Tew & Mandel, 1979), (Tew et al, 1980), (Ada &



Nossal, 1987) and (Matzinger, 1994): 1) clonal expansion and selection and 2) immune
network.

Throughout the lifetime of an individual, it is expected to encounter a given antigen
repeatedly. The initial exposure to an antigen that stimulates an adaptive immune response is
handled by a spectrum of small clones of B-cells, each producing antibodies of different
affinity. The effectiveness of the immune response to secondary encounters is considerably
enhanced by storing some high affinity antibody producing cells from the first infection,
named memory cells, so as to form a large initial clone for subsequent encounters. Thus
memory, in the context of secondary immune responses, is a clonal property (Coutinho,
1989).

Another theory that has been used in AIS for inspiration is the theory first proposed by Jerne
(Jerne, 1974) and reviewed in (Perelson, 1989) called the Immune Network Theory.  This
theory states that B-cells co-stimulate each other via portions of their receptor molecules
(idiotopes) in such a way as to mimic antigens.  An idiotope is made up of amino acids within
the variable region of an antibody or T-cell. A network of B-cells is thus formed and highly
stimulated B-cells survive and less stimulated B-cells are removed from the system.  It is
further proposed that this network yields useful topological information about the relationship
between antigens.  For these reasons, this section focuses on this theory.

3.3.1 Immunological Memory via the Immune Network
Work in (Jerne, 1974) proposed that the immune system is capable of achieving
immunological memory by the existence of a mutually reinforcing network of B-cells.  These
cells not only stimulate each other but also suppress connected B-cells, though to a lesser
degree.  This suppression function is a mechanism by which to regulate the over stimulation
of B-cells in order to maintain a stable memory.

This network of B-cells occurs due to the ability of paratopes, located on B-cells, to match
against idiotopes on other B-cells. The binding between idiotopes and paratopes has the effect
of stimulating the B-cells.  This is because the paratopes on B-cells react to the idiotopes on
similar B-cells, as it would an antigen.  However, to counter the reaction there is a certain
amount of suppression between B-cells to act as a regulatory mechanism.  Figure 2 shows the
basic principles of the immune network theory.  Here B-cell 1 stimulates three other cells, B-
cells 2, 3 and 4, and also receives a certain amount of suppression from each one.  This
creates a network type structure that provides a regulatory effect on neighbouring B-cells.
The immune network acts as a self-organising and self-regulatory system that captures

antigen information ready to launch an attack against any similar antigens.

 



Figure 2 - Jernes' idiotypic network hypothesis

3.3.1.1 A Proposed Immune Network Model

Attempts have been made at creating immune network models (Farmer et al, 1986), (Carneiro
& Stewart, 1995) so as to better understand its complex interactions.  Work in (Farmer et al,
1986) proposed a model to capture the essential characteristics of the immune network as
described in (Jerne, 1974) and identify memory mechanisms in it, whereas the work in
(Carneiro & Stewart, 1995) observed how the immune system identifies self and non-self.
Both work by (Farmer et al, 1986) and (Perelson, 1989) investigated Jernes' work in more
depth and provided insights into some of the mechanisms involved in the production and
dynamics of the immune network.  There are a number of immune network models, however
it is impossible to review them all. This section will summarise the salient features of the
Farmer et al model, as a form of case study to illustrate the potential power of such a model
for computation.

Work in (Farmer et al, 1986) created a simplistic model to simulate the immune system.  The
model ignored the effect of T cells and of macrophages in an attempt to capture the essential
characteristics of the immune network.  Central to their work was the calculation of the
dynamics of B-cell population related to a B-cell’s stimulation level.  The authors proposed a
simple equation that they consider takes into account the three main contributing factors to B-
cell stimulation level, these are: (i) the contribution of the antigen binding (ii) the contribution
of neighbouring B-cells and (iii) the suppression of neighbouring B-cells.  The rate of change
of antibody concentration is given by
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Equation 1 – Change in antibody concentration (Farmer et al, 1986)

where the first term represents the stimulation of the paratope of an antibody type i by the
epitope of an antibody j. The second term represents the suppression of antibody of type i
when its epitope is recognized by the paratope of type j. The parameter c is a rate constant
that depends on the number of collisions per unit time and the rate of antibody production
stimulated by a collision. Constant k1 represents a possible inequality between stimulation and
suppression.

The stimulation of a B-cell cloning and mutation were included in the model to create a
diverse set of B-cells.  The amount by which any one B-cell cloned was in relation to how
stimulated the B-cell was.  The more stimulated a B-cell, the more clones it produced.  Three
mutation mechanisms were introduced on the strings: crossover, inversion and point mutation.
Crossover is the interchanging of two points on two different strings, inversion is the simple
inverting of the value of the bit in a string, a 0 to a 1 and vice versa and point mutation is the
random changing of a bit in a given string.

3.4 Repertoire and Shape Space
Coutinho (1980) first postulated the idea of repertoire completeness. He stated that if the
immune systems antibody repertoire is complete, that is, present receptor molecules capable
of recognizing any molecular shape, then antibodies with immunogenic idiotopes can be
recognised by other antibodies, and therefore an idiotypic network would be created.

However, in order to understand completeness, it is first necessary to understand the concept
of shape space. Shape space has been an important mechanism to create and represent abstract
models of immune cells and molecules (de Castro and Timmis, 2002). The basic idea is that



all the features of a receptor molecule necessary to characterise its binding region with an
antigen is called its generalised shape. The generalised shape of any receptor molecule can be
represented by an attribute string of a given length L in a generic L-dimensional space, called
shape space.

To illustrate this idea, consider a bi-dimensional space as illustrated in Figure 3. The set of all
possible shapes lie within a finite volume V in this bi-dimensional shape space. The
antibodies are represented by the letter A (black dots) and the antigens are depicted by the ‘x’.
Each antibody (A) can recognise a given number of antigens within an affinity threshold ε and
therefore can recognise a volume (Ve) of antigens (x) in shape space. Therefore, a finite set of
antibodies appropriately placed in the shape space and with appropriate affinity thresholds are
sufficient to cover the whole shape space; thus being capable of recognizing any molecular
shape that can be presented to the immune system.

ε

Figure 3 - A diagrammatic representation of shape space. Adapted from (Perelson, 1989).

3.5 Learning within the Immune Network
It has been proposed that the immune network can be thought of as being cognitive (Varela et
al, 1988) and exhibits learning capabilities.  The authors proposed four reasons as to why they
consider immune systems to be cognitive: (i) they can recognise molecular shapes; (ii) they
remember history of encounters; (iii) they define the boundaries of self, and (iv) they can
make inferences about antigenic patterns they have yet to encounter.  Taking these points, the
paper explores cognitive mechanisms of the immune system and proposes that the immune
network can be thought of as a cognitive network, in a similar way to a neural network.

The work suggests that the immune network is capable of producing dynamic patterns of
activity over the entire network and that there is a self-regulatory mechanism working that
helps to maintain this network structure.  These emerging patterns within the immune
network are characterised by varying numbers of B-cells that when in a response to an antigen
undergo clonal selection.  The authors use the term metadynamics of the immune system; see
also (Bersini & Valera, 1994).  This can essentially be taken to mean the continual production
and death of immune cells and molecules.  A large variety of new B-cells will be produced,
but not all will be a useful addition to the immune system and many will never enter into the
dynamics of the immune system (interact with other B-cells in the network) and will
eventually die.  The authors produced a simple model using these ideas and found that there
are oscillations in many of the variables within their system, in particular the number of B-
cells that are produced.  There would often be rapid production of B-cells, followed by a
sharp decline in number, which the authors argue, is what you expect to see in the natural
immune system.  Coupled with this oscillatory pattern, the authors observed that a certain
core and stable network structure does emerge over time.  This structure emerges due to a
topological self-organisation within the network, with the resulting network acting to record
the history of encounters with antigens. Therefore, the authors concluded that the immune
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system is an excellent system for learning about new items and can support a memory of
encounters by the use of complex pattern matching and a self-organising network structure,
and can thus be thought of as being cognitive.

There is other research that goes to support the ideas presented above.  (Bersini & Varela,
1990) implemented the model proposed in (Varela et al, 1988) and suggested that
mechanisms such as immune memory, adaptability and the immune system's ability to
perform distributed processing could be of potential use to engineering problem solving, in
particular adaptive control (Bersini, 1991) and computational problem solving.
Following on from work in (Bersini & Valera, 1990), work in (Bersini & Valera, 1994)
provides an effective summary of work done on exploring the dynamics and metadynamics of
the immune system.  They claim that the metadynamics of the immune system allows the
identity of the immune system to be preserved over time, but still allows itself to adapt to new
situations.  Simulations of an immune network confirmed this. The reader is also directed to
(Bersini, 2002) where further arguments for this position are proposed.

As a way to model the immune system metadynamics the authors proposed the use of the
immune recruitment mechanism (IRM). The IRM is a mechanism by which the best new cells
and molecules in the system are incorporated into the network.  This can be translated as
saying that one should only incorporate the best new items that are produced into the network.
Therefore the selection of new items is based on the state of the surrounding network: any
other items that are produced are lost.  This gives rise to the metadynamical system that is
believed to occur in the vertebrate immune system.   In this paper, the authors proposed seven
general principles that can be extracted from the immune system and applied to creating a
controlling system for the area of adaptive control, but they hope, to other fields as well.
These principles are:

• Principle 1: The control of any process is distributed around many operators in a
network structure.  This allows for the development of a self-organising system that
can display emerging properties.

• Principle 2: The controller should maintain the viability of the process being
controlled.  This is keeping the system within certain limits and preventing the system
from being driven in one particular way.

• Principle 3: While there may be perturbations that can affect the process, the
controller learns to maintain the viability of the process through adaptation.  This
learning and adaptation requires two kinds of plasticity: a parametric plasticity, which
keeps a constant population of operators in the process, but modifies parameters
associated with them; and a structural plasticity which is based on the recruitment
mechanism which can modify the current population of operators.

• Principle 4: The learning and adaptation are achieved by using a reinforcement
mechanism between operators.  Operators interact to support common operations or
controls.

• Principle 5: The dynamics and metadynamics of the system can be affected by the
sensitivity of the network.

• Principle 6: The immune recruitment mechanism can be considered to be a stand-
alone optimisation algorithm.

• Principle 7: The controller retains a population-based memory, which can maintain a
stable level in a changing environment.

The authors suggest that these principles, while being very general, could prove useful to
many domains of learning, engineering control and so on. Indeed, in their paper they present a
way of applying these general principles to the areas of adaptive control and to the creation of
other immune inspired algorithms.



3.6 The Clonal Selection Principle
When antibodies on a B-cell bind with an antigen, the B-cell becomes activated and begins to
proliferate.  New B-cell clones are produced that are an exact copy of the parent B-cell, but
then undergo somatic hypermutation (Berek & Ziegner, 1993) and produce antibodies that are
specific to the invading antigen.  The clonal selection principle (Burnet, 1959) is the term
used to describe the basic properties of an adaptive immune response to an antigenic stimulus
and is an alternative view to the position presented in the previous section. It establishes the
idea that only those cells capable of recognizing an antigenic stimulus will proliferate, thus
being selected against those that do not. Clonal selection operates on both T-cells and B-cells.

The B-cells, in addition to proliferating or differentiating into plasma cells, can differentiate
into long-lived B memory cells. Memory cells circulate through the blood, lymph and tissues,
probably not manufacturing antibodies (Perelson et al, 1978).  However, when exposed to a
second antigenic stimulus they commence differentiating into large lymphocytes capable of
producing high affinity antibody.

3.6.1 Learning and Memory via Clonal Selection
In order for the immune system to be protective over periods of time, antigen recognition is
insufficient. The immune system must also have a sufficient number of cells and molecules so
as to mount an effective response against antigens encountered at a later stage. The number of
immune cells and molecules specific for the antigen with relation to the size of the antigen’s
population is crucial to determining the outcome of infection. Learning via clonal selection
involves raising the population size and the affinity of those cells that have proven themselves
to be valuable during the antigen recognition phase. Thus, the immune repertoire is biased
from a random base to a repertoire that more clearly reflects the actual antigenic environment.

In the normal course of the evolution of the immune system, an organism would be expected
to encounter a given antigen repeatedly during its lifetime. The initial exposure to an antigen
that stimulates an adaptive immune response (an immunogen) is handled by a small number
of B-cells, each producing antibodies of different affinity. Storing some high affinity antibody
producing cells from the first infection, so as to form a large initial specific B-cell sub-
population (clone) for subsequent encounters, considerably enhances the effectiveness of the
immune response to secondary encounters. These are referred to as memory cells. Rather than
‘starting from scratch’ every time, such a strategy ensures that both the speed and accuracy of
the immune response becomes successively stronger after each infection.

In summary, immune learning and memory are acquired through:

• Repeated exposure to an antigenic stimulus;
• Increase in size of specific immune cells and molecules;
• Affinity maturation of the antigenic receptors.
• Presence of long living cells that persist in a resting state until a second encounter with

the antigen.

3.7 Self/Non-Self Discrimination
The immune system is said to be complete: it has the ability to recognize all antigens.
Antibodies and T-cell receptors produced by the lymphocytes can recognize any foreign (or
self) molecule. Antibody molecules have idiotopes and it follows from the idea of
completeness that these will be recognized by other antibody molecules.

Therefore, all molecules (shapes) can be recognized including our own, which are also seen as
antigens, or self-antigens. For the immune system to function properly, it needs to be able to
distinguish between the molecules of our own cells (self) and foreign molecules (non-self),
which are a priori indistinguishable (Perelson & Weisbuch, 1997). If the immune system is



not capable of performing this distinction, then an immune response will be triggered against
the self-antigens, causing autoimmune diseases.

An encounter between an antibody and an antigen does not inevitably result in activation of
the lymphocyte.  It is possible that the encounter could actually cause the death of the
lymphocyte. In order for this to happen, there must be some form of negative selection that
prevents self-specific lymphocytes from becoming prevalent.

3.7.1 Negative Selection
The concept of a negative signal following certain lymphocyte-antigen interactions, allows for
the control of those lymphocytes being anti-self. Negative selection of a lymphocyte describes
the process whereby a lymphocyte-antigen interaction results in the death or anergy of that
lymphocyte. The immune cell is simply purged from the repertoire. Location plays a role in
negative selection: the primary lymphoid organs are designed to largely exclude foreign
antigens and to preserve the self-antigens, whereas the secondary lymphoid organs are
designed to filter out and concentrate foreign material, and to promote co-stimulatory
intercellular immune reactions (Zinkernagel & Kelly, 1997).

The negative selection of T-cells has been broadly used by the AIS community as a model to
perform anomaly detection. Basically, the negative selection of T-cells that occurs within the
thymus is based on the following considerations. The thymus is comprised of a myriad of
molecules that primarily present self-molecules to the naïve T-cells (immature T-cells just
produced and with no function yet). The interactions of immature T-cells with the self-
molecules results in the death of all those naïve T-cells that recognize the self-molecules. This
means that only T-cells that do not recognize self-molecules are allowed to survive and
become functional T-cells.

4 From Natural to Artificial Immune Systems
The immune system is a valuable metaphor as it is self-organising, highly distributed and has
no central point of control. The theoretical aspects summarised above reveal interesting
avenues for using the immune system as a metaphor for developing novel computational
intelligence paradigms.  These can potentially be applied to solve many problems in a wide
range of domains, such as data mining, control and anomaly detection, to name a few.  Some
of these applications will be discussed in the following sections.  Some of the interesting
immunological aspects can be summarised as follows:

• Using the idea of self-organisation.  Self-organisation is the ability of a system to
adapt its internal structure to the environment without any external supervision.  In
the case of the immune system, clonal selection followed by affinity maturation and
the immune network adapts to new antigens it comes across and ultimately can be
said to represent the antigens.  This fits in with the general principle 1 described
above of having some inherent self-organising structure within a system that will
exhibit emerging properties.

• The primary and secondary immune responses.  It has been shown that more B-cells
are produced in response to continual exposure to antigens. This suggests that to learn
on data using the immune system metaphor, the data may have to be presented a
number of times in order for the patterns to be captured.

• Using the idea of clonal selection.  As B-cells become stimulated they reproduce in
order to create more antibodies to remove the antigen from the system.  This causes
clusters of B-cells that are similar to appear.  Clusters indicate similarity and could be
useful in understanding common patterns in data, just as a large amount of specific B-
cells in the immune system indicates a certain antigen.

• Adaptation and diversification.  Some B-cell clones undergo somatic hypermutation.
This is an attempt of the immune system to develop a set of B-cells and antibodies



that cannot only remove the specific antigen, but also similar antigens.  By using the
idea of mutation a more diverse representation of the data being learnt is gained than
a simple mapping of the data could achieve.  This may be of benefit and reveal subtle
patterns in data that may be missed.

• Knowledge extraction and generalisation. Somatic hypermutation may be not only
beneficial to generalise knowledge, i.e., to reveal subtle patterns in data but, together
with a selective event, it might guarantee that those B-cells with increased affinities
are selected and maintained as high affinity cells. The continuous processes of
mutation and selection (affinity maturation) allow the immune system to extract
information from the incoming antigens. Affinity maturation performs a better
exploitation (greedy search) of the surrounding regions of the antibodies.

• The use of a network structure.  The immune network represents an effective way of
simulating a dynamic system and achieving memory.  This idea could be exploited in
helping to maintain a network of B-cells that are creating a model of some data being
learnt.  Indeed, visualising that network may reveal useful topological information
about the network that leads to a greater understanding of the data being modelled.

• Metadynamics. The oscillations of immune system variables, such as antibody
concentration and B-cell population, as discussed in (Varela et al, 1988) indicate that
a stable network representative of the data being learnt could be possible.  This would
be very useful as once a pattern had been learnt, it would only be forgotten if it
becomes useless in a far future.  Additionally, the networks produced act as a life
long learning mechanism, with B-cell population always in a state of flux, but
representative of antigens it has been exposed to.  This could be a useful metaphor for
developing a system that could, in principle, learn a set of patterns in one data set,
then go onto learn new patterns from other data sets, while still remembering the
older ones.

• Knowledge of self and non-self.  The immune system has a complete repertoire in its
ability to recognise invading antigens.  Additionally, the immune system is said to be
tolerant to self, in that it can recognise the difference between self and non-self cells.
This is a powerful metaphor when considering anomaly detection systems.

4.1 Summary
Immunology is a vast topic therefore; this chapter has introduced only those areas of
immunology that are pertinent to this contribution. Through a process of matching between
antibodies and antigens and the production of B-cells through clonal selection (Burnet, 1959)
and somatic hypermutation (Kepler & Perelson, 1993), an immune response can be elicited
against invading antigen so that it is removed from the system.   In order to remember which
antigens the immune system has encountered, some form of immunological memory must be
present; this can be explained in part through theories such as the clonal selection theory or
the more controversial immune network theories. Clearly, the immune system is performing a
very important role within the body. The sheer complexity of the system is staggering, and
current immunology only knows part of the story. Through complex interactions, the immune
system protects out bodies from infection, interacts with other bodily systems to maintain a
steady state (homeostasis). The focus of this chapter has been more on the immune network
theory. This is not to lend more weight to that particular view point of the immune system, it
has merely been presented in more depth to provide the reader with a deeper insight into one
of the many complex ideas within immunology, that have helped computer scientists and
engineers over the years. This area will now be examined in more detail.

5 The Immune System Metaphor
This section introduces the reader to the field of Artificial Immune Systems (AIS). There have
been a number of attempts over the years to try and define exactly what is an AIS. For



example, (Timmis, 2000) defined AIS to be "an AIS is a computational system based upon
metaphors of the natural immune system" and (Dasgupta, 1998b) defined them to be "AIS are
intelligent methodologies inspired by the immune system toward real-world problem solving".
Feeling that neither of these definitions were complete, the most recent definition is taken
from (de Castro and Timmis, 2002), where they define AIS to be "AIS are adaptive systems,
inspired by theoretical immunology and observed immune functions, principles and models,
which are applied to problem solving". In this latest definition, the a more complete view of
what an AIS has been captured: the fact they are inspired by the immune system, but the
inspiration is not restricted to purely theoretical immunology, but also 'wet lab' type
immunology, the systems are adaptive which means they must demonstrate some element of
adaptability and are not restricted to pieces of software but could equally be implemented on
hardware and that there is some form of application ultimately in mind – this allows for the
distinction between the creation of pure models of the immune system (which indeed are
useful for AIS, as has been discussed).

This section presents an overview of many different applications of AIS that can be seen in
the literature. No attempt has been made on an exhaustive survey, for this, the readers are
directed to (de Castro and Timmis, 2002), chapter 4, where such an exhaustive review is
presented. The aim of this section is to merely illustrate the wide applicability of AIS.  Very
recently,  (de Castro and Timmis, 2002) have proposed the idea of a framework for AIS
which consists of basic components and processes, from which it is possible to both describe
and build AIS.  This framework is now presented – due the fact that it was only recently
proposed however; the framework has not been used in this article when describing AIS
literature published before the existence of this framework.

5.1 A Framework for AIS
In an attempt to create a common basis for AIS, work in (de Castro and Timmis, 2002)
proposed the idea of a framework for AIS. The authors argued the case for proposing such as
framework from the standpoint that in the case of other biologically inspired approaches, such
as artificial neural networks (ANN) and evolutionary algorithms (EAs) such a basic idea
exists and helps considerably with the understanding and construction of such systems. For
example,  (de Castro and Timmis, 2002) consider a set of artificial neurons, which can be
arranged together so as to form an artificial neural network. In order to acquire knowledge,
these neural networks undergo an adaptive process, known as learning or training, which
alters (some of) the parameters within the network. Therefore, the authors argued that in a
simplified form, a framework to design an ANN is composed of a set of artificial neurons, a
pattern of interconnection for these neurons, and a learning algorithm.  Similarly, the authors
argued that in evolutionary algorithms, there is a set of “artificial chromosomes” representing
a population of individuals that iteratively suffer a process of reproduction, genetic variation,
and selection. As a result of this process, a population of evolved artificial individuals arises.
A framework, in this case, would correspond to the genetic representation of the individuals
of the population, plus the procedures for reproduction, genetic variation, and selection.
Therefore, the authors adopted the viewpoint that a framework to design a biologically
inspired algorithm requires, at least, the following basic elements:

• A representation for the components of the system;
• A set of mechanisms to evaluate the interaction of individuals with the environment

and each other. The environment is usually simulated by a set of input stimuli, one or
more fitness function(s), or other mean(s) and;

• Procedures of adaptation that govern the dynamics of the system, i.e., how its
behavior varies over time.

Adopting this approach, (de Castro and Timmis, 2002) proposed such a framework for AIS.
The basis of the proposed framework for is therefore a representation to create abstract



models of immune organs, cells, and molecules, a set of functions, termed affinity functions,
to quantify the interactions of these “artificial elements”, and a set of general-purpose
algorithms to govern the dynamics of the AIS.Application DomainAISRepresentationAffinity MeasuresImmune AlgorithmsSolution

Figure 4 - A Framework for AIS © De Castro and Timmis, 2002

The framework can be thought of as a layered approach as shown in Figure 4. |In order to
build a system, one typically requires an application domain or target function. From this
basis, the way in which the components of the system will be represented will be considered.
For example, the representation of network traffic may well be different that the
representation of a real time embedded system. Once the representation has been chosen, one
or more affinity measures are used to quantify the interactions of the elements of the system.
There are many possible affinity measures (which are partially dependent upon the
representation adopted), such as Hamming and Euclidean distances. The final layer involves
the use of algorithms, which govern the behavior (dynamics) of the system. Here, in the
original framework proposal, algorithms based on the following immune processes were
presented: negative and positive selection, clonal selection, bone marrow, and immune
network algorithms. It is not possible to explore these here in any detail, needless to say that
each algorithm has its own particular use, or more than one use. For example, the immune
network model proposed in the framework has been successfully applied to data mining (de
Castro and von Zuben, 2000b) and with slight adaptations, multi-modal optimisation (de
Castro and Timmis, 2002a)

5.2 Machine Learning

5.2.1 Recognising DNA
The past number of years has seen a steady increase in attempting to apply the immune
metaphor to machine learning (de Castro & Von Zuben, 2000a). Amongst the first was that
performed by (Cooke & Hunt, 1995) and (Hunt & Cooke, 1996). In these papers, the authors
describe their attempts to create a supervised machine learning mechanism to classify DNA
sequences as either promoter or non-promoter classes, by creating a set of antibody strings
that could be used for this purpose.  Work had already been done on this classification
problem using different approaches such as C4.5 (Quinlan, 1993) standard neural networks
and a nearest neighbour algorithm (Kolodner, 1993) The authors claimed that the AIS system
they achieved an error rate of only 3% on classification, which, when compared to the other
established techniques yielded superior performance.  The system created used mechanisms
such as B-cells and B-cell stimulation, immune network theory, gene libraries, mutation and
antibodies to create a set of antibody strings that could be used for classification. Central to
the work was the use of the Immune Network theory (Jerne, 1974).

Both work in (Hunt et al, 1995) and (Hunt & Fellows, 1996) attempted to apply this
algorithm to the domain of case base reasoning.  In this paper, the authors proposed creating a
case memory organisation and case retrieval system based on the immune system.  (Hunt et
al, 1996) took the application to case base reasoning and attempted to apply it directly to data
mining.  In the previous work (Hunt et al, 1995), only cases were explicitly represented, with



no variations, but as indicated by the authors in (Hunt et al, 1996), a desirable property of any
case base system is the ability to generalise; that is, to return a case that is a general solution if
no specific solution is available.  As the immune system creates generality in the fight against
infection, the authors used this as inspiration to create the idea of a general case, which would
attempt to identify trends in data, as opposed to simply the data themselves.  By introducing
the idea of a generalised case, the authors created a system that could help in the customer-
profiling domain; specifically, identifying people who are likely to buy a Personal Equity
Plan (PEPs) which were a tax-free investment available at the time.

5.2.2 Fraud Detection
This algorithm was then applied to fraud detection, (Hunt et al, 1996), (Hunt et al 1998) and
(Neal et al 1998).   Work in (Hunt et al, 1996) simply proposed the idea that an AIS could be
used to create a visual representation of loan and mortgage application data that could in some
way aid the process of locating fraudulent behaviour.  An attempt at creating such a system
was proposed in (Hunt et al, 1998).  This system, called JISYS, did not differ substantially
from that described in (Hunt et al, 1996) apart from the application and the inclusion of more
sophisticated string matching techniques, such as trigram matching and the inclusion of
weighting in order of importance various fields in the B-cell object, taken from the weighted
nearest neighbour idea (Kolodner, 1993).

5.2.3 Back to Basics
Work in (Timmis et al, 2000) developed an AIS inspired by the immune network theory,
based on work undertaken by (Hunt et al, 1996). The proposed AIS consisted of a set of B-
cells, links between those B-cells, and cloning and mutation operations that are performed on
the B-cell objects. The AIS is tested on the well-known Fisher Iris data set. This data set
contains three classes, of which two are not linearly separable.  Each B-cell in the AIS
represents an individual data item that could be matched (by Euclidean distance) to an antigen
or another B-cell in the network (according to Jerne’s immune network theory). The links
between the B-cells were calculated by a measure of affinity between the two matching cells.
If this affinity is above the network affinity threshold (NAT) it could be said that there is
enough similarity between the two cells for a link to exist. The strength of this link is
proportional to the affinity between them. A B-cell also has a certain level of stimulation that
is related to the number and to the strength of links a cell has. The AIS also had a cloning
mechanism that produced randomly mutated B-cells from B-cells that became stimulated
above a certain threshold. The cloning mechanism is inspired by somatic hypermutation that
produces mutated cells in the human body. The network is trained by repeatedly presenting
the training set to the network. The AIS produced some encouraging results when tested on
the Fisher Iris data set (Fisher, 1936). The proposed system successfully produced three
distinct clusters, which when presented with a known data item could be classified. However,
although the clusters were distinct there was still a certain amount connection between Iris
Virginica and Iris Versicolor.  The AIS also experienced an uncontrolled population
explosion after only a few iterations, suggesting that the suppression mechanism (culling 5 %
of the B-cell) could be improved.  This work was compared to other traditional cluster
analysis techniques and Kohonen Networks (Kohonen, 1997a) and found to compare
favourably (Timmis et al, 1999).

This work was then taken further in (Timmis & Neal, 2001).  In this paper the authors raise
and address a number of problems concerning the work in (Timmis et al, 2000).  A number of
initial observations were clear:  The network underwent exponential population explosion; the
NAT eventually became so low that only very similar, if not identical clones can ever be
connected; the number of B-cells removed from the system lags behind the number created to
such an extent that the population control mechanism was not effective in keeping the
network population at a sensible level; the network grew so large that they become difficult to
compute each iteration with respect to time; the resultant networks were so large, they were



difficult to interpret, and were really too big to be a sensible representation of the data.  With
these concerns in mind, the authors proposed a new system called RLAIS (Resource limited
artificial immune system).  This was later renamed AINE (Artificial Immune Network). To
summarize work in (Timmis & Neal 2001) AINE is initialised as a network of ARB objects
(Artificial Recognition Balls); T-cells, again, are currently ignored.  Links between ARBs are
created if they are below the Network Affinity Threshold (NAT), which is the average
Euclidean distance between each item in the data set.  The initial network is a cross section of
the data set to be learnt, the remainder makes up the antigen training set.  Each member of this
set is matched against each ARB in the network, again, with the similarity being calculated on
Euclidean distance.  ARBs are stimulated by this matching process and by neighbouring
ARBs in the network.  Again, a certain amount of suppression is included in the ARB
stimulation level calculation.   The equation used as a basis for B-cell stimulation calculation
was based on Equation 1.  The stimulation level of an ARB determines the survival of the B-
cell.  The stimulation level also indicates if the ARB should be cloned and the number of
clones that are produced for that ARB.  Clones undergo a stochastic process of mutation in
order to create a diverse network that can represent the antigen that caused the cloning as well
as slight variations.  There exist a number of parameters to the algorithm, those being:
network affinity scalar; mutation rate and number of times the training data is presented to the
network.  Each one of these can be used to alter algorithm performance.  The population
control mechanism that replaced the 5% culling mechanism, forces ARBs to compete for
survival based on a finite number of resources that AINE contains; the more stimulated an
ARB, the more resources it can claim.  Once an ARB no longer claims any B-cells, it is
removed from the AINE.  Previously, always 5% was removed, with AINE this is not the
case, a predetermined number is not set for removal and the amount removed depends on the
performance of the algorithm. This gives rise to a meta-dynamical system that which will
extract patterns or clusters from data being learnt.  The authors propose that AINE is a very
effective learning algorithm, and on test data so far, very encouraging results have been
obtained.  The authors test the system on a simulated data set and the Iris data set.  With the
Iris data set, three distinct clusters can be obtained, unlike the original AIS proposed.
Additionally, the networks produced by AINE are much smaller than the original system.  In
effect, AINE is acting as a compression facility, reducing the complexity of the networks, as
to highlight the important information, or knowledge, that can be extracted from the data.
This is achieved by a special visualisation tool outlined in (Timmis, 2001).  More details of
these algorithms can be found in (Timmis, 2000), (Timmis & Neal, 2001).  However, more
recent work has shown that the networks produced by AINE suffer strong evolutionary
pressure and converge to the strongest class represented in the data (Knight & Timmis, 2001).
Whilst this is an interesting development that could potentially be applied to optimization,
however, with regard to data mining it would not be  preferential. From a continuous learning
point-of-view it is more desirable if all patterns persist over time rather than the strongest.
Work in (Neal, 2002) has developed a form of the original algorithm that is capable of finding
stable clusters. Here, a different population control mechanism based on exponential decay of
stimulation level calculations and the system allows for the continual learning of clusters of
information, even in the absence of antigenic input.

5.2.4 Multi-Layered Immune Inspired Learning
In parallel to this work (Knight and Timmis, 2002) have developed a multi layered immune
inspired algorithm for data mining. The motivation for this work was to take a step back from
existing work and attempt to take a more holistic approach to the development of an immune
inspired algorithm. It was noted that a more holistic approach might provide a better solution
in the search for an immune inspired data-mining algorithm capable of continuous learning.
Rather that focusing on the immune network theory the authors adopted aspects of the
primary and secondary responses seen in the adaptive immune system. This new approach
incorporates interactions between free-antibodies, B-cells, and memory cells, using the clonal
selection processes as the core element of the algorithm. This three-layered approach consists
of a free-antibody layer, B-cell layer and a memory layer. The free-antibody layer provides a



general search and pattern recognition function. The B-cell layer provides a more refined
pattern recognition function, with the memory layer providing a stable memory structure that
is no longer influenced by strong evolutionary pressure. Central to the algorithm is feedback
that occurs between B-cells and is part of the secondary immune response in the algorithm.
Novel data is incorporated into the B-cell layer and is given a chance to thrive, thus providing
a primary immune response. Initial testing of this algorithm has shown good performance at
static clustering.

5.2.5 Data Clustering
Similar work to that of (Timmis and Neal, 2001) has been undertaken in (de Castro & Von
Zuben, 2000b).  In this work the authors propose a system called aiNet, the driving force of
which is data clustering and filtering redundant data.  Again, for inspiration the authors utilise
the immune network theory and the idea of shape space.    The proposed aiNet is likened to a
weighted disconnected graph, where each cell represents a set of variables (attributes or
characteristics) which is said to characterise a molecular configuration, hence a point in p-
dimensional space (shape space).  Cells are allowed connections between them based on some
similarity measure.  Suppression within aiNet is achieved by eliminating self-similar cells
under a given threshold (defined by the user).  Cells within aiNet compete with each other for
recognition of antigens (training data) and if successful proliferate and are incorporated into
the emerging network.  The algorithm is as follows: the training data are presented to an
initial randomly generated network.  Affinity between antigens and network cells is calculated
and the highest matched cells are cloned and mutated.  A heuristic is placed in the algorithm
that increases the weighting of well-matched cells by decreasing their distance between the
antigen items; this is akin to a greedy search.  The affinity between these cells in this new
matrix is then calculated with the lowest matched cells being removed (this is based on a
predetermined threshold set by the user).  A certain number of cells are then removed from
the network; again, based on a threshold value predetermined by the user, the new clones are
then integrated into the network.  The cells in the network then have their affinities with each
other recalculated, with again a certain number being removed, that fall under the user defined
threshold.  After the learning phase, the network can be said to be a representation of the data
set that is being learnt.  Clusters and patterns will emerge within the network and can be used
for knowledge extraction.  Once the networks have been created, the authors then use a
variety of statistical techniques for interpreting the networks.  The authors' main goal for
aiNet is two-fold: identify the number of clusters within the data and determine which
network cell belongs to which cluster.  To achieve this, the authors apply the minimal
spanning tree algorithm to the network.  The authors test their system on two data sets, a
simple five linearly separable data set and the famous Donut problem.  Good results are
obtained for each of the experiments, aiNet identifies the clusters within the data and manages
to represent those clusters with a reduced number of points; thus reducing the complexity of
the data.  Work in (de Castro & von Zuben, 2001) explores the possibility of using
immunological metaphors for Boolean competitive networks.

5.2.6 Inductive Learning
Research by (Slavov & Nikoleav, 1998) attempted to create an inductive computation
algorithm based upon metaphors taken from immunology.  In their paper, they describe an
evolutionary search algorithm based on a model of immune network dynamics.   By imitating
the behaviour of constantly creating and removing good solutions, coupled with attempts to
create a diverse range of solutions, the algorithm achieved high diversity and efficient search
navigation.  These dynamic features were incorporated in the fitness function of the immune
algorithm in order to achieve high diversity and efficient search navigation.  The authors
claim an efficient and effective solution when compared to more traditional GAs.



5.2.7 Sparse Distributed Memory
Hart and Ross (Hart & Ross, 2001, Hart and Ross, 2002a, Hart & Ross 2002b) have used an
immune system metaphor to address the problem of finding and tracking clusters in non-static
databases. They note that in order to be ultimately useful in the real world, a successful
machine-learning (ML) algorithm should address the following characteristics observed in
very large, real-world databases:

• Databases are non-static; data is continually added and deleted
• Trends in the data change over time
• The data may be distributed across several servers
• The data may contain a lot of ‘noise’
• A significant proportion of the data may contain missing fields or records

The biological immune system performs remarkably well in a dynamic environment; the
system is continuously exposed to a variety of ever changing pathogens, and it must adapt
quickly and efficiently in order to counteract them. Moreover, the biological immune system
is robust to noisy and incomplete information. Therefore the metaphor embodies exactly those
characteristics that it is proposed a good ML algorithm must contain.  Hart and Ross’s work
combines an  immune system  metaphor with that of another class of associative memories: -
the sparse distributed memory (SDM). This type of memory was first suggested by (Kanerva,
1988), and since then Smith (Smith et al, 1998) has shown that the IS and SDM can be
considered analogous. The SDM is a robust memory that derives its properties from the
manner in which it performs sparse sampling of huge input spaces by a small number of
recognition units (equivalent to B cells and T cells in the immune system), and from the fact
that that the memory is distributed amongst many independent units. This is analogous to the
memory population of the IS which again consists of B-cells and T-cells.

In brief, an SDM is composed of a set of physical or hard locations, each of which recognises
data within a specified distance of itself - this distance is known as the recognition radius of
the location, and all data recognised is said to lie within the access circle of the location. In
the case of storing binary data, then distance is simply interpreted as Hamming Distance.
Each location also has an associated set of counters, one for each bit in its length, which it
uses to ‘vote’ on whether a bit recalled from the memory should be set to 1 or 0. An item of
data is stored in the memory by distributing it to every location which recognises it - if
recognition occurs, then the counters at the recognising locations are updated by either
incrementing the counter by 1 if the bit being stored is 1, or decrementing the counter by 1 if
the bit being stored is 0. To recall data from the memory, all locations, which recognise an
address from which recall is being attempted vote by summing their counters at each bit
position; a positive sum results in the recalled bit being set to 1, a negative sum in the bit
being set to 0. This results in a memory, which is particularly robust to noisy data due to its
distributed nature and inexact method of storing data.

These properties make it an ideal candidate as a basis for building an immune system based
model for addressing clustering problems in large, dynamic, databases. For example, we can
consider each physical location along with its recognition radius to define a cluster of data;
the location itself can be considered to be a concise representation or description of that
cluster, and the recognition radius specifies the size of the cluster. Clusters can overlap ---
indeed, it is this precisely this property that allows all data to be recognised with high
precision whilst maintaining a relatively low number of clusters. This has a direct parallel in
the biological immune system in which antibodies exhibit cross-reactivity.  If no overlap was
allowed in an SDM, then a large number of locations would be required to cluster the data,
the system would become overly specific, and hence general trends in the data would be lost.
The analogy between then IS and the SDM class of associative memories is detailed in Table
1, taken from (Smith et al, 1998).



Immunological Memory SDM
Antigen Address/Data
B/T Cell Hard Location
Ball of Stimulation Access Circle
Affinity Hamming Distance
Primary Response Write and Read
Secondary Response Read
Cross-Reactive Response Associative Recall

Table 1: Analogy between the immune system memory and SDM

In its original form however, the SDM is a static form of memory, and is built on several
assumptions that make it unsuitable to use directly as a model for data clustering. In brief,
these assumptions are that the addresses of the hard locations are randomly chosen and fixed
from the start, and that the recognition radii of each address are equal and constant. Hart and
Ross first addressed these problems in a system named COSDM (Hart and Ross, 2001) in
which they adapted a co-evolutionary genetic algorithm architecture first proposed by (Potter
& De Jong, 2000), cGA, to form an immune system based model capable of clustering static
and dynamic data-sets. cGA is another data-clustering algorithm which uses an immune-
system metaphor to categorise a benchmark set of data, (Congress Voting records), and
performs very well compared to more classical categorisation techniques such as ID3.

In COSDM, an antigen represented an item of data and an antibody defined a hard location
and its recognition radius. The antibodies co-operate to form an SDM type of memory in
which antigen data can be stored.  The system consisted of a number of populations of
potential antibodies - each population contributed one antibody to the memory A co-
evolutionary GA was used to find quickly the ‘location’ of the antibodies and the size of their
corresponding balls of stimulation in order to best cluster the data currently visible to the
system. If an antibody recognised an antigen, the antigen was ‘stored’ by that antibody. The
accuracy of clusters produced was determined by attempting to recall each antigen and then
comparing the results to the actual data in the database. Antibody populations were added and
deleted dynamically - if the best member of a population did not make a significant
contribution to the memory, then the population was deleted. Similarly, if the system was not
able to improve the clustering accuracy over a predetermined number of generations, then a
new population was added. This system was tested on a number of benchmark static and
dynamic data-sets – although it showed some promise on clustering dynamic data-sets, it was
outperformed by the immune system of (Potter and De Jong, 2000) on large, static data-sets.
The difficulties arose in evolving a suitable size for the ball of recognition of each antibody,
which led to some antigen never being recognised by any of the antibodies in the system.
Also, the system required large numbers of evaluations to find a reasonable SDM, due to the
nature of the co-evolutionary architecture.

Hart and Ross thus tackled these issues in (Hart and Ross, 2002a, Hart, 2001b) in which they
describe a system based on an SDM as in COSDM, but in which the architecture is akin to
that used in a self-organising map, and thus the system is called SOSDM (Self-Organising
SDM). A diagram of SOSDM is shown in figure 5. In this system, the recognition radius is
replaced by a mechanism in which all antibodies in the system compete for antigen data;
antigens bind to all those antibodies for which they have an affinity greater than some preset
affinity threshold, with a strength proportional to their affinity. Thus, the binary counters in



the SDM are replaced with real-valued counters, and updated according to the strength of the
binding. Each antibody accumulates a measure of its own error, that is, how distant are the
antigens recognised by itself from its own description (based on Hamming Distance between
the antibody and the antigen). This quantity is then used to allow the antibodies to self-
organise, that is, antibodies gravitate towards regions of the space in which they best
recognise antigen. The counters also move with each antibody, but decay over time, thus they
contain a historical record of data that has been recognised by the antibody. As in COSDM,
new antibodies are added periodically, and antibodies can also be deleted dynamically.
SOSDM is thus truly adaptive and self-organising, and as such encapsulates some of the most
important features of the biological immune system.

Figure 5: Diagrammatic representation of the SOSDM model

SOSDM has been shown to outperform other published immune algorithms on benchmark
static data sets, and furthermore performance has been shown to scale both the size of the data
set and with the length of the antigens within the data set. It was also tested on data sets,
which contained known clusters of unequal sizes, and was shown to be satisfactory at
detecting small clusters.

SOSDM was also tested on a number of time-varying data sets. The experiments tested
scenarios, which are likely to represent the extremes of those scenarios, which might
realistically occur in a real-world situation. Thus, one set examined scenarios in which data in
one cluster was gradually replaced with new data, but still belonging to the same clusters,
whereas the other set examined cases where whole clusters were suddenly deleted and
replaced by entirely new clusters containing different data. SOSDM performed well at both
tasks, though some loss in recall accuracy was observed as the number of clusters being
replaced was increased. SOSDM was also shown to exhibit a basic form of memory; when re-
exposed to familiar antigens, it reacted more rapidly than to previously unseen antigen. The
system appeared relatively robust to the period of the memory. In summary, SOSDM
provides a scalable, fast and accurate way of clustering data, but also builds on the analogy
between the SDM and the immune system first presented by (Smith et al, 1998) to produce a
system that is more faithful to the principles of the biological system than the original analogy
suggested.



5.2.8 Supervised Learning with Immune Metaphors
(Carter, 2000) made use of the immune network theory to produce a pattern recognition and
classification system. This system was known as Immunos-81. The author’s aim was to
produce a supervised learning system that was implemented based on high levels of
abstraction on the workings of the immune system.

The model consisted of T-cells, B-cells, antibodies and an amino-acid library. Immunos-81
used the artificial T-cells to control the production of B-cells. The B-cells would then in turn
compete for the recognition of the “unknowns”. The amino-acid library acts as a library of
epitopes (or variables) currently in the system. When a new antigen is introduced into the
system, its variables are entered into this library. The T-cells then use the library to create
their receptors that are used to identify the new antigen. During the recognition stage of the
algorithm T-cell paratopes are matched against the epitopes of the antigen, and then a B-cell
is created that has paratopes that match the epitopes of the antigen.

Immunos-81 was tested using two standard data sets, both of these from the medical field.
The first set was the Cleveland data set, which consists of the results of a medical survey on
303 patients suspected of having coronary heart disease. This data set was then used as a
training set for the second data set; a series of 200 unknown cases.   Immunos-81 achieved an
average classification rate of 83.2% on the Cleveland data set and approximately 73.5% on a
second data set.  When compared to other machine learning techniques, Immunos-81
performed very well.  The bets rival was a k-nearest neighbour classifier (Wettschereck et al,
1997), which averaged 82.4% on the Cleveland data set, other clustering algorithms (Gennari
et al, 1989) managed 78.9% and using C4.5 only 77.9% accuracy was obtained.   The authors
therefore argue that Immunos-81 is an effective classifier system, the algorithm is simple and
the results are transparent to the user.  Immunos-81 also has the potential for the ability to
learn in real-time and be embeddable.  It has proved to be a good example of using the
immune system as a metaphor for supervised machine learning systems.

(Watkins, 2001) proposed a resource limited artificial immune system classifier model using
as a basis work from (Timmis, 2000) and (De Castro & von Zuben, 2000c).   Here the author
extracted metaphors such as resource competition, clonal selection and memory cell retention
to create a classification model named AIRS.  Results presented in this work are very
encouraging.  Benchmark data sets such as Fisher Iris data set, Ionosphere data set and sonar
data sets were used to test the effectiveness of the algorithm.  AIRS was found to perform at
the same level of accuracy as some other well established techniques, such has C4.5, CART
etc.  Recent work has highlighted several revisions that could be made to the original
algorithm (Watkins and Timmis, 2002). The work highlighted that the internal data
representation of the data items were over-complicated and by simplifying the evolutionary
process it was possible to decrease the complexity whilst still maintaining accuracy.  The
authors also adopt an affinity aware somatic hypermutation mechanism to which they also
attribute improved quality of memory cells and therefore greater data reduction and faster
classification.

5.3 Robotics
Attempts have been made to apply the immune network idea to control large populations of
robots to have some form of self-organising group behaviour.  Work by (Mitsumoto et al,
1996) attempts to create a group of robots, which behave in a self-organising manner, to
search for food without any global control mechanism.  Central to their idea is the interaction
between robots at the local level.  The authors use three main immunological metaphors.  The
first is B-cells, where a robot represents a B-cell and each robot has a particular strategy on
how to find food. The second is the immune network, allowing for interaction between robots.
The third is the calculation of B-cell stimulation, where the more the robot is stimulated, and



then the better its strategy is considered to be.  In order to calculate B-cell (robot) stimulation
a modified version of Equation 1 is used, where the robot is stimulated and suppressed by
neighbouring robots and stimulated by the outside environment.  Each robot carries a record
of its degree of success in collecting food, while neighbouring robots compare their success
and strategies and stimulate and suppress each other accordingly.  If a robot's stimulation
level is considered low, then the strategy is considered too weak and, losing that strategy,
randomly selects another.  If the robot is well stimulated, the strategy is considered to be good
and is preserved.    Over time the robots interact and successfully achieve the food collection.
The authors claim good results on their test data, but indicate the need for further research and
testing.

This work is advanced by (Mitsumoto et al, 1997), where similar techniques were applied to
create a group of robots to interact and achieve the transportation of multiple objects to
multiple locations.  The algorithm is very similar to the first: the B-cell is represented by a
robot, the work to be done by the robots being analogous to antigens, and communication
between robots is achieved via the network.  The idea of B-cell cloning is also introduced into
the algorithm, which is used to represent messages to other robots.  Here, a robot is stimulated
by interaction between other neighbouring robots and the work environment.  If a robot is
achieving the work, then it receives more stimulation.  If that robot becomes well stimulated,
it produces clone B-cells that contain information about the work it is doing, since it is
considered to be good work.  Other robots in the network then match these and, if they share
similar work, they become stimulated and produce other similar work B-cells.  If they do not
match well, the robot will attempt to adapt its work to the most common work strategy it
encounters.  Both this interaction and passing of messages enables a group behaviour to
emerge that can solve the transportation problem.  It was also shown by the authors that this is
successful if the work remains static or if the work requirement changes over time.

In very similar work by (Lee et al, 1997), the immune network metaphor is applied to creating
swarm strategies for mobile robots.  However, this work is virtually identical to that presented
above.  The authors do extend the concept in (Lee et al, 1999) who introduce the metaphor of
the T-cell into the algorithm.   They propose a modified version of Equation 1 with the
addition of the T-cell metaphor.  However, the authors fail to include the results of using the
modified equation in their simulation results, presenting instead results of only using the
equation without the T-cell interaction.

Work by (Watanabe et al, 1998) and (Kondo et al, 1998) attempts to create a mechanism by
which a single, self-sufficient autonomous robot, the immunoid, can perform the task of
collecting various amounts of garbage from a constantly changing environment.  The
environment for the immunoid consists of garbage to be collected, and a home base consisting
of a wastebasket and a battery charger.  The authors use the metaphors of antibodies, which
are potential behaviours of the immunoid, antigens, which are the environmental inputs such
as existence of garbage, wall and home bases and the immune network, which is used to
support good behaviours of the immunoid.  In order for the immunoid to make the best
strategy decision, the immunoid detects antigens and matches the content of the antigen with
a selection of all the antibodies that it possesses.  For example, the immunoid may have
antibodies that are suitable for when a wall is met head-on and therefore needs to turn right.
Each antibody of the immunoid records its concentration level, which is calculated using
Equation 1.  A number of antigens (environmental inputs) are detected and the levels of
antibodies are calculated and the antibody with the highest concentration is selected as the
appropriate behaviour to employ.  In experimental results, the authors prepared 24 antibodies
for the immunoid (potential behaviours) and observed good results.  The authors then
extended this work.  This was an attempt to create more emergent behaviour within the
network of robots (Watanabe et al, 1998) by the introduction of genetic operators.



5.4 Fault Diagnosis and Tolerance
The field of diagnosis is a vast field driven by the requirement to accurately predict or recover
from faults occurring in plant.  One approach to detect abnormal sensors within a system
(Kayama et al, 1995) has been to use the combination of Learning Vector Quantization
(LVQ) (Kohonen, 1997b) and the immune network metaphor.  The idea behind the system is
to use LVQ to determine a correlation between two sensors from their outputs when they
work properly, and then use an immune network to test sensors using extracted correlations.
Within the system, each sensor corresponds to a B-cell and sensors test one another’s outputs
to see whether or not they are normal.  Each sensor calculates a value based on an adapted
version of Equation 1 where the inputs to the equation are reliability of the sensor, rather than
similarity to the neighbour.  A sensor that has a low value is considered to be faulty and can
therefore be flagged for needing repair.  Using this method has the advantage of having no
overall control mechanism for checking for faulty sensors; they can detect for themselves
when they are faulty.  Simulations of their system showed the potential for good diagnostic
results, and the paper points the way forward for more research and actual application to real
plants.

Also in the field of diagnosis, there has been an interest in creating other distributed
diagnostic systems.  Initial work in (Ishida, 1990) and (Ishida & Mizessyn, 1992) proposed a
parallel distributed diagnostic algorithm.  However, the authors likened their algorithm to that
of an immune network, due to its distributed operation, and the systems emergent co-
operative behaviour between sensors.  This work was then continued in (Ishida, 1996), (Ishida
& Tokimasa, 1996), and active diagnostic mechanism (Ishida, 1997).  The work in
(Ishida1997) builds on foundations laid in the others so will be briefly examined here.

Active diagnosis continually monitors for consistency between the current states of the
system with respect to the normal state.  The authors argue that the immune system metaphor
is a suitable idea for creating an effective active diagnostic system.  Central to their idea is the
immune network theory, where each sensor can be equated with a B-cell (Kayama et al,
1995).  Sensors are connected via a network (the immune network), with each sensor
maintaining a record of sensory reliability, which is continually changed over time - creating
a dynamic system.  Sensors in the network can test each other for reliability, but where this
work differs from the above is the way in which the reliability of each sensor is calculated.
This will not be explored here.  The key features of the immune system that is used by this
work are distributed agents that interact with each other in parallel (each agent only reacting
on its own knowledge and not via a central controller), and the creation of memory of the
sensor state formed via a network.

Hardware fault tolerant systems seek to provide a high degree of reliability and flexibility
even in the presence of errors within the system. The said system must be protected from a
variety of potential faults, manifesting in such forms as permanent stuck at faults or
intermittent faults.

Bradley & Tyrrell (2000a,b) proposed what they called Immunotronics (immunological
electronics) in order to implement a finite state machine based counter using immune
principles.  Their proposed system relied upon the negative selection algorithm that is
responsible for creating a set of tolerance conditions to monitor changes in hardware states.
They employed a binary Hamming shape-space to represent the tolerance conditions.

Recent work in (Timmis et al., 2002) discusses important issues when considering the design
of immune inspired fault tolerant embedded systems. The authors highlight that one
advantage of using a technique based on AIS in comparison to traditional fault tolerant
approaches, is the possibility to exploit the evolutionary property of the immune system.
While conventional fault tolerant techniques generate static detectors that have to be updated



offline, AIS-based techniques will enable the development of adaptable fault tolerant systems,
in which error detectors may evolve during runtime. This feature will increase the availability
of embedded systems since acceptable variations of non-erroneous states can be integrated to
the self-system. For example, external factors (e.g. temperature) induce changes that might
have significant effects on the system functionalities, while internal changes (e.g. component
replacement) could give rise to variability in self that must be noticed. The authors also argue
that AIS techniques however pose some challenges. One of them is the need to ensure that the
detectors generated fully cover the non-self space (i.e. the erroneous states). This is
determined by the mode of detector generation, which in turn affects the resulting detector set
as well as the speed of the operation. However, the distribution of the self-data can be
exploited to enhance the process. Other metaphors of the immune system are also tagged as
potential avenues for research in this area such as the adaptability feature, which is inherent in
the immune network metadynamics (Bersini, 2002).

5.5 Optimisation
In order to address the issue of designing a Genetic Algorithm (GA) with improved
convergence characteristics, particularly in the field of design constraints, work in (Hajela et
al, 1997) proposed a GA simulation of the immune system.  The motivation for their work
stems from the fact that genetic algorithms, when applied to design constraints, have been
found to be very sensitive to the choice of algorithm parameters, which can ultimately affect
the convergence rate of the algorithm.  The authors use the idea of antibody -antigen binding
to define a complex matching utility to define similarity between design solutions.  This is
based on work found in (Farmer et al, 1986), (section 3.3.1.1) and is simply a bit by bit match
for continuous regions.   The model created also simulates the dynamics of the immune
system by creating and removing possible new solutions.  Some solutions will be more
specific to the problem areas, whereas others will be more generalised.  However, the authors
point out that both specialist and general solutions are important in the context of structural
design, so they introduce a control parameter into the algorithm that enables them to control
the production of specialist and general case solutions.  The authors suggest their algorithm
leads to a higher convergence rate when compared to a traditional GA, but indicate the need
for further research and application.  It should be noted, however, that while the authors claim
to use the immune network as a metaphor, in reality they use the immune system, as there is
no apparent network interaction going on during the algorithm.

The above work focused on a specific search problem in a particular domain, work in (Toma
et al, 1999) adopts a more generic approach to adaptive problem solving by the use of the
immune network metaphor.  Again, the authors claim the use of a network structure, but do
not present the work as such, but simply immune system metaphors including B-cells, T-cells,
macrophages and the Major Histocompatibility Complex (MHC).   The immune algorithm
given in the paper is used to produce adaptive behaviours of agents, which are used to solve
problems.  The algorithm is then applied to the n-TSP problem, and for small-scale problems
achieves good results.  The authors also experiment with removing the interaction of the T-
cell in the searching algorithm and present convincing results that the effect of the T-cell on
performance is significant, as the solutions found with using the T-cell result in lower cost
solutions overall.  Other, similar application of the immune network metaphor for multi-
modal function optimisation can be found in (Mori et al, 1996), (Fukuda et al, 1998), (Mori et
al, 1998).  Here the authors use somatic hypermutation and immune network theory to create
and sustain a diverse set of possible solutions in the search space and combine it with
traditional genetic algorithms.  The authors propose that their algorithm possess two main
characteristics: (i) the ability to create a diverse set of candidate solutions, and (ii) is a
parallel-efficient search.  Combined with the somatic mutation, the authors also employ
standard genetic algorithm mutation operators of crossover and mutation.  The authors apply
their algorithm to finding optimal solutions to various functions and compare the result



obtained with a standard GA approach.  They argue that the strength of their algorithm lies in
its ability to maintain a higher diversity of candidate solutions compared to a standard GA,
which is important when attempting to find the global maximum on any search surface.

De Castro & Von Zuben (2000c) focused on the clonal selection principle and affinity
maturation process of an adaptive immune response to develop an algorithm suitable to
perform tasks like machine learning, pattern recognition, and optimisation. Their algorithm
was evaluated in a simple binary character recognition problem, multi-modal optimisation
tasks and a combinatorial optimisation problem; more specifically the travelling salesman
problem (TSP). The main immune aspects taken into account to develop the algorithm were:
maintenance of a specific memory set, selection and cloning of the most stimulated cells,
death of non-stimulated cells, affinity maturation and re-selection of the clones proportionally
to their antigenic affinity and generation and maintenance of diversity. The performance of
their algorithm was compared with a GA for multi-modal optimisation, and the author’s claim
their algorithm was capable of detecting a high number of sub-optimal solutions, including
the global optimum of the function being optimised. This work was further extended with the
use of the immune network metaphor for multi-modal optimisation in (de Castro and Timmis,
2002a).

5.6 Scheduling
Creating optimal schedules in a constantly changing environment is not easy.  Work by (Mori
et al, 1994), (Chun et al, 1997) and (Mori et al, 1998) proposes and develops an immune
algorithm that can create adaptive scheduling system based on the metaphors of somatic
hypermutation and the immune network theory.  Work in (Mori et al, 1998) builds on the
above by addressing the issue of batch sizes and combinations of sequence orders, which
optimise objective functions.  In these works, antigens are considered as input data or
disturbances in the optimisation problem, and antibodies are considered as possible schedules.
Proliferation of the antibodies is controlled via an immune network metaphor where
stimulation and suppression are modelled in the algorithm.  This assists in the control of
antibody (or new solution) production.  The T-cell effect in this algorithm is ignored.   The
authors claim that their algorithm is an effective optimisation algorithm for scheduling and
has been shown to be good at finding optimal schedules.  The authors indicated that further
work could be undertaken in applying this algorithm to a dynamically changing environment.
This work was undertaken in (Hart et al, 1998) and more recently in (Hart & Ross, 1999a).

(Hart et al, 1998) proposes a system that can create a diverse set of schedules, but not
necessarily an optimal solution for the scheduling problem that can be easily adapted should
the situation change.  The authors consider antibodies as a single schedule and antigens to be
possible changes to the schedule.  Their system produces a set of antibodies (schedules) that
can cover the whole range of possible changes in the antigen set.  Using these metaphors, and
that of gene libraries to create new antibodies, the authors have shown that they can create a
set of schedules, using a GA, from an initial random state of possible changes.  Their system
can then successfully retrieve schedules corresponding to antigens existing in that set, and
also new antigens (or changes in situations) previously unseen.  In a later work, (Hart & Ross
1999b) proposed a scheduling application of an artificial immune system, called PRAIS
(Pattern Recognising Artificial Immune System). In their system, sudden changes in the
scheduling environment required the rapid production of new schedules.  Their model
operated in two phases. A first phase comprising the immune system analogy, in conjunction
with a genetic algorithm, in order to detect common patterns amongst scheduling sequences
frequently used by a factory. In phase II, some of the combinatorial features of the natural
immune system were modelled to use the detected patterns to produce new schedules, either
from scratch or by starting from a partially completed schedule.



5.7 Computer Security
The problem of protecting computers from viruses, unauthorised users, etc. constitutes a rich
field of research for artificial immune systems. The existence of a natural immune system to
fight against biological micro organisms like viruses and bacteria is probably the most
appealing source of inspiration for the development of an artificial immune system to combat
computer viruses and network intruders.

5.7.1 Network Security
The role of the immune system may be considered analogous to that of computer security
systems (Dasgupta, 1999). Whilst there are many differences between living organisms and
computer systems, researchers believe that the similarities are compelling and could point the
way to improved computer security.  Long-term research projects have been established in
order to build a computer immune system (Forrest et al, 1994),  (D’haeseleer et al, 1996),
(Forrest  et al, 1996) and (Forrest et al, 1997) which could augment a simple computer
security system with more advanced and novel features.  A good overview of the current work
in this field is presented by (Somayaji et al, 1997), where an attempt is made to draw together
various pieces of research in the field in order to derive some basic principles of computer
immune systems.

There are a number of approaches to implementing a computer security system.  Host based
intrusion detection methods (Hofmeyr et al, 1998), (Warrender et al, 1999), construct a
database that catalogues the normal behaviour pattern of a piece of software that is specific to
a particular machine, software version etc.  Construction of such a database would enable the
programs' behaviour to be monitored.

In order to build up a pattern of normal behaviour for a particular database of software,
system calls made by the software are monitored and recorded over time.  As this record
builds up, the database may be monitored for any system calls not found in the normal
behaviour database, which are then flagged.  The authors argue that, while simplistic, this
approach is not computationally expensive and can be easily used in real time.  It also has the
advantage of being platform and software independent.

An alternative method is the network based intrusion detection approach.  This tackles the
issue of protecting networks of computers rather than an individual computer.  This is
achieved in a similar way in monitoring network services, traffic and user behaviour and
attempts to detect misuse or intrusion by observing departures from normal behaviour.  Work
in both Hofmeyr & Forrest (1999, 2000) and (Kim & Bentley, 1998) lay foundations for a
possible architecture and general requirements for a network based intrusion detection system
based on immune system metaphors.  (Kim & Bentley, 1999)  propose a network intrusion
detection algorithm based on metaphors presented in the previous  paper.  The algorithm is
based on the negative selection algorithm, first proposed by (Forrest et al, 1994).  Negative
selection in the immune system is the immune system's ability to eliminate harmful antibodies
while not attacking the self of the immune system (Section 3.7).  The algorithm in (Forrest et
al, 1994) consists of three phases: defining self, generating detectors and monitoring the
occurrence of anomalies.  In this paper, it was applied to the detection of computer viruses.

Recently, Dasgupta (1999, 2000) proposed an agent-based system for intrusion/anomaly
detection and response in networked computers. In his approach, the immunity-based agents
roamed around the nodes and routers monitoring the situation of the network. The most
appealing properties of this system were mobility, adaptability and collaboration. The
immune agents were able to interact freely and dynamically with the environment and each
other.



5.7.2 Virus Detection
Much interest has been shown in applying immune system metaphors to virus detection.  The
first work done on this (Forrest et al, 1994), (Forrest et al, 1997) developed a simple
algorithm using the negative selection metaphor to detect potential viruses in computer
systems.  This work was concerned with distinguishing normal computer resources and
behaviour from abnormal.  A different approach is taken in (Kephart, 1994), (Kephart et al,
1997) and (Kephart et al, 1998).  Their initial approach is to use the metaphor of the innate
immune system.  This resides on the user's PC and applies virus-checking heuristics to .COM
and .EXE files.  If an unknown virus is detected, a sample is captured that contains
information about the virus and is sent to a central processing system for further examination.
This is analogous to how the innate immune system works, as the first line of defence.  In the
central processing service, the virus is encouraged, or baited, to produce itself in a controlled
environment.  This allows examination of the virus and extraction of its signature.  An
antidote can then be constructed, which may be sent out to the infected PC and the virus
removed.

The signature extraction mechanism is based on immune system metaphors, such as clonal
selection, by producing large numbers of possible code signatures in order to detect the virus
code signature.   This is achieved by generating large numbers of random signatures and
checking each one of these signatures against the potential virus.  A positive match indicates
that a virus has been detected. (Marmelstein et al, 1998) proposed an alternative multi-layer
approach which attempts to tackle the infection at varying levels of protection where
ultimately if the infection cannot be identified an evolutionary algorithm is applied to create
alternative decoy programs to trap the virus.   This was extended in (Lamont et al, 1999), then
in (Harmer & Lamont, 2000) as a distributed architecture for a computer virus system based
on immune system principles.

6 Summary
Using the immune system as inspiration has proved very useful when trying to address many
computational problems.  The immune system is a remarkable learning system. Through the
use of B-cells and T-cells the immune system can launch an attack against invading antigens
and remove them from the system.  This is achieved through a process of B-cell stimulation
followed by cloning and mutation of new antibodies.  This diversity that is generated allows
the immune system to be adaptive to new, slightly different infections.   The immune system
is able to retain information about antigens; so that next time the body is infected a quicker,
secondary immune response can be triggered to eliminate the infection.  A number of theories
exist about how the immune system retains this information, in a type of memory: the most
popular being the clonal selection theory, and the idea of memory cells, and the alternative
immune network theory, with the idiotypic interactions on antibodies.

From observing this natural system, researchers have identified many interesting processes
and functions within the immune system that can provide a useful metaphor for computation.
The review of the field of Artificial Immune Systems (AIS) has revealed many and varied
applications of immune metaphors.  The proposed framework for AIS was outlined, with the
main ideas being that it is possible to think of AIS in terms of a layered framework that
consists of representations, affinity measures and immune algorithms. The field of machine
learning was the examined.  Early work by (Cooke & Hunt, 1995) spawned a great deal of
research, which led to a generic unsupervised learning algorithm proposed in (Timmis &
Neal, 2001), which ultimately forms part of the proposed framework for AIS.  Other
approaches to learning have also been adopted by (de Castro & von Zuben, 2000b) to create a
clustering algorithm.   Work in (Hart & Ross, 2001) proposes a modified immune algorithm
capable of clustering moving data and is adaptable to clustering large volumes of data.
(Carter, 2000) proposed the use of immunological metaphors for supervised machine



learning, that had advantages over other supervised methods in that the results were
transparent.  Attempting to create collective behaviour in robots has also been a major field of
study.  By using ideas from the immune network theory, work in (Mitsumoto et al, 1996) and
subsequent works built a small system of self-organising and autonomous robots that could be
used for simple collection and navigational tasks.  Some of the pioneering work in AIS was
done in the field of fault diagnosis, primary following work from (Ishida, 1990).  This led to
the development of the active diagnosis field (Ishida, 1996) and more recently the idea of
Immunotronics and hardware tolerance (Bradley & Tyrrell, 2000a).  Attention has also been
paid to using immune metaphors for solving optimisation problems (Hajela & Lee, 1997), by
augmenting genetic algorithms.  More recent work by (Hart et al, 1998) and (Hart & Ross,
1999a, 1999b) and (Hart, 2002) tackled the difficult problem of producing an adaptive
scheduling system.  Here work used on combining the use of genetic algorithms and
immunological metaphors.  A significant field of research is that of computer security and
virus protection.  From the early work in (Forrest et al, 1994) for computer security and
(Kephart, 1994) a significant body of research has been generated and architectures for
various security and virus detection systems proposed (Hofmeyr & Forrest, 2000) and
(Lamont et al, 1999).

7 Comments on the Future for AIS
For each of the many contributions discussed in Section 5 it would be possible to talk at
length regarding possible extensions and improvements. Instead, we will keep our discussion
about future trends on AIS at a high level.

Although several papers have been discussed proposing the use AIS to solve problems in
many areas of research, few of those have attempted to present a formal artificial immune
system (e.g., Hunt & Cooke, 1996; de Castro & Von Zuben, 1999, 2000a; Hofmeyr &
Forrest, 2000).  In reviewing all these works on AIS, it becomes clear that the area is lacking
the proposal and development of a general framework in which to design artificial immune
systems. Observing other comparable computational intelligence (or soft computing)
paradigms, such as artificial neural networks, evolutionary computation and fuzzy systems, it
is clear that there is the presence of well described sets of components and/or mechanisms
with which to design such algorithms. To this end, a framework has been proposed (de Castro
and Timmis, 2002), however, much work remains to be done on this framework in terms of
formalisation from a mathematical viewpoint and augmentation in terms of new shapes spaces
and development of new algorithms which have been inspired by other areas of immunology,
as yet unexplored by computer scientists and engineers.

This leads to an interesting avenue of research.  To date, the concentration has mainly been on
the more basic immunology, such as simple antibodies, clonal selection and so forth. Recent
work in (Aickelin and Cayzer, 2002) postulated the use of the Danger Theory (Matzinger,
1994a) for AIS. This is an interesting idea, sadly beyond the scope of this chapter. However,
it is quite possible the danger theory has much to offer AIS in terms of a paradigm shift in
thinking – as yet unexplored. This shift is away from the idea that the immune system
controls the response, typically adopted in AIS, to the idea that the tissue initialises and
controls the response: in some way contextualises the response. This could provide a
powerful metaphor, especially in terms of data mining in dynamic environments, where the
context of what you might want to learn may change over time. Indeed, this debate was
opened further by (Bersini, 2002), where it is argued that the danger theory idea is nothing
more than a change of terminology from the idea of self/non-self to the idea that something is
dangerous or not dangerous. It will be interesting to observe if this debate grows pace.

The debate also has to be had: is there a single immune algorithm? To date, this has not been
addressed and is still an open question. One observation that is made regarding AIS is that



there are so many different algorithms around, it is so complicated and you never know which
one to use. In answer to this, you may state that either more rigor and analysis has to be
applied to the current algorithms to identify exactly their suitability for problems and
therefore, what AIS will offer is a very rich suit of effective and well understood algorithms.
Alternatively, you could pursue a single unified algorithm: but then would that either enhance
or restrict the field of AIS? It may enhance it in the fact that there then exits a single
commonly understood algorithm – so people then know what you mean when you say an
immune algorithm, or it may restrict in the sense that the immune system is such a complex
system, why try and limit that to one simple algorithm – why not exploit the many
complexities therein?

It would certainly seem that there are many challenges ahead.  Immunology has a great deal
to teach people involved with computational problems: we have only just scratched the
surface. A greater interaction between biology and computer science is needed if we are to
fully exploit the richness of this marvellous biological system.
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