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Abstract

Spatial data mining is the discovery of interesting relationships and characteristics
that may exist implicitly in spatial databases. The identification of clusters in spa-
tially referenced data provides a means of generalization of the spatial component of
the data associated with a Geographical Information System. A variety of clustering
formulations exists. A non-hierarchical approach in Data-mining applications is to use
a medoid based version. This approach has robust behavior with respect to outliers
and many heuristics have been developed that find near optimal partitions. This paper
develops a genetic search heuristic for solving medoid based clustering problems. We
base our genetic recombination upon Random Assorting Recombination. A compar-
ison is made with previous solution approaches. Results show improvements on the
genetic search heuristic.
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1 Introduction

Geographical Information Systems have served an important role in the creation and ma-
nipulation of large spatial databases. Spatial data mining [13] is the discovery of interesting
relationships and characteristics that may exist implicitly in spatial databases. The au-
tomatic knowledge discovery process in spatial databases aims at a) extracting interesting
spatial patterns and features, b) capturing intrinsic relationships between spatial and non-
spatial data, c) presenting data regularity concisely and at higher conceptual levels, and
d) helping to reorganize spatial databases to accommodate data semantics and to achieve
better performance.

Clustering detection in spatially referenced data provides a means of generalization
that is complementary to techniques for generalization used in data mining in relational
databases [3]. Clustering is the task of identifying groups in a data set based upon some
criteria of similarity [4]. Moreover, in geo-referenced space the most obvious measure of sim-
ilarity is Euclidean distance, although other derived distances are possible. Thus, similarity
measurement, between gre-referenced database entities is relatively well defined. Clustering,
or cluster analysis, has a direct interpretation for knowledge extraction [2, 6, 9, 13, 16].

A variety of clustering formulations exist. A suitable approach for data mining applica-
tions is to use a medoid-based optimization formulation [11, 13, 12, 7]. This is due to its
robust behavior with respect to outliers and because numerous heuristics find near optimal
partitions. The partition of n items into k clusters is achieved by selecting a subset of £k items
as medoids and assigning every item to its closest medoid. The most common heuristics are
a form of “hill-climbing” that guarantees local optimality. However, this is a domain where
the objective function has many local optima and where genetic algorithms may prove to be
capable of producing superior solutions.

We implement a clustering method using genetic algorithms for solving the medoids
based formulation of clustering. We base our genetic recombination on Random Assorting
Recombination [14]. This provides desirable properties (respect and proper assortment) to
the generic search. Our genetic operators and design take into consideration that, for spatial
data-mining applications, data sets are large while the number of clusters is typically small.

The medoid-based formulation of clustering is a special case of a well-studied problem
known as the p-median problem. There have been many proposals and approaches for
solving this problem, both heuristically and exactly. Hosage and Goodchild [10] applied a
binary encoded genetic algorithm and found this approach unlikely to compete with existing
solution approaches. However, Bianchi and Church [1] found that a non-binary encoding
resulted in a much superior genetic search and, in some aspects, it was competitive with
existing approaches. Both of these previous uses of genetic algorithms are based on simple
crossover, mutation and inversion. The main difference is the encoding as binary strings or
as integer strings. Because of the genetic operators used, they both face problems with the
creation of infeasible solutions and the introduction of physical bias. Our approach is an
improvement in both aspects.

Other attempts to use evolutionary techniques for spatial clustering [8, 9] are less suitable
for spatial data mining applications since they are designed for only small data sets given
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the delicate encoding and shape restrictions on the clusters. Namely, each cluster requires
several bits to encode the parameters of the neighborhood (centroid and radius, or other
parameters). Further, clusters are limited to the shape of ellipsoids or squares, limiting the
applicability of the methods and certainly ignoring issues like outliers.

Our approach to the application of genetic algorithms for the clustering problem is to use
operators that combine sets [15, 14]. This provides a real-world illustration of the usefulness
of Random Assorting Recombination. Moreover, we provide a more efficient implementation
for Random Assorting Recombination than its early description [15, 14]. As a result we
obtain an improved crossover operator that balances respect and assortment.

2 Medoid based clustering

Formulations of clustering problems vary by the criterion that measures the quality of the
partition and usually correspond to some evaluation of the within group difference or the co-
hesion within items in a cluster versus the distinctness among clusters. For the large number
of observations that Knowledge Discovery applications are pursuing, obtaining optimal so-
lutions for formulations of clustering is unrealistic because these problems are NP-complete.
However, certain approaches do have advantages over others, and in particular, the medoids
approach offers robustness with respect to outliers as well as a structure which can be solved
approximately by several techniques [7, 12]. We now describe the medoids approach.

Consider a set of data items P = {py, p, . .., P, } Where each p; is a point in d-dimensional
real space R?. The clustering problem consists of naturally grouping these points into &
clusters. A common approach to clustering is to identify a representative for each cluster
and asses the quality of the clustering as the average distance between items and their
representative. In the medoids approach, the set R of representatives is restricted to be a
subset of P. Thus, the clustering problem translates to a combinatorial optimization problem
where the goal is to find a set of representatives that minimizes the following criterion F
defined by

n

i=1
over all subsets R of P with ||R|| = k. Usually, the distance d corresponds to a Minkowski
distance (i.e. dp(Z,7) = (X%, |2y — vul?)/? ). If rep[p;, R] is the closest point in R =
{mq,...,my} to p;, then minjeq . k) d(pi, m;) = d(ps, rep[p;, R)).

The search space is the set X C 2F of all sets R C P with ||R|| = k. The objective
function F' is a function F' : X — R that to each subset R C P assigns a real value F(R).
The value F(R) represents the quality of the clustering.

Figure 1 illustrates the medoids approach for a data set of 12 bidimensional points. The
two plots show the same partition into two clusters. However, the representative of the left
cluster is different, and thus, the function F' is smaller for the right plot than for the left
plot. In practice, the size of X is large enough that exhaustive search is infeasible even for
relatively small problems. In this paper we use genetic search for optimizing F'.
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Figure 1: Two examples of Medoid clusterings.

3 Searching for a set of £ medoids

Genetic Algorithms are an optimization technique that has been shown to be robust for a
variety of complex search spaces. The technique offers a trade-off of exploration and exploita-
tion by maintaining a fixed-size population of chromosomes. Typically, each chromosome
encodes a feasible solution. Iteratively, a new population replaces a previous one. The new
population results from probabilistic selection of parental chromosomes whose combination
produces offspring. The parents are selected randomly but in proportion to their relative
merit as a solution. Recombination operators are the mechanisms for producing offspring.

For our clustering problem, a feasible solution is a set R of fixed size k. The choice of an
encoding mechanism as well as a recombination operator with adequate characteristics can
be difficult [14, 15]. Traditional genetic search encodes chromosomes as binary strings. This
approach would lead to a representation for a subset R of P in terms of its characteristic
vector. That is, a canonical order would be established in P = {p;,...,p,}. The i-th
position in the binary string would be 1 if p; € R or 0 if p; ¢ R. This has many drawbacks
for clustering in applications with ||R|| << ||P||, one of which is waste of computer memory.
Other problems are ensuring that traditional recombination operators produce offspring with
exactly & bits set to 1 [10] (that is, a feasible solution). We encode a solution with an integer
string as done in Bianchi and Church [1]. That is, we implement each chromosome as an
array C of k different integers in [1,n]. This encodes the set R C P by the rule p; € R if
and only if 3 j such that C[j] = i.

Along with the choice of encoding is the design of its recombination operators. The use of
integer string encoding can be problematic in that traditional genetic operators may produce
infeasible solutions. For example, simple crossover potentially produces integer arrays with
one or more repeated values. This enlarges the search space. The filtering of infeasible
solutions adds computational overhead. The recombination operators should ideally offer

e reduced physical bias [5],

e respect [14], and
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e proper assortment [14].

Physical bias is the non-uniform preference and production of offspring due to how chromo-
somes are encoded and irrespective of what the encoding represents. Ideally, the potential
alleles (or subspaces of the search space) for which equivalent information has been collected
should be equally likely. At least, the sampling probability of a search region should be
as independent as possible of the position of alleles in the encoding. A respectful opera-
tor preserves common characteristics of parents in produced offspring. Proper assortment
means that all combinations of compatible characteristics present in the parents most have
a non-zero probability of being present in the offspring.

We seek a subset R of P such that F'(R) is a minimum. The most simple relation between
a set and an item is membership. Thus, a characteristic of a candidate solution R is that
it contains a point p. If two solutions share a characteristics, this means two solutions Iy
and Ry share a point p; € P. A respectful recombination operator of R; and R, would
always produce offspring that includes all points in R; N Ry. Assortment means that if a
characteristic is present in Ry (p; € Ry but perhaps p; ¢ Ry) and a characteristic is present
in Ry (p; € R, but perhaps p; ¢ R;), then it is possible to produce offspring R, with
{pi,p;j} C R,.

Characteristics like R contains p; or R does not contain p; can be formalized as equivalence
relations in the search space X = {R | R C P A ||R|| = k}. Radcliffe [14] has shown that
these characteristics form an orthogonal basis up to level k of a general set of equivalence
relations and that respect and proper assortment is unattainable. The Random Respectful
Recombination (R?) operator allows respect but a weak level of assortment while Random
Assorting Recombination (RAR,,) uses a parameter w to improve assortment for a regulated
penalty in respect [14].

The binary recombination operator R?® is conceptually simple. When combining two
sets R; and Ry of size k, all elements in Ry N Ry are offspring members. The remaining
k — ||R1 N Ry|| places are randomly selected from unused elements of the two parents R;
and Ry. More formally, given two sets R; and R, the operator R*® chooses randomly
and uniformly the offspring from the set {R | R C P,||R| = k,R; N Ry C R}. Efficient
implementation of R? is delicate, especially in the case k << n.

Similarly, efficient implementation of RAR, is not simple. The original algorithms by
Radcliffe and George [15] demand the manipulation of “barred elements” to indicate their
absence in both parents. There are O(n — k) = O(n) such barred elements and thus, the
original algorithms for RAR, are costly when k£ << n. Thus, we have redesigned the
implementation of RAR,, ensuring that the operator tends to R* when w — oo and that
has stronger assortment for small values of w.

Our implementation of RAR,, works as follows. Given R; and Ry as parents, the offspring
R, is built iteratively, adding one point at a time until it has size k. We chose point p for
inclusion into R, by drawing uniformly a random number p in [0, 1] and comparing it with
a fractional value, cut (cut will be defined shortly). If p < cut, then a point p is selected
randomly and uniformly in Ry N Ry — R,. If p > cut, then the point p is selected randomly
and uniformly in (R; URy) —[(RiNR2)UR,]. In every case, R, is updated by R, < R,U{p}.
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If RiNRy— R, or (R URy)—[(RyN Ry)UR,| is empty before R, has k elements, then Ry
is completed with random elements from (R; U Ry) — R,.

We define cut = 1 — 1/w. We have found that, in particular, cut = 2/3 (w = 3) works
well. Refinement to particular problem instances is often necessary.

The capacity of handling subsets of size k& from a large universe has been accomplished
here. Our implementation of RAR, preserves the feature that for a fixed w the level of
positive assortment is adaptive to the similarity between parents. This is important, since
as the genetic algorithm converges, the genetic diversity is reduced and parents look much
more alike. The genetic algorithm needs strong assortment in later generations to preserve
its exploration capability.

Note that although our encoding has some redundancy (the same set can be represented
by any permutation of the array entries), our genetic operators are based on a logical struc-
ture (the phenotype) and not on the physical structure (the genotype). The significance is
that there is no physical bias and the search space is not enlarged by the encoding.

Other details of our genetic algorithm are as follows. Selection is by roulette proportional
to relative fitness and population size remains constant through all generations. The previous
generation is fully replaced by new offspring. Finally, there is a mutation operator that with
very low probability can modify a set R by swapping p; € R with p; ¢ R.

4 A comparison

In order to perform a comparison we have generated test data by selecting k points ¢, .. .
randomly and uniformly in [0,1] x [0,1]. These points represent virtual centers and are
not present in the actual data set. The smallest separation D = min;.; d(¢, ;) is used to
determine a common virtual radius r = D/2. With this information, as many as (1 — N)n
data points are chosen by first selecting randomly a virtual centroid ¢; and then randomly
selecting polar coordinates 7;, ¥; (; is uniform in [0, 7] and ¢; is uniform in [0, 27]). The
point in the data set is & + (7; sin vy, 7; cos ¥;). The data set is shuffled with Nn randomly
and uniformly selected points where N € [0,1] is a percentage of the amount of noise.
Figure 2 (a) shows a data set generated using n = 100, £ = 10 and N = 10. The virtual
centers are shown using +.

Figure 2 (b) shows a clustering obtained with the well-known statistical method called k-
means [4] which differs from the medoid approach discussed previously. The centers found by
k-means are indicated using ®. Note that k-means merges three far apart clusters into one.
High quality solutions to F', may be found using hill-climbing approaches [7]. The LOCAL
HILL CLIMBING [7] approach applied 20 times to the sample data set with different starting
points results in the solution of Figure 3 (a). This discovers 9 of the 10 clusters, and only
places one medoid on an outlier. There are two reasons for this. First, from the point of view
of criterion F, a solution with 9 clusters is superior to the solution with 10 clusters shown in
Figure 3 (b). Second, two virtual centers happen to be so close that a statistical test favors
the use of 9 groups rather than 10. The application of our genetic algorithm identified two
different clusterings. The first was equivalent to that given in Figure 3 (a). The second is the
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Figure 2: A data set of 100 points clustereding with k-means.
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Table 1: A comparison of search approaches.

20 independent runs

LocAL HiLL cLIMBING | Traditional Recombination | RAR, recombination

9 clusters 20 times 15 times 19 times
10 clusters 0 times 5 times 1 time

Table 2: Minimizing F' with two GA approaches.

Value of F' averaged over 20 independent runs
Traditional Recombination | RAR,, recombination
3.748 3.715

solution given in Figure 3 (b). Interestingly, the Figure 3 (b) corresponds to a solution with
the 10 original clusters, however, this solution is suboptimal solution with respect to criterion
F'. Table 1 shows how often a suboptimal solution with respect to criterion F' was produced
with the traditional operators approach [1] and with our approach. The genetic algorithms
were run for 100 generations with a population size of 50. All other parameters and selection
criteria were the same except for w = 3 in RAR,, and the probability of mutation to 0.01.
Clearly, the RAR,, approach proposed here is an improvement over the genetic algorithm
using traditional operators [1, 10].

Moreover, we computed the average objective function value F' for the 20 solutions found.
Table 2 shows that the RAR,, approach provides an improvement over traditional operators
in this respect as well. For this data set, the optimal value of F' is 3.466. Thus, a lower
average is superior. However, this is not surprising given the results in Table 1.

5 An illustration

Clustering is a mechanism for generalization that is central to Knowledge Discovery. To
illustrate the role of spatial clustering in Data Mining we present a constructed example.
Let us assume that Figure 4 (a) is the location in some urban area of 3 types of crimes (stolen
vehicles, break-ins, and robberies). Figure 5 (a) is the location of churches, Figure 5 (b) is
the location of parks, and Figure 5 (c) is the location of the subway stations.

The mining agent may explore the data in an attempt to find a rule or some link asso-
ciated with the occurrence of stolen cars. Thus, locations of stolen vehicles is highlighted
in Figure 4 (b). These highlighted points are equivalent to those given in Figure 2 (a).
Thus, applying the RAR,-GA results in a clustering such as that given in Figure 3 (b).
The medoids of this clustering are illustrated in Figure 6 (a). The mining agent then will
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subway stations.
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Figure 6: (a) Medoids with RAR,-GA, (b) subway stations, and (c) overlay of the
two.

overlay the medoids with each of the other 3 thematic data layers of Figure 5. By com-
puting the average of the distances form medoids to closest point in each layer, the agent
finds that the distance in unusually small when the medoids and the train stations are
overlaid (refer to Figure 6(a)-(c)). More precisely, consider n; the number of points in
layer L1y = {p1,...,pn, } and ny the number of points in layer Ly = {qi,...,¢n,} (with-
out loss of generality assume that n; < mg). Let rep[p;, Ls] be the closest point to p;
in Ly. If S(Ly,Ly) = Xpt replpi, La]/ny or M(Ly,Ly) = max;—; __p, rep[pi, La]/n1 are
small and far from their expected values (assuming all p; and ¢; are uniformly and in-
dependently distributed), the miner signals a potential relationship. In our example, the
S(RAR,medoids, stations) is 0.011 and M (RAR,,medoids, stations) is 0.033 while the 95%
confidence interval of the expected value of S(10,15) is 0.13 £ 0.007 and the expected value
of M(10,15) is 0.27 £ 0.023. This allows the miner to discover a relationship between the
location of stolen cars and subway stations.

6 Final remarks

Using set recombination with RAR,, provided an improvement over the traditional crossover,
mutation and inversion. The results of our preliminary experimentation showed equivalent
CPU-time requirements using traditional operators or set recombination. Genetic algorithms
remain slow in comparison to LOCAL HILL CLIMBING.

The theoretical properties of RAR,, suggest that this line of work for genetic algorithms
deserves further investigation. Issues like elitism and ranking versus roulette selection may
provide further improvements. Our results open the possibility for even more competitive
genetic search for medoid based clustering.
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