Intrusion Detection
Applying Machine Learning to Solaris Audit Data

David Endler
Department of Electrical Engineering and Computer Science
Tulane University
New Orleans, LA 70118
endler@eecs.tulane.edu

Abstract

An Intrusion Detection System (IDS) seeks to iden-
tify unauthorized access to computer systems’ re-
sources and data. The most common analysis tool
that these modern systems apply is the operating sys-
tem audit trail that provides a fingerprint of system
events over time. In this research, the Basic Security
Module auditing tool of Sun’s Solaris operating envi-
ronment was used in both an anomoly and misuse de-
tection approach. The anomoly detector consisted of
the statistical likelihood analysis of system calls, while
the misuse detector was built with a neural network
trained on groupings of system calls. This research
demonstrates the potential benefits of combining both
aspects of detection in future IDS’s to decrease false
positive and false negative errors.

1 Introduction

Over the past several years, computer attacks and
break-ins have become commonplace. Numerous at-
tacks have been successfully launched on government
installations, company systems, and personal user ac-
counts resulting in loss of privacy, research, or pro-
prietary information. Almost all existing computer
systems safeguard information through access con-
trols such as passwords or file protections. However,
from following high-profile stories in the popular press
about computer and information theft, it is clear that
these mechanisms are insufficient.

Today’s Internet community has a significant level
of access to and awareness of security holes and sys-
tem vulnerabilities, propagated through mailing lists,
web sites, and newsgroups. Intruders can often easily
exploit and gain unauthorized access simply by exe-
cuting a downloaded C program or UNIX shell script.
Other intruders are somewhat more insidious and in-
direct, hiding their activities and rarely taking part in

extended periods of strange or unusual behavior [21].
Simple network probing experiments [4] suggest that
there are many more intrusions taking place than are
being reported or noticed by administrators on the
Internet.

1.1 Intrusion Detection

It is therefore imperative to detect these unseen sys-
tem attacks in an automated monitoring environment.
Intrusion detection quite simply seeks to detect viola-
tions in an organization’s security policy. Sometimes
only through careful analysis of a system’s audit data
can intrusive activity be detected. Audit trails, the
chronological record of system activities logged to files,
are usually generated in huge amounts each day. For
humans to manually comb through these files is unfea-
sible and a waste of manpower. Thus, it is desirable
to have a computerized intrusion detection system to
effectively and efficiently

e expose intrusions in real-time to circumvent pos-
sible damage or theft resulting from the intruder

e cut down on the tediousness of human analysis

Research and applications of intrusion detection
techniques has resulted in its classification into two
main categories, anomaly detection and misuse detec-
tion.

Anomaly detection is based on the assumption
that misuse or intrusive behavior deviates from nor-
mal system use [7]. In general, most anomaly detec-
tion systems learn a normal system activity profile,
and then flag all system events that statistically devi-
ate from this established profile. One of the strengths
of anomaly detection is the ability to abstract infor-
mation about the normal behavior of a system and
detect attacks regardless of whether or not the system
has seen them before. Most behavior models are built

using metrics that are derived from system measures
such as CPU usage, memory usage, number and time
of logins, network activity, etc. The main weakness of
anomaly detection systems is their vulnerability to an
intruder who breaches the system during their learn-
ing phase. A savvy intruder can gradually train the
anomaly detector to interpret intrusive events as nor-
mal system behavior.

Misuse detection seeks to discover intrusions by
precisely defining them ahead of time and watching for
their occurrence [13]. For example, many well known
attacks can be discovered by searching for distinguish-
ing patterns or events in the audit trails. The main
shortcoming of misuse detection is that future attacks
cannot be predicted or detected without hard-coding
them into the IDS attack database.

1.2 The Solaris Basic Security Module

The Solaris SHIELD Basic Security Module (BSM)
provides security features defined as C2 in the Trusted
System Evaluation Criteria (TCSEC) [22]. The au-
dit trails produced by the BSM include detailed infor-
mation about the specific system events attributable
to a user. BSM data has been successfully put to
use in past intrusion detection systems [1][12]. BSM
recognizes 243 built-in system signals that are indi-
vidually recorded and timestamped in a main audit
logfile. Two more signals were added to this system
which were setuid EXEC_VE and setuid EXEC. Another
alteration was that failed signals were given a signal
number of 245 added to the original number for a to-
tal of 488 possible signals. For example, depending
on a user’s UNIX shell, typing 1s may generate some
30 to 100 signals that are recorded and attributed to
that user as a result of the command’s execution. The
Solaris operating system can record different types of
signals that fall under the categories of audit options
available [22]. All possible system events (signals) for
each user were recorded for use in this research.

2 Machine Learning and Intrusion Detec-
tion

Intrusion detection systems that are trained on sys-
tem usage metrics use inductive learning algorithms.
To simulate this learning process using a computer
model is otherwise known as machine learning. Ma-
chine learning can be viewed as the attempt to build
computer programs that improve performance of some
task through learning and experience.

Our goal of designing machine learning applications
with regard to computer security is to reduce the te-

diousness and time consuming task of human audit
analysis.

The most commonly applied theory in many ma-
chine learning models is Pattern Classification. If we
conceive of a pattern as a pair of variables: Pattern =
[v, w], then the goal of Pattern Classification is to infer
w from v, in other words, giving names w to observa-
tions v [19]. These observations v are most commonly
represented using vectors of measurements or features.

v=1[v; vy ...)T

While it would seem beneficial to have as many de-
scriptive features as possible, it has frequently been
observed in practice [3] that beyond a certain point,
the inclusion of additional features leads to worse,
rather than better performance.

2.1 Representing the BSM Signals as
Features

Recent work [14] has involved learning the normal
UNIX commands of four students over the course of
a semester. By converting audit data into overlap-
ping sequences of tokens, the researchers were able to
apply a similarity measure to compare with the nor-
mal training data. Using this method it was possible
to capture the ”casual nature” of users’ actions and
create normal usage profiles for each user.

Another approach to learning from sequence data
involves developing feature vectors based on a se-
quence of events [8]. Such aggregate features that can
drastically improve detection include the derived char-
acteristics of the number of arguments to a program,
the number of times a user logs in per day, or the type
of permissions on files accessed and created by the
user. Choosing the best features based on raw audit
data is challenging, and involves an expert’s knowl-
edge of the domain being studied.

In each of the two methods that were developed
in this research, the signals from BSM were extracted
and then converted to vector pattern representations.
This enabled the learning simulator to process the in-
put, allowing for simple interpretations of the results.

3 Approach and Learning Algorithms

Misuse and anomaly detection each have their
own drawbacks. The limitation of the known at-
tacks database in misuse detectors makes it neces-
sary to predict all manners of intrusion before they
occur. Anomaly detectors are vulnerable to knowl-
edgeable hackers who tamper with an account during

the learning phase of normal behavior patters. This
research implements working models of both misuse
and anomaly detection, with the eventual goal of com-
bating the drawbacks of each method by combining
them into one real-time system. Both models use the
same BSM audit data to predict intrusive behavior in
the form of UNIX buffer overrun attacks to attain root
access. By melding the end results of each detection
method with each other, it is possible to improve false
negative and positive rates.

3.1 Statistical Anomaly Detection

With a statistical approach to anomaly detection, a
system learns the behavior of users, applying the type
of metrics previously mentioned. As the system is run-
ning, the anomaly detector is constantly measuring
the deviance of the present behavior profile from the
original. Only normal training data is learned by the
system, which then attempts to extrapolate anoma-
lous behavior through low probabilistic outputs of the
testing data (running phase) outputs. However, false
positives and negatives can be generated due to the
inadequacy or insensitivity of the statistical measures
chosen. Whether enough normal training data was
collected is usually a concern as well.

3.2 Neural Networks in Misuse Detec-
tion

Neural networks have the ability to learn from an en-
vironment by applying an iterative process of adjust-
ments to their internal structure. A neural network
is a mathematical mechanism modeled from human
brain behavior, able to be applied to a wide range
of purposes. A misuse detection approach consists of
training the neural network on a sequence of informa-
tion units (or commands), which are represented on
a more abstract level than an audit record [6]. In-
put to the neural network consists of a group of fea-
tures that describe one command. This input data
can be easily represented using pattern classification
techniques, whereby each pattern of features is clas-
sified as normal or abnormal system behavior. The
neural network uses non-linear regression to abstract
information from the abnormal training cases to pre-
dict future attacks. For this experiment, the specific
type of neural net that was used was a Multi-Layer
Perceptron(MLP). The MLP was chosen for its ease
of simulation and its past success in pattern classifi-
cation.

3.3 Simulated UNIX Users

The BSM data used in this experiment originated from
a Sparc ELC with 32 megabytes of memory installed
with the core Solaris 2.5 operating system. The system
was completely unpatched to allow for the exploitation
of vulnerabilities of the operating system. Four simu-
lated users were used to generate BSM audit data on
this system over the period of about six weeks. Each
user over this period had his own profile of system
usage which can best be generalized below.

USERI1 logs in during regular intervals and uses a
wide variety of computing intensive applications.
Once this user logs in, she starts an X session,
and may launch xterms, netscape, ghostview,
or various other programs. USER]1 uses the tcsh
shell.

USER2 regularly logs in, checks his email, and tel-
nets to other machines. USER2 uses the csh shell.

USERS3 infrequently logs in, and often runs many se-
tuid programs like ps, w and passwd. She also
runs many administrative commands such as df
and mount. USERS3 uses the sh shell.

USERA4 logs in intermittently only to check email,
fingers for friends on the network, and sometimes
initiates a talk session if a friend is logged in.
USER4 uses the tcsh shell.

All of these users’ actions were recorded using BSM
and later extracted using praudit and piped through
Perl preprocessing scripts.

4 Anomaly Detection Approach

The underlying idea behind computer security
anomaly detection is the ability to extrapolate strange
user behavior based just on the normal patterns that
the detector learns. Behavior is an imprecise term and
often difficult to define in terms of a computer user.
A method was needed to encode the actions of a user
from the BSM audit data format to a mathematical
representation that can be statistically analyzed. We
wanted to develop a normal profile for each user, and
then try to detect anomalous actions (buffer overrun
attacks) based on a statistical classifier.

4.1 Feature Extraction of the BSM
Logs for the Anomoly Detector

BSM audit data is stored in a binary file which requires
processing with the praudit program to translate into

a readable format. Once the audit file was in a format
that could be easily parsed, expert knowledge was used
to determine how to extract meaningful features from
this format. Drawing from both past sequence data [5]
[17] [8] and user profile [17] [14] research, the following

preprocessing technique was developed.

Given the original praudit translated file of BSM
audit data (with all users’ information), a Perl pro-
gram separated each of the four users’ audit signals
into four respective BSM audit files. For each user
file, the entire sequence of audit events was converted
into a a file of correlated numbers that represent those
signal events. For instance, when an EXEC_VE signal
is received, this is represented as the number 24. If
the signal received a failed return value, then 245 is
added to the base signal value. Therefore, if a user
tries to execute a program, the EXEC_VE call would be
converted to a 24, or a 269 if permission is denied.
Here is an example of how the conversion would look
like for the following snippet of audit data for a user
called endler. In the original data, each entry repre-
sents a token which begins with a header and ends
with a return.

header,88,2,AUE_ACCESS, ,Thu Apr 02 16:47:36 1998, + 479993000 msec
path,/home/endler/.hushlogin

subject ,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,failure: No such file or directory,-1
header,126,2,AUE_OPEN_R,,Thu Apr 02 16:47:36 1998, + 490003000 msec
path,/usr/share/lib/zoneinfo/US/Central
attribute,100644,bin,bin,8388616,267714,0
subject,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,success,4

header,137,2,AUE_CLOSE, ,Thu Apr 02 16:47:36 1998, + 490003000 msec
argument,1,0x4,fd

path,/usr/share/lib/zoneinfo/US/Central
attribute,100644,bin,bin,8388616,267714,0

subject ,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,success,0

header,115,2,AUE_CLOSE, ,Thu Apr 02 16:47:36 1998, + 630005000 msec
path,/etc/.name_service_door

attribute,150444,root ,root,42467328,2,41680896
subject,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,success,0

header,106,2,AUE_EXECVE, ,Thu Apr 02 16:47:36 1998, + 630005000 msec
path,/usr/bin/tcsh

attribute,100777,endler,user,8388616,120375,0

subject ,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,success,0

header,125,2,AUE_OPEN_R, ,Thu Apr 02 16:47:36 1998, + 630005000 msec
path,/devices/pseudo/mm@0: zero
attribute,20666,root,sys,8388616,15061,3407884
subject,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,success,3

header,110,2,AUE_OPEN_R,,Thu Apr 02 16:47:36 1998, + 650002000 msec
path,/usr/lib/libc.so.1

attribute,100755,bin,bin,8388616,72240,0

subject ,endler,endler,user,endler,user,295,294,24 0 h42.s92.tulane.edu
return,success,4

This snippet would be converted into entries with
timestamps and signal numbers.

16:47:36 260
16:47:36 73
16:47:36 113
16:47:36 113
16:47:36 24
16:47:36 73

When processing the EXEC_VE and EXEC system
calls, and either invokes a setuid program (which can
be detected in the audit data), the derived feature
number is converted to 244 and 245 instead of 24

and 8 respectively. For purposes of the buffer over-
run exploits that we were searching for, this made the
most sense to further describe the EXEC_VE call since
most of these attacks use setuid root programs. De-
ciding which aggregate feature(s) to select (e.g., se-
tuid EXEC_VE, return code) is entirely dependent on
the creators of the detection system, making experi-
mentation sometimes the most practical solution for
feature selection.

Once the timestamped signal files have been cre-
ated for each of the users, the actual training data is
produced. The training data is in the form of feature
vectors with 488 members (for the 488 possible sig-
nals). Here is how the training data feature vectors
are created from the first set of files.

The entire sequence of signals is stored in an array
fashion. Given the entire sequence of signal numbers
for a user, we create a sliding window which will de-
termine how many signals to consider in one pattern.
Following is an example of window length five (w =
5) incremented by a step of 1 to generate the follow
patterns of signals. Using the audit trail snippet we
generated above, the sequence 73 113 113 24 73 is con-
verted with this sliding window concept to:

260 73 113 113 24
73 113 113 24 73
113 113 24 73 11
113 24 73 11 28

Then the final training data file is converted to

an accumulation of feature vectors with 488 members
that count the total number of signals appearing in

each sequence. So the first vector pattern of the train-
ing data file will look this with the 113th element equal
to 2, and the 260th, 73rd, and 24th elements equal to
1.

0000000000000000000000001000000000000
000000000000000000000000000000000000 1
00000000000000000000000000000000D00000
0020000000000000000000000000000000000
00000000000000000000000000000000D00000
000000000000000000000000000000O0O0O0DO0DO0O0O0DO0
000000000000000000000000000000O0O0O0DO0DO0O0O0DO0
010000000000000000000000000000000000O0DO0
000000000000000000000000000000O0O0O0DO0DO0O0O0DO0
000000000000000000000000000000O0O0O0DO0DO0O0O0DO0
00000000000000000000000000000000D00000
00000000000000000000000000000000D00000
00000000000000000000000000000000D00000
00000000

Thus for each window of w tokens, a feature vec-
tor of 488 elements is created. Each line was then
prepended by a 0 to classify the pattern as a normal
system event since all of our training data is of normal
usage.

Dependent on the histogram function (discussed in
the next section) being applied to our data, the best
value for w must be determined that will optimize our

detection of abnormal system events. Three values for
w were tested to get a sense for the best length, 6, 10,
and 15. For all four users, the lowest sequence length
of 6 the was most successful in identifying anomalous
behavior. Different data sizes were used for each user’s
normal profile, which must be taken into considera-
tion before making any generalizations about optimal
sequence length. It has been shown that optimal se-
quence window lengths vary per user and the respec-
tive normal profile size being used [14].

The testing data consisted of the users’ normal ses-
sions, interspersed with several simulated break-ins to
the account. During each break-in, the intruder up-
loads a buffer-overun exploit binary, and executes it,
obtaining root access. The audit data was collected
from all of these sessions and converted in the same
manner described above for the training file, with a 1
prepended to window vectors that represent the actual
attack taking place.

Once the training data was assembled in the desired
format, a statistical classifier was applied to the nor-
mal patterns. After the classifier had generalized the
normal usage for each user, the testing patterns were
evaluated and an output value was given to each, rep-
resenting the likelihood of normal pattern usage. We
then marked areas as anomalous by looking at output
likelihood values below a certain threshold value.

4.2 The Histogram Classifier

There are many methods to handle pattern classifica-
tion using statistical analysis. For the purposes of this
research, the histogram classifier [3] was used to esti-
mate the likelihood of normal and abnormal classes
by creating a set of histograms for each input fea-
ture. The histogram classifier belongs to a larger
group called likelihood classifiers. Using the data col-
lected above as the training set, all of the patterns
were classified as normal. The test data consisted
of the same format as the training set, except actual
UNIX buffer overrun exploits were executed by simu-
lated intrusions into the accounts. The test data in-
cluded both normal and abnormal classified examples,
signified respectively by a 0 or 1 as the first number
in the pattern.

Maximum likelihood classifiers estimate the scaled
probability density function, or likelihood, for each
class, p(X|A)P(A) where A represents a class label,
X is the input feature vector for a pattern, p(X|A) is
the likelihood of the input data for class A, and P(A)
is the prior probability for class A [18]. Using the his-
togram classifier, the range of possible output values
was divided into bins. The likelihood value assigned to

each bin is proportional to how many training patterns
occur in that bin’s region. During the testing phase
of our system, the likelihood values for each pattern
are determined with p(v|A). It is important to have a
large representative set of normal data since low like-
lihood values will occur only when the user exhibits
behavior outside of his profile. So by training on nor-
mal profile patterns, we can detect abnormal behavior
by looking at very low likelihood values for our testing
patterns.

The problem with the histogram classifier, and with
pattern classification in general, is the curse of dimen-
sionality. The difficulty with using the histogram func-
tion is that the number of histogram bins grows ex-
ponentially with the dimension N of the measurement
space [19]. Thus, the more features we have, the more
impractical it becomes to apply the histogram classi-
fier. The solution was to reduce the number of features
used in each pattern vector. The initial attempts at
feature reduction were attempted using the LNKnet
simulator’s built-in algorithms. More successful re-
sults were achieved using human handpicked features
which were selected using experience with the buffer
overrun attack domain.

4.3 LNKnet Simulator

The LNKnet software package was developed to sim-
plify the application of the most important statistical,
neural network, and machine learning pattern classi-
fiers [18]. For the purposes of this research, all train-
ing, testing, and feature selection/reduction was per-
formed using this tool. The LNKnet software has a
graphical user interface which allows the user to apply
the statistical histogram approach mentioned earlier.
The software is also capable of UNIX shell scripting
which executes the same algorithms in a batch mode.
The LNKnet package was compiled and used on a
Sun Sparc Ultra Server 3000, single CPU, with 256
Megabytes of RAM, running Solaris 2.5.1.

Once the Perl scripts generated the normal classi-
fied training file mentioned above, LNKnet was then
used to build a histogram model which was representa-
tive of a user’s normal behavior. The testing data was
then evaluated using this learned classifier model and
the outputs for each pattern were then extracted from
the log file. Scatter plots were then graphed with re-
spect to time, and anomalous behavior patterns could
then be inferred from a very low output value for the
normal classifier.

All input features in the testing and training data
were normalized to maintain stable and low output
ranges for analysis.

5 Misuse Detection Approach

The underlying idea behind the misuse detection
approach is to train our detector on both normal and
abnormal (intrusive) patterns. Instead of learning the
behavior of users over time, this method learns an en-
tire event and creates a feature vector from this. For
example, instead of the sliding window used in the
anomaly detection approach, a sequence of signals was
grouped into an event. In describing how this method
works, the event is used to mean the collection of sig-
nals associated with a particular command or action.
For instance, if a user types 1s and generates 45 as-
sociated signals in the audit data, all 45 signals are
understood to be included in that event.

5.1 Feature Extraction of the BSM
Logs for the Misuse Detector

Using the collected signals of both user and system

level events from the same audit source as the train-
ing data, feature vectors were generated as before us-

ing all 488 measures. A separate file contained the
time stamps for each pattern so that we can corre-
late the data for graphing purposes. An event is ex-
tracted from the BSM audit logs by combining all sig-

nals within several microseconds that have the same
audit session id. Each event pattern is then classified

as normal or abnormal system behavior with a 0 or 1
respectively prepended to the pattern. For instance,
this is the pattern that records a user typing ls.

100000000000
00O00000O0O0O0O0O
000000000000

oo~
oo o

[
[
0

oo o
oo o

[
[
0

oo o
oo o
oo o

1000400
0000000O0
0000000
0000000000000000000000000000D0 1

000
000
000
100
000
000
000
000
000
000
000
000
000

cooocoo0o0co0o00o00O0
cooocoo0o0co0o00o00O0
cooocoo0oco0o00o0®mO

coooocooooo

000000
000000
000000
200000
000000O0
000000O0
000000O0
000000O0
000000O0

cooocoo0ooo
cooocoo0ooo

0
0
0
0
[
[
[
[
[

cooocoo0ooo
cooocoo0ooo

0
0
0
0
[
[
[
[
[

cooomo0o0oo0
cooocoo0ooo
cooocoo0ooo

0000003
0000000
0000000
0000000
0000000O0
3000000
0000000O0
0000000O0
0000000O0

The prepended 0 signifies a normal system event.
The test data was generated in the same format and
from the same audit source as the anomaly detection
test records. Each pattern’s timestamp was stored for
both training and testing to allow for future correla-
tion with the anomaly detection results.

5.2 Neural Networks

Neural networks are powerful mathematical struc-
tures that lend themselves well to pattern classifica-
tion problems. One goal of this research was to deter-
mine whether it was possible to generalize enough in-
formation about malicious activity by extracting BSM
features, and learn by example using a neural network,

to predict future malicious actions. Using the train-
ing data that was collected from the main file of all
system-wide events mentioned in the previous section,
buffer overrun exploits were recorded and added as
patterns to the training data, classified as abnormal.
The curse of dimensionality also affected our neural
network model, which required either fewer features
in our patterns or significantly more samples to be
sucessful. Feature reduction was performed, and as
with the anomaly detection approach, hand-picking
the features based on knowledge of the problem do-
main provided the most successful results.

5.3 LNKnet Simulator

LNKnet was also used for the Multi-Layer percep-
tron neural network simulations. The only variables
adjusted during each simulation were the number of
epochs, the number of hidden-layer nodes, and the
learning rate parameter. The types of abnormal train-
ing patterns were varied to observe the performance
rate of the detector.

6 Experiment Results

The main goal of this research was to illustrate the
benefits of combining the results of the two methods
of intrusion detection. Another goal was to show that
intrusion detection was indeed feasible using the BSM
audit data converted into feature vectors using the
aforementioned techniques.

The training audit data consisted of 6 weeks worth
of the users’ normal user audit data. The testing phase
of this experiment consisted of auditing the four sim-
ulated users for 50 minutes, while they performed var-
ious buffer-overrun attacks on the system. The total
number of signals collected for the training and testing
phases respectively was 22444 and 25457.

6.1 The Anomaly Detector

The procedure behind the anomaly detection phase of
this experiment involved

1. Initial training on normal user profiles of different
sequence samples using a histogram function to
develop a classifier.

2. Analysis of testing samples using the histogram
classifier against the respective sequence lengths
to produce output.

3. Visual analysis of the output and selection of the
proper output threshold to determine anomalies.

4. Selection of the best sequence length w for each
USER’s anomalous detections. Plotting of this
sequence length versus time, so that we could cor-
relate the data with our misuse detection method
which is sampled over time.

The total amount of audit signals that were col-
lected in the training data was 22444 which was di-
vided up for USER1, USER2, USER3, and USER4
respectively: 6535, 2369, 3311, and 4310. The signals
not accounted for belonged to system accounts such as
root and lp which performed crontab and administra-
tive commands. The testing data consisted of 25457
audit signals generated over the 50 minute interval.
The test audit data was split up into user files again
respectively for USER1, USER2, USER3, and USER4
with the following number of signals each: 9844, 4765,
4606, and 5683.

The training and testing files were first parsed with
Perl scripts to separate each into four files for the re-
spective users. The next step was to transform the
files into feature vectors using another Perl script. The
main variable that existed in creating the vector pat-
terns for each file was the sliding window w. Each user
then had three sets of training and testing files that
utilized a window size of 6, 10, and 15 when creating
the feature vector patterns.

Once the files were created, LNKnet was loaded and
the vector values were normalized for use in the his-
togram plotting. Initially, all 488 features were used in
the training and testing data. The resulting likelihood
output values were too large to make any conclusions
about the testing data at all. This was to be expected
based on the previous discussion on the curse of di-
mensionality and large feature space. Because all of
our input patterns were classified as normal, and the
test pattern classifications were unknown, normal fea-
ture selection algorithms did not suffice.

It has been generally accepted that in pattern clas-
sification tasks, features must be first selected and
reduced initially using experience and prior domain
knowledge [19]. A set of 13 features was eventually
selected by applying expert knowledge of buffer over-
runs and the audit signals generated by their occur-
rence. The signal features that were eventually chosen
were 17, 24, 28, 40, 73, 77, 81, 113, 142, 178, 245, 318,
and 386 from the signal list. Note that the numbers
chosen to represent each system call was an arbitrary
choice, and based on the order they are listed in the
filesystem.

Once the feature size had been reduced from 488
to 13, substantial improvements in the results were
then achieved. Using the histogram modeling func-

tion in LNKnet, each user’s training files were learned
and then applied to the respective data patterns. The
output from each of these experiments consisted of two
columns of histogram likelihood values, one for each of
the classifiers used, normal and abnormal. The out-
puts for the abnormal classifier were all equal to 0
since there were no abnormal pattern examples in the
training data as per the concept behind anomaly de-
tection. The outputs for the normal classifier were
extracted and examined from the log files with more
Perl scripting.

To detect anomalous patterns from the histogram
simulation runs, a value was selected for each output
to represent the anomaly threshold. This threshold
value was visually selected based on the graph of the
scatter plots. Any outputs less than this value rep-
resented anomalous activity according to our model.
For example, Figure 1 illustrates the threshold value
of 6 * 10728, in which the buffer overrun instances
(shown by the arrows) were isolated by the histogram
outputs below this value. The detector was quite suc-
cessful in this instance, having only two false positives
near pattern 4100.

For all four users, the signal sequence window
length of 6 seemed to be the most successful in terms
of the best false negative rate. Increasing the se-
quence window length for each user did not improve
the anomalous discovery rate, although in the case of
USER2, USER3, and USER4 the false positive rate
was reduced. For the remainder of the experiments,
the sequence window samples of length 6 were used
since the highest percentage of anomalies was detected
using this data.

Figures 1-4 show the selected anomaly outputs
graphed over seconds, allowing us to overlap the re-
sults with the misuse detector later. The entire 50
minute testing period can be viewed on these fig-
ures, which consolidates the output values and en-
ables our future correlation with the misuse detector.
The different types of buffer overrun attacks executed
by each user for the testing phase included passwd,
rlogin, eject, and ping for USER1; fdformat, ping,
and rlogin for USER2; ping, eject, and rlogin for
USER3; fdformat for USER4. The arrows mark the
exact patterns at which the exploits occurred so we
easily see how many false positives and negatives ex-
ist.

USERI1 with sequence length 6

USER4 with sequence length 6

le — 29 | | | | |

9e — 30 - .
e —30 USER4 & 4
7e — 30 ~ —
6e — 30 .
oe — 30 .
4e — 30 - .
3e —30 - .
2e — 30 | -
le — 30 - -

0 | | | o 0
500 1000 1500 2000 2500 3000

le — 27 T T T T T
9e — 28 —
8¢ — 28 USER1 &
Te — 28 - —
6e — 28 —
5e — 28 - —
de — 28 + —
3e — 28 —
2e — 28 - —
le — 28 —

0 | | | | |

500 1000 1500 2000 2500 3000

Time in Seconds

Figure 1: This is the Histogram plot for USER1’s
test data results with sequence size w equal to 6. The
arrows represent when actual buffer overrun attacks
were launched. The diamonds represent anomalous
activity identified by the detector.

USER2 with sequence length 6

le — 26 | | | |
9e — 27 —
8¢ — 27 L USER2 & 4
Te —27 —
6 — L _
de — 27 + 0 —
3e —27 —
2e — 27 |- —
le — 27 —

0 I o | | |

0 1000 2000 3000 4000 5000

Time in seconds

Figure 2: This is the Histogram plot for USER2’s
test data results with sequence size w equal to 6.

USER3 with sequence length 6

le — 27 T T T T
9e — 28 —
8e — 28 USER3 & 4
Te — 28 - -
6e — 28 —
5e — 28 - —
4e — 28 + -
3e — 28 —
2e — 28 - -
le — 28 -

0 2100000 |

0 1000 2000 3000 4000 5000

Time in Seconds

Figure 3: This is the Histogram plot for USER3’s
test data results with sequence size w equal to 6.

Time in Seconds

Figure 4: This is the Histogram plot for USERA4’s
test data results with sequence size w equal to 6.

6.2 The Misuse Detector

For misuse detection, signals were consolidated into
events so that each pattern represented a command
and all the accompanying signals it generated. There
were a total number of 362 and 569 events in the train-
ing and testing files respectively. The misuse detection
procedure consisted of the following steps:

1. Initial learning on the entire normal training set
with a Multi-Layer perceptron neural network
simulator (LNKnet).

2. In addition to the normal data, buffer overrun at-
tacks were recorded and specific patterns were in-
dividually added to the training set to see which
other attacks could be extrapolated.

3. The entire testing data consisting of all users ac-
tions and system events was tested using each
neural network and the results are shown in the
extrapolation tables below.

4. Three combinations of two attacks in the training
data were then used as the abnormal cases in the
training data, creating three neural networks.

5. The entire testing data, consisting of all users ac-
tions and system events, was tested using these
three neural networks and the results shown in
the table below.

6. The best combination of two attacks was used to
combine with the output of the anomaly detection
methods discussed in the next section.

The central strategy behind misuse detection in-
volves training by example. The main training file for
the misuse detector initially contained all of the same

normal usage data as the anomaly detection model.
Pattern examples of buffer overrun attacks were then
added to this training data in order to learn and ex-
trapolate future attacks. Of the five buffer overrun
attacks that were used in the testing phase, differ-
ent combinations of attack patterns were added to the
training data to see if the neural network could iden-
tify the other attacks in the test data.

The five different types of buffer overrun attacks
that were executed in the test data include passwd,
rlogin, eject, fdformat, and ping. Many combina-
tions of the five attacks were included in the training
set to see how successful the neural network was in
generalizing and classifying future attack signatures.

The first approach was to use one buffer overun
attack in the training data to see how many other at-
tacks it could recognize. First, all of the attacks in the
testing set were given a number to simplify identify-
ing them. The numbers represent the order they are
shown in the graphs with the arrows.

1. ping buffer overrun taking place at time 740 sec-
onds by USER3.

2. passwd buffer overrun taking place at time 1110
seconds by USERI.

3. fdformat buffer overrun taking place at time 1460
seconds by USER2.

4. rlogin buffer overrun taking place at time 1556
seconds by USERLI.

5. ping buffer overrun taking place at time 1685 sec-
onds by USER2.

6. rlogin buffer overrun taking place at time 1785
seconds by USERI.

7. eject buffer overrun taking place at time 1910 sec-
onds by USERS3.

8. rlogin buffer overrun taking place at time 2119
seconds by USER3.

9. rlogin buffer overrun taking place at time 2305
seconds by USER2.

10. eject buffer overrun taking place at time 2353
seconds by USERI.

11. fdformat buffer overrun taking place at time
2461 seconds by USERA.

12. ping buffer overrun taking place at time 2564 sec-
onds by USERI.

The best performing neural network variables were
discovered after much testing and changing of param-
eters. For each of the simulations performed using the
mulitlayer perceptron model, a hidden layer of 25 neu-
rons, a learning parameter of .3 and an epoch length,
of 2000 iterations were used.

With the following buffer overrun attacks, the
Multi-Layer perceptron was able to extrapolate other
attacks. The results of adding and trying each buffer
overrun attack in the training data are shown in the
table. The neural network was obviously able to ex-
trapolate at least the one attack used in the training
set for each instance shown below. The list of extrap-
olated attacks are the patterns that were classified as
abnormal:

Attack Signature Extrapolated Attacks

1 1,3,9
2 2, 10, 11, 12
3 1,3,9

4 2,4,5,6,8
5 2,4,5,6,8
6 4,5,6,8

7 7,11

8 2,4,5,6,8
9 1,3,9

10 3, 10, 12

11 7,11

12 2, 10, 12

Using the information from these individual train-
ing instances fed into the neural network, groups of
two attacks were then used in the training data. The
following three sets of two attacks were used to train
the neural network into better extraploation of more
attacks.

Attack Combination Extrapolated Attacks

2 and 7 2,7, 10, 11, 12 5
1land 5 1,3,4,5,7,8,9,11 6
2 and 5 2,4,5,6,7,8,10,11,12 7

The combination of 2 and 5 seemed to be the
most effective in extrapolating different types of at-
tacks. This combination was used to combine with
the anomoly detection results discussed in the next
section. Notice that with both of the above neural net
misuse detection runs, no false positives occured.

Figure

Neural Network Classifier Output
| | |

| |
Classifier &

Abnormal -

SN0 OORBCEIEESEROMRIED O ——
0 500 1000 1500 2000 2500 3000
Time in Seconds

Normal

Figure 5: This is the classifier output for the two at-
tacks 2 and 7 used in the training data. The arrows
signify when attacks took place, and the diamonds
show where the detector flagged an event as abnor-
mal.

Neural Network Classifier Output
T T T

C’lclzssifierl o

Abnormal -

S DO ONNCENECHENCONNED O
0 500 1000 1500 2000 2500 3000
Time in Seconds

Normal

Figure 6: This is the classifier output for the two at-
tacks 1 and 5 used in the training data.

Neural Network Classifier Output
T T T

C’lclzssifierl o

Abnormal -

S DO OONNCENECHENCONNED O
0 500 1000 1500 2000 2500 3000
Time in Seconds

Normal

Figure 7: This is the classifier output for the two at-
tacks 2 and 5 used in the training data.

Overlapping Abnormal Outputs

| | | | |
MLP <
USER1 o
USER2 O
USER3 X
USER4 A
MLP - N I _
USER1 0 T) 0 o0 -
USER2 O 0O OIm oo il —|
USER3 X X % XX X -
USER4 A / -
| | | | |
0 500 1000 1500 2000 2500 3000

Time in Seconds

Figure 8: This is the combination of all anomalous
output from the four users with the neural network
Multi-Layer Perceptron results.

7 Putting it all Together

One of the major goals of this research was to com-
bine both aspects of intrusion detection to improve the
overall rate of detection. By combining the results of
the anomaly and misuse detection models, it was pos-
sible to drastically reduce the false negative errors in
detecting buffer overrun attacks. Looking at the out-
put of all users’ anomalies and the neural network out-
put in figure 8 shows some overlapping in the outputs
of both methods. If we look at just the overlapping
features and consider all outputs equally abnormal,
then figure 9 offers another perspective. By merging
all output points, one can better see areas that require
human audit analysis to determine if a real attack has
taken place. In the way the abnormal data is pre-
sented in figure 9, it is possible to reduce the amount
of false positive errors. By only considering regions of
30 or 60 seconds at a time, one such filtering process
could consist of eliminating all regions with less than
2 or 3 abnormal outputs thereby cutting down on the
false positive rate of detection.

8 Conclusions and Future Work

There were two main goals accomplished in this re-
search. It was successfully shown that Solaris BSM
audit data could be applied to both a misuse and

Overlapping Abnormal Outputs

| | | | |
All Methods <

Abnormal
TOTAL

0 500 1000 1500 2000
Time in Seconds

Figure 9: This is the overlapping of data points in
figure 8. The graph illustrates an improved detection
rate if both anomoly and misuse detection methods
are combined.

anomaly detection model. While the NIDES system
[1] has demonstrated this theory in practice drawing
upon many data sources, this experiment was able to
draw upon one source of data and utilize it differently
for both types of detection. The two methods by which
the BSM data was used to generate feature vectors
proved to be fairly successful. The other goal of com-
bining both detection models for more accurate detec-
tion results was also successful. By analyzing the final
overlapping data points, it is possible to cull the out-
put and consider only the time intervals that contain
a certain amount of abnormally classified activity.

These preliminary experiments provide evidence
that there is great promise in developing more ad-
vanced detection systems through BSM audit anal-
ysis and conversion. There is much room for the ad-
vancement of many aspects of this research. The sig-
nal profile size for each user’s training data should be
expanded and sampled randomly. The optimal win-
dow size w should also be more thoroughly analyzed,
since it was shown [14] that optimal sequence lengths
are user dependent. The feature selection done on
both the anomaly and misuse detection models could
be greatly improved from the hand-picked methods
applied. More varied and real life user data sam-
ples would be desirable, in addition to more types of
recorded attacks rather than just buffer overrun ex-
ploits.

Now that buffer overrun attacks have been shown
to be capable of audit detection, other types of at-
tacks and anomalous behavior should be further clas-
sified into the systems. One of the most important im-

2500 3000

provements that could be made to both models is the
development of more detailed features such as argu-
ments to EXEC_VE calls, host where the user originated
from, and perhaps time between past z commands.
Prior Probabilities were left untouched for these ex-
periments, but adjusting the actual probability values
of anomalies may have potential benefits.

The neural network aspect of the misuse detection
model has vast room for exploration. The technique
of clustering should be investigated with respect to
the input space. While the Multi-Layer Perceptron
is useful in many learning problems, other types of
neural networks may be more successful when dealing
with this type of pattern prediction and completion.
The use of recurrent networks with BSM audit signals
is an area that deserves more research, spurred on by
experiments showing that predictive pattern matching
could be achieved by using a neural network with feed-
back layers. The application of recurrent networks, as
well as other neural networks such as Kohonen, Hopp-
field, and RBF, has the potential of providing useful
tools for audit sequence analysis.

The next logical step for this research will be to
implement this model in real-time using actual user
data instead of simulations. Audit reduction should
be investigated to make this a performance feasible
project. The sliding window of audit signals in the
anomaly detector could ”slide over” more than 1 sig-
nal at a time, reducing the number of patterns to be
processed at once. Concept drift must be addressed by
constantly retraining both detectors to keep up with
the changing uses of a system. Also the neural net-
work audit aspect could be reduced by filtering out
audit signals that have little bearing on the detection
process, thereby decreasing the preprocessing strain
on the system.

9 Acknowledgements

I am very thankful to my advisor Dr. Mark Be-
nard of Tulane University for his constant advice and
encouragement. [am also grateful to Dr. Linda
Lankewicz of Sewanee University for her useful com-
ments and direction. I would especially like to thank
Dr. Richard Lippmann of MIT Lincoln Laboratory
for providing the LNKnet simulator software, offering
helpful suggestions on how to handle audit data, and
for his ongoing support.

References

[1] Debra Anderson, Thane Frivold, and Alfonso
Valdes. ”Next-generation Intrusion Detection Ex-

pert System (NIDES), A Summary.” SRI Com-
puter Science Laboratory, May 1995.

[2] Thomas G. Dietterich and Ryszard S. Michal-
ski. ”Learning to predict sequences.” 1986. In
Michalski, Carbonell, and Mitchell (Eds.). Ma-
chine Learning: An artificial intelligence approach.
San Mateo, CA: Morgan Kaufman.

[3] Richard Duda and Peter Hart. Pattern Classifica-
tion and Scene Analysis. New York: John Wiley
and Sons, 1973.

[4] Dan Farmer. ”Shall We Dust
Moscow?” hitp://www.trouble.org/survey. Decem-
ber 18th, 1996.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. ” A sense of self for unix processes.” Pro-
ceedings of the 1996 Symposium on Security and
Privacy, pages 120-128, Los Alamitos, CA, 1996.
IEEE Computer Society Press.

[6] Kevin Fox, Ronda Henning, Jonathan Reed,
Richard Simonian. ”A Neural Network Approach
Towards Intrusion Detection.” Proceedings of the
138th National Computer Security Conference,
pages 125-134, Washington, DC, October 1990.

[7] Jeremy Frank. ”Artificial Intelligence and Intru-
sion Detection: Current and Future Directions.”
June 9, 1994.

[8] Haym Hirsh and Nathalie Japkowicz. ” Bootstrap-
ping Training-Data Representations for Inductive
Learning: A Case Study in Molecular Biology.”
Proceedings of the Twelfth National Conference on
Artificial Intelligence. (pp. 639-644). Seattle, WA.

[9] Todd Heberlien. "Haystack’s Analysis: A brief De-
scription.” Internal Document, University of Cali-
fornia, Davis 1991.

[10] K. Jackson, D. DuBoid, and C. Stallings. ”An
Expert System Application for Network Intrusion
Detection.” 1991

[11] H. Javitz and A. Valdes. "The SRI IDES Sta-
tistical Anomaly Detector.” In Proceedings, IEEE
Symposium on Research in computer Security and
Privacy, 1991.

[12] Sandeep Kumar. Classification and Detection of
Computer Intrusions. PhD thesis, Purdue Univer-
sity, August 1995.

[13] Sandeep Kumar and Eugene Spafford. ”An Ap-
plication of Pattern Matching in Intrusion Detec-
tion.” Technical Report. June 17, 1994.

[14] Terran Lane and Carla Brodley. An Application
of Machine Learning to Anomaly Detection. Pur-
due University, West Lafayette, IN, February 1997.

[15] Linda Lankewicz and Mark Benard. ”Real Time
Anomaly Detection Using a Nonparametric Pat-
tern Recognition Approach.” Proceedings, IEEE
Symposium on Research in Computer Security and
Privacy, 1990.

[16] Linda Lankewicz. A Non-Parametric Pattern
Recognition Approach to Anomaly Detection. PhD.
Thesis, Department of Computer Science, Tulane
University, 1992.

[17] Wenke Lee and Salvator Stolfo, ”Data Mining
Approaches for Intrusion Detection.” In, Proceed-
ings of the 7th USENIX Security Symposium, San
Antonio, Texas, January 26-29, 1998

[18] Richard Lippmann and Linda Kukolich. LNKnet
User’s Guide. MIT Lincoln Laboratory. 1993.

[19] Jirgen Schiirmann. Pattern Classification, A
Unified View of Statistical and Neural Approaches.
John Wiley and Sons, Inc. New York: 1996.

[20] Michael Sebring, Eric Shellhouse, Mary Hanna,
and R. Alan Whitehurst. ”Expert Systems in in-
trusion detection: A case study.” Proceedings of
the 11th National Computer Security Conference,
pages 74-81, October 1988

[21] Clifford Stoll. Stalking the Wily Hacker. Commu-
nications of the ACM, 31(5):484-497, May 1988

[22] Sun Microsystems. SunShield Basic Security
Module Guide.

