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Probabilistic Techniques for Intrusion Detection
Based on Computer Audit Data
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Abstract—This paper presents a series of studies on probabilistic
properties of activity data in an information system for detecting
intrusions into the information system. Various probabilistic tech-
niques of intrusion detection, including decision tree, Hotelling’s
T2 test, chi-square multivariate test, and Markov chain are ap-
plied to the same training set and the same testing set of computer
audit data for investigating the frequency property and the or-
dering property of computer audit data. The results of these studies
provide answers to several questions concerning which properties
are critical to intrusion detection. First, our studies show that the
frequency property of multiple audit event types in a sequence of
events is necessary for intrusion detection. A single audit event at
a given time is not sufficient for intrusion detection. Second, the
ordering property of multiple audit events provides additional ad-
vantage to the frequency property for intrusion detection. How-
ever, unless the scalability problem of complex data models taking
into account the ordering property of activity data is solved, in-
trusion detection techniques based on the frequency property pro-
vide a viable solution that produces good intrusion detection per-
formance with low computational overhead.

Index Terms—Anomaly detection, computer audit data, intru-
sion detection, pattern recognition.

I. INTRODUCTION

V ULNERABILITIES and bugs of information systems are
often exploited by malicious users to intrude into infor-

mation systems and compromise security (e.g., availability, in-
tegrity and confidentiality) of information systems [1]–[10]. As
information systems become increasingly complex, vulnerabili-
ties and bugs of information systems are inevitable for technical
and economic reasons. Hence, the possibility of intrusions into
information systems always exists. In order to protect informa-
tion systems, it is highly desirable to detect intrusive activities
while they are occurring in information systems.

An information system consists of host machines and com-
munication links between host machines. Existing intrusion de-
tection efforts [11]–[43] focus mainly on two sources of ac-
tivity data in an information system: network traffic data and
computer audit data. Network traffic data contain data packets
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traveling over communication links between host machines, and
thus capture activities over communication networks. Audit trail
data capture activities occurring on individual host machines.
Activity data of an information system contain not only useful
information to uncover intrusive activities but also much irrele-
vant information.

This paper presents a series of studies performed at the In-
formation and Systems Assurance Laboratory of Arizona State
University to reveal a few probabilistic properties of computer
audit data that are important to intrusion detection. Intrusion de-
tection techniques, including decision tree, Hotelling’s Ttest,
chi-square multivariate test and Markov chain, are used in these
studies. Section II review attributes of activity data used in ex-
isting work on intrusion detection. Section III generalizes prob-
abilistic properties from attributes of activity data. Sections IV
describes computer audit data used in our studies, and presents
these studies and their results concerning probabilistic proper-
ties of activity data. Section V gives a conclusion.

II. A TTRIBUTES OFACTIVITY DATA IN EXISTING WORK

There are two general approaches to detecting intrusions
[11]–[43]: anomaly detection (named behavior-based approach
in some literature [11]) and pattern recognition (named knowl-
edge-based approach [11] or misuse detection [29] in some
literature). Pattern recognition techniques [11], [16]–[25]
identify and store signature patterns of known intrusions, match
activities in an information system with known patterns of in-
trusion signatures, and signal intrusions when there is a match.
Pattern recognition techniques are efficient and accurate in
detecting known intrusions, but cannot detect novel intrusions
whose signature patterns are unknown.

Anomaly detection techniques establish a profile of a sub-
ject’s normal activities (a norm profile), compare observed
activities of the subject with its norm profile, and signal
intrusions when the subject’s observed activities differ largely
from its norm profile [26]–[43]. The subject may be a user,
file, privileged program, host machine, or network. Denning
[29] provides a justification of the anomaly detection approach
to intrusion detection. Anomaly detection techniques can
detect both novel and known attacks if they demonstrate large
differences from the norm profile. Since anomaly detection
techniques signal all anomalies as intrusions, false alarms are
expected when anomalies are caused by behavioral irregularity
instead of intrusions. Hence, pattern recognition techniques
and anomaly detection techniques are often used together to
complement each other.
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Existing efforts on intrusion detection have considered
mainly the following attributes of activities in information
systems:

1) occurrence of individual events, e.g., audit events, system
calls, commands, error messages, IP source address, and
so on;

2) frequency of individual events, e.g., number of consecu-
tive password failures;

3) duration of individual events, e.g., CPU time of a com-
mand, and duration of a connection;

4) occurrence of multiple events combined through logical
operators such as AND, OR, and NOT;

5) frequency histogram (distribution) of multiple events, and
sequence or transition of events;

6) sequence or transition of events.
Attributes 1, 2, 4, and 6 often appear in intrusion signatures

that are represented in manually coded rules [16]–[18] or au-
tomatically learned rules [19]–[22] in some pattern recognition
techniques. Attribute 6 appears in state transition diagrams [23],
[24] and colored Petri nets [25] that are used in some pattern
recognition techniques to represent intrusion signatures.

Several anomaly detection techniques exist and differ in the
representation of a norm profile and the inference of a deviation
from the norm profile. Specification-based anomaly detection
techniques describe security policies and authorized activities of
a well-defined subject (e.g., a privileged program or a network
server) in terms of formal logic and activity graph [26]–[28].
Statistical-based anomaly detection techniques build a statis-
tical profile (e.g., statistical distribution) of a subject’s normal
activities from historic data [29]–[33]. Anomaly detection tech-
niques based on regression [34] or artificial neural networks
[35], [36] learn from historic data to predict the next event from
a series of the past events. Anomaly detection techniques based
on immunology capture a large set of event sequences as the
norm profile from historic data of a subject’s normal activities,
and use either negative selection or positive selection algorithms
to detect the difference of incoming event sequences from event
sequences in the norm profile [36]–[39]. There are also anomaly
detection techniques that use a first-order or high-order Markov
model of event transitions to represent a norm profile [39]–[43].
A first-order model of event transitions assumes that the next
event depends on only the last event in the past. A higher order
Markov model of event transitions assumes that the next event
depends on multiple events in the past.

Specification-based anomaly detection techniques can
readily incorporate attributes 1, 2, 4, and 6. Statistical-based
anomaly detection techniques can build a statistical norm pro-
file based on attributes 2, 3, and 5. Attribute 6 is incorporated
in anomaly detection techniques based on regression, artificial
neural networks, immunology, and Markov models.

Although attributes 1–6 appear in existing work on intrusion
detection, it is not clear which properties are critical to perfor-
mance of intrusion detection for several reasons. First, existing
studies investigating different attributes often use different data
sets, making the comparison of activity data attributes difficult.
Second, existing comparative studies using the same data set
focus mainly on differences among various intrusion detection
algorithms dealing with the same attribute of activity data [39].

The following sections present generalized probabilistic
properties of activity data and our comparative studies on
these probabilistic properties concerning their importance to
intrusion detection.

III. PROBABILISTIC PROPERTIES OFACTIVITY DATA

Attributes 1–6 can be categorized into three groups: attributes
1, 2, 4, and 5 concerning the frequency property of events, at-
tribute 3 concerning the duration property of events, and at-
tribute 6 concerning the ordering property of events. There may
be other aspects of activity data that are not represented by these
three properties. This paper focuses on only these three proper-
ties.

For the frequency property of events, we can use a set of
random variables, , to represent the frequency of

different types of events (e.g., commands, system calls or
audit events) for a given sequence of events. If we are inter-
ested in attributes 1 and 2—single or multiple occurrences of
the th event type from a pool of possible event types for a
given sequence of events, we examine the value offrom the
vector of . A denial-of-service attack may mani-
fest through an unusually high frequency of a single event type.
If we are interested in attributes 4 and 5—single or multiple oc-
currences of multiple events in combination, we examine the
multivariate frequency distribution of .

For the duration property of events, we can usesets
to represent the duration values ofdifferent

event types for a given sequence of events, where each set
contains duration values of events of a certain type. Considering
the execution of a program as an event, the duration of this
event is the program execution time. A trojan horse program
may manifest through a change in the program execution time.

For the ordering property of events, gives a
time-series representation of a given event sequence, where
denotes an event occurring at time. To take into account the
ordering of events, complex data models are usually required,
as demonstrated by a number of studies [34]–[43]. These
complex data models demand for computationally intensive
learning and/or inference procedures that are not scalable to
mountains of activity data from an information system. An
information system, even as small as a host machine, usually
produces large amounts of activity data at a high frequency
regardless of whether there are users’ application processes
in the information system. The large computational overhead
associated with the ordering property raises a question. Is the
ordering property of events necessary for intrusion detection?

Note that the vector representation of the frequency prop-
erty can be derived from the set representation of the dura-
tion property and from the times-series representation of the or-
dering property. An intrusion typically consists of a series of
events in an information system. The vector representation of
the frequency property contains the least amount of informa-
tion about the given series of events among the representations
of the three properties. However, the frequency distribution of
multiple event types still provides information about the collec-
tive activity level of these event types. To answer the question
on the order property, we can answer another question. Is the
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frequency property sufficient for intrusion detection? If the fre-
quency property of multiple event types for a given sequence
of events is sufficient to produce good intrusion detection per-
formance, another question follows. Can intrusion detection be
stateless, in other words, is a single event at a given time suffi-
cient to detect intrusions? Section IV presents a series of studies
to answer these questions.

IV. COMPARATIVE STUDIES

Our studies use various probabilistic techniques to detect in-
trusions, including decision tree, Hotelling’s Ttest, chi-square
multivariate test and Markov chain, because different proper-
ties of activity data require different data models. Decision tree
is a data mining technique that we use here as a pattern recog-
nition technique. The other techniques are anomaly detection
techniques. Before we present these studies, we first describe
computer audit data used in these studies.

A. Training and Testing Data

An anomaly detection technique requires data of only normal
activities in an information system to build a norm profile. Data
of both normal activities and intrusive activities in an informa-
tion system are required to learn intrusion signatures for a pat-
tern recognition technique. The testing data should contain data
of both normal activities and intrusive activities to test the per-
formance of intrusion detection.

We use computer audit data from a Sun SPARC workstation
with the Solaris operating system, and focus on intrusions into a
host machine that leave trails in computer audit data. The Solaris
operating system from Sun Microsystems Inc. has a security ex-
tension called the basic security module (BSM). BSM supports
the monitoring of activities on a host machine by recording se-
curity-relevant events. BSM auditable events fall into two cat-
egories: kernel events and user-level events. Kernel events are
generated by system calls to the kernel of the Solaris operation
system. User-level events are generated by application software.

There are more than 250 different types of BSM auditable
events, depending on the version of the Solaris operating
system. Since there are about 284 different types of BSM audit
events on our host machine, we consider 284 event types in
our studies. An BSM audit record for each event contains a
variety of information, including the event type, user ID, group
ID, process ID, session ID, the system object accessed, etc. In
our studies, we extract and use only the event type, because
many existing studies [26]–[43] use only the type of events
and produce good intrusion detection performance. Hence,
activities on a host machine are captured through a stream of
audit events, each of which is characterized by the event type.

A sample of computer audit data of normal activities is down-
loaded from the Massachusetts Institute of Technology (MIT)
Lincoln Lab at http://ideval.ll.mit.edu/1998/1998_index.html.
At this web site, four sets of data are provided:

1) sample data;
2) four hour subset of training data;
3) seven weeks of training data;
4) two weeks of testing data.

We download the sample data which contain audit data of both
normal and intrusive activities. These audit data of normal ac-
tivities are generated by the MIT Lincoln Lab through simu-
lating activities in a real information system used by the U.S.
Air Force. Intrusions are simulated on the background of normal
activities. Because intrusive activities in this small sample data
are very limited, we use audit data of normal activities only from
this sample data.

According to the provided description of the starting and
ending times of attack activities, we obtain a block of audit data
for the period when no attack activities occur. This block of
audit data containing a stream of 3019 audit events [12]. These
audit data of normal activities is divided into two different
parts: the first 1613 audit events and the remaining 1406
audit events. The first part, consisting of 1613 audit events, is
included in the training data set as the computer audit data of
normal activities. The second part, consisting of 1406 audit
events, is included in the testing data set as the computer audit
data for normal activities.

Computer audit data of intrusive activities are generated in
our laboratory by simulating 15 intrusion scenarios that we have
collected over years from various information sources. Table I
gives the description of these intrusion scenarios. These intru-
sion scenarios are simulated in a random order. A student manu-
ally runs these intrusion scenarios on a Sun SPARC workstation
with the same version of the Solaris operating system as the So-
laris operating system that is used to generate audit data at the
MIT Lincoln Laboratory, while the auditing facility is turned
on. These intrusion scenarios generate a stream of 1751 audit
events. The first 526 audit events produced from the first eight
intrusion scenarios are included in the training data set as the
computer audit data of intrusive activities. The remaining 1225
audit events from the remaining seven intrusion scenarios are
included in the testing data set as the computer audit data of in-
trusive activities.

Hence, the training data set contains 1613 audit events of
normal activities and 526 audit events of intrusive activities. The
testing data contains 1406 audit events of normal activities and
1225 audit events of intrusive activities. Although audit data of
normal activities and audit data of intrusive activities come from
different host machines, the same Solaris operating system on
these host machines produces the consistent information about
event types. Since only the event type is extracted from each
audit record, putting together audit data from different host ma-
chines in the training data set and the testing set does not become
a concern in this study.

The same set of training data and the same set of testing data
are used by each intrusion detection technique in our studies. Al-
though the training data set contains computer audit data of both
normal activities and intrusive activities, an anomaly detection
technique uses only computer audit data of normal activities to
build a norm profile. A pattern recognition technique uses com-
puter audit data of both normal activities and intrusive activities
in the training data set to learn intrusion signatures. Each in-
trusion detection technique is tested using the entire set of the
testing data, containing computer audit data of both normal ac-
tivities and intrusive activities. The training and the testing of
each intrusion detection technique are performed off-line using
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TABLE I
DESCRIPTION OFINTRUSION SCENARIOSUSED IN THE STUDY

one file of the training data set and another file of the testing
data set respectively.

B. Decision Tree and Results

There are two kinds of variables in a decision tree. One is
target variable or class, and the other is predictor variable. A
data point in the training data set contains the values of both
predictor variables and a target variable. That is, the training
data are labeled by the target values. A data point in the testing
data set contains the values of only predictor variables. After
testing, each data point in the testing data is assigned a target
value and classified by the target value.

During training, a decision tree is constructed by recursively
partitioning data points in the training data set into branches
according to values of predictor variables until a stopping cri-
terion is met [44]–[47]. Each branch contains a subset of data
points with less inconsistency with respect to their target values.
A common stopping criterion for a branch is that all data points
in the branch have the same target value, which then produces
a leaf in the decision tree. During testing, a data point is passed
through the decision tree to reach a leaf according to its values
of predictor variables, and is assigned the target value of this
leaf.

Decision tree is used as a pattern recognition technique in our
studies to construct a decision tree from the training data and to
classify the testing data. Each data point in the training data set
is labeled by the value of the target variable to indicate whether
it is normal or intrusive. A normal data point has 0 as the target
value. An intrusive data point has 1 as the target value. After
training, each path from the root to a leaf of the decision tree
represents a pattern of activities. We assign an indications and
warning (IW) value to each leaf in the decision tree to indicate
the likelihood of intrusion. The IW value for a leaf is computed

by averaging the target values of the training examples in that
leaf. The higher the IW value, the more likely the leaf represents
intrusive activities. During testing, a data point is classified into
a leaf according to the values of its predictor variables, and takes
the IW value of the leaf.

We use the chi-squared automatic interaction detector
(CHAID) decision tree algorithm in the AnswerTree 2.0
software from SPSS [48] for learning a decision tree from our
training data. The CHAID algorithm uses chi-square statistics
to identify optimal partitions. Details of our implementation
can be found in [49].

To answer the question on whether a single event is sufficient
to detect intrusions, we develop two different representations
of predictor variables: a single-event representation and a fre-
quency distribution representation. The single-event representa-
tion considers only a single event at a given time. The frequency
distribution representation considers the frequencies of multiple
event types within a given sequence of events.

In the single-event representation, there is only one predictor
variable, , with a value corresponding to the event type at a
given time. Since there are 284 possible event types, the pre-
dictor variable can take one of 284 possible values.

In the frequency distribution representation, there are 284
predictor variables, , for 284 event types
respectively. The value for each of 284 predictor variables rep-
resents the frequency of an event type within a given sequence
of audit events. We use the exponentially weighted moving av-
erage method [50] to compute the value of, that is, the fre-
quency of theth event type in a sequence of audit events in the
recent past.

if the current event—event—belongs

to the th event type

if the current event—event—is

different from the th event type

where
observed value of theth variable in the vector of
an observation for the current
event—event ;
smoothing constant that determines the decay rate;

.
By using the exponentially weighted moving average

method, more recent observations receive larger weights in the
frequency computation. For example, the observation at the
current event—event—receives a weight of , the th
observation receives a weightof , and the th
observation receives a weight of . An observation is
made at each event.

In our studies, we let be 0.3—a commonly used value
for the smoothing constant [48]. Fig. 1 shows the decay effect
of the smoothing constant 0.3. We can see from Fig. 1 that
after the th observation the weight drops
close to zero. That is, the frequency value of at the
current event—event—takes into account about the past 15
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Fig. 1. Decay effect of the smoothing constant 0.3.

audit events ( ). We initialize to 0 for
.

If we take a real-time unit (e.g., second) forin , the
frequency distribution representation can convey not only the
relative frequency distribution of 284 audit events in a stream of
audit events for a given timeframe, but also the intensity of in-
dividual events for that timeframe. However, the intensity of ac-
tivities in an information system has large variations over time,
e.g., from day to night. At night, there may be little activities in
the information system. Inactive periods do not give us accurate
estimates of the relative frequency distribution of audit events.
Hence, we have separate studies on the intensity of individual
events and the relative frequency distribution of multiple events.
Another paper reports our intrusion detection work that exam-
ines the intensity of individual events for a given timeframe [51].
This paper focuses on the relative frequency distribution of 284
audit events within a given sequence of events by making an ob-
servation at every event rather than every time unit.

To accurately capture the relative frequency distribution of
284 audit events, we number only time points when audit events
are observed in the frequency distribution representation. For
example, given the following stream of audit events, we number
them 1, 2, 3, for time :

For each audit event in the training data and the testing data, we
obtain an observation vector of . For the above
example, at , all variables in the vector of
have a value of 0. At time has a value of 0.3

, and all other variables have a value of 0. At time
, has a value of 0.21 , has a value

of 0.3 , and all other variables have a value
of 0. At , has a value of 0.147 ,

has a value of 0.21 , has a value
of 0.3 , and all other variables have a value
of 0.

Using the single-event representation, we obtain 1613 data
points for normal audit events and 526 data points for intrusive
audit events in the training data set. Each data point contains the
value of a predictor variable and a target value. Using such
training data, the CHAID algorithm produces a decision tree,
called the single-event decision tree (SEDT). SEDT is then used

Fig. 2. ROC curves of decision trees.

to obtain an IW value for each of 1406 data points for normal
audit events and 1225 data points for intrusive data events in the
testing data set. Fig. 2 shows the receiver operator characteristic
(ROC) curve of the SEDT testing results.

Each point in an ROC curve indicates a pair of the hit rate
and the false alarm rate for a signal threshold. For example, if
the signal threshold for the IW values of the testing data is set
to 0.5, we signal a testing data point whose IW value is greater
than or equal to 0.5 as intrusive. There are no signals on testing
data points whose IW values are less than 0.5. If there is a signal
on a data point for an intrusive event in the testing data, this is a
hit. If there is a signal on a data point for a normal event in the
testing data, this is a false alarm. The hit rate is computed from
dividing the total number of hits by the total number of intrusive
events in the testing data. The false alarm rate is computed from
dividing the total number of false alarms by the total number
of normal events in the testing data. By varying the value of the
signal threshold, we obtain an ROC curve. The closer the ROC is
to the top-left corner (representing 100% hit rate and 0% false
alarm rate) of the chart, the better detection performance the
intrusion detection technique yields.

Using the frequency distribution representation, we also ob-
tain 1613 data points for normal audit events and 526 data points
for intrusive audit events in the training data set. Each data point
contains an observation vector and a target
value. Using such training data, the CHAID algorithm produces
a decision tree, called the frequency-distribution decision tree
(FDDT). FDDT is then used to obtain an IW value for each of
1406 data points for normal audit events and 1225 data points
for intrusive data events in the testing data set. The ROC curve
of the FDDT testing results is shown in Fig. 2.

The ROC curves from the SEDT testing results and the
FDDT testing results reveal much better intrusion detection
performance of FDDT than that of SEDT. In fact, the intrusion
detection performance of SEDT is poor. For SEDT a hit rate
of 81.5% brings up the false alarm rate to 60.9%, whereas for
FDDT a hit rate of 88.1% brings up the false alarm rate to only
4.6%. Hence, the relative frequency of multiple event types
within a given sequence of events gives a great advantage to
intrusion detection. In other words, the frequency property of
activity data is necessary for intrusion detection. Since a single
event is not sufficient to produce good intrusion detection
performance, stateless intrusion detection is not recommended.

Decision tree is a pattern recognition technique in which the
learning of intrusion signatures requires both normal audit data
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and intrusive audit data. The importance of the frequency prop-
erty of activity data to intrusion detection is further verified
below through two anomaly detection techniques (Hotelling’s
T test and chi-square multivariate test) that use only normal
audit data for training.

C. Hotelling’s T Test, Chi-Square Multivariate Test and
Results

Hotelling’s T test is a multivariate statistical process con-
trol technique that detects anomalies in a process of a system.
Let denote an observation of vari-
ables from a process at time. Using a data sample of size,
the sample mean vector and the sample variance–covariance
matrix of variables are determined as follows [52]:

(1)

(2)

Hotelling’s T statistic for an observation, , is determined as
follows [52]:

(3)

A large computed value of Tindicates a large deviation of
the observation from the in-control population. Details of
Hotelling’s T test and its application to intrusion detection can
be found in [53].

When we apply Hotelling’s T test to intrusion detection,
we use the same training data and the same testing data as
those in decision tree studies, except that only audit events
of normal activities are used for training a norm profile for
Hotelling’s T test. Since only 11 event types actually appear
in the training data set of 1613 audit events, the vectorof

is reduced into a vector with only 11
variables for the eleven event types, respectively. We perform
the training and the testing for Hotelling’s Ttest using the
vector with only 11 variables. That is, using 1613 data points
of with 11 variables for normal audit events in the training
date set, we compute and in formulas (1) and (2) which
fully describe the norm profile.

Using and , the T value in (3) is then computed for
each data point in the testing data set. The computed Tvalue is
small if the data point conforms to the norm profile. The ROC
curve for the testing results of Hotelling’s Ttest is plotted using
various signal thresholds on the values of the computed Tvalue
for the testing data points, as shown in Fig. 3.

With both the mean vector and the variance–covariance
matrix , Hotelling’s T test provides a complete data model of
multivariate data in the frequency-distribution representation
of the frequency property. Hotelling’s Ttest detects both mean
shifts and counter-relationships in a multivariate manner. How-
ever, Hotelling’s T test is computationally intensive, requiring
large memory to store the variance–covariance matrix and much
computation time to compute the matrix and its inverse. It is not
scalable to large amounts of computer audit data produced by
an information system in real time.

Fig. 3. ROC curves of anomaly detection techniques.

Hence, we develop the chi-square multivariate test with less
computational overhead. The test statistic for the chi-square
multivariate test is

(4)

In contrast to the Ttest statistic, the test statistic does not
account for the correlated structure of thevariables. With only
the mean vector in (4), the chi-square multivariate test detects
only the mean shift on one or more of thevariables. Details of
the chi-square multivariate test and its application to intrusion
detection can be found in [54].

When we apply the chi-square multivariate test to intrusion
detection, we use the same training data and the same testing
data as those for Hotelling’s Ttest. Using 1613 data points
of for normal audit events in the training
date set, we compute which characterizes the norm profile.
For each of those event types that do not appear in the training
data set, we let the average of the variable for that event type
take a very small value, 10 in this study, at the end of
training such that the denominators in (4) are not zero. Using

, the value in (4) is then computed for each data point of
in the testing data set. The computed

value is small if the data point conforms to the norm profile. The
ROC curve for the testing results of the chi-square multivariate
test is plotted using various signal thresholds on the computed

values for the testing data points, as shown in Fig. 3.
The comparison of the ROC curves for Hotelling’s Ttest and

the chi-square multivariate test reveals better intrusion detec-
tion performance of the chi-squared multivariate test than that
of Hotelling’s T test. While the chi-square multivariate test de-
tects mainly mean shifts, Hotelling’s Ttest detects both mean
shifts and counter-relationships. In fact, Hotelling’s Ttest is
more sensitive to counter-relationships than mean shifts because
the T test statistic is determined largely by the correlated struc-
ture of variables (variance–covariance matrix) [53]. Hence, the
better intrusion detection performance of the chi-square multi-
variate test than Hotelling’s Ttest indicates that mean shifts
may be more important to intrusion detection than counter-re-
lationships.

The ROC curves for Hotelling’s Ttest and the chi-square
multivariate test show better intrusion detection performance of
these two anomaly detection techniques than performance of
the decision tree based on the single-event representation, even
though these two anomaly detection techniques use less data
(only normal audit events) during training. This confirms the
importance of the frequency property of activity data.
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D. Markov Chain and Results

We apply a Markov model that takes into account the or-
dering property of multiple events for intrusion detection. The
application of a Markov model helps answer the question about
whether the ordering property of activity data provides addi-
tional advantage to intrusion detection, or whether we can de-
tect intrusions from only the frequency property of activity data
without the ordering property. Since first-order and high-order
Markov models produce comparable intrusion detection perfor-
mance [40]–[43], we apply Markov chain—a first-order Markov
model that considers only one-step event transitions.

Let be the value of a random variable or the state of a
system at time. A Markov chain is a stochastic process with
the following assumptions [55], [56]:

and (5)

(6)

for all and all states, where is the probability that the system
is in a state at time given the system is in stateat time .
Equation (5) states that the probability distribution of the state
at time depends on the state at time, and does not depend
on the previous states leading to the state at time. Equation
(6) specifies that a state transition from timeto time is
independent of time.

If the system has a finite number of states, 1, 2, …,, the
Markov chain model can be defined by a transition probability
matrix [55], [56]

...
...

...
...

(7)

and an initial probability distribution

(8)

where is the probability that the system is in stateat time 0,
and

(9)

The probability that a sequence of states at time
occurs in the context of the Markov chain model

is computed as follows [55], [56]:

(10)

In this study, the transition probability matrix and the initial
probability distribution of a Markov chain model are learned
from the training data that provide observations of the system
state at time . The

transition probability matrix and the initial probability distribu-
tion are computed from the training data as follows [47]:

(11)

(12)

where
number of observation pairs and with in
state and in state ;
number of observation pairs and with in
state and in any one of the states ;
number of ’s in state ;
total number of observations.

When we apply the Markov chain to intrusion detection, we
use the same training data and the same testing data as those
for Hotelling’s T test and the chi-square multivariate test. We
numbers only time points when audit events occur for time.

has 284 possible states representing 284 possible events at
time .

Using the stream of 1613 audit events for normal audit events
in the training date set, we compute the transition probability
matrix and the initial probability distribution according to
(7) and (8) which characterize the norm profile. Usingand ,
we compute the probability that a sequence of the past 15 audit
events at time in the testing data, , occurs in the
context of the Markov chain model as follows:

(13)

Recall that Hotelling’s T test and the chi-square multivariate
test compute the test statistic based on the past 15 audit events
when the smoothing factor is set to 0.3.

The higher probability we obtain from (13) for an event se-
quence, the more likely the event sequence is normal. An intru-
sive event sequence is expected to receive a low probability of
support from the Markov chain model of the norm profile.

We assign a small probability of 10 to initial states and
state transitions in the testing data if they have a zero proba-
bility value in the transition probability matrix and the initial
probability distribution , so that the final result from (13) is
not zero. Details of the implementation can be found in [55].

The ROC curve for the testing results of the Markov chain is
plotted using various signal thresholds on the computed proba-
bility values for event sequences in the testing data, as shown in
Fig. 3.

We compare the ROC curve for the Markov chain based on
the ordering property of activity data with the ROC curves for
Hotelling’s T test and the chi-square multivariate test based on
the frequency property of activity data. The comparison reveals
slightly better performance of the Markov chain. This indicates
that the ordering property of activity data provides some addi-
tional advantage than the frequency property to intrusion detec-
tion, even using a simple first-order Markov model that con-
siders only one-step event transitions.
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V. CONCLUSION

From existing work on intrusion detection, we generalize
three properties of activity data in an information system: the
frequency property, the duration property, and the ordering
property. Through a series of studies using the same training
data and the same testing data, we provide answers to several
questions concerning which properties are necessary to intru-
sion detection. Our studies show that the frequency property of
multiple event types for a given sequence of events is necessary
for intrusion detection. A single event at a given time is not
sufficient for intrusion detection. Second, the ordering property
provides additional advantage than the frequency property to
intrusion detection.

Note that intrusive audit data in our studies are “pure” data
without white noises from normal activities. Intrusions usually
occur in an information system while normal activities are
also occurring in the information system. Hence, in real time
intrusive audit data are mixed with white noises of normal
audit data. For such noisy data, the first-order Markov model
of one-step event transitions may not produce good intrusion
detection performance. For noisy data, high-order Markov
model or event more complex data models may be warranted,
which challenges us with the scalability problem of these
complex data models. Since the two anomaly detection tech-
niques (Hotelling’s T test and the chi-square multivariate test)
based on the frequency property provide rather good intrusion
detection performance, the frequency property provides a vi-
able tradeoff between computational complexity and intrusion
detection performance. When using the frequency property for
intrusion detection, a complete data model as in Hotelling’s T
test detecting both mean shifts and counter-relationships may
not be necessary. A simplified data model as in the chi-square
multivariate test detecting only multivariate mean shifts may
be sufficient. Further studies of these properties of activity data
using large amounts of noisy computer audit data are currently
ongoing in our laboratory, and will be presented in future
reports.
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