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Probabilistic Techniques for Intrusion Detection
Based on Computer Audit Data

Nong Ye Member, IEEEXiangyang Li, Qiang Chen, Syed Masum Emran, and Mingming Xu

Abstract—This paper presents a series of studies on probabilistic traveling over communication links between host machines, and
properties of activity data in an information system for detecting  thus capture activities over communication networks. Audit trail
intrusions into the information system. Various probabilistic tech- data capture activities occurring on individual host machines

niques of intrusion detection, including decision tree, Hotelling’s .. . . .
T2 test, chi-square multivariate test, and Markov chain are ap- Activity data of an information system contain not only useful

plied to the same training set and the same testing set of computer information to uncover intrusive activities but also much irrele-
audit data for investigating the frequency property and the or- vant information.
dering property of computer auditdata. The results of these studies  Thig paper presents a series of studies performed at the In-

provide answers to several questions concerning which properties - .
are critical to intrusion detection. First, our studies show that the formation and Systems Assurance Laboratory of Arizona State

frequency property of multiple audit event types in a sequence of University to reveal a few probabilistic properties of computer
events is necessary for intrusion detection. A single audit event at audit data that are important to intrusion detection. Intrusion de-
a given time is not sufficient for intrusion detection. Second, the tgction techniques, including decision tree, Hotelling?stdst,

ordering property of multiple audit events provides additional ad- . S . .
vantage to the frequency property for intrusion detection. How- chi sfquare myltlvarlatg test ar,]d Markov Cha,m’ are used |r.1 these
ever, unless the scalability problem of complex data models taking Studies. Section Il review attributes of activity data used in ex-

into account the ordering property of activity data is solved, in- isting work on intrusion detection. Section Ill generalizes prob-
trusion detection techniques based on the frequency property pro- gbilistic properties from attributes of activity data. Sections IV
vide a viable solution that produces good intrusion detection per- yoqcrihes computer audit data used in our studies, and presents
formance with low computational overhead. . . . o

these studies and their results concerning probabilistic proper-

Index Terms—Anomaly detection, computer audit data, intru- .. . . . .
sion detection, pattern recognition. ties of activity data. Section V gives a conclusion.

[I. ATTRIBUTES OFACTIVITY DATA IN EXISTING WORK

. INTRODUCTION ] ) )
There are two general approaches to detecting intrusions

V ULNERABILITIES and bugs of information systems arg1}-[43]: anomaly detection (named behavior-based approach
often exploited by malicious users to intrude into inforyy some literature [11]) and pattern recognition (named knowl-
mation systems and compromise security (e.g., availability, i@dge-based approach [11] or misuse detection [29] in some
tegrity and confidentiality) of information systems [1]-[10]. ASjterature). Pattern recognition techniques [11], [16]—[25]
information systems become increasingly complex, vulnerabilitentify and store signature patterns of known intrusions, match
ties and bugs of information systems are inevitable for techniggjvities in an information system with known patterns of in-
and economic reasons. Hence, the possibility of intrusions infgsion signatures, and signal intrusions when there is a match.
information systems always exists. In order to protect informgxyttern recognition techniques are efficient and accurate in
tion systems, it is highly desirable to detect intrusive activitie&tecting known intrusions, but cannot detect novel intrusions
while they are occurring in information systems. whose signature patterns are unknown.

An information system consists of host machines and COM-Anomaly detection techniques establish a profile of a sub-
munication links between host machines. Existing intrusion df%‘ct’s normal activities (a norm profile), compare observed
tection efforts [11]-[43] focus mainly on two sources of acactivities of the subject with its norm profile, and signal
tivity data in an information system: network traffic data an¢htrysions when the subject’s observed activities differ largely
computer audit data. Network traffic data contain data packetsm its norm profile [26]—[43]. The subject may be a user,

file, privileged program, host machine, or network. Denning
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Existing efforts on intrusion detection have considered The following sections present generalized probabilistic
mainly the following attributes of activities in informationproperties of activity data and our comparative studies on
systems: these probabilistic properties concerning their importance to

1) occurrence of individual events, e.g., audit events, systéfirusion detection.

calls, commands, error messages, IP source address, and

S0 on, o IIl. PROBABILISTIC PROPERTIES OFACTIVITY DATA
2) frequency of individual events, e.g., number of consecu-
tive password failures; Attributes 1-6 can be categorized into three groups: attributes
3) duration of individual events, e.g., CPU time of a comt, 2, 4, and 5 concerning the frequency property of events, at-
mand, and duration of a connection; tribute 3 concerning the duration property of events, and at-
4) occurrence of multiple events combined through logic#ibute 6 concerning the ordering property of events. There may
operators such as AND, OR, and NOT; be other aspects of activity data that are not represented by these
5) frequency histogram (distribution) of multiple events, anthree properties. This paper focuses on only these three proper-
sequence or transition of events; ties.
6) sequence or transition of events. For the frequency property of events, we can use a set of
Attributes 1, 2, 4, and 6 often appear in intrusion signatureandom variableg Xy, ..., X,,), to represent the frequency of

that are represented in manually coded rules [16]-[18] or aw-different types of events (e.g., commands, system calls or
tomatically learned rules [19]-[22] in some pattern recognitioaudit events) for a given sequence of events. If we are inter-
techniques. Attribute 6 appears in state transition diagrams [28}ted in attributes 1 and 2—single or multiple occurrences of
[24] and colored Petri nets [25] that are used in some pattehe ith event type from a pool af possible event types for a
recognition techniques to represent intrusion signatures.  given sequence of events, we examine the valug; dfom the
Several anomaly detection techniques exist and differ in thector of (X, ..., X,). A denial-of-service attack may mani-
representation of a norm profile and the inference of a deviatitest through an unusually high frequency of a single event type.
from the norm profile. Specification-based anomaly detectidhwe are interested in attributes 4 and 5—single or multiple oc-
technigues describe security policies and authorized activitiesoofirences of multiple events in combination, we examine the
a well-defined subject (e.g., a privileged program or a networkultivariate frequency distribution ¢, ..., X,).
server) in terms of formal logic and activity graph [26]-[28]. For the duration property of events, we can usesets
Statistical-based anomaly detection techniques build a stafisc: }, ..., {X,} to represent the duration valuesodifferent
tical profile (e.g., statistical distribution) of a subject’'s normatvent types for a given sequence of events, where each set
activities from historic data [29]-[33]. Anomaly detection techeontains duration values of events of a certain type. Considering
nigues based on regression [34] or artificial neural networkise execution of a program as an event, the duration of this
[35], [36] learn from historic data to predict the next event fromevent is the program execution time. A trojan horse program
a series of the past events. Anomaly detection techniques basey manifest through a change in the program execution time.
on immunology capture a large set of event sequences as thEor the ordering property of event€X,, ..., X;) gives a
norm profile from historic data of a subject’s normal activitiegime-series representation of a given event sequence, where
and use either negative selection or positive selection algorithdenotes an event occurring at timeTo take into account the
to detect the difference of incoming event sequences from evendlering of events, complex data models are usually required,
sequences in the norm profile [36]—[39]. There are also anomay demonstrated by a number of studies [34]-[43]. These
detection techniques that use a first-order or high-order Markoemplex data models demand for computationally intensive
model of event transitions to represent a norm profile [39]-[43karning and/or inference procedures that are not scalable to
A first-order model of event transitions assumes that the nerbuntains of activity data from an information system. An
event depends on only the last event in the past. A higher ordl#iormation system, even as small as a host machine, usually
Markov model of event transitions assumes that the next evenbduces large amounts of activity data at a high frequency
depends on multiple events in the past. regardless of whether there are users’ application processes
Specification-based anomaly detection techniques cinthe information system. The large computational overhead
readily incorporate attributes 1, 2, 4, and 6. Statistical-basagsociated with the ordering property raises a question. Is the
anomaly detection techniques can build a statistical norm prardering property of events necessary for intrusion detection?
file based on attributes 2, 3, and 5. Attribute 6 is incorporated Note that the vector representation of the frequency prop-
in anomaly detection techniques based on regression, artifi@aly can be derived from the set representation of the dura-
neural networks, immunology, and Markov models. tion property and from the times-series representation of the or-
Although attributes 1-6 appear in existing work on intrusiodering property. An intrusion typically consists of a series of
detection, it is not clear which properties are critical to perfoevents in an information system. The vector representation of
mance of intrusion detection for several reasons. First, existitigg frequency property contains the least amount of informa-
studies investigating different attributes often use different datan about the given series of events among the representations
sets, making the comparison of activity data attributes difficulbf the three properties. However, the frequency distribution of
Second, existing comparative studies using the same datarsettiple event types still provides information about the collec-
focus mainly on differences among various intrusion detectitiwe activity level of these event types. To answer the question
algorithms dealing with the same attribute of activity data [39%n the order property, we can answer another question. Is the
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frequency property sufficient for intrusion detection? If the frewe download the sample data which contain audit data of both
guency property of multiple event types for a given sequenoermal and intrusive activities. These audit data of normal ac-
of events is sufficient to produce good intrusion detection pdivities are generated by the MIT Lincoln Lab through simu-
formance, another question follows. Can intrusion detection laing activities in a real information system used by the U.S.
stateless, in other words, is a single event at a given time suffir Force. Intrusions are simulated on the background of normal
cient to detect intrusions? Section IV presents a series of studiesivities. Because intrusive activities in this small sample data
to answer these questions. are very limited, we use audit data of normal activities only from
this sample data.

According to the provided description of the starting and
ending times of attack activities, we obtain a block of audit data

Our studies use various probabilistic techniques to detect far the period when no attack activities occur. This block of
trusions, including decision tree, Hotelling’s Test, chi-square audit data containing a stream of 3019 audit events [12]. These
multivariate test and Markov chain, because different propeégudit data of normal activities is divided into two different
ties of activity data require different data models. Decision tré@rts: the first 1613 audit events and the remaining 1406
is a data mining technique that we use here as a pattern rec@gjit events. The first part, consisting of 1613 audit events, is
nition technique. The other techniques are anomaly detectitgluded in the training data set as the computer audit data of
techniques. Before we present these studies, we first desciiggmal activities. The second part, consisting of 1406 audit

IV. COMPARATIVE STUDIES

computer audit data used in these studies. events, is included in the testing data set as the computer audit
data for normal activities.
A. Training and Testing Data Computer audit data of intrusive activities are generated in

) _ _ our laboratory by simulating 15 intrusion scenarios that we have
An anomaly detection technique requires data of only norm@jlected over years from various information sources. Table |

activities in an information system to build a norm profile. Datgjyes the description of these intrusion scenarios. These intru-
of both normal activities and intrusive activities in an informasjon, scenarios are simulated in a random order. A student manu-
tion system are required to learn intrusion signatures for a pafty runs these intrusion scenarios on a Sun SPARC workstation
tern recognition technique. The testing data should contain dgfgh the same version of the Solaris operating system as the So-
of both norm_al activities and_intrusive activities to test the pefyyis operating system that is used to generate audit data at the
formance of intrusion detection. MIT Lincoln Laboratory, while the auditing facility is turned
We use computer audit data from a Sun SPARC workstatigl  These intrusion scenarios generate a stream of 1751 audit
with the Solaris operating system, and focus on intrusions inte@ents. The first 526 audit events produced from the first eight
host machine that leave trails in computer audit data. The Solgfgysjon scenarios are included in the training data set as the
operating system from Sun Microsystems Inc. has a security @smputer audit data of intrusive activities. The remaining 1225
tension called the basic security module (BSM). BSM suppotgdit events from the remaining seven intrusion scenarios are

the monitoring of activities on a host machine by recording Sgcluded in the testing data set as the computer audit data of in-
curity-relevant events. BSM auditable events fall into two cafrsive activities.

egories: kernel events and user-level events. Kernel events arfience, the training data set contains 1613 audit events of
generated by system calls to the kernel of the Solaris operatigsymal activities and 526 audit events of intrusive activities. The
system. User-level events are generated by application softwaggting data contains 1406 audit events of normal activities and
There are more than 250 different types of BSM auditablgy25 audit events of intrusive activities. Although audit data of
events, depending on the version of the Solaris operatiRgrmal activities and audit data of intrusive activities come from
system. Since there are about 284 different types of BSM augifferent host machines, the same Solaris operating system on
events on our host machine, we consider 284 event typesiiase host machines produces the consistent information about
our studies. An BSM audit record for each event containsegent types. Since only the event type is extracted from each
variety of information, including the event type, user ID, grougydit record, putting together audit data from different host ma-
ID, process ID, session ID, the system object accessed, etCelfihes in the training data set and the testing set does not become
our studies, we extract and use only the event type, becayS€ncern in this study.
many existing studies [26]-{43] use only the type of events The same set of training data and the same set of testing data
and produce good intrusion detection performance. Hengge used by each intrusion detection technique in our studies. Al-
activities on a host machine are captured through a streamy@jugh the training data set contains computer audit data of both
audit events, each of which is characterized by the event typ@ormal activities and intrusive activities, an anomaly detection
A sample of computer audit data of normal activities is dowRgechnique uses only computer audit data of normal activities to
loaded from the Massachusetts Institute of Technology (MIByild a norm profile. A pattern recognition technique uses com-
Lincoln Lab at http://ideval.ll. nit.edu/1998/1998_index.htmlpyter audit data of both normal activities and intrusive activities

At this web site, four sets of data are provided: in the training data set to learn intrusion signatures. Each in-
1) sample data; trusion detection technique is tested using the entire set of the
2) four hour subset of training data; testing data, containing computer audit data of both normal ac-
3) seven weeks of training data; tivities and intrusive activities. The training and the testing of

4) two weeks of testing data. each intrusion detection technique are performed off-line using
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TABLE |

DESCRIPTION OFINTRUSION SCENARIOSUSED IN THE STUDY
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by averaging the target values of the training examples in that
leaf. The higher the IW value, the more likely the leaf represents
intrusive activities. During testing, a data point is classified into

Scenario | Description of intrusive activities
Numb . . . — a leaf according to the values of its predictor variables, and takes
1 Link the printer driver to a user program, and then execute the printing
program. Before the printing program completes the job, replace the link the IW value of the leaf.
1With reference to the user program, in qrdjcr to bypassAthle security check and We use the Chi-Squared automatic interaction detector
et the user program obtain the same priority of the printing program. e : i
2 Use the command of rcp to copy the password file from a remote host (CHAID) decision tree algorithm in the AnswerTree 2.0
3 Link the password file with the dead.letter. The dead letter is created by the : [
system when there are dead (return) mails. The system has the “write” right Software from SPSS [48] for lea_'rnlng a deCISllon tree from O_ur
on the password file, which makes it possible for the user to change the training data. The CHAID a|gor|thm uses Ch|-square statistics
password file through the dead mails. id . . | . D il f . | .
4 Edit the .rhost file in order to remotely access the host later. to | entlfy Optlma partltlons' etails of our Imp ementation
5 Attempt to edit and view the password file, can be found in [49]
6 Execute a binary executable code that needs /dev/ttyb as an argument. . . . ..
7 | Attempt to login, but fail three times To answer the question on whether a single event is sufficient
8 Link the passwon? file with a tempgra.l log file that system could generate, to detect intrUSionS, we deve|0p two different representations
in order to overwrite the password file later. . . . .
9 Use the command of Ip to print a linked long file. Before the printing job is of predICtOI’ variables: a Slngle-event representation and a fre-

done, replace the link with reference to the password file, in order to print
the password file.

Use the command of rlogin to login on a remote host without a password,
provided that the account is in the .Jogin file and in the .rhosts file on the
host.

Use the command of finger to get sensitive information from a remote host.

Link a user file to a system-generated file.

Move system files for creating an executable file under the system directory
to make a regular user become the root user.

Use the command of rsh to view and edit the password file in a remote
server.

Link the shadow password file to a temporal log file that system could
generate, in order to overwrite the password file later.

guency distribution representation. The single-event representa-
tion considers only a single event at a given time. The frequency
distribution representation considers the frequencies of multiple
event types within a given sequence of events.

In the single-event representation, there is only one predictor
variable,X, with a value corresponding to the event type at a
given time. Since there are 284 possible event types, the pre-
dictor variable can take one of 284 possible values.

In the frequency distribution representation, there are 284
predictor variables(X;, Xz, ..., Xzs4), for 284 event types

one file of the training data set and another file of the testif§spectively. The value for each of 284 predictor variables rep-
data set respectively.

B. Decision Tree and Results

resents the frequency of an event type within a given sequence
of audit events. We use the exponentially weighted moving av-
erage method [50] to compute the valueXaf that is, the fre-
quency of theth event type in a sequence of audit events in the

There are two kinds of variables in a decision tree. One ligcent past.

target variable or class, and the other is predictor variable. A
data point in the training data set contains the values of both
predictor variables and a target variable. That is, the training
data are labeled by the target values. A data point in the testing
data set contains the values of only predictor variables. After
testing, each data point in the testing data is assigned a target X
value and classified by the target value.

During training, a decision tree is constructed by recursively
partitioning data points in the training data set into branches
according to values of predictor variables until a stopping crivhere
terion is met [44]-[47]. Each branch contains a subset of dataX;(t)
points with less inconsistency with respect to their target values.

A common stopping criterion for a branch is that all data points

in the branch have the same target value, which then produces smoothing constant that determines the decay rate;
a leaf in the decision tree. During testing, a data point is passed =1,...,284.

through the decision tree to reach a leaf according to its valueBy using the exponentially weighted moving average
of predictor variables, and is assigned the target value of thigthod, more recent observations receive larger weights in the
leaf. frequency computation. For example, the observation at the

Decision tree is used as a pattern recognition technique in @urrent event—evert—receives a weight of, the (t — 1)th
studies to construct a decision tree from the training data andofoservation receives a weigbf A(1 — X), and the(t — k)th
classify the testing data. Each data point in the training data sétservation receives a weight 8f1 — \)%. An observation is
is labeled by the value of the target variable to indicate whetheiade at each event.
it is normal or intrusive. A normal data point has 0 as the targetIin our studies, we let\ be 0.3—a commonly used value
value. An intrusive data point has 1 as the target value. Aftlar the smoothing constant [48]. Fig. 1 shows the decay effect
training, each path from the root to a leaf of the decision tred the smoothing constant 0.3. We can see from Fig. 1 that
represents a pattern of activities. We assign an indications after the(t — 14)th observationk = 14) the weight drops
warning (IW) value to each leaf in the decision tree to indicatdose to zero. That is, the frequency value X%f(t) at the
the likelihood of intrusion. The IW value for a leaf is computedurrent event—event—takes into account about the past 15

Xi(t) =21+ (1-N)xXi(t—1)
if the current event—event—belongs
to theith event type

B) =20+ (1-N)*xX;(t-1)
if the current event—event—is
different from theith event type

observed value of thé&h variable in the vector of
an observatiofX;, X, ..., Xqg4) for the current
event—event;
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Fig. 2. ROC curves of decision trees.
Fig. 1. Decay effect of the smoothing constant 0.3.

to obtain an IW value for each of 1406 data points for normal

audit events = 0, ..., 14). We initialize X;(0) to O for audit events and 1225 data points for intrusive data events in the
i=1,...,284. testing data set. Fig. 2 shows the receiver operator characteristic

If we take a real-time unit (e.g., second) fom X;(t), the (ROC) curve of the SEDT testing results.
frequency distribution representation can convey not only theEach point in an ROC curve indicates a pair of the hit rate
relative frequency distribution of 284 audit events in a stream gfd the false alarm rate for a signal threshold. For example, if
audit events for a given timeframe, but also the intensity of ifhe signal threshold for the IW values of the testing data is set
dividual events for that timeframe. However, the intensity of age 0.5, we signal a testing data point whose IW value is greater
tivities in an information system has large variations over timehan or equal to 0.5 as intrusive. There are no signals on testing
e.g., from day to night. At night, there may be little activities ijata points whose IW values are less than 0.5. If there is a signall
the information system. Inactive periods do not give us accurajg a data point for an intrusive event in the testing data, this is a
estimates of the relative frequency distribution of audit eventsit. If there is a signal on a data point for a normal event in the
Hence, we have separate studies on the intensity of individuesting data, this is a false alarm. The hit rate is computed from
events and the relative frequency distribution of multiple evenividing the total number of hits by the total number of intrusive
Another paper reports our intrusion detection work that examvents in the testing data. The false alarm rate is computed from
ines the intensity of individual events for a given timeframe [51Hividing the total number of false alarms by the total number
This paper focuses on the relative frequency distribution of 284 normal events in the testing data. By varying the value of the
audit events within a given sequence of events by making an @ynal threshold, we obtain an ROC curve. The closer the ROC is
servation at every event rather than every time unit. to the top-left corner (representing 100% hit rate and 0% false

To accurately capture the relative frequency distribution efiarm rate) of the chart, the better detection performance the
284 audit events, we number only time points when audit eveisrusion detection technique yields.
are observed in the frequency distribution representation. FolUsing the frequency distribution representation, we also ob-
example, given the following stream of audit events, we numbgjin 1613 data points for normal audit events and 526 data points

them 1, 2, 3,... for time t: for intrusive audit events in the training data set. Each data point
contains an observation vec{of;, Xs, ..., Xz2g4) and atarget
t =0, 1, 2, 3, . value. Using such training data, the CHAID algorithm produces
EventType3, EventType8, BventTypel, ... ... a decision tree, called the frequency-distribution decision tree

(FDDT). FDDT is then used to obtain an IW value for each of
For each audit event in the training data and the testing data, 06 data points for normal audit events and 1225 data points
obtain an observation vector Xy, ..., Xas4). For the above for intrusive data events in the testing data set. The ROC curve
example, at = 0, all variables in the vector @fXy, ..., X2g4) 0f the FDDT testing results is shown in Fig. 2.
have a value of 0. Attime = 1, X3 has a value of 0.8= 0.3 The ROC curves from the SEDT testing results and the
140.7x0), and all other variables have a value of 0. Attitne  FDDT testing results reveal much better intrusion detection
2, X3 has avalue of 0.2(= 0.3+ 0+ 0.7+0.3), Xg has a value performance of FDDT than that of SEDT. In fact, the intrusion
of 0.3(= 0.3+1+0.7+0), and all other variables have a valualetection performance of SEDT is poor. For SEDT a hit rate
of 0. Att = 3, X3 has avalue of 0.14{= 0.3x0+0.7%0.21), of 81.5% brings up the false alarm rate to 60.9%, whereas for
Xg has a value of 0.21= 0.3 % 0+ 0.7 % 0.3), X; has a value FDDT a hit rate of 88.1% brings up the false alarm rate to only
of 0.3(=0.3x1+0.7%0), and all other variables have a valuet.6%. Hence, the relative frequency of multiple event types
of 0. within a given sequence of events gives a great advantage to
Using the single-event representation, we obtain 1613 daté&rusion detection. In other words, the frequency property of
points for normal audit events and 526 data points for intrusieetivity data is necessary for intrusion detection. Since a single
audit events in the training data set. Each data point contains évent is not sufficient to produce good intrusion detection
value of a predictor variablX and a target value. Using suchperformance, stateless intrusion detection is not recommended.
training data, the CHAID algorithm produces a decision tree, Decision tree is a pattern recognition technique in which the
called the single-event decision tree (SEDT). SEDT is then usedrning of intrusion signatures requires both normal audit data
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and intrusive audit data. The importance of the frequency proj ROC Curves of Anomaly Detection Techniques
erty of activity data to intrusion detection is further verified -
below through two anomaly detection techniques (Hotelling’s os -
T2 test and chi-square multivariate test) that use only norm:g °¢

audit data for training. £ 2‘2‘

[}
C. Hotelling’s T Test, Chi-Square Multivariate Test and 0 02 04 06 08 1

Results False Alarm Rate

Hotelling’s T test is a multivariate statistical process conFig. 3. ROC curves of anomaly detection techniques.
trol technique that detects anomalies in a process of a system.
LetX = (Xi, X, ..., X;,) denote an observation of vari- Hence, we develop the chi-square multivariate test with less
ables from a process at timeUsing a data sample of size computational overhead. The test statistic for the chi-square
the sample mean vect® and the sample variance—covariancenultivariate test is
matrix S of p variables are determined as follows [52]:

—e—ROC for Hotelling's T2 test
~&--ROC for chi-square test
—&— ROC for Markov chain

Po(Xi-X)°
o - X2 Z (f) (4)
X =(X1, Xo, ..., Xp) (1) P X;
S — 1 zn: (Xi— X)(Xi - X). ) In contrast to the T test statistic, theX? test _statistic o_Ioes not
n—1 account for the correlated structure of theariables. With only

= the mean vectaX in (4), the chi-square multivariate test detects
Hotelling’s T? statistic for an observatioX, is determined as only the mean shift on one or more of theariables. Details of
follows [52]: the chi-square multivariate test and its application to intrusion
detection can be found in [54].
T = (X -X)S (X -X). (3) When we apply the chi-square multivariate test to intrusion
detection, we use the same training data and the same testing
A large computed value of ZTindicates a large deviation of data as those for Hotelling’s%Ttest. Using 1613 data points
the observatiorX from the in-control population. Details of of (X;, X, ..., Xos4) for normal audit events in the training
Hotelling’s T? test and its application to intrusion detection cadate set, we compuf& which characterizes the norm profile.
be found in [53]. For each of those event types that do not appear in the training
When we apply Hotelling’s T test to intrusion detection, data set, we let the average of the variable for that event type
we use the same training data and the same testing datdakse a very small value, IO in this study, at the end of
those in decision tree studies, except that only audit evemigining such that the denominators in (4) are not zero. Using
of normal activities are used for training a norm profile fokX, theX? value in (4) is then computed for each data point of
Hotelling’s T2 test. Since only 11 event types actually appediX;, Xa, ..., Xass) in the testing data set. The comput&d
in the training data set of 1613 audit events, the ve®oof value is small if the data point conforms to the norm profile. The
(X4, X, ..., Xgg4) Is reduced into a vectdX with only 11 ROC curve for the testing results of the chi-square multivariate
variables for the eleven event types, respectively. We perfotast is plotted using various signal thresholds on the computed
the training and the testing for Hotelling’s® test using the X2 values for the testing data points, as shown in Fig. 3.
vectorX with only 11 variables. That is, using 1613 data points The comparison of the ROC curves for Hotelling%t€&st and
of X with 11 variables for normal audit events in the traininghe chi-square multivariate test reveals better intrusion detec-
date set, we comput and.S in formulas (1) and (2) which tion performance of the chi-squared multivariate test than that
fully describe the norm profile. of Hotelling’s T? test. While the chi-square multivariate test de-
Using X and S, the T2 value in (3) is then computed for tects mainly mean shifts, Hotelling’s’Test detects both mean
each data point in the testing data set. The computedilie is  shifts and counter-relationships. In fact, Hotelling’s fest is
small if the data point conforms to the norm profile. The RO@ore sensitive to counter-relationships than mean shifts because
curve for the testing results of Hotelling’$ Test is plotted using the T? test statistic is determined largely by the correlated struc-
various signal thresholds on the values of the computedilie ture of variables (variance—covariance matrix) [53]. Hence, the
for the testing data points, as shown in Fig. 3. better intrusion detection performance of the chi-square multi-
With both the mean vectaK and the variance—covariancevariate test than Hotelling’s *Ttest indicates that mean shifts
matrix S, Hotelling’s T? test provides a complete data model ofnay be more important to intrusion detection than counter-re-
multivariate dat&X in the frequency-distribution representatiodationships.
of the frequency property. Hotelling’s’Test detects both mean The ROC curves for Hotelling’s Ttest and the chi-square
shifts and counter-relationships in a multivariate manner. Howtultivariate test show better intrusion detection performance of
ever, Hotelling’s F test is computationally intensive, requiringthese two anomaly detection techniques than performance of
large memory to store the variance—covariance matrix and mubke decision tree based on the single-event representation, even
computation time to compute the matrix and its inverse. It is ntitough these two anomaly detection techniques use less data
scalable to large amounts of computer audit data produced(byly normal audit events) during training. This confirms the
an information system in real time. importance of the frequency property of activity data.
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D. Markov Chain and Results transition probability matrix and the initial probability distribu-

We apply a Markov model that takes into account the ofion are computed from the training data as follows [47]:
dering property of multiple events for intrusion detection. The

application of a Markov model helps answer the question about Py = Ny (11)
whether the ordering property of activity data provides addi- N
tional advantage to intrusion detection, or whether we can de- N,
tect intrusions from only the frequency property of activity data L= (12)

without the ordering property. Since first-order and high-order
Markov models produce comparable intrusion detection perfavhere _ _ _ _
mance [40]-[43], we apply Markov chain—a first-order Markov Ny humber of observation paids; and X1 with Xy in

model that considers only one-step event transitions. statei and X1 in statej;
Let X; be the value of a random variable or the state of a &v;, number of observation paids; and X ; with X; in
system at times. A Markov chain is a stochastic process with state; and X, in any one of the states ..., s;
the following assumptions [55], [56]: Ni  number ofX,’s in statei;
N total number of observations.
P(Xoq1 = 1| Xy = iy, Xoo1 = b1, ..., Xo = do) When we apply the Markov chain to intrusion detection, we
— P(Xus1 = ie41] X, = it), and (5) use the same training data and the same testing data as those

for Hotelling’s T2 test and the chi-square multivariate test. We
P(Xy1 = iy41| X = 4y) = P(X41 = j| Xy =4) = p;5(6) numbers only time points when audit events occur for time

X has 284 possible states representing 284 possible events at
for all t and all states, wheig; is the probability that the systemtime t.
is in a statg at timet + 1 given the system is in stateat timei. Using the stream of 1613 audit events for normal audit events
Equation (5) states that the probability distribution of the staie the training date set, we compute the transition probability
attimet 4 1 depends on the state at timeand does not dependmatrix P and the initial probability distributio) according to
on the previous states leading to the state at timfequation (7) and (8) which characterize the norm profile. Usin@ndc,
(6) specifies that a state transition from time timet + 1 is  we compute the probability that a sequence of the past 15 audit
independent of time. events attime in the testing datax; _14, ..., X;, occursinthe

If the system has a finite number of states, 1, 2,s,.the context of the Markov chain model as follows:

Markov chain model can be defined by a transition probability
matrix [55], [56] L
P(Xt—147 s Xt) = Grt—14 H PXFZ-XFZ-H- (13)
pur P12 - DPis i=14
P21 P22 - Das
pP=1". . (7)  Recall that Hotelling’s ¥ test and the chi-square multivariate
' test compute the test statistic based on the past 15 audit events
Psi Ps2 t Pss when the smoothing factor is set to 0.3.
The higher probability we obtain from (13) for an event se-
guence, the more likely the event sequence is normal. An intru-
@) sive event sequence is expected to receive a low probability of
support from the Markov chain model of the norm profile.

We assign a small probability of 0 to initial states and
state transitions in the testing data if they have a zero proba-
bility value in the transition probability matri® and the initial

j=s probability distribution@, so that the final result from (13) is
Zpij =1 (9) not zero. Details of the implementation can be found in [55].
J=1 The ROC curve for the testing results of the Markov chain is
. . plotted using various signal thresholds on the computed proba-
The probability that a sequence of stales.y, ..., X, attime iy values for event sequences in the testing data, as shown in
t —k, ..., t occurs in the context of the Markov chain mode’:ig_ 3
is computed as follows [55], [56]: We compare the ROC curve for the Markov chain based on
1 the ordering property of activity data with the ROC curves for
P(X ps ooy X0) = Qoo H Py xo - (10) Hotelling’s T? test and the chl_—s_quare multivariate te'st based on
the frequency property of activity data. The comparison reveals
slightly better performance of the Markov chain. This indicates

In this study, the transition probability matrix and the initiathat the ordering property of activity data provides some addi-
probability distribution of a Markov chain model are learnetional advantage than the frequency property to intrusion detec-
from the training data that provide observations of the systdion, even using a simple first-order Markov model that con-
stateXg, X;, Xo, ..., Xy_1 attimet = 0, ..., N — 1. The siders only one-step event transitions.

and an initial probability distribution

Q=la ¢ - @]

whereg; is the probability that the system is in stat time O,
and

i=k
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V. CONCLUSION [12]

From existing work on intrusion detection, we generalize
three properties of activity data in an information system: th
frequency property, the duration property, and the orderin
property. Through a series of studies using the same training
data and the same testing data, we provide answers to seveldl
questions concerning which properties are necessary to intrys)
sion detection. Our studies show that the frequency property of
multiple event types for a given sequence of events is necessa[%]
for intrusion detection. A single event at a given time is not
sufficient for intrusion detection. Second, the ordering property
provides additional advantage than the frequency property tg7]
intrusion detection.

Note that intrusive audit data in our studies are “pure” datd18]
without white noises from normal activities. Intrusions usually
occur in an information system while normal activities are[ig
also occurring in the information system. Hence, in real time
intrusive audit data are mixed with white noises of normal(20
audit data. For such noisy data, the first-order Markov model
of one-step event transitions may not produce good intrusiof21]
detection performance. For noisy data, high-order Markov
model or event more complex data models may be warranteghy
which challenges us with the scalability problem of these
complex data models. Since the two anomaly detection tedfég]
niques (Hotelling’s T test and the chi-square multivariate test)
based on the frequency property provide rather good intrusion
detection performance, the frequency property provides a vi?4
able tradeoff between computational complexity and intrusion
detection performance. When using the frequency property fdes]
intrusion detection, a complete data model as in Hotelling's T
test detecting both mean shifts and counter-relationships mayg)
not be necessary. A simplified data model as in the chi-square
multivariate test detecting only multivariate mean shifts may
be sufficient. Further studies of these properties of activity datJa2 L
using large amounts of noisy computer audit data are currently
ongoing in our laboratory, and will be presented in futurel28]
reports.

13]
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